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Abstract  
Excess mortality is a more robust measure than the counts of COVIDဨ19 deaths typically used in epidemiological 
and spatial studies. Measurement issues around excess mortality, considering data quality and comparability both 
internationally and within the U.S., are surveyed. This paper is the first stateဨlevel spatial analysis of cumulative 
excess mortality for the U.S. in the first full year of the pandemic. There is strong evidence that, given appropriate 
controls, states with higher Democrat vote shares experienced lower excess mortality (consistent with countyဨ
level studies of COVIDဨ19 deaths). Important demographic and socioဨeconomic controls from a broad set tested 
were racial composition, age structure, population density, poverty, income, temperature, and timing of arrival of 
the pandemic.  Interaction effects suggest the Democrat vote share effect of reducing mortality was even greater 
in states where the pandemic arrived early. Omitting political allegiance leads to a significant underestimation of 
the mortality disparities for minority populations. 
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1. INTRODUCTION 

 

Excess mortality is a count of deaths from ‘all causes’ expressed relative to the benchmark of ‘normal’ 

deaths. ‘Normal’ death rates reflect persistent factors such as the age composition of the population, the 

incidence of smoking and air pollution, the prevalence of obesity, poverty and inequality, and the 

normal quality of health service delivery. ‘Normal’ deaths are typically estimated from several years of 

data on pre-pandemic mortality using methods of varying sophistication. In a pandemic, deaths rise 

sharply, but causes are often inaccurately recorded, particularly when reliable tests are not widely 

available. Thus, the death counts1 attributed to COVID-19 may have been significantly undercounted. 

Excess mortality data overcome two problems in reporting COVID-19-related deaths. Miscounting 

from the misdiagnosis or under-reporting of COVID-19-related deaths is avoided. Excess mortality data 

also include ‘collateral damage’ from other health conditions, left untreated if the health system is 

overwhelmed by COVID-19 cases, or by deliberate actions that prioritise patients with COVID-19 over 

those with other symptoms. Precautionary measures taken by governments and individuals may also 

influence death rates in a pandemic. Deaths from traffic accidents and deaths from other infectious 

disease such as influenza may decline; however, suicide rates may rise.2 Excess mortality captures the 

net outcome of all these factors.  

Excess mortality data can be used to draw lessons from cross-country and within-country 

differences and to analyse the social and economic consequences of the pandemic and of lockdown 

restrictions. Excess death figures may help to avoid the measurement biases inherent in other data 

typically used to estimate the virus reproduction rate, R, in epidemiological models3, crucial for 

designing and assessing non-pharmaceutical interventions such as lock-downs. 

Studies comparing the US to other countries find that in 2020 it ranked amongst the highest in 

COVID-19 deaths per 100,000 (Bilinski, 2020) and in rates of excess deaths (OECD paper by Morgan 

et al. (2020), ONS (2021) and earlier versions, and Aron and Muellbauer (2020c)). Woolf et al. (2020, 

2021), comparing US mortality from COVID-19 (March-October, 2020) to leading causes of death two 

years before the pandemic (March-October, 2018), finds that COVID-19 was one of the leading causes 

of death; in the Spring and late Autumn of that year, it was the leading cause of death in the US. The 

pandemic is likely to exacerbate the decline in life expectancy that has been apparent since 2014 (Koh 

et al., 2020).  

                                                           
1 For example, see webpage: COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE), 
Johns Hopkins University (JHU). 
2 Other examples are increases in self-harm, domestic abuse and other crime; use of tobacco, drugs and alcohol; 
and anxiety and changed quality of diet from loss of jobs and income, see Kontis et al. (2020). 
3 See the evidence of Prof. John Edmunds to the UK Science and Technology Parliamentary Select Committee on 
7th May 2020. He explained that while excess mortality data lag Covid-19 infections, the data are an important 
check on earlier estimates of the rate of spread of the virus. 
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Virtually all spatial analyses of mortality in the US are based on case counts or counts of COVID-

19 deaths. The only exception is a county-level study of excess mortality by Stokes et al. (2021), of 

which more below. An indication of the limitations and biases in the data on infections and COVID 

deaths is given in IHME (2021), who suggest that death counts are a less biased estimate of true COVID-

19-related deaths than COVID-19 case counts are of the true number of infections.4 Yet, Weinberger et 

al. (2020) find that official tallies likely undercount US deaths due to the virus, with the completeness 

of the tallies varying markedly between states; they also advocate excess all-cause mortality data as 

more reliable to estimate the full COVID-19 burden.  

In the first 52 weeks of the pandemic, there were around 650,300 excess deaths in the US, compared 

with COVID-19 deaths of around 499,500, sourced from Coronavirus Resource Center, Johns Hopkins 

University (JHU), or around 530,000, when sourced from the US Centres for Disease Control and 

Prevention (CDC). Figure 1 shows the time profile of weekly per capita excess deaths at the national 

level, and the ratio of the CDC count of COVID-19 deaths to excess deaths. This shows severe under-

counting of COVID deaths at the start of the pandemic in the Spring and suggests considerable under-

counting in the Summer and early Autumn of 2020. The figure also shows the ratio of JHU-sourced 

COVID-19 deaths to CDC-sourced COVID-19 deaths; the high ratio suggests an even greater under-

counting by the JHU source than the CDC source at the start of the pandemic. Moreover, the divergence 

between the two measures persists throughout the pandemic and is greatest at the peaks of the waves. 

Our empirical work on Covid-19 deaths suggests strongly that the CDC-sourced COVID death count is 

preferable to the JHU data, see Section 5.4.  Figure 2 ranks the US states by the cumulated excess deaths 

per capita for the 52 weeks, comparing with the P-score and the CDC measure of per capita COVID-

19 deaths. Comparing the COVID-19 death count to excess deaths across states reveals considerable 

variation in the degree of under-counting. 

Our study focuses on cumulative US excess mortality across 51 states (including District of 

Columbia) in the first 52 weeks of the pandemic. This avoids potential mismeasurement problems in 

the usual dependent variables, and we compare the results with a model for COVID-19 deaths per 

capita. One reason for the choice of state comparisons is that the US CDC (Centres for Disease Control 

and Prevention) does not generate county-level estimates of excess mortality.5 We have found only two 

spatial analyses of US COVID-19-related mortality at the state level, IHME (2020) and Doti (2020),6 

both modelling COVID-19 deaths. Thus, our paper is the first state-level spatial analysis of excess 

                                                           
4 Case count data are affected by differences in treatment-seeking behaviour, testing protocols and access to care, 
and further compromised by infectious asymptomatic individuals or pre-symptomatic individuals. Testing results 
may be compromised by accuracy concerns.  
5 Stokes et al. (2021) generated their own excess mortality data covering two-thirds of all US counties. Their 
estimates of ‘normal deaths’ are a simple average of the per capita death rates for 2013-2018, adjusted by a national 
trend factor (see Section 2.3 for a discussion of the estimation issues around ‘normal’ deaths). 
6 The article has specification errors; for instance, the state intervention mandates are not lagged, introducing 
endogeneity bias. 
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mortality, and the first state state-level spatial analysis of mortality that explicitly includes political 

variables.7  

There are several advantages to a state-level perspective, apart from a simpler and more easily 

interpretable spatial model. Using states can be justified by their crucial political role defined by the 

Constitution, e.g. their equal representation in the Senate and their role in the Electoral College, which 

elects the President. It is possible to flexibly explore different hypotheses without the significantly 

greater challenge faced by county studies of properly capturing complex local spatial correlation. Few 

county studies deal seriously with county spill-over effects. The use of state fixed effects in county 

models can help address such flaws but they are difficult to interpret, and much of what is of central 

interest to policy can be thereby ‘washed out’. While the state-focus has the obvious cost of the reduced 

range of spatial variation and fewer degrees of freedom, it provides a useful complement with 

implications for county-level research.  

The heterogeneity across US states in excess deaths linked to COVID-19 in the first 52 weeks was 

enormous, from 305 per 100,000 in Mississippi, to 64 in Maine and 65 in Washington State, the two 

lowest on the mainland. Using the right controls for state-level comparisons is crucial to disentangle 

the effects of political partisanship from other determinants. Fortunately, there have been many studies 

at much more fine-grained spatial levels, e.g. over 3000 counties, from which the most important 

controls can be deduced. For the majority of studies (an exception is Stokes et al. (2021)), the dependent 

variable is a per capita measure of the infection count and/or of COVID-19 deaths, see Table 1. These 

dependent variables embody measurement bias, although some parameterisations in a dynamic model 

can reduce the bias subject to simplifying assumptions (e.g. Rubin et al. (2020)). Five examples of 

cross-sectional spatial studies that include socio-demographic and health determinants but do not 

include political variables are Stokes et al. (2021), Knittel and Ozaltun (2020), McLaren (2020), 

Karmakar et al. (2020) at the county level, and Doti (2020) at the state level, who also includes state 

interventions on social distancing. Considering also the role of partisanship and COVID-19 infections 

and deaths are Liao and De Maio (2021) and Desmet and Wacziarg (2021).8 A detailed critical review 

of these studies can be found in Aron and Muellbauer (2021).  

Structural differences between locations had huge effects on mortality outcomes in the pandemic’s 

first year. A first group of baseline population characteristics, affecting the transmission risk of 

contracting COVID, and vulnerability to the serious health consequences of infection and to non-

pharmaceutical interventions by governments, is likely to remain largely unchanged over the 

                                                           
7 IHME (2020) is a dynamic panel study which uses fixed effects to control for state differences. Doti (2020) does 
not include political variables. 
8 Of these studies, Karmakar et al. (2020) and Desmet and Wacziarg (20201) also have a dynamic aspect. Other 
studies introducing dynamics into the spatial analysis are Rubin et al. (2020), Gerritse (2020), IHME (2020), 
Hamidi et al. (2020), Gollwitzer et al. (2020) and Almagro et al. (2020, 2021).  
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pandemic.9 A second set of public health and social care determinants experienced rapid rescaling and 

reskilling to affect capacity. Over time there was an improved understanding of the disease and how to 

treat it, and later, vaccines were deployed, and new virus variants encountered. A third group, policies 

for lockdown and other restrictions, varying widely across states and countries, have been tightened and 

relaxed at times over the different waves of the pandemic. Finally, compliance with policies and 

scientific advice may also have altered over the pandemic, affected by the perception of economic trade-

offs, and by the media and political role models. Generally, therefore, longitudinal spatial models would 

be expected to be subject to changing values over time of the coefficients of the last three sets of 

determinants, but also of the first set, to the extent that the correlations with omitted variables are subject 

to alteration. In a cross-sectional context, these expected changes suggest testing for potential 

interaction effects, for example with measures of the timing of first arrival of significant levels of 

infection. 

Political partisanship, e.g. measured by the US electoral vote share, has supplemented the controls 

in some county studies of pandemic deaths and case counts to proxy private attitudes and compliance. 

Gollwitzer et al. (2020) summarise studies of partisanship and its measurement, and the link with social 

judgements and behaviours (e.g. Van Bavel (2018)). Allcott et al. (2020) study partisan differences in 

Americans' surveyed beliefs concerning their infection risk and the likely severity of the pandemic and 

find that social distancing behaviours reflected these beliefs. Makridis and Rothwell (2020) use 

nationally-representative US panel data to demonstrate that the formation of beliefs about the pandemic 

and social distancing behaviour is driven primarily by political affiliation. Druckman et al. (2021) find 

a strong association between citizens’ levels of partisan animosity and their attitudes about the 

pandemic, and the actions they take in response to it. Hamel et al. (2021) analyse the results of multiple 

surveys confirming the role of partisanship in explaining spatial differences in US vaccination rates. 

Omitted variables are likely to be the most prominent source of bias if they are correlated with the 

included regressors. The inclusion of political partisanship adds an important omitted variable to the 

more typical set of regressors, which are focused on the characteristics affecting transmission risk and 

vulnerability to infection and the preparedness and capacity of the public health and social care systems. 

As in other cross-section studies, there may be omitted variables that are correlated with an included 

regressor but are themselves difficult to measure. Examples are wealth inequality across race and racial 

discrimination, which may provide channels to explain the widely-found significance of racial and 

ethnic regressors in the above types of analyses, conditional on inclusion of a set of co-variates.10 

                                                           
9 The baseline variables include demographic and health characteristics differentiated by gender; measures of 
poverty, income and inequality; racial and ethnic group status; employment status, type of occupation and working 
conditions; transport measures such as use of public transport, commuting across states and international linkages 
through airports; and housing density. The relative influence of such baseline variables can, of course, evolve over 
the course of the pandemic. 
10 See Hardy and Logan (2020) for a comprehensive analysis of the impact of racial and ethnic inequality on 
COVID-19 mortality and McLaren (2020) for statistical evidence.  
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Another example is that the quite accidental arrival of the pandemic in certain counties and states early 

in the pandemic - because of returning travellers from Europe, or crowd events such as New Orleans’ 

Mardi Gras - will have been strongly linked with high subsequent mortality. Omission of relevant 

controls, such as enplanement measures of numbers of travellers from the most infected foreign origins, 

can bias the estimated effects for those counties.11 Alone amongst the above studies in controlling for 

temperature is Knittel and Ozaltun (2020), a variable that has been found important in historical patterns 

of mortality, e.g. Kontis et al. (2020).  

To minimise the effects of omitted variables it is important to test for a comprehensive set of 

potential initial controls, an important feature of our own methodology. Approaches amongst the above-

cited articles differ in the selection of controls, which is often arbitrary, leaving out key controls such 

as temperature and population density. However, in a large set, many controls may be collinear with 

other controls or appear insignificant. At least two approaches have been used in this context. The Lasso 

(least absolute shrinkage and selection operator) regression analysis method aims to enhance the 

prediction accuracy and interpretability of the resulting statistical model, by requiring the sum of the 

absolute value of the regression coefficients to be less than a fixed value, which forces certain 

coefficients to zero, thereby excluding them. Castle et al. (2020) argue that Lasso struggles with 

negative correlations,12 and find better performance, from the ‘general to specific’ approach 

‘implemented in the Autometrics’ software, which we use to check our regressions.13 

Our analysis of US state differences in pandemic-related rates of mortality estimates the effects of 

racial composition, age structure, poverty, population density, care capacity and other structural 

features, the timing of the pandemic onset, Spring temperatures (°F) and of political allegiance. Across 

the 51 US states, we find that political allegiance expressed in the way people voted in 2016 had a major 

effect on mortality outcomes, given the inclusion of the socio-economic and other controls. This is 

consistent with spatial studies at the county level, linking partisan allegiance with private attitudes, 

behaviour and COVID-19 deaths. The Desmet and Wacziarg (2021) county-level study of COVID-19 

deaths and infection rates in the US established that counties with a high vote-share for the Republicans 

in 2016 had higher rates of COVID-19 deaths up to the end of November, accounting for population 

density, racial/ethnic composition and other controls). We confirm this result at the state level for the 

full year since the arrival of the pandemic when using rates of excess mortality as the dependent 

variable, as well as for COVID-19 death counts per capita. Our controls also include state interaction 

                                                           
11 Save for Desmet and Waziarg (2021), none of the above studies corrects for the bias from the differential early 
onset of the pandemic in some states and later onset in others. 
12 This is because negatively correlated variables need to enter jointly as they may not matter much individually. 
This also proves to be a problem for step-wise regression. 
13 The Autometrics algorithms are available in Doornik and Hendry (2018), see also www.doornik.com, the Excel 
add-in XLModeler, www.xlmodeler.com, and in R (Pretis et al., 2018). 
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effects with the timing of first arrival of the pandemic, implying that the effect of partisanship was even 

greater in states where the pandemic arrived early.  

The paper sets out in Section 2 why excess mortality expressed as a rate most accurately captures 

the impact of the COVID-19 pandemic. Different measures of pandemic outcomes are compared and 

contrasted, especially in relation to the valid comparability of deaths, case counts, ‘normal deaths’ 

excess deaths and excess mortality across regions, states and countries. Data sources and data quality 

are assessed, and suggestions made for improving the transparency and granularity of excess mortality 

data. Section 3 lays out the conceptual framework and the drivers of excess mortality, and a reduced 

form empirical model for analysing cross-state variation in rates of cumulated excess mortality, and 

Section 4 the data sources, transformations and statistics. In Section 5, the data and empirical results 

are described for the impact on rates of cumulated excess mortality, and for comparison, of rates of 

COVID-19 deaths, of state variations in political allegiance and socioeconomic factors in the first 52 

weeks of the pandemic. Section 6 concludes. 

 

2. EXCESS MORTALITY – DEFINITION AND MEASUREMENT  

 

For country or state comparisons (where the under-recording of pandemic deaths may differ), a robust 

measure of the count of excess deaths (actual deaths minus ‘normal’ deaths) expressed relative to the 

population or relative to the benchmark of ’normal’ deaths (which we have named the P-score),14 is 

greatly to be preferred to simple counts (including per capita) of COVID-19 death rates and infectious 

case counts, see Table 1.  

This section explains the data quality problems with the raw case and deaths data, it compares and 

contrasts different measures of excess mortality, and discusses an alternative measure of the toll of the 

pandemic, quality-adjusted life expectancy. 

 

2.1 Why use excess mortality? 

Comparisons of excess mortality across regions, states or countries have several purposes. The first is 

to compare the death toll of the pandemic. The death count of COVID-19, as noted above, suffers from 

a number of biases, making it an unreliable dependent variable, especially when comparing across 

countries or states with different definitions of what constitutes a COVID death. Even within the US, 

we noted significant discrepancies between the CDC and JHU sources for COVID-19 deaths, see Figure 

1. Countries with a wide definition for COVID-19 deaths (e.g. Belgium and France) will show that most 

excess deaths are accounted for by COVID-19, as compared to those with a narrower definition. In the 

                                                           
14 This terminology has now been adopted more widely, e.g. OWID, the ONS (2020; 2021) and the OECD (2020). 
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US, as Fineberg (2020) observes, counts of deaths from all causes from the National Vital Statistics 

System (NVSS)15 are incomplete for recent weeks, and lags may be as long as eight weeks.16 COVID-

19 deaths tend to be under-reported based on the listed causes of death, which reflect varying uncertainty 

and the judgment of the certifier. For instance, Woolf et al. (2020) find that mortality rates for Alzheimer 

disease/dementia and heart disease rose during Spring and Summer pandemic surges, with statistical 

significance. This could suggest misdiagnosis of a COVID-19 death or that COVID was implicated in 

these deaths by preventing early treatment. Supporting evidence for the above is from Woolf et al. 

(2020) who find that COVID-19 deaths were a documented cause of death for “only” 67% of excess 

deaths in the US (1-March to 1-August 2020). Their table shows great variation in the COVID-19 share 

of excess deaths across the US states, pointing to varying degrees of mismeasurement across states in 

COVID-19 implicated mortality, as implied by our Figure 2. Figure 1 provided national evidence on 

the shifting COVID-19 share of excess deaths over time, reflecting improvements in the understanding 

of the disease, in testing capacity, in diagnosis and other factors.17  

A second reason for making comparisons of excess mortality, to evaluate the effectiveness of policy 

responses, requires one to dig deeper, and even the simple measures above require further interpretation. 

Countries may differ in the size of the initial source of infection, in their age structure, in the distribution 

of co-morbidities in the population and the prevalence of dense urban centres, making some countries 

more vulnerable.  

The third motivation for comparisons is the purely objective one of improving the scientific 

understanding of the dynamics of the spread of infections, their incidence and the death rates of those 

infected. Key to this last endeavour is the production of granular data, i.e. disaggregation of excess 

deaths data by age, gender, region, and, where possible, socio-economic categories.  

 

2.2 Measures, sources, and their variable quality 

Several definitions of the dependent variables capturing pandemic outcomes and used in spatial 

analyses are summarised and evaluated in Table 1. These are presented in two groups: measures of 

COVID deaths, COVID-related deaths and COVID-cases; and measures of excess mortality. 

To address the measurement problems inherent in the former group, we argued at an early stage of 

the pandemic that national statistical offices should publish more granular data and excess mortality P-

                                                           
15 The US National Center for Health Statistics (NCHS), within the Centers for Disease Control and Prevention 
(CDC), operates the National Vital Statistics System (NVSS) for the US. 
16 The lags were longer for North Carolina, as it transitioned from a paper-based to a digital system of recording 
deaths.  
17 Some of the discrepancy between reported COVID-19 deaths and excess deaths could be related to the intensity 
and timing of increases in testing, and differential guidelines on the recording of deaths that are suspected to be 
COVID-19 but without a laboratory confirmation; the location of death (hospital, nursing home, or at home) has 
also affected whether it is recorded as a COVID-19 death, (Weinberger et al., 2020). 
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scores for states and sub-regions, disaggregated by age, gender and race.18 The P-score (ratio or 

percentage of excess deaths relative to ‘normal’ deaths) is an easily interpretable measure. While many 

national statistical agencies have published actual weekly deaths and averages of past ‘normal’ deaths, 

there were few published benchmarks for more granular or disaggregated data, such as sub-regions or 

cities. In the U.S., the CDC publishes data on excess deaths and a variant on P-scores (see Table 1), 

defining excess deaths as deviations from ‘normal’ deaths plus a margin adjusting for the uncertainty 

around estimated normal deaths.19 This variant is a lower bound estimate of excess mortality, since the 

upper 95 percent confidence interval is an upper bound estimate of normal deaths. The variant has the 

disadvantage that excess mortality data cannot be cumulated over a number of weeks since the margin 

of uncertainty will narrow as randomness at the weekly level smooths out. These data include states but 

not counties, and are also available disaggregated by gender, age and ethnicity. However, to obtain 

cross-European or cross-global comparisons in 2020 required data collation from individual national 

agencies to construct these measures.  

Early in the pandemic, separate journalistic endeavours engaged in the time-consuming effort of 

collating and presenting more transparent excess mortality data, see Aron and Muellbauer (2020a, Table 

1). In the intervening year, several agencies have geared up to provide underlying data or present the P-

score measures. Perhaps the biggest single pitfall for comparability arises from the accuracy of the raw 

mortality data. An important drawback of the reported numbers concerns lags in recording and reporting 

deaths. Countries differ in the efficiency of their death registration systems, particularly where those 

systems are devolved to regional or local administrations. Problems in one location can affect or delay 

the national data, and sometimes the national recording system can be slow to absorb regional 

information. Even in countries with the most sophisticated recording systems, reported mortality lags 

weeks behind the facts. In a pandemic, it can happen that the capacity of systems is temporarily 

overwhelmed, most of all in hotspots, often in urban areas. Occasionally the recording methods may be 

so weak overall, that the observers resort to data on burials. These definitional differences need to be 

highlighted and made transparent across country data providers and international organisations 

reporting excess mortality statistics. The period over which comparisons are made needs to be specified 

carefully, as it is likely that reporting lags are far from uniform across countries. 

The Human Mortality Database’s Short-term Mortality Fluctuations (STMF) project offers high 

quality national mortality data by week for 38 countries, and access to the exemplary statistical metafile 

of HMD. Baseline data cover mainly 2015-2019 (2016 for a few countries), back in many cases to 2000, 

and disaggregation by several age categories and gender. This provides the raw data from which excess 

                                                           
18 See Aron and Muellbauer (2020a, 2020b, 2020c).  
19 See webpage: “National Center for Health Statistics”, Centers for Disease Control and Prevention (CDC), US 
Government. These estimates use statistical models at the state level incorporating seasonals and trends to define 
normal deaths.  
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mortality measures can be constructed. Eurostat20 produce granular mortality data, cross-classified by 

sex, five-year age-groups and NUTS 3 regional levels within countries for 26 EU member states, EFTA 

countries and five non-member neighbouring countries. They also compile monthly estimates of P-

scores using normal deaths defined as the monthly average for 2016 to 2019.  

The World Mortality Database has the largest set of countries (94) with a mix of weekly and 

monthly data. Around half of these come from the above sources, and the rest are directly sourced from 

national authorities, though some data are of questionable quality.21 Some of the countries covered by 

WMD publish data with lags as long as 6 months and even those data may be under-recording deaths 

in the final weeks of the period covered. Data are presented normalising the excess mortality estimates 

by the population size, though without evaluating the quality of the underlying population data.22 Their 

P-scores (for ‘all ages’ only) use ‘normal’ deaths based on the previous 4 to 5 years of data, where 

available, using seasonals and annual time trends in regressions to project ‘normal’ deaths to 2020 and 

2021.23 This is a simplified version of the methods used for instance by the CDC of the US, which 

provides  ‘normal’ seasonally-adjusted baselines on its site. It also differs from the method used by Our 

World in Data (OWID) which sources data from the above three websites and presents excess mortality 

statistics (P-scores) for 70 countries, using an arithmetic average for ‘normal’ deaths of the years 2015 

(or 2016) -2019. OWID disaggregate by several age categories and by gender, have a discussion of data 

quality and comparability, and are clearer on the time-frame for their data – they do not use the last few 

weeks because of recording lags.  

 

2.3 Issues around the measurement of normal deaths – the case of the CDC. 

Using the arithmetic average of previous years as the baseline for normal deaths has the advantage of 

simplicity. However, there are differences in underlying trends in deaths which are likely to be 

dominated by population growth and the changing age structures of the population, and in other health 

conditions and their treatment. Ignoring such trends can result in over- or under-estimates of ‘normal’ 

deaths, and hence in under- or under-estimates of excess deaths in comparisons between countries or 

regions. The CDC’s estimates of weekly normal deaths at the state level24 implement the Farrington 

algorithm, see Noufaily et al. (2012), which uses over-dispersed Poisson generalized linear models with 

                                                           
20 See webpage: Eurostat excess mortality statistics. 
21 The dataset is a mixture of reliable and poor-quality data, without discussion of comparative quality. Monthly 
data were used for countries where weekly data are not available. Availability of weekly data might be considered 
as indirect indicator of data quality. It is not always the case and there are some exceptions (e.g. Japan doesn’t 
publish weekly data but has high quality data). 
22 Notably, a few countries with acceptable mortality quality were excluded from the HMD excess mortality 
statistics (STMF), mainly because of problematic population estimates (HMD publishes rates). 
23 It is not fully clear from the WMD website which countries have data for the full five years for the baseline 
estimation: 2015-2019. However, if the baseline is estimated for one year of data only, then no trend could be 
estimated, leading to biased results. 
24  See the CDC website. 
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spline terms to model trends in counts, and accounts for seasonality. The CDC’s approach does not take 

into account evolving state-level population and its age distribution in previous years in modelling 

normal deaths. Moreover, the Poisson model, designed for small number count data, makes strong 

assumptions about the underlying stochastic process, which are contradicted by evidence for larger 

populations, see Aron and Muellbauer (2020b). Even for the least populous US states, weekly deaths 

almost never fall below 60, which is not a ‘small number’ in this context. Hence, a better approximation 

to the data-generating process is likely to be offered by the more flexible ARIMA models. These more 

flexible ARIMA models have been used at a national level to estimate normal deaths, by Rossen et al. 

(2021), Faust et al. (2021) and Shiels et al. (2020), among others. These authors apply ARIMA models 

to estimate trends and seasonals from historic data on per capita deaths for different age groups. 

Estimates of normal deaths for the pandemic period are then made by projecting these trends and 

seasonals and multiplying up by the current population data for each age group. The pandemic has 

reduced the population count, especially of older age groups who have high per capita death rates. This 

method results in lower estimates of normal deaths and higher estimates of excess deaths than a linear 

projection of past trends which ignores the changing population and age structure. Applying such an 

approach at the state level would improve the accuracy of excess mortality estimates. 

 

2.4 Comparability of the different measures across countries, regions or states 

The different measures of excess mortality are compared and contrasted in Table 1. Assuming that the 

data definitions for the death counts, such as the definition of the week, type of death count data 

collected (e.g. registration versus occurrence data) and timeliness of the collection are identical across 

countries, see Aron and Muellbauer (2020b), we consider the relative comparability of the statistical 

measures of excess mortality. 

In Figure 3, the weekly per capita excess deaths and P-scores for the US as a whole are plotted. The 

P-scores have the advantage that by normalising relative to ‘normal’ death counts, they reflect persistent 

factors affecting normal mortality such as the age composition of the population, the incidence of 

smoking and air pollution, the prevalence of obesity, poverty and inequality, and the normal quality of 

health service delivery.25 A country like Italy, with an older population, will fare somewhat worse in a 

per capita excess mortality comparison with countries having younger populations than in a P-score 

comparison. In a multivariate statistical study, the inclusion of comprehensive controls reduces this 

advantage of the P-score over a per capita measure of excess mortality, though the P-score reduces the 

risk of potential bias from unobserved heterogeneity in normal health risks. Moreover, while P-scores 

are less affected than per capita excess deaths by differences in the age-composition of the population, 

they are not immune. Differences in the age distribution between countries would only be irrelevant if 

                                                           
25A possible argument in favour of per capita excess mortality is that total population could be regarded as a rough 
proxy for the ability of the society to absorb excess deaths.   
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mortality risk increased in the same proportion for all. This is not the case because children have a far 

lower relative mortality risk in the COVID-19 pandemic than under normal conditions. Moreover, 

differences in urban structure and in population density have relatively little effect on normal mortality 

rates but have major effects on the spread of a pandemic. P-scores are therefore far from immune to 

structural differences between countries and regions. However, for temporal comparisons for the same 

country, their time profile differs little from per capita excess deaths, see Figure 3. 

These themes can be illustrated by comparing rankings of COVID-19 related rates of mortality 

across US states. Because normal deaths are higher for the elderly and for those with co-morbidities, 

scaling by normal deaths takes some account of differentials in age composition and socioeconomic 

characteristics between countries and regions. Indeed, comparing US states, the rankings of states 

according to the two metrics are notably different, see Figure 2. For example, Mississippi had the 

highest per capita rate of excess mortality in the US, while California ranked in the middle of the 

distribution at number 25. However, on the P-score, California has higher mortality in 5th place while 

Mississippi is in 7th place. Clearly, normal death rates are far higher in Mississippi than in California.  

Similar issues affect age-standardised mortality comparisons. The age-standardised mortality rate 

takes the age-specific mortality rate for each age group, and measures their weighted average using the 

proportion of the population in the corresponding age groups in a reference population. The same 

reference population is used in comparing any two countries or regions. While this controls for some 

of the effects of differences in age structures it neglects the other structural difference affecting 

pandemic-related mortality in different countries.  

An alternative measure is the Z-scores compiled by EuroMOMO26 for 29 states, see Table 1. The 

Z-scores standardise data on excess deaths by scaling by the standard deviation of deaths outside periods 

of notable excess mortality. The expected value of each country’s weekly deaths is estimated using data 

for the previous five years, taking seasonal factors and trends into account, and adjusting for delays in 

registration. To fit the baseline, normal variability is measured after excluding seasons leading to excess 

deaths from additional processes (e.g. Winter influenza and Summer heat waves). In contrast to the P-

scores, the Z-scores are a less easily interpretable measure. Moreover, if the natural variability of the 

weekly data is lower in one country compared to another, for example in larger populations compared 

with smaller ones, then the Z-scores lead to exaggeration of excess mortality compared to the P-scores27. 

Graphic presentation of the Z-scores for different time-periods, countries, and age-groups, with the 

                                                           
26 EuroMOMO is a European mortality monitoring entity, aiming to detect and measure excess deaths related to 
seasonal influenza, pandemics and other public health threats. Official national mortality statistics are provided 
weekly from the 24 European countries and regions in the EuroMOMO collaborative network, supported by the 
European Centre for Disease Prevention and Control (ECDC) and the World Health Organization (WHO). 
27 Given the Poisson model used by EUROMOMO, there should be large differences in Z-scores between 
countries with different populations even if the P-scores were identical. In practice, because the Poisson is likely 
to be poor approximation to the stochastic process for the number of deaths, the differences are less pronounced 
than one would expect, see Appendix in Aron and Muellbauer (2020b). 
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estimated confidence intervals back to 2015, provides a visual guide to their variability. A further 

disadvantage of Z-scores, compared to P-scores and per capita excess death measures, is that their 

cumulation over multiple pandemic weeks is problematic. While excess deaths can be cumulated, the 

standard deviation of normal deaths cannot. EuroMOMO do not reveal the standard deviations used in 

their calculations. This makes it hard to obtain a comprehensive comparative summary of the 

pandemic’s impact from the Z-scores. 

 

2.5 Quality-adjusted life expectancy  

Finally, it should be considered whether excess mortality statistics alone are sufficient to measure the 

impact of a pandemic. One has to be aware of the limitation of any single measure of comparability 

between countries. Subsumed within the excess death aggregates are implicit value judgements. For 

example, crucially in the case of a pandemic, there is an implicit assumption that the toll of an older life 

lost is the same as that of a younger life. However, when a younger life is lost, many more years of life 

expectancy are lost, and one might want to attach a larger weight to deaths of the young. 

The health economics literature has given attention to Quality Adjusted Life Expectancy (QALY) 

as a criterion for expenditure on health-improving policies. QALYs measure the number of reasonably 

healthy years a person might expect to live. The number of QALYs lost could supplement the increased 

death count resulting from the pandemic as a measure of its impact. However, detailed actuarial and 

medical information is entailed in the complex estimation of the number of QALYs lost. QALYs and 

the attachment of monetary values to QALYs have long been controversial, see Loomes and Mackenzie 

(1989), but the concept of a QALY does focus attention on the relative value (by age group) of expected 

years lost in a pandemic. The excess mortality of working age adults with a normal life expectancy of 

30 years might be weighed against the excess mortality of 85-year olds with a life expectancy of 5 years. 

Attaching more weight to excess mortality for working age adults will affect comparisons of countries 

with different age-specific mortality rates. Pifarré i Arolas et al. (2021) estimate years of life lost (YLL) 

for 81 countries from premature deaths due to COVID-19 based on age-specific life-expectancy tables 

for each country. For most countries, they based their estimates on COVID-19 death counts, but for a 

subset of 18 they use excess mortality data. They find that close to half of YLL for all the countries are 

in the 55 to 75 age group and that only around a quarter of YLL occurred for the over 75s.  

To end on a cautionary note that affects all the weekly measures of excess mortality, it is important 

to examine excess mortality in a longer-term perspective. If, as argued, for example, by British 

statistician, Spiegelhalter (2020), the main impact of COVID-19 is simply to shift forward the date of 

death by a few months for those close to death because of underlying poor health, then a peak in weekly 
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deaths should be followed by a trough in the following months.28 For the US, Faust et al. (2021) have 

estimated the impact of so many people dying in the initial wave, that there were fewer vulnerable 

people as time went on, and proposed a method of adjusting expected counts of deaths downward 

because of the excess mortality that happened earlier in the year.  

 

3. CONCEPTUAL FRAMEWORK AND MODEL FORMULATION 

 

Our aim in this paper is to analyse the main factors accounting for cross-state variations in cumulated 

excess mortality after one year of the pandemic in reduced form models. The papers cited in Section 1 

have examined socio-economic drivers of recorded COVID-19 cases and deaths using county-level 

cross-section data. A few also examine political drivers of COVID-19 cases and deaths. A major 

limitation of such studies is the serious measurement biases in reported infections and COVID-19 

attributed deaths, particularly early in the pandemic when testing capacity was often limited, and 

unequally distributed. 

If ‘all-cause’ death registration data are accurate, then excess mortality will not be subject to these 

measurement biases;. However, excess mortality includes the other two components discussed above: 

avoidable deaths due to non-occurrence of treatments for other causes of ill-health and deaths avoided 

from shifts in behaviour linked with the pandemic. While the peak incidence of COVID-19 deaths 

occurs 2 to 3 weeks after infection, though with a long tail of later incidence, the timing of the last-

mentioned components is likely to be different. The effects of non-treatment of preventable ill-health 

on mortality include missing early diagnosis and starting cancer treatments later than is advisable, and 

therefore have mortality consequences likely to materialise months, and in some cases years, later.  

Similarly, the health damage from the economic disruption caused by the pandemic, especially for lower 

income people, is likely to affect mortality for years to come.  

 

3.1 The drivers of spatial variation in excess mortality 

To interpret the large differences in cumulative COVID-19 death rates among states requires 

consideration of several factors: the average infection rates in preceding weeks, average mortality risk 

from COVID-19 and constraints on COVID-19-specific health capacity, given the prevailing state of 

knowledge about treatment.  

Turning to the first of the factors, consider differences in infection rates. Compare two states with 

the same average COVID-19 case fatality risk where 1 percent of all adults are infected in A, while 5 

percent are infected in B. Then the rate of excess deaths for adults measured by the P-score will be 

                                                           
28 Actuary McDonald has disagreed with claims that a majority would have died in the next 3 months, see Edwards 
and McDonald (2020). Spiegelhalter subsequently admitted over-estimating this ‘harvesting’ effect, Kelly (2020). 
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about 5 times as large in B in the weeks following the incidence of the infection. States that locked 

down early and had effective test, trace and isolate procedures kept down the average infection rate and 

hence the excess death rate. Transmission and hence rates of infection are also influenced by factors 

like the nature of social distancing, availability and use of face masks, and cultural differences in the 

exercise of self-discipline and following of advice. This set of mitigating factors can be influenced by 

public policies enacted at state and local levels. Other factors impacting infection rates include types of 

occupation, density of living circumstances and proximity to international or cross-state travellers who 

might import infection. For example, New York’s higher excess mortality was influenced by higher 

initial imports of infections and a higher virus reproduction number given its high density and hard-to-

avoid close physical contact on public transport and at work in New York City. States with a higher 

fraction of adults in multi-generational families, and in locations or occupations (e.g. health workers or 

taxi-drivers) where the virus can more easily spread, will tend to have higher excess death rates. The 

influence of the above factors is likely to evolve over the course of the pandemic as the main sources 

of infection change and as individual behaviour and public policies respond.   

The second of the factors mentioned above is mortality risk for infected adults, and this can differ 

between and within states. The steep age gradient of COVID-19 mortality implies that states with older 

populations will have higher per capita COVID-19 mortality, other things being equal. The percentage 

increase in mortality risk may be greater for some ethnic groups, or for some co-morbidities such as 

diabetes or pre-existing lung conditions, which are often a function of low income. Then state 

differences in ethnic composition, the prevalence of obesity and smoking, and poverty, are likely to 

influence comparative excess mortality.  

Lastly, a state’s COVID-19 mortality is increased, and potentially amplified, by limited COVID-

19-specific health capacity. The death rate among infected adults depends on capacity constraints on 

hospital beds and staff, particularly of nurses with expertise, on ventilators, PPE and on testing and on 

logistical failures in delivery, e.g. to care homes. Given similar initial capacities, a state with a higher 

average infection rate will be more likely to run into these constraints. By the same logic, given the 

same high infection rate, a state with lower health capacity would have a higher rate of excess mortality. 

This is why there is such a focus on ‘flattening the pandemic curve’. Different capacity constraints can 

have different implications for different groups. For example, lack of PPE and testing facilities in care 

homes will have disproportionately larger effects on mortality for the oldest individuals and this could 

affect state comparisons. However, as these health capacities evolve over time in response to the 

pandemic, the influence of differences in pre-existing health capacity is likely to decline. Further, the 

timing of the pandemic’s incidence matters also, as medical interventions became more effective with 

learning about the nature of the virus and its treatment. 

The probability of an individual death from COVID-19, ܲ(ܦ), is the product of the probability of 

being infected, ܲ(ܫ), and the probability of death given infection. Thus, 
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(ܦ)ܲ                                      = (ܫ)ܲ כ  so that ,(ܫ/ܦ)ܲ
 
                                    logܲ(ܦ) = logܲ(ܫ) + log(ܫ/ܦ)                                                   (1) 

 
At the state level, assuming correct measurement of death counts and infection counts, aggregating the 

individual probabilities yields population proportions of infections and deaths. The log of the state 

COVID-19 mortality rate is then the sum of two functions, the log of the (lagged) infection rate and the 

log of the average case fatality rate (ܴܨܥ) for the population of that state (that is, the proportion of 

infected people who die from the virus):  

 
                   log(݉݁ݐܽݎ ݕݐ݈݅ܽݐݎ݋) = log (݁ݐܽݎ ݊݋݅ݐ݂ܿ݁݊݅ ݈݀݁݃݃ܽ)  + log  (2)                              (ܴܨܥ) 

 
Equation (2) justifies a log formulation of the mortality rate. A further reason arises from the highly 

skewed nature of the levels data, greatly reduced in the log transformation.  

The lagged infection rate will be affected by the variables discussed in Section 1, such as population 

and housing density, the use of public transit, the proportion of occupations exposure to early infections 

arriving from Europe, lock-down and social distancing measures and private behaviour responding to 

the risk of infection and to public measures trying to limit the spread of the virus. The average case 

fatality rate for the population of that state will vary with factors such as age, race and ethnicity, poverty 

and inequality, access to good medical care and the capacity of the health system. Our study estimates 

the cumulative effects of these influences both on infection rates and case fatality rates over 52 weeks.  

 

3.2 An empirical model for the pandemic  

We adopt a two-stage model. In the first stage, the time of arrival of a significant level of infection for 

each state is modelled. In the second stage, rates of excess mortality measured either per capita or in 

terms of P-scores are modelled as a function of the time elapsed, from the end of February to the time 

of arrival of the infection, and of socioeconomic, political, demographic and environmental factors. For 

comparison, the dependent variable, per capita COVID-19 deaths, is also tested. 

A later local onset of the pandemic should have enabled state and local authorities to take advantage 

of rapidly improving medical knowledge and capacity (the nature of the disease, treatment regimes, 

testing capacity, and the effectiveness of policies such as social distancing and masks). Private 

individuals would also have had more time to learn precautionary behaviour. Kaplan et al. (2020) use a 

logistic function in time - a ‘learning function’ to capture the effect of this evolution of behaviours, 

policies and capacities on health outcomes. We adapt the idea to define a ‘learning function’ that 

captures the advantage that some states obtained from the later arrival of the virus. The timing of the 

arrival of the virus in each state is measured by the first day that the 14-day average of daily cases of 
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infection reached, or exceeded, a threshold of 6 cases per 100,000 persons. Our ‘Timing of onset’ 

function is defined as the inverse of days elapsed from the last day of February to the threshold date 

(signalling the arrival of serious levels of the virus).  The ‘Timing of onset’ function, like the logistic, 

has the property that the effect is strong at the beginning, but each additional day of delay matters less 

and less. The inverse function is the dependent variable in the first stage regression estimated in a cross-

section regression across states. 

Given the probable undercounting of infections in the first wave, it is likely that the dates when the 

threshold was breached occurred somewhat earlier than indicated in the reported counts. If the bias was 

uniform across states, it would not matter much. To the extent that the bias varies with socioeconomic 

differences between states, the interpretation of estimated socioeconomic effects needs to consider the 

possibility that, in part, these effects may be compensating for measurement bias in the timing measure. 

If the bias is independent of political allegiance at the state level, it should not affect the estimated effect 

of political allegiance on excess mortality. 

As New York City had the highest initial incidence of the virus, nearness to New York is likely to 

have been a factor in explaining the timing for other states. Factors such as the degree of urbanisation 

of the state, density of its metropolitan areas, the use of public transport, and socioeconomic correlates 

of dense housing conditions are plausible additional candidates for this first stage model of timing. 

The second stage consists of a cross-section regression for the 51 US states of the log of cumulated 

excess mortality on the timing function and on socioeconomic, political, demographic and 

environmental factors.  

As the literature review on more granular spatial differences indicated, pre-pandemic 

socioeconomic controls at the state level should include at least the population proportions who are of 

African American, Hispanic or Asian origin, in the 65+ age group, population density, a measure of 

health capacity, income and a measure of the incidence of poverty. To these we add the Spring and 

Autumn temperatures (averaged over March, April and May, and over October to December, 

respectively) in each state. For excess mortality, very cold weather is likely to induce more influenza 

and other deaths, as well as increasing COVID-19 deaths by forcing people indoors, where lack of 

social distancing and of adequate ventilation may increase virus transmission rates. Separating the 

above into factors affecting the rate of infection vs. those affecting the case fatality rate is typically not 

possible. For example, if African Americans are more likely to live in crowded housing conditions and 

work in occupations involving more face-to-face contact, they suffer higher infection rates. In addition, 

they are likely to suffer higher case fatality rates, for example, because of pre-existing co-morbidities. 

Similarly, Spring and Autumn temperatures probably affect both the rates of infection and case fatality.  

The two-equation model for the 52-week pandemic period may be represented thus:  

ݐ݁ݏ݊݋ ݂݋ ݃݊݅݉݅ܶ                      = ݃(ܼଵ,ܼଶ, … . .ܼ௥)                                                          (3) 
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                  logܴܯܧହଶ ௪௘௘௞௦ = ,ݐ݁ݏ݊݋ ݂݋ ݃݊݅݉݅ܶ)ܨ ଵܺ ,ܺଶ, … .ܺ௞)                                            (4) 
 

where ܴܯܧ is the cumulative excess mortality rate. In equation (3), the inverse function of days elapsed, 

is explained by a vector of r pre-pandemic structural variables, denoted by Z, where state subscripts 

have been suppressed. In equation (4), the log of the cumulative rate of excess mortality for the 

pandemic, ܴܯܧହଶ ௪௘௘௞௦ is explained by ܶ݅݉݅݊݃ ݐ݁ݏ݊݋ ݂݋ and a second vector of k pre-pandemic 

structural variables, denoted by X. There can be overlap between the variables in the vectors Z and X, 

but it is crucial for identification that the Z vector includes some variables not included in X. 

The list of relevant variables is by no means exclusive, though there are strong priors based on the 

evidence from county-level studies. Model selection methods, starting with more general specifications 

including up to 30 regressors, were used to check for the relevance of the other explanatory variables. 

Since variation across 51 states is much more limited than across over 3000 counties, sign priors on 

relevant variables, as well as statistical significance, can help the variable selection process. 

For the analysis of cumulative rates of excess mortality in the first 52 weeks of the pandemic, no 

attempt is made to control for differences in non-pharmaceutical interventions (NPIs) at the state level. 

State NPIs are endogenous, likely to be switched on when case-counts and COVID-19 deaths rise 

strongly. The positive correlation induced would bias estimates of the beneficial effects of NPIs on 

subsequent excess mortality. In order to measure such effects, excess mortality would need to be 

considered over shorter intervals, and the measures of NPIs lagged to avoid endogeneity bias. 

 

4. DATA 

 

4.1 Dependent variables: excess mortality and COVID-19 deaths  

Estimates of excess deaths - defined as the number of persons who have died from all causes, in excess 

of the expected number of deaths for a given place and time - are from the CDC’s National Center for 

Health Statistics (NCHS), see discussion in section 2.3. Successive vintages of these estimates reveal 

surprisingly large revisions in estimates of normal deaths and hence excess deaths. One reason is a 

switch from historical data for 2016-2019 to data for 2017-2019 in late January 2021, to estimate normal 

deaths.29 The longer historical sample is likely to result in less noisy estimates at the state level. We 

therefore used the CDC estimates of ‘normal’ deaths based on 2016-2019 up to week 3 of 2021. For 

weeks 4 to 8 of 2021, the CDC estimates of ‘normal’ deaths in February 2021 based on 2017-2019 were 

used. We used the weekly count of excess deaths calculated as observed deaths for that week minus the 

‘normal’ (average expected) number of deaths and cumulate over 52 weeks. For weeks where excess 

deaths are estimated to be negative, we followed the CDC and use a count of zero. The percentage 

                                                           
29 Private communication from Lauren Rossen of the CDC.  
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excess deaths (the P-score) are excess deaths divided by the expected number of deaths. To calculate 

excess mortality per capita, the excess deaths are divided by 2019 state population (US Census).  

Observed death counts are weighted by the CDC to account for incomplete reporting by 51 state 

jurisdictions in the most recent weeks, and weights are based on completeness of provisional data in the 

past year as mortality data are recorded with a lag. As we use observed deaths as recorded over 9 months 

after the end of the period analysed, this is not a significant issue. In the first weeks of the pandemic, 

our data on the sum of state-level excess deaths are marginally higher than the national data from the 

CDC. In the rare cases where measured weekly excess deaths are negative, we replace such state-level 

values by zeroes. However, at the national level, there were no negative weekly excess deaths, in our 

sample (week 9, 2020 to week 8, 2021). 

We compared two sources of COVID-19 death counts, sourced from the COVID-19 Data 

Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University 

and the US Centres for Disease Control and Prevention (CDC), see Table 2.30 

 

4.2 Time and learning functions 

Studies that capture time variation in the infection and mortality rates note that a later arrival of the 

virus reduces cumulative COVID-19 attributed mortality. As discussed above, the effect of learning 

and adaptation gradually fades with time, implying a non-linear function of time elapsed. In place of 

the logistic function of Kaplan et al. (2020), we use a simpler function with similar properties: the 

inverse of the number of days elapsed between the end of February 2020 and the day at which a given 

case-count threshold was breached. The chosen threshold is the day the 14-day average of new 

infections exceeded 6 per 100,000. To reduce measurement error, we average case infections from two 

sources: the CDC and The COVID Tracking Project. The latter, widely-used by other researchers, has 

a more comprehensive data collection, often giving a higher case count. The inverse days measure is 

normalised by dividing by its mean. 

Except for Desmet and Wacziarg (2021), none of the studies cited in Section 1 adequately addresses 

the bias created by arrival of the virus in some states before others, initially largely by the accident of 

international travel. Dynamic panel studies with the case count as a variable will in principle control for 

this, as the case count will reflect early incidence. However, this models deaths conditional on infections 

but does not explain what drives the infections. The case count is endogenous, and when modelled 

separately, e.g. in a SEM framework, there ought to be a control such as the enplanement measure of 

Desmet and Wacziarg (2020) linked with travel from high-severity countries, or a learning function as 

above.  Desmet and Wacziarg (2021) use both calendar date and synchronised studies. Greater weight 

                                                           
30  The weekly CDC state-level data record missing values for COVID-19 death counts of between 1 and 9. For 
states with small populations, there are a number of these low counts. Regressions of the CDC-counts on weekly 
JHU state-level data are used to fill in the missing values. 
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should be accorded to the calendar year results because the synchronised sample results suffer from two 

problems: sample selection and the mixing up of effects that are likely to vary with time.31 Simply 

including the number of days elapsed since the first case (e.g. Liao and Maio (2021)) fails to capture 

the non-linear learning aspect. 

 

4.3 Temperature 

In the public health domain, the effects of cold weather on the spread or the severity of the corona virus 

have been widely discussed,32 though less so in the scientific literature. Medical research suggests the 

virus is more stable at low temperatures. In a study of hospital patients, Kifer et al. (2021) find an 

association between cold weather and mortality. Even if there were no direct link between cold weather 

and the virus, cold weather drives people indoors, where aerosol spread is a greater risk factor.  

Only one of the studies reviewed, Karmakar et al. (2020), includes temperature as a co-variate.33 

Its omission potentially creates an omitted variable bias since cross-state temperature variations are 

correlated with other characteristics, for example, the Democrat vote share. 

We included Spring and Autumn temperatures in our regressions using data from monthly reports 

on the larger cities in each state from of the National Oceanic and Atmospheric Association (NOAA), 

National Climate Report. The temperature in °F and the 1981-2020 average temperature in °F were 

averaged to the state level, and the state-level Spring and Autumn temperatures and deviations from the 

average were tested in regressions, see Table 2. Spring is defined to include the months from March to 

May. Autumn covers October to December. 

 

4.4 Characteristics of individuals and communities affecting transmission and vulnerability 

The first set of potential determinants, see Section 1, includes characteristics of demography, ethnicity 

and race, health, poverty, income and inequality, education, employment and occupation, commuting 

and density. With one exception, all covariates in this group retain their original scale and units to assist 

understanding of the regression coefficients; but the log of median household income is defined as the 

deviation around the mean value across states. 

Since the higher mortality rates for older people and for ‘Blacks and African Americans’ and 

‘Hispanics and Latinos’ have been obvious from early in the pandemic, controls for age and ethnicity 

                                                           
31 Many states had not yet reached the ‘225 days since onset’ criterion that defines the synchronised sample by 
30th November, and these states are likely to be systematically different from the others. To illustrate the second 
issue, a cross-section for the synchronised sample will mix counties at quite different points in the calendar year, 
so that a like-for-like comparison of the effect of differences in the use of public transit, for example, cannot be 
made. Transit options in the early days of the pandemic differed, since multiple adaptations of transport use 
occurred subsequently. 
32  Examples are, for the UK, the ONS guidance in ONS (2020), and for the US, the MIT Technology Review. 
33  Rubin et al. (2020) in a dynamic study of COVID-19 cases and deaths find important temperature effects. 
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are common to most (but not all) studies. Following McLaren (2020), we abbreviate the above two 

racial categories to ‘African American’ and ‘Hispanic’. We also include the proportions reported as 

‘Asian’, and ‘American Indian and Alaska Native’. The age distribution (including proportions of the 

population aged 0-18 years, and older than 65 years) and proportion of the population in racial and 

ethnic categories were sourced from the United States Census, American Community Survey (ACS) 

for 2019, see Table 2. Our general specifications also included the share of multi-generational 

households, and average family size, from the ACS (2019).  

Several measures of co-morbidities sourced from the Kaiser Family Foundation (KFF) were tested 

in the general specifications of our regressions: adults who report smoking, or that they are obese, all 

in 2019. We also tested uninsured rates for the nonelderly. Categories of vulnerable persons, also from 

KFF, include numbers of residential nursing home residents as a fraction of the over 65s, and the 

proportion of incarcerated adults in 2019.  

Economic variables included: total Gross State Product in 2018 (in millions of current dollars), 

sourced from U.S. Bureau of Economic Analysis (BEA) via the KFF, and deflated by the 2019 state 

population; median annual household income from the KFF (2019); the poverty rate from KFF             

(2019);34 the US unemployment rate in January 2020 from the KFF; the 2020 St. Louis Fed index of 

occupations sensitive to the virus; and the 2018 proportion of the population who are below twice the 

federal poverty income level.  

Travel measures included in general specifications of our regressions were the percentage of 

workers 16 years and over who travelled to work by public transportation (excluding taxicab), and the 

percent of those commuting alone (by car, van or truck), from the 2018 ACS and enplanements in the 

top 5 airports in each state.35 Educational variables included the percentage of those over 25 with high 

school or higher, and also of those over 25 with bachelor’s degree or higher, from the ACS (2019). 

Various proximity, density and urbanisation variables were examined. To capture closeness to the 

epicentre of the early outbreak in Wave 1, a weighted New York contiguity dummy was constructed 

for contiguous states, see Table 2. This is the product of a dummy equal to 1 for contiguous states, 

weighted by the log ratio of the New York State’s population to the contiguous state’s population, since 

smaller contiguous states are more likely to be disproportionately affected by their populous neighbour. 

A dummy was included for remote states defined as Hawaii, Alaska, Maine and Washington State. We 

calculated a standard measure of population density, defined as the 2019 state population per state area 

in square km, and used the fraction of each state’s population living in large cities and a measure of 

urbanisation defined as the fraction of each state's population living in urban areas (2010), both sourced 

                                                           
34 The Gini coefficient, common in several studies, was not used here. The Gini gives a large weight to variations 
at the top of the distribution, whereas weights at the bottom with vulnerable groups should matter more. Including 
both poverty and median income should capture inequality. 
35 From 2018 ACS, Tables R0804 and R0802 respectively; and enplanements per state for 2019 from the Federal 
Aviation Administration website.  
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from the US census. A more sophisticated measure of urban density using 2010 Census data is the per 

square km density of urban areas, see Table 2 and Cox (2016). 

Several authors have emphasised spill-over effects from commuting in dense Metropolitan Areas, 

spanning states. We calculated a weighted Metropolitan Statistical Area (MSA) density measure that 

takes some account of population density in populous overlapping MSAs as follows. Using the 2010 

Census state population figures to match the 2010 Census MSA population figures, we calculated first, 

the actual population of the MSA as a share of the state population. Second, we calculated the average 

MSA density as the MSA actual population divided by the MSA occupied land area. The product of 

these two is the density of the MSA weighted by the share of MSA population in the state, and it was 

scaled by 1000. We use a cut-off point for MSAs of populations over 1.5m in 2010. The MSA occupied 

land area is approximated by multiplying the total MSA land area by the MSA share of state population. 

This was an elaborate exercise as some MSAs are shared with other states, so that it is required to 

apportion the part of each shared MSA that belongs to each state. The measure is zero for states in 

which no MSA’s population exceeded 1.5 million. 

 

4.5 Measuring the ‘preparedness, resilience and agility’ of the public health and social care systems 

A second set of potential determinants concern health care capacity, reflected in the availability of PPE, 

numbers of ICU beds and ventilators, preventive and pre-hospital care, numbers of doctors and critical 

care nurses, laboratory networks and testing and contact tracing infrastructure. Several measures were 

sourced from the KFF including the numbers of ICU beds per 10,000 population, of hospital beds per 

1000 population, and of critical care nurses per 10,000 adults. 

 

4.6 Political measures  

Recent literature adds political partisanship in the US to the subset of drivers of pandemic mortality, 

which helps to capture private attitudes and behaviour, see Section 1. The hypothesis is that partisanship 

influences ‘compliance’ with state-level safety measures that mitigate transmission of infection, 

coupled with voluntary behaviour to reduce vulnerability. Our measure of partisanship is the 

Democratic share of the popular vote received in each State in the 2016 Presidential General Election, 

sourced from the Federal Election Commission of the US, Federal Election Commission (2017), 

Appendix A. We also included the political affiliation of the Governorship for each state as at 2020, 

sourced from KFF. 

 

4.7 Interaction effects 

Interaction effects were defined between the ‘Timing of onset’, and the Democrat vote share and log 

median household income, all taken as deviations from their means, see Section 5 for discussion. 
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5. POLITICAL ALLEGIANCE AND SOCIOECONOMIC FACTORS IN THE PANDEMIC 

 

5.1 The two-stage model and the role of partisanship 

The two-equation model of Section 3.2, represented in equations (3) and (4), was applied across 51 US 

states (including Washington D.C) using two-stage least squares (2SLS) and OLS. Table 2 provides 

definitions and sources for the data. The ‘Timing of onset’ function corresponding to equation (3) was 

estimated in a first stage, see Section 4.2 and Table 2 for the definition of the dependent variable. The 

chosen specification is the result of the reduction from a more general to a parsimonious formulation, 

on plausible correlates of early arrival of infections. The fitted value was used as an instrument in 

estimating the second-stage regression of the equation for the log of cumulative per capita excess 

mortality. This helps address the probable endogeneity of the timing of the pandemic’s arrival in each 

state.  

The ‘Timing of onset’ function has its highest value for New York, clearly the first state to be 

seriously affected, followed by New Jersey, Michigan, Vermont, Louisiana, Massachusetts, and 

Connecticut. Those states hit early had a double disadvantage: a longer period for deaths due to the 

pandemic to cumulate and less time to benefit from learning about appropriate public and private 

behavioural and medical responses. 

The estimated first-stage equation is shown in Table 3. The early arrival of the pandemic is 

explained by three geographical measures, and by the percentage of the population who are African 

American, by median household income and by the Spring temperature. A lower median income and a 

lower Spring temperature are associated with the case-count threshold being breached earlier. The 

geographical measures are a measure of nearness to New York for the contiguous states (zero for the 

non-contiguous states), a measure of population density for the metropolitan areas in each state and an 

index of urbanisation.  

The dependent variable for the second equation is the log of the per capita cumulative excess 

mortality rate, EMR, for 52 weeks. Similar models are estimated for the log P-score and log per capita 

COVID-19 deaths, see Table 4. The first column of Table 4 shows the crude correlation, controlling 

only of the remoteness dummy, between log EMR and the Democrat vote share. The estimated second-

stage equation for log EMR, using two-stage least squares, is shown in column 2, followed by the OLS 

estimates in column 3. The estimates in these two columns are fairly close, despite probable endogeneity 

bias. Columns 5 and 7 show 2SLS estimates for, respectively, the log P-score and log per capita 

COVID-19 deaths as the dependent variables (the corresponding crude correlations are shown in 

columns 4 and 6).  

Several controls are common to the majority of studies cited in Section 1: measures of density and 

urban structure, measures of race and ethnicity, the age structure, poverty and income Given the 

widespread discussion of temperature and our prior that states where the pandemic arrived first suffered 
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a serious disadvantage, this suggested a basic set of 13 controls plus an intercept, including three 

geographic measures: remoteness, state population density and urban density. We also controlled for 

two interaction effects, the first between ‘Timing of onset’ and the Democrat vote share, and the second 

between the ‘Timing of onset’ and log median household income.  The former effect would capture 

more cautious behaviour by Democrat voters mattering more for mortality when the risks were 

particularly pronounced, as was the case in those states hit hardest early on. Given the pandemic was 

seeded by the arrival of fairly affluent travellers from Europe, the latter interaction effect would suggest 

a positive link with higher income states. Desmet and Wazciarg (2021) find that the early positive 

correlation between COVID-19 mortality and income switches to negative as the pandemic progressed. 

This might suggest that early arrival states, where the ‘Timing of onset’ is above average, would 

experience a positive income effect, while late arrival states would have a negative income effect. Other 

controls were discussed in Section 4, and included the proportion of workers using public transit, the 

proportion of those aged under 65 without health insurance, the ratio of nursing home residents to the 

population aged 65 or above, and 20 other variables.  

The Autometrics software of Doornik and Hendry (2018) has the option of searching over a broad 

set of other controls in a general-to-specific reduction, given the retention of a basic set of key controls. 

The software was used to confirm that none of these other controls was statistically relevant, resulting 

in the parsimonious specification shown in columns 2 and 3. A non-nested test, see Aneuryn-Evans and 

Deaton (1980), strongly supports the log version of the dependent variable versus the linear alternative: 

the log of the fitted value from the linear version of the equation is insignificant when added to the log 

specification as shown in columns 2 or 3. However, adding the exponential of the fitted value from the 

log version to the linear version gives a highly significant result, implying that the linear version is 

seriously mis-specified. Replacing the 2016 Democrat vote share by the equivalent 2020 vote share, 

makes little difference to the results, with a slightly lower (negative) coefficient on the Democrat vote 

share.  

 

5.2 Robustness checks 

The robustness of the findings for log per capita excess mortality is demonstrated in Table 5, in turn, 

dropping the first 10 observations, the second ten, and so on, to the last ten observations. This 

demonstrates the relative stability of the coefficients on the Democrat vote-share and its interaction with 

the ‘Timing of onset’, on the Democrat Governor dummy, and on the proportions of African Americans 

and Hispanics. All the other parameter estimates (not shown) easily cover the full sample estimates 

within a 95 percent confidence interval. The implication is that the results are clearly not driven by 

outliers concentrated in a few states and are fairly insensitive to the exclusion of particular states. 

 

5.3 Comparing results for the P-score and per capita measures of excess mortality 
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Comparing coefficients in Table 4 for the log P-score measure with those for the specification with log 

per capita excess mortality shows an only slightly lower (negative) coefficient on the Democrat vote 

share, somewhat lower coefficients on the percentage of poor residents, population density and on 

Spring temperature. It is striking that the effect of age composition disappears entirely (as the t-ratio is 

0.2, the variable is omitted). As the P-score measures excess deaths relatively to ‘normal’ deaths, it 

already captures some differences in mortality due to pre-existing co-morbidities, of which age is the 

most important. The effects of race and ethnicity are broadly similar for the per capita and P-score 

measures. By the same token, this suggests that the effects of race and ethnicity are not related to the 

higher, pre-pandemic mortality rates of minority populations. 

These findings have implications when comparing the plain P-scores across states and countries. 

While for basic comparisons this is probably the best measure, and preferable to per capita measures, 

even for P-scores, structural socioeconomic and environmental differences need to be taken into 

account. In other words, P-scores do not fully capture the differences in racial and ethnic composition, 

and in poverty and urban density, despite being normalised against normal deaths. Unqualified 

comparisons not just of per capita excess deaths, but even of the preferred P-score measure, should not 

be used to assess the relative performance of public policy in different locations.  

 

5.4 Comparing results with the COVID-19 per capita death rate 

Given alternative sources of COVID-19 death counts in the US, a comparison was made to select the 

more robust measure on the basis of whether there is mis-measurement against the excess deaths 

measure. In time series regressions of aggregate US data of log per capita COVID-19 deaths on log per 

capita excess deaths, the R-squared is higher and the standard error lower for CDC data than for JHU 

data, whether or not the first few weeks are included. In cross-state regressions of the 52-week 

cumulative per capita data, the same conclusion is reached. Even though excess deaths also include 

spill-overs in deaths from conditions untreated because health systems were overwhelmed, over a 52-

week period and cross-state variation, one would not expect such spill-overs to substantially bias the 

relationship between true COVID-19 death counts and excess deaths. We therefore concluded that the 

CDC COVID-19 death count is less inaccurate than the JHU data. 

There are striking differences in the state rankings by per capita excess mortality versus the rankings 

by per capita COVID-19 deaths, see Figure 2 and Section 2. Thus, it is somewhat surprising that the 

estimates in columns 2 and 7 are not more different. For the per capita COVID-19 deaths measure, the 

effects of the Democrat vote share and the Democrat Governor effect are, respectively, a little stronger, 

and weaker; the timing effect is slightly stronger; and the proportions of African Americans and 

Hispanics have somewhat stronger effects, though for Asians, prove less significant. The interaction 

effects with timing of the pandemic are even stronger for the COVID-19 measure than for the two 
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excess mortality rate measures. However, consistent with substantial measurement errors, the fit for the 

COVID-19 specification is much worse, with the equation standard errors twice as high. 

 

5.5 The interpretation of the effects of the controls 

The literature cited in Section 1 on the role of partisanship in the pandemic has explored the links 

between the rates of COVID-19 infections and deaths and political attitudes and beliefs, reflected in 

private behaviours (such as mask-wearing and social distancing) and compliance with official advice 

and mandates. The Democrat vote share can be interpreted as a proxy for compliance and informed 

private behaviours, when controlling for both the differential onset across states of severe outbreaks 

and the different risk groups. This interpretation accords well with the findings at county-level of 

Desmet and Wacziarg (2002) and Gollwitzer et al. (2020). 

As explained in Section 3, the cross-sectional equations presented in Table 4 are reduced-form 

equations which mix the effects governing infection rates and those governing mortality (given 

infection), as well as the pandemic’s indirect effects on other types of deaths. For example, the 

coefficient on the proportion of African Americans in the population may be connected with higher 

infection rates in states with higher proportions of African Americans, as well as with their higher case-

fatality rate. On the face of it, the estimated coefficient of 2.11 in Table 4 column 2, implies that a 1 

percent shift in the population from White to African American results in a 2.11 percent increase in 

excess mortality. However, this cannot be given a strict interpretation of individual mortality risk faced 

by an African American, even with the other controls in our regression (including poverty, political 

allegiance, population density and the age distribution). It might be that states with high proportions of 

African Americans have other characteristics, not controlled for, raising mortality risk. No studies of 

which we are aware control for differences in wealth between African American and other households, 

and, as Hardy and Logan (2020) point out, wealth inequality between African Americans and Whites 

is far greater than earnings inequality. It is plausible that accurate controls for wealth, educational 

quality, family composition and discrimination (e.g. in labour, housing and credit markets), would 

greatly reduce and perhaps eliminate racial differences in excess mortality rates. 

Our racial-ethnic estimates are broadly in line with those of county-level studies of COVID-19 

mortality rates. County-level measures for the effects of variations in the proportion of African 

Americans, with Whites as the reference group, typically vary in a range from about 1.5 to 3, according 

to other controls included and the period covered, e.g. McClaren (2020). Similarly, the effect of 

variations in the proportion of Hispanics, at somewhat over half of the effect for African Americans, is 
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also not far from county-level estimates. The coefficient on the proportion of Asians is similar to that 

for African Americans but much less precisely estimated.36 

It is important to note the important role played by partisanship in these estimates of racial and 

ethnic disparities. The Democrat vote share effect is highly significant and robust to the exclusion of 

ten states at a time from the cross-section regressions for COVID-19 related mortality. As racial and 

ethnic minorities tend to vote disproportionately for the Democratic Party, their population shares are 

strongly positively correlated with the Democrat vote share, which has a negative effect on excess 

mortality. Therefore, if the Democrat vote share was omitted from the cross-state regression, this would 

result in a downward omitted variable bias on the coefficients for the population shares of Afro-

Americans and Hispanics. Indeed, the omission almost halves the estimated coefficients for Afro-

Americans and Hispanics, with a substantial loss of precision (these results are not reported in Table 4).  

The coefficient of 4.4 on the percentage of residents aged 65 or more is consistent with the steep 

age gradient of COVID-19 mortality and the fact that hardly any deaths occur for those under 18. The 

estimated coefficient of 7.0 on the percent classified as poor, though broadly consistent with studies 

showing strong links between economic deprivation and COVID-19 mortality, cannot be taken too 

literally. On the face of it, it implies that a 1 percent of population increase in those below the poverty 

line, implying a 1 percent decrease in those above, results in 7.0 percent increase in excess mortality. 

The figure is surprisingly high given that the percentages of African American and Hispanic residents 

are also being controlled for, and poverty rates for these groups are above average. It is likely that being 

classified as poor is associated with other unobserved characteristics that raise mortality risk.37 The 

positive interaction effect between timing of onset and median income in a cross-state regression, given 

controls for race, ethnicity and poverty, likely reflects the fact that many of those who first seeded the 

infection in the US were affluent travellers returning from Europe. It implies a negative effect of higher 

incomes on mortality in late onset states. This could be related to the ability of the more affluent to 

afford good medical care and to avoid close contacts that raise infection risk. 

Differences in state population density (measured as population per square km) and in urban density 

have the expected effects, consistent with the great majority of granular studies cited in Section 1. 

Through the ‘Timing of onset’ function, there is an additional effect from density measured for the 

MSAs to which each state belongs as well as a measure of urbanisation and a control for bordering on 

New York state. The estimated effect for Spring temperature, measured in degrees Fahrenheit, suggests 

that a one-degree higher average temperature is associated with a 2 percent lower rate of excess 

                                                           
36 Rossen et al. (2021) estimate ‘normal’ deaths by age and racial group at the national level. They report 
disparities in excess mortality incidence rates in 2020 for different age groups and races. The rate per 100,000 in 
the 65+ age group for Afro-Americans and Hispanics is just over double that for Whites; for the 25-64 age group, 
the Afro-American rate is 2.6 times that of Whites, and for Hispanics it is 1.9 times that of Whites. For those of 
Asian descent, the rates are similar to those of Whites. 
37 Examples are co-morbidities, working in a meat packing plant or in seasonal agriculture without health facilities. 
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mortality for the full period of 52 weeks. Even if there were no direct link between cold weather and 

the virus, the fact that cold weather drives people indoors, where aerosol spread is a risk factor, is widely 

suspected of association with excess mortality. Some studies of historical patterns of mortality, e.g. 

Kontis et al. (2020), find significant temperature effects with low Spring temperatures and high Summer 

temperatures associated with higher death rates. As the CDC does not use temperature controls to 

estimate ‘normal’ death rates, part of what our temperature effect captures could be due to higher 

mortality that would have occurred even without the pandemic. 

 

5.6 Summary 

For the full 52 weeks of the pandemic analysed, the bilateral correlation is close to zero between any of 

the three COVID-19 related mortality measures and the 2016 Democrat vote share. Given the inclusion 

of a set of plausible controls, however, states with higher Democrat vote shares, experienced lower 

COVID-19 related mortality on all three mortality measures. This finding parallels the evidence at a 

county-level for data to the end of November 2020 from Desmet and Wacziarg (2021). The finding is 

consistent with the more cautious and better-informed behaviour by Democrat voters in the 2016 

election. Moreover, the interaction effects suggest the negative Democrat vote share effect on mortality 

was even greater in states where the infection arrived early. If the Democrat vote share is omitted, this 

results in an under-estimation of the estimated disparities in excess mortality suffered by Afro-

Americans and Hispanics.  

 

6. CONCLUSIONS  

 

This paper is the first state-level, spatial analysis of excess mortality across the 51 US states, showing 

for the full year since the arrival of the pandemic in the US, the effects of racial composition, age 

structure, poverty, income, the timing of the pandemic onset, temperature, population density and other 

structural features, and political partisanship. We have focused on two excess mortality measures in a 

log formulation: per capita excess mortality and the P-score (excess deaths relative to normal deaths). 

Analysing the drivers of excess mortality measures, rather than counts of COVID-19 deaths as typically 

used in epidemiological studies, avoids the well-documented mismeasurement biases from under-

reported pandemic-related cases and deaths. Our paper clarified definitions and data measurement 

issues around excess mortality, considering data quality and comparability both internationally and 

within the US.   

A reduced form empirical specification was derived from the theoretical link between the mortality 

rate and lagged infection rates and average case fatality rates. A log-linear formulation captured a 

mixture of the influences on infection rates and case fatality rates with co-variates common to granular 
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studies of COVID-19 per capita death and infection counts. Unlike in most cross-sectional studies, the 

selection of relevant regressors was not ad hoc, or based on bilateral correlations, but checked against 

a general to specific econometric analysis from a wide range of initial controls. This set included 

important socioeconomic regressors, temperature, the timing of the onset of the pandemic, and 

interaction effects to capture plausible non-linearities, each rarely included in published studies. Our 

two-stage approach modelled first, the timing of the pandemic across states, and then using two-stage 

least squares, second stage models for log excess mortality rates. This helped avoid the endemic 

problem found in almost all the studies we have cited (save for Desmet and Waziarg (2021) of a serious 

omitted variable bias from the differential arrival in time of pandemic cases across states. Non-nested 

tests confirmed that the log formulation is far superior to the additive linear formulation used by many 

studies to model per capita COVID-19 deaths. The latter formulation is a serious mis-specification 

given that the theory also supports an additive formulation in logs. In general, our study has tried to 

avoid empirical shortcomings from inappropriate choice of functional form, the exclusion of key 

controls, and types of selection and measurement biases.  

The inclusion of political partisanship adds an important omitted variable to the more typical set of 

regressors, which are focused on the characteristics affecting transmission risk and vulnerability to 

infection and the preparedness and capacity of the public health and social care systems. Our evidence 

is that states with higher Democrat vote shares experienced lower excess mortality rates, controlling for 

a broad set of the underlying risk factors. This implies more cautious and better-informed behaviours 

by those who voted Democrat in the 2016 election. These findings, linking partisan differences to 

mortality outcomes in the pandemic, are strongly consistent with recent studies that clarify the impact 

of partisanship on actual behaviour. Moreover, the interaction effects suggest that the negative 

Democrat vote share effect on mortality was even greater in states where the infection arrived early. 

While our finding parallels the evidence at a county-level for data to the end of November 2020 from 

Desmet and Wacziarg (2021), interaction effects have not been considered in county-level cross-

sectional studies of COVID-19 deaths. Mostly such studies have also not taken Spring temperatures 

into account. Low Spring temperatures increased COVID-19 related mortality. The absence of 

interaction effects and the fact that Spring temperatures tend to be lower in states with larger Democrat 

votes shares, may also suggest that previous estimates of the effect of partisanship on COVID-19 deaths 

have under-estimated the mortality-reducing effect of the Democrat vote share.  

A striking implication of our findings is that the failure in many spatial county-level or state-level 

studies to control for the effect of political partisanship on COVID-19 related mortality likely resulted 

in a downward omitted variable bias of the disparities associated with being Afro-American and 

Hispanic and hence an under-estimation of the effects of race. This is the consequence of a positive 

correlation between minority population shares and the Democrat votes share, but a negative correlation 

between the Democrat votes share and COVID-19 related mortality.  
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No attempt was made to control for differences in non-pharmaceutical interventions (NPIs) at the 

state level for cumulative rates of excess mortality in the 52-week period as NPIs are likely to be 

switched on when case-counts and COVID-19 deaths rise strongly. To measure such effects, excess 

mortality would need to be considered over shorter intervals, and the measures of NPIs lagged to avoid 

endogeneity bias. 

The robustness of our analysis was demonstrated in Section 5.5. We also compared models for the 

two dependent excess mortality variables (i.e., per capita excess deaths and the P-score). The rankings 

of US states according to the per capita and P-score measures of excess mortality are notably different, 

see Section 2. Despite the differences, the cross-section models of state differences for the two excess 

mortality measures find similar strong effects for partisanship and broadly similar interpretations for 

the socioeconomic variables. The P-score is the preferred measure for simple cross-country 

comparisons since it is scaled by ‘normal deaths’ (taking some account of differentials in age 

composition and socioeconomic characteristics), but inclusion of comprehensive controls in a 

multivariate statistical study reduces this advantage over the per capita measure of excess mortality. As 

might be expected, age drops out in models for the P-score, but it is an important control in models for 

per capita excess mortality. However, it is striking that there are equally strong racial and ethnic effects 

for the P-score. These go beyond what is captured in the pre-pandemic ‘normal deaths’, suggesting 

levels of discrimination and disadvantage during the pandemic well above those previously prevailing.  

Repeating the analysis with the log COVID-19 deaths per capita measure as dependent variable 

finds a similarly strong political effect, and similar socioeconomic controls mattering, but the equation 

fit is substantially worse than for excess deaths per capita (the fit is worse still when using the JHU-

sourced COVID-19 death count).  

Our findings have implications for further research on more granular data. Currently, the US CDC 

does not produce estimates of weekly excess deaths down to the county level. Such data can be very 

noisy for counties with small populations. Moving to a monthly or even quarterly frequency would 

ameliorate this problem and make more granular analysis possible. We also suggest that, at the state 

level, the CDC control for changes in population and age composition for improved estimates of 

‘normal’ and hence excess deaths. 

For making useful comparisons of pandemic related rates of mortality across countries and states, 

in order to evaluate public policy choices, our findings suggest that while the P-score measure is 

preferable to per capita excess mortality, it is far from immune to structural differences between 

countries. The timing of the pandemic, poverty, racial and ethnic composition, occupational structure 

and the nature of urban density all need to be taken into account in gauging the success or otherwise of 

public policies in different locations. It would be highly desirable for parallel studies of excess deaths 

to be carried out. International comparability is harder in these dimensions given difficulties in 

standardising categories in measures of deprivation, occupational classification (sometimes not 
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recorded on death certificates, but recoverable from census records) and missing data for some countries 

on the sensitive issue of ethnicity. The international NUTS classification of regions38 provides a 

possible comparable frame for international comparisons. As regions differ in their urban/rural 

structure, comparing regional data can give important insights into risk factors for death rates. 

Moreover, as the incidence of the pandemic differs in timing and intensity, regional comparisons can 

throw light on the dynamics of the spread of infections.  
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Figure 1: W
eekly U

S per capita excess deaths, the ratio of C
D

C
-sourced to JH

U
-sourced C

O
V

ID
-19 deaths, and the ratio of C

D
C

-recorded C
O

V
ID

 deaths to 
excess deaths  
  

 
N

otes: C
alculations by the authors using data from

 the U
S C

entres for D
isease C

ontrol and Prevention (C
D

C
) and the C

oronavirus R
esource C

enter, Johns H
opkins U

niversity, 
see Tables 1 and 2. W

eekly per capita excess deaths are expressed as per 100,000. 
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Figure 2: R
anking U

S states by cum
ulated per capita excess m

ortality for 52 w
eeks: com

parisons w
ith P-scores and C

D
C

-sourced per capita C
O

V
ID

-19 deaths   
N

otes: C
alculations by the authors using data from

 the U
S C

entres for D
isease C

ontrol and Prevention (C
D

C
), see Tables 1 and 2. C

um
ulative per capita excess and C

O
V

ID
-

19 deaths are expressed per 100,000. The P-scores have been m
ultiplied by 1000.
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Figure 3:  W
eekly excess m

ortality per capita and P-score for the U
S 

 

 

N
otes: C

alculations by the authors using data from
 the U

S C
entres for D

isease C
ontrol and Prevention (C

D
C

), see Tables 1 and 2. W
eekly per capita excess deaths are expressed 

as per 100,000. 
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Table 1: M
easures of pandem

ic incidence, deaths and excess m
ortality used in spatial studies 

 M
easure  

D
efinition 

 
Sources 

C
om

parability across regions, states and countries  
(w

ith reference to m
easurem

ent and data quality) 
Spatial studies 

using this 
m

easure 
M

easures of C
O

V
ID

 deaths and C
O

V
ID

-related deaths and C
O

VID
-cases 

C
ase count 

ܱܥ
ܦܫܸ

 ݐ݊ݑ݋ܿ ݁ݏܽܿ 
N

ational authorities, e.g. 
O

ffice for N
ational 

Statistics (O
N

S) in the 
U

K
; N

ational C
enter of 

H
ealth Statistics 

(N
C

H
S), C

enters for 
D

isease C
ontrol and 

Prevention (C
D

C
) in the 

U
S. 

Poor com
parability due to differential m

easurem
ent 

biases by location, from
 m

issed diagnosis and 
constraints on testing capacity. H

as im
proved over tim

e 
w

ith better capacity; highly variable across countries.  

N
ot used. 

 

Per capita case 
count 

ܱܥ
ܦܫܸ

 ݐ݊ݑ݋ܿ ݁ݏܽܿ 
݊݋݅ݐ݈ܽݑ݌݋݌

 
A

s above, but further com
prom

ised by poor population 
statistics in som

e cases. 
W

idely-used. 

C
O

V
ID

 deaths  
ܱܥ

ܦܫܸ
 ݏ݄ݐܽ݁݀ 

(as attributed by country definitions) 
Poor com

parability due to m
easurem

ent errors. Som
e 

countries have poor system
s for recording deaths.  

N
ot used. 

 

Per capita 
C

O
V

ID
 deaths 

ܱܥ
ܦܫܸ

 ݏ݄ݐܽ݁݀ 
݊݋݅ݐ݈ܽݑ݌݋݌

 
A

s above, but further com
prom

ised by poor population 
statistics in som

e cases. 
W

idely-used. 

A
ge-standardised 

C
O

V
ID

 deaths 
σ

ݓ)
௜

௜
݌
௜ ) w

here ݓ
௜  is the fraction of the reference 

population in age group i, and ݌
௜  is the age-specific 

C
O

VID
 death rate for age group i.    

e.g. O
N

S (2021a) 
regularly updated article. 

Poor com
parability due to m

easurem
ent errors. 

O
N

S (2020a) 

M
easures of excess m

ortality 

E
xcess deaths 

  

ܺ
െ
തܺ 

 D
enote by ܺ

: the num
ber of per period deaths.  

D
enote by തܺ:  expected value of ܺ

 for the population 
(i.e. ‘norm

al’ deaths). 

e.g. Eurostat (Europe), 
C

D
C

 (U
S), The H

um
an 

M
ortality database 

(H
M

D
) for 38 countries; 

W
orld M

ortality 
D

atabase (W
M

D
), W

H
O

 
M

ortality database. 

R
equires great care. Som

e countries have poor system
s 

for recording deaths. A
lm

ost everyw
here there are 

significant lags in recording deaths. Techniques differ 
in the estim

ation of ‘norm
al’ deaths; som

etim
es 

historical data are absent.  
 C

om
parative data quality is discussed in Section 2. 

N
ot used. 

A
ge-standardised 

excess deaths 
σ

ݓ)
௜

௜
݌
௜ ) w

here ݓ
௜  is the fraction of the reference 

population in age group i, and ݌
௜  is the age-specific 

excess death rate for age group i.    

e.g. O
N

S (2021a) 
regularly updated article. 

G
ood com

parability though still affected by 
socioeconom

ic differences betw
een countries or 

regions. 

O
N

S (2020b); 
M

organ et al. 
(2020) 

Per capita excess 
deaths 

ܺ
െ
തܺ 

݊݋݅ݐ݈ܽݑ݌݋݌  
e.g. K

ontis et al (2020), 
W

oolf et al. (2020). 
R

easonable com
parability but sensitive to the age 

distribution, as w
ell as to socioeconom

ic differences 
betw

een countries or regions.  

U
sed in this paper. 

U
sed in C

hen et 
al. (2020) 

T
he P-score  

 
ܺ
െ
തܺ 

തܺ
 

 

e.g. O
ur W

orld in D
ata 

w
ebsite; O

N
S (2021b) 

regularly updated article. 

G
ood com

parability, though still affected by 
socioeconom

ic differences betw
een countries or regions 

U
sed in this paper.  
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P-score: (X
 m

inus the expected value of X
 for the 

population), divided by the expected value of X
 for 

the population. 
V

ariant P-score  
  

ܺ
െ
 തܺ ݈݀݋݄ݏ݁ݎ݄ݐ ݎ݁݌݌ݑ

തܺ ݈݀݋݄ݏ݁ݎ݄ݐ ݎ݁݌݌ݑ
 

 U
pper threshold: the upper 95%

 confidence interval 
for this expected value. Takes into account 
uncertainty created by the natural variability of ܺ

. 

e.g. U
.S. N

ational C
enter 

of H
ealth Statistics. 

A
s above for the P-score. 

  

N
ot used to the 

best of our 
know

ledge. 

T
he Z-score  

  

ܺ
െ
തܺ 

݊݋݅ݐ݈ܽݑ݌݋݌ ݄݁ݐ ݂݋ ݊݋݅ݐܽ݅ݒ݁݀ ݀ݐݏ  

 Z-score: (X
 m

inus the expected value of X
 for the 

population), divided by the standard deviation for the 
population of X

 around its expected value in norm
al 

tim
es. **  

EuroM
O

M
O

, w
ebpage: 

“M
ethods”. 

N
ot com

parable w
here the standard deviations differ 

  

N
ot used. 

N
otes: ** A

ssum
es a Poisson distribution, adjusted for excess dispersion to approxim

ate the underlying probability distribution of w
eekly deaths. The Poisson is a discrete 

probability distribution that expresses the probability of a given num
ber of events occurring in a fixed interval of tim

e if these events occur w
ith a know

n constant m
ean rate 

and independently of the tim
e since the last event. The calculation is described in Farrington et al. (1996).  
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Table 2: D
ata definitions and sources 

  V
ariable 

D
efinition 

M
ean 

Std. 
deviation 

M
axim

um
 

M
inim

um
 

D
ata source 

52 w
eeks: w

eek 9, 2020 to w
eek 8, 2021 

D
EPEN

D
EN

T V
A

R
IA

B
LES  

C
um

ulated excess 
m

ortality per 100,000 
 

W
eekly excess deaths sum

m
ed from

 w
eek 9, 2020 to 

w
eek 8, 2021, divided by state population; in logs; 

negative w
eekly values set to zero. 

5.13 
0.448 

3.43 
5.72 

C
alculated by the authors using data from

 
C

D
C

’s N
ational C

enter for H
ealth Statistics 

(N
C

H
S), N

ovem
ber 2021 vintage data for 

observed deaths; January and February 
2021 vintage data for norm

al deaths, see 
Section 4.1. State population for 2019 from

 
the U

S C
ensus B

ureau. 

C
um

ulated P-scores 
 

W
eekly excess deaths sum

m
ed from

 w
eek 9, 2020 to 

w
eek 8, 2021, divided by corresponding sum

 of norm
al 

deaths; in logs; negative w
eekly values set to zero.  

-1.68 
0.420 

-3.31 
-1.05 

C
um

ulated C
O

V
ID

-19 
D

eaths per 100,000 
C

um
ulated C

O
V

ID
-19 death count to end of w

eek 8, 
2021, divided by state population; in logs. 

4.92 
0.494 

3.39 
5.50 

C
D

C
, N

ovem
ber 2021 vintage. 

C
um

ulated C
O

V
ID

-19 
D

eaths per 100,000 
C

um
ulated C

O
V

ID
-19 death count to end of w

eek 8, 
2021, divided by state population; in logs. 

4.85 
0.512 

3.41 
5.55 

C
oronavirus R

esource C
enter, Johns 

H
opkins U

niversity, 1 M
arch 2021 vintage. 

IN
D

EPEN
D

EN
T V

A
R

IA
B

LES 
2020 data 
 Learning function or 
Tim

ing of pandem
ic onset 

Inverse of the num
ber of days elapsed betw

een the end 
of February and the day a given case-count threshold 
w

as breached, the threshold being the day the 14-day 
average of new

 infections exceeded 6 per 100,000. 
Scaled by m

ean of inverse days. 

1 
0.561 

0.228 
2.48 

C
onstructed by authors, see Section 4.2. 

Spring tem
perature 

Tem
perature in °F, State average for m

ain cities. 
Spring is defined as M

arch to M
ay. 

54.1 
9.46 

28.0 
75.9 

C
onstructed by authors, see Section 4.3, 

using the N
ational O

ceanic and 
A

tm
ospheric A

ssociation (N
O

A
A

), 
N

ational C
lim

ate R
eport: Spring report and 

m
onths to the end of 2020. 

Pre-pandem
ic data 

Political vote share 
The D

em
ocrat share of the popular vote in the 2016 

Presidential G
eneral Election. 

0.447 
0.122 

0.219 
0.909 

Federal Election C
om

m
ission (2017) 

D
em

ocratic G
overnor 

Political affiliation of G
overnor. 

0.490 
0.505 

0 
1 

K
aiser Fam

ily Foundation. 
A

frican A
m

erican 
Proportion of the population w

ho are B
lack or A

frican 
A

m
erican 

0.128 
0.108 

0.0116 
0.474 

U
nited States C

ensus, A
m

erican 
C

om
m

unity Survey (A
C

S), A
C

S 
D

em
ographic A

nd H
ousing Estim

ates. 
H

ispanic 
Proportion of the population w

ho are H
ispanic or 

Latino. 
0.112 

0.105 
0.004 

0.487 
A

sian 
Proportion of the population reporting as A

sian 
0.0149 

0.0289 
0.001 

0.151 
Proportion aged 65+ 

Proportion of the population aged 65 years and over. 
0.171 

0.0202 
0.115 

0.215 
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R
em

oteness dum
m

y 
D

um
m

y=1 for A
laska, H

aw
aii, M

aine and W
ashington 

State. 
0.0784 

0.272 
0 

1 
C

onstructed by authors, see Section 4.4. 

Population density 
D

efined as the 2019 state population divided by the 
area of the state in square km

, in logs. 
3.60 

1.49 
-0.857 

8.29 
U

S C
ensus B

ureau. 

U
rban density 

The per square km
 density of urban areas, in logs. 

6.71 
0.361 

6.17 
8.24 

U
S C

ensus B
ureau. 

Poverty rate 
The proportion of households below

 the poverty line  
0.122 

0.0263 
0.075 

0.196 
K

aiser Fam
ily Foundation. 

Interactions w
ith learning function 

Interaction w
ith D

em
ocrat 

vote share 
Interaction effect betw

een the ‘Tim
ing of onset’, taken 

as the deviation from
 the m

ean, and the D
em

ocrat vote 
share. 

0.0319 
0.286 

-0.399 
0.870 

A
s above. 

Interaction w
ith log 

m
edian household incom

e 
Interaction effect betw

een the ‘Tim
ing of onset’, taken 

as the deviation from
 the m

ean, and log m
edian 

household incom
e. 

0.0291 
0.0937 

-0.204 
0.303 

A
s above. 

A
dditional variables for first stage equation for learning function  

M
edian household 

incom
e 

M
edian annual household incom

e; in logs. 
0 

0.168 
-0.344 

0.356 
K

aiser Fam
ily Foundation. 

N
earness to N

ew
 Y

ork 
D

um
m

y=1 for contiguous states; =0 for the non-
contiguous states. W

eighted by log ratio of state 
population to N

Y
 state population. 

0.145 
0.557 

0 
3.44 

C
onstructed by authors, see Section 4.4. 

M
etropolitan A

rea 
population density  

For each state, the density of large M
etropolitan A

reas 
occupied in each state, w

eighted by the 2010 share of 
M

SA
 population in the state, and scaled by 1000. 

0.119 
0.178 

0 
0.826 

C
onstructed by authors, see details in 

Section 4.4, using the U
S C

ensus B
ureau 

data. 
Index of urbanisation. 

2010 fraction of the state population living in urban 
areas; in logs. 

4.28 
0.220 

3.66 
4.61 

U
S C

ensus B
ureau. 

N
otes: Several other variables w

ere tried in general initial sets, adopting a general-to-specific approach as a diagnostic tool, see Section 4. 
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Table 3: The equation for the timing of the pandemic onset across US states 
Dependent variable (over 52 weeks): 
Timing of pandemic onset Coefficient 

Constant 7.8* 

Proportion African American 2.06*** 

Spring temperature 0.020*** 

MSA density 1.40*** 

Log fraction of urban population 0.77** 

New York contiguity dummy 0.50*** 

Log median income -0.85* 

Equation standard error 0.346 

Adjusted R-squared 0.62 
Notes: Stars indicate significance levels: *** p-value lower than 0.01, ** p-value between 0.01 and 0.05, * p-
value between 0.05 and 0.1. All variables are defined in Table 2. MSA stands for Metropolitan Statistical Area, 
and for the density measure, see Section 4.4. 
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Table 4: C
om

paring m
odels w

ith interaction effects for different m
easures of m

ortality  
 

D
ependent variables 

(cum
ulated, 52 w

eeks) 
log per capita  

excess m
ortality 

log P-score 
log per capita  

C
O

VID
-19 deaths 

  Variables 
eq. 1 

 
eq. 2 
2SLS 

eq. 3 
O

LS 
eq. 4 

 
eq. 5 

 
eq. 6 

 

 
eq. 7 

  
C

onstant 
5.16*** 

2.53 
2.72 

-1.81*** 
-3.32*** 

5.02*** 
2.00 

Tim
ing of pandem

ic onset 
 

0.228*** 
0.178*** 

 
0.285*** 

 
0.075 

Spring tem
perature (°F) 

 
-

0.0202*** 
-

0.0206*** 
 

-
0.0150*** 

 
-

0.0338*** 
Proportion voting D

em
ocrat  

0.170 
-2.08*** 

-1.92*** 
0.489 

-1.68*** 
-0.0002 

-3.61*** 

D
em

ocrat G
overnor 

 
-0.108* 

-0.101* 
 

-0.093 
 

-0.045 

R
em

oteness  
-1.24*** 

-0.595*** 
-0.630*** 

-1.15*** 
-0.561*** 

-1.17*** 
-0.497*** 

Log of population density  
 

0.106** 
0.101** 

 
0.0527 

 
0.255*** 

Log of urban density 
 

0.310*** 
0.293*** 

 
0.280*** 

 
0.527*** 

Proportion A
frican A

m
erican population 

 
2.11*** 

2.13*** 
 

1.99*** 
 

2.56*** 

Proportion H
ispanic population 

 
1.46*** 

1.41*** 
 

1.82*** 
 

1.79*** 

Proportion A
sian 

 
2.00* 

1.96* 
 

1.96 
 

3.73** 

Proportion of population aged 65+ 
 

4.39** 
4.05** 

 
- 

 
5.32* 

Poverty 
 

7.01*** 
7.01*** 

 
3.90*** 

 
5.67** 

Interaction: Proportion voting D
em

ocrat  
× Tim

ing of pandem
ic onset 

 
-1.79*** 

-1.87*** 
 

-1.34** 
 

-4.34*** 

Interaction: log m
edian household incom

e  
× Tim

ing of pandem
ic onset 

 
0.98** 

1.16*** 
 

0.76 
 

2.10*** 

Equation standard error 
0.305 

0.143 
0.140 

0.288 
0.152 

0.388 
0.232 

Adjusted R-squared 
0.538 

0.898 
0.902 

0.531 
0.869 

0.385 
0.780 
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N
otes: Stars indicate significance levels: *** p-value low

er than 0.01, ** p-value betw
een 0.01 and 0.05, * p-value betw

een 0.05 and 0.1. In the interaction effects, variables 
are expressed as a deviation from

 their m
eans. A

ll variables are defined in Table 2. 
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Table 5: R
obustness tests for sub-sam

ples of equation fit  
 D

ependent variable (cum
ulated over 52 

w
eeks: log per capita excess m

ortality   
Full sam

ple 
of 51 states 

Variations in sam
ple: om

it 10 states 

first 
10 states 

second 
10 

third 
10 

fourth 
10 

final 
10 

Proportion voting D
em

ocrat 
-2.08*** 

-3.00*** 
-2.17*** 

-1.90*** 
-1.02 

-2.34*** 
Interaction: Proportion voting D

em
ocrat  

× Tim
ing of pandem

ic onset 
-1.79*** 

-2.30** 
-2.01** 

-2.30*** 
-1.49** 

-1.85 

D
em

ocratic G
overnor 

-0.108* 
-0.084 

-0.121 
-0.174*** 

-0.045 
-0.091 

Proportion A
frican A

m
erican population 

2.11*** 
2.22*** 

1.94*** 
2.40*** 

1.70*** 
2.16*** 

Proportion H
ispanic population 

1.46*** 
1.73** 

1.26** 
1.59*** 

1.48*** 
1.48** 

Equation standard error 
0.143 

0.169 
0.162 

0.135 
0.122 

0.152 

Adjusted R-squared 
0.898 

0.864 
0.817 

0.920 
0.932 

0.887 
N

otes: O
nly selected coefficients are show

n (see Table 4 for the full set of variables included in the regressions). Stars indicate significance levels: *** p-value low
er than 0.01, 

** p-value betw
een 0.01 and 0.05, * p-value betw

een 0.05 and 0.1. In the interaction effects, variables are expressed as a deviation from
 their m

eans. A
ll variables are defined 

in Table 2. 
  


