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Takens '  theorem demonst ra tes  that in the absence of noise a mult idimensional  state space can be reconstructed from a 
scalar t ime series. This theorem gives little guidance, however, about practical considerations for reconstructing a good state 
space. We extend Takens '  t reatment ,  applying statistical methods  to incorporate the effects of observational noise and 
estimation error. We define the distortion matrix, which is proportional to the conditional covariance of a state, given a 
series of noisy measurements ,  and the noise amplification, which is proportional to root-mean-square time series prediction 
errors with an ideal model. We derive explicit formulae for these quantities, and we prove that in the low noise limit 
minimizing the distortion is equivalent to minimizing the noise amplification. 

We identify several different scaling regimes for distortion and noise amplification, and derive asymptotic scaling laws. 
When  the dimension and Lyapunov exponents are sufficiently large these scaling laws show that, no matter  how the state 
space is reconstructed, there is an explosion in the noise ampl i f ica t ion-  from a practical point of view determinism is lost, 
and the time series is effectively a random process. 

In the low noise, large data limit we show that the technique of local singular value decomposition is an optimal 
coordinate transformation,  in the sense that it achieves the minimum distortion in a state space of the lowest possible 
dimension. However, in numerical experiments we find that estimation error complicates this issue. For local approximation 
methods,  we analyze the effect of reconstruction on estimation error, derive a scaling law, and suggest an algorithm for 
reducing estimation errors. 

Contents 

1. Introduction 53 
1.1. Background 53 
1.2. Complications of the real world 54 
1.3. Information flow and noise amplification 54 
1.4. Noise amplification versus estimation error 55 
1.5. Data  compression and coordinate t ransformations 56 
1.6. Approach and simplifying assumptions 56 
1.7. Overview 57 
1.8. Summary of notation 57 

2. Review of previous work 57 
2.1. Current  methods  of state space reconstruction 57 
2.2. Takens '  theorem revisited 59 

3. Geometry of reconstruction with noise 60 
3.1. The likelihood function and the posterior 60 
3.2. Gaussian noise 61 
3.3. Uniform bounded noise 63 

4. Criteria for optimality of coordinates 65 
4.1. Evaluating predictability 65 

4.1.1. Possible criteria 65 
4.1.2. Comparison of criteria 66 
4.1.3. Previous work 67 

4.2. Noise amplification 67 
4.3. Distortion 68 
4.4. Relation between noise amplification 

and distortion 69 
4.5. Low noise limit 69 

4.6. The observability matrix 70 
4.7. State dependence of distortion 71 
4.8. Comparison of finite noise and the zero noise limit 71 
4.9. Effect of singularities 72 

5. Parameter  dependence and limits to predictability 72 
5.1. More information implies less distortion 73 
5.2. Redundance  and irrelevance 73 
5.3. Scaling laws 74 

5.3.1. Overview 74 
5.3.2. Precise s ta tement  and derivation of scaling 

laws 77 
5.4. A solvable example 79 
5.5. When  chaotic dynamics becomes a random 

process 81 
6. Coordinate transformations 82 

6.1. Effect on noise amplification 83 
6.2. Optimal coordinate transformation 84 
6.3. Simultaneous minimization of distortion 

and noise amplification 85 
6.4. Linear versus nonlinear decomposition 85 

7. Estimation error 87 
7.1. Analysis of estimation error 87 
7.2. Extensions of noise amplification to estimation 

error and dynamic noise 91 
8. Practical implications for time series analysis 92 

8.1. Numerical  local principal value decomposi tkm 92 
8.2. Improving estimation by warping of coordinates 94 

9. Conclusions 95 
References 97 

0167-2789/91/$03.50 © 1991-  Elsevier Science Publishers B.V. (North-Holland) 



M. Casdagli et al. / State space reconstruction with noise 53 

R 
U 
E 

0 
P 
T 
I 
M 
A 
L 

T S x'[ 
I E 
M R 
E I 

E 
S 

Fig. 1. The reconstruction problem. The true dynamical system f ,  its states s, and the measurement function h are unobservables, 
locked in a black box. Values of the time series x separated by intervals of the lag time ~" form a delay vector _x of dimension m. 
The delay reconstruction map dp maps the original d-dimensional state s into the delay vector x. The coordinate transformation 
further maps the delay vector x into a new state y, of dimension d' < m. 

I. I n t r o d u c t i o n  

1.1. B a c k g r o u n d  

There are many situations in which a t ime 

series {x( t i )}  , i = 1 . . . .  , N is believed to be at least 
approximately described by a smooth dynamical 
system ~1 f on a d-dimensional manifold M: 

s ( t )  = f ' ( s ( 0 ) ) ;  (1) 

s ( t )  is the state at time t. In the absence of noise, 
the time series is related to the dynamical system 
by 

x ( t )  = h ( s ( t ) ) .  (2) 

We call h the measuremen t  func t ion .  The time 
series x ( t )  is D-dimensional, so that h: M ~ R D. 
We are most interested in dimension-reducing 
measurement functions, where D < d; we often 
implicitly assume D = 1. The state space recon- 
struction problem is that of recreating states when 

#1This is one of several possible ways of representing a 
dynamical system. The map f t  takes an initial state s(0) to a 
state s(t). The time variable t can be either continuous or 
discrete, f t  is sometimes called the time-t map of the dynami- 
cal system. For simplicity, we will often implicitly assume that 
M = ~  d. 

the only information available is contained in a 
time series. A schematic statement of the prob- 
lem is given in fig. 1. 

State space reconstruction is necessarily the 
first step that must be taken to analyze a time 
series in terms of dynamical systems theory. Typi- 
cally f and h are both unknown, so that we 
cannot hope to reconstruct states in their original 
form. However, we may be able to construct a 
state space that is in some sense equivalent to the 
original. This state space can be used for qualita- 
tive analysis, such as phase portraits, or for quan- 
titative statistical characterizations. We are 
particularly interested in state space reconstruc- 
tion as it relates to the problem of nonlinear time 
series prediction, a subject that has received con- 
siderable attention in the last few years [8, 10, 11, 
14, 15, 23, 28, 29, 32, 34, 42]. 

State space reconstruction was introduced into 
dynamical systems theory independently by 
Packard et al. [33], Ruelle ~2, and Takens [41]. In 
fact, in time series analysis this idea is quite old, 
going back at least as far as the work of Yule [44]. 
The important new contribution made in dynami- 
cal systems theory was the demonstration that it 

#2private communication. 
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is possible to preserve geometrical invariants, such 

as the eigenvalues of a fixed point, the fractal 

dimension of an attractor, or the Lyapunov expo- 

nents of a trajectory. This was demonstrated nu- 

merically by Packard et al. and was proven by 

Takens. 
The basic idea behind state space reconstruc- 

tion is that the past and future of a time series 

contain information about unobserved state vari- 

ables that can be used to define a state at the 

present time. The past and future information 

contained in the time series can be encapsulated 

in the delay uector defined by eq. (3), where for 

convenience we assume that the sampling time is 

uniform, 

x_( t )  = ( x ( t  + ~-mf) . . . . .  x ( t )  . . . . .  x ( t  - ~-mp))*. 

(3) 

Here t denotes the transpose, and we adopt the 

convention that states are represented by column 

vectors. The dimension of the delay vector is 
m = 1 + mp-t-mf. The number of samples taken 

from the past is m v, and the number from the 
future is mf. If m r = 0 then the reconstruction is 

predictiue; otherwise it is mixed. The time separa- 

tion between coordinates, ~-, is the lag time. 

Takens studied the delay reconstruction map ci9, 

which maps the states of a d-dimensional dynam- 

ical system into m-dimensional delay vectors: 

cIg(s) = ( h ( f r m f ( s ) )  . . . . .  h ( s )  . . . . .  h ( f - ~ ' m p ( s ) ) )  t .  

(4) 

He showed that generically qb is an embedding 

when m >_ 2d + 1. An embedding is a smooth, 
one-to-one coordinate transformation with a 
smooth inverse. If q~ is an embedding then a 
smooth dynamics F is induced on the space of 

reconstructed vectors: 

F t ( x )  = qb o f '  o @ - l ( x ) .  (5) 

The reconstructed states can be used to estimate 

F, and since F is equivalent to the original dy- 

namics f ,  we can use it for any purpose that we 
could use the original dynamics, such as predic- 

tion, computation of dimension, fixed points, etc. 

1.2. Complications o f  the real world 

Takens' proof is important because it gives a 

rigorous justification for state space reconstruc- 

tion. However, it gives little guidance on recon- 

structing state spaces from real-world, noisy data. 

For example, the measurements x ( t )  in the proof 

are arbitrarily precise, resulting in arbitrarily pre- 

cise states. This makes the specific value of the 

lag time r arbitrary, so that any reconstruction is 
as good as any other #3. However in practice, the 

presence of noise in the data blurs states and 

makes picking a good lag time critical. In this 
paper, we build on Takens' proof, by examining 

how states are affected when the assumption of 

arbitrary precision is relaxed. 
There are several factors which complicate the 

reconstruction problem for real-world data: 
-Obseruat ional  noise. The measuring instru- 

ments are noisy; what we actually observe is x ( t )  

= £ ( t ) +  ~:(t), where ~(t) is the true value and 

~(t) is noise. 
- Dynamic noise. External influences perturb s, 

so that from the point of view of the system 

under study the evolution of s is not determinis- 

tic. f is thus a stochastic dynamical system. 
- Estimation error, f and h are both unknown. 

We can estimate the dynamics in the recon- 

structed state space, but with a finite amount of 

data the approximation is never perfect. 

1.3. Information f low and noise amplification 

In real problems noise is always present. When 
we project a d-dimensional state onto a 

D-dimensional measurement with D < d ,  we 

'~3Provided it meets the conditions for genericity. For ex- 
ample, for a limit cycle, ~- cannot be rationally related to the 
period. 
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throw away information. We can reconstruct some 
of this missing information from the past and 
future measurements. However, if the uncertainty 
of the reconstructed state is much higher than 
that of the individual measurements, then we 
have amplified the noise; the system appears less 
deterministic than it would if we could observe 
more information. 

State space reconstruction relies on a flow of 
information from the unobserved variables to the 
observed variables. This can be qualitatively illus- 
trated with the familiar Lorenz equations, 

~ =  1 0 ( y - x ) ,  

p = - x z  + 2 8 x - y ,  

=xy  - ~ z .  (6) 

Assume that we observe x. Since ~ does not 
depend on z directly, information about z de- 
pends on the flow of information through y; 
when z changes it causes p to change, which 
causes y and hence ~ to change. When x = 0, 
since the only coupling to z is through the xz 

term, a large change in z causes only a small 
change in x. Equivalently, a small change in x 
corresponds to a large change in z. Thus the 
noise in the determination of z from noisy mea- 
surements of x is acutely amplified when x = 0. 
We refer to this phenomenon as noise amplifica- 

tion. 

The formalism that we develop in this paper 
makes the notion of noise amplification precise, 
so that the qualitative analysis of the Lorenz 
equations in the previous paragraph becomes 
quantitative. It also provides guidance into the 
practical problem of reconstructing coordinates 
so that they minimize noise amplification. 

Noise amplification depends on the following 
factors: 

- T h e  measurement function. Observation of 
one quantity may give more information than 
another. 

- T h e  method of  reconstruction. A poor state 
space reconstruction amplifies noise more than a 

i:!i i 
.... " . . :  

x(t) 

(b) 

x~ 
Fig. 2. Two hypothetical scenarios for prediction in a one 
dimensional state space. The horizontal axis is the state at 
time t, and the vertical axis is the state at time t + T. (a) 
shows a coordinate system with high noise amplification, while 
(b) shows a coordinate system with low noise amplification. 
This is evident from the thickness of  the distribution of points 
at any given x(t). However, since the functional form of (b) is 
more complicated, with a limited amount  of  data (b) might 
result in larger estimation error than  (a). 

good state space reconstruction; noise amplifica- 
tion depends on factors such as m and z. 

- T h e  dynamical system. Noise amplification 
depends on the flow of information between the 
individual degrees of freedom, which depends on 
properties of the dynamical system such as the 
dimension and Lyapunov exponents. 

1.4. Noise amplification versus estimation error 

The difference between noise amplification and 
estimation error from the point of view of predic- 
tion is illustrated in fig. 2. The noise amplification 
is related to the "thickness" of the distribution of 
points. In fig. 2a the noise amplification is large, 
and in fig. 2b the noise amplification is small. 
However, the estimation error in (b) might be 
larger than that of (a). 

Both noise amplification and estimation error 
cause prediction errors, and both of them depend 
on the reconstruction. The estimation error, how- 
ever, also depends on the method of approxima- 
tion. For most good approximation schemes, the 
estimation error goes to zero in the limit of a 
large number of data points. The prediction er- 
rors in this limit are entirely due to noise. The 
noise amplification thus tells us the prediction 
errors that remain even with a perfect model, 
setting a limit to predictability that is indepen- 
dent of the modeling procedure. As we shall 
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show, when the dimension and Lyapunov expo- 
nents are sufficiently large there can be a com- 
plete breakdown of predictability. The time series 
is unpredictable over times much shorter than the 
Lyapunov time, even with a perfect model (except 

for predictability through short- term linear corre- 
lation). In this limit the time series becomes a 
true random process. 

1.5. Data compression and coordinate 
transformations 

Any approach to state space reconstruction 
uses the information in delay coordinates as a 
starting point. For some purposes, such as reduc- 
ing the dimension of a reconstruction, it may be 

desirable to make a further coordinate transfor- 
mation to a new coordinate system y, 

y = q t ( x ) .  (7) 

As described in section 2, examples of such trans- 
formations qr are differentiation and principal 
value decomposition. By splitting the reconstruc- 
tion process into q~ and q~, we have conveniently 
labeled the two parts of the problem. The choice 
of @ determines the form of the delay coordi- 
nates, which are the raw information we have to 
work with, while qt determines how we use that 
information. The total reconstruction map _~ = 

o ¢b takes the original coordinates s to the 

reconstructed coordinates y. See fig. 1. 
We will show that it is impossible to reduce the 

noise amplification by transforming delay coordi- 
nates by qt. The minimum possible noise ampli- 
fication over all qt is obtained when qt = ] and 
y = x. However,  as the noise level tends to zero, it 
is in general possible to compress all the informa- 
tion in x into a coordinate y with a lower dimen- 
sion while keeping the noise amplification the 
same. The local principal value decomposition 
technique discussed in sections 6 and 8 accom- 
plishes this in the minimum possible dimension. 
However, this technique is subject to estimation 
problems which sometimes outweigh the benefits 
of dimension reduction. 

1.6. Approach and simplifying assumptions 

The main goal of this paper  is to develop a 
theory which gives insight into practical problems 

of state space reconstruction in the typical case in 
which a time series is the only available informa- 
tion. In order to get insight into the problem and 
develop a theory for its solution, we begin by 

assuming that we know both f and h. In sections 
3 through 6, we develop an understanding of the 
effect that f and h have on the problem of 
determining s from noisy data. In section 7, we 
take a different viewpoint and investigate how the 
reconstruction affects the estimation of f and h. 
In section 8, we investigate the implications of 
these theoretical results for algorithms when only 
the time series is known. 

Throughout  this paper  we assume that the noise 
is entirely observational. Treating dynamic noise 
is obviously important,  but it is outside the scope 
of this paper.  We also assume that the observa- 
tional noise is independent  and identically dis- 
tributed (IID). In practice, noise tends to become 
correlated as sampling time goes to zero, so we 
will assume that the lag time ~- is significantly 
greater  than the correlation time. A similar prob- 
lem arises if the measuring instrument records 
discrete, symbolic information rather  than a con- 
tinuous variable, but this will not be important if 
measurement  errors are dominated by noise 
rather  than quantization. We believe that the 
f ramework we have established here can be ex- 
tended to treat  dynamical, correlated and quanti- 
zation noise as well. 

1.7. Overview 

In section 2, we review what is currently known 
about state space reconstruction. We begin by 
discussing methods currently available for state 
space reconstruction, such as delay coordinates, 
derivative coordinates, and principal value de- 
composition. We then review Takens '  theorem, 
and present  an intuitive discussion of why it is 
true. 
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In section 3, we derive formulae for the proba- 
bilistic treatment of this problem. We use several 
examples to develop intuition and to illustrate 
qualitatively what factors are essential for a good 
state space reconstruction. 

From a practical point of view, it is important 
to have a simple criterion for selecting a recon- 
struction. A complete description of a reconstruc- 
tion is contained in a probability density function, 
but this is too complicated; we need a number, or 
a set of a few numbers. In section 4, we examine 
several candidates and argue that for this prob- 
lem, criteria based on the variance are more 
appropriate than other possibilities, such as mu- 
tual information. We define two quantities based 
on the variance: the distortion, which is related to 
errors in the state space, and noise amplification, 
which is related to errors in time series predic- 
tion. We derive explicit formulae for these quan- 
tities and investigate numerical examples. 

In section 5, we study the dependence of dis- 
tortion and noise amplification on the dynamical 
system and the methods of reconstruction. We 
demonstrate that for a given z, distortion is a 
decreasing function of m. In the low noise limit, 
we derive scaling behaviors of the distortion as a 
function of m, ~-, d, and the Lyapunov exponents. 
We show that for predictive coordinates an explo- 
sion in the noise amplification occurs when the 
Lyapunov exponents and dimension are suffi- 
ciently large. This causes a transition from behav- 
ior that is approximately deterministic for short 
times to behavior that is effectively random over 
almost any time scale. We use two examples to 
illustrate several aspects of the behavior of the 
distortion and noise amplification. 

In section 6 we study the effect of making 
coordinate transformations from delay coordi- 
nates to more general coordinates. We demon- 
strate that in the low noise, large data limit, local 
singular value decomposition (SVD) is an optimal 
coordinate transformation in the sense that it 
minimizes the distortion with a coordinate system 
of the smallest possible dimension. In the low 
noise limit we prove that minimizing the distor- 

tion is equivalent to minimizing the noise ampli- 
fication. 

In section 7, we examine the effect of the 
reconstruction on estimation errors in prediction. 
We derive scaling laws for estimation error for 
local approximation methods. We show that noise 
amplification and estimation error are counterac- 
tive effects, and that the optimal state space for 
prediction balances between them. We discuss 
the possibility of defining quantities analogous to 
distortion for estimation error and dynamic noise. 

Finally, in section 8, we discuss algorithms for 
constructing coordinates when only the time se- 
ries is known. We show that local SVD can be 
estimated from a time series, through a technique 
we call local principal value decomposition 
(PVD). We perform numerical experiments com- 
paring local PVD to other methods, such as delay 
coordinates and global PVD. Finally, we suggest 
an algorithm for reducing estimation errors. 

1.8. Summary  o f  notation 

The notation we use in this paper is summa- 
rized in table 1. 

2. Review of previous work 

2.1. Current methods  o f  state space reconstruction 

The currently used possibilities for state space 
reconstruction include delay coordinates, deriva- 
tive coordinates, and global principal value de- 
composition. Each of these is sometimes done in 
conjunction with filtering. As a matter of experi- 
ence it is quite clear that the method of recon- 
struction can make a big difference in the quality 
of the resulting coordinates, but in general it is 
not clear which method is the best. 

Delay coordinates are currently the most widely 
used choice. They have the nice property that the 
signal to noise ratio on each component is the 
same, They have the unpleasant property that in 
order  to use them it is necessary to choose the 
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Table 1 
Notation used in this paper. 

Symbol Description 

M 
s( t )  

f,  
x(t) 

~(t)  

h 
S( t )  

T 

A* 
Tr A 
X 

Y 

W i 

P 

p(x [y) 
~f 

6 
a ( T )  
W 

A 

tR 
ti 
~(~) 

d-dimensional manifold representing the state space 
d-dimensional state at time t 
time-t map of dynamical system; s(t)  = f t(s(0)) 
noisy D-dimensional value of time series at time t 

(we often assume D = 1) 
noise fluctuation, usually assumed to be 

Gaussian l iD 
measurement function; x(  t ) = h( s( t ) ) + ~( t ) 
d - D dimensional measurement surface 

S( t )  = {s: x ( t )  = h(s)} 
sampling time ti+ 1 - ti 
transpose of a matrix or vector A 
trace of a matrix A 
m-dimensional delay vector 

( x ( t  + rmf )  . . . . .  x( t  ) . . . . .  x ( t  - ~'mp))* 
reconstructed d'-dimensional coordinate 

based on _x 
delay reconstruction map x = q0(s) 
coordinate transformation map y = g'(_x) 
total reconstruction map -= = if' o 
ith singular value of Dq~ 
m-dimensional vector of noise fluctuations 

(~¢(t + rmf )  . . . . .  ~:(t) . . . . .  ~(t - ~'mp)) t 

true values of x, s in absence of noise 

best estimate for Y, g, f 
probability density function 

(identified by its arguments) 
conditional probability density for x given y 
distortion matrix 

distortion 6 = 
noise amplification for extrapolation time T 
window width = (m - 1)7 
largest Lyapunov exponent 
time average 
redundance time 
irrelevance time 
"of  order e" 
"asymptotically scales as" 

phenomenon is known as irrelevance. Most of the 
research on the state space reconstruction prob- 
lem has centered on the problems of choosing 7 
and m for delay coordinates. The proposals for 
doing this include information-theoretic quanti- 
ties [1, 17, 19], and others [9, 30, 31]. 

Another  method in common use is principal 
value decomposition, also called principal compo- 
nent analysis, factor analysis, or Karhunen-Loeve 
decomposition. Broomhead and King originally 
proposed this for reconstructing a state space for 
chaotic dynamical systems [7]. The simplest way 
to implement this procedure is to compute 
the m × m  covariance matrix Cij= ( x ( t ) x ( t  + 
( i - - j ) 7 " ) )  t and then compute its eigenvalues. The 
eigenvectors of Cii define a new coordinate sys- 
tem, which is a rotation of the original delay 
coordinate system. The eigenvalues are the aver- 
age root-mean-square projection of the m-dimen- 
sional delay coordinate time series onto the 
eigenvectors. Ordering them according to size, 
the first eigenvector has the maximum possible 
projection, the second has the largest possible 
projection for any fixed vector orthogonal to the 
first, and so on. Typically, one reduces dimension 
by using only eigenvectors whose eigenvalues are 
large. 

Another  method for reconstructing a state 
space is the method of derivatives, numerically 
investigated by Packard et al. [33]. The coordi- 
nates are derivatives of successively higher order, 

y ( t )  = ( x ( t ) , 2 ' ( t )  . . . . .  )~(m- l ) ( t ) ) t ,  (8) 

delay parameter  ~'. If ~- is too small each coordi- 
nate is almost the same, and the trajectories of 
the reconstructed space are squeezed along the 
identity line; this phenomenon is known as re- 
dundance. If ~- is too large, in the presence of 
chaos and noise, the dynamics at one time be- 
come effectively causally disconnected from the 
dynamics at a later time, so that even simple 
geometric objects look extremely complicated; this 

where 2(J)(t) is a numerical approximation to the 
j th  derivative of x(t). As Takens proved, as long 
as m is sufficiently large, derivatives generically 
define an embedding. There  are many different 
algorithms for the numerical computation of 
derivatives, so in this sense the method of deriva- 
tives actually defines a family of different meth- 
ods, depending on the algorithm. 

All of these methods can be used in conjunc- 
tion with linear filtering. For example the quality 
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of derivative coordinates in the presence of noise 
can be considerably improved by low pass filter- 
ing the time series. Note that, since linear filter- 
ing can increase the dimension of the time series, 

it must be done with care [3]. We have recently 
shown that global principal value decomposition 
coordinates are closely related to low-pass fil- 
tered derivative coordinates [22]. 

At this point there is no clear statement as to 
which of these methods is superior. Fraser has 
presented evidence for situations in which delay 
coordinates are superior to global principal value 

decomposition [18]. However, we have observed 
examples where the opposite is true. The situa- 
tion at this point is inconclusive, and it is not 

clear what causes one coordinate system to be 
bet ter  than another. One of our central motives 
for defining noise amplification is to compare 
different methods of state space reconstruction. 
This gives guidance for optimizing the parameters  
of a particular method,  or for comparing two 
different methods. 

Principal value, derivative, and delay coordi- 
nates are related to each other by linear transfor- 
mations. However, the transformation from delay 
coordinates to the original coordinates is typically 
nonlinear. As  Fraser has demonstrated [18], non- 
linear coordinate transformations can be greatly 
superior #4. The method of local principal value 
decomposition, discussed in sections 6 and 8, 
implements a nonlinear coordinate transforma- 
tion, which gives it the potential for bet ter  perfor- 
mance. 

2.2. Takens' theorem revisited 

In order to understand when delay vectors 
form an embedding, Takens investigated the 
equation x = q~(s), assuming x is noise free. For 
a univariate time series (D  = 1) this can be re- 

garded as a set of m simultaneous nonlinear 

*4Larimore has also considered nonlinear generalizations 
of canonical variate analysis for nonlinear modeling purposes 
[29]. 

i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiMiiiiiiiiiiiiiiii ~:~iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii~iiiiiiiiiMiMiiiiiiii 

Fig. 3. Solutions of the equation x = qB(s) when d = 2 and 
m = 3. If M is the original two-dimensional state space shown 
above, the surface shown below is ~(M).  In this case there 
are self-intersections. The  state s o is mapped  onto a self- 
intersection, while s I is not. Except for special values of  s like 
s 0, • defines an embedding. 

equations in d variables. The transformation 
maps the d-dimensional state space M into an 
m-dimensional space. If  the surface q~(M) con- 
tains no self-intersections, then given any fixed 

x ~ ~(M),  there is a unique solution for s in 
terms of x. I f  this solution also depends smoothly 
on x, then ~ is an embedding #5. The case when 

d = 2 and m = 3, for example, is illustrated in fig. 
3; in this case there are self-intersections along 
one-dimensional curves. When m = d + 1, the set 
of self-intersections is generically of  dimension at 
most d - 1, and • is an embedding almost every- 
where. As m increases by one, the dimension of 
the set of self-intersections generically decreases 
by one, until finally when m > 2d  there are no 
self-intersections at all. Thus generically, m > 
2d + 1 guarantees that ~ is an embedding. It is 
possible that q~ will be an embedding with m as 
small as m = d, for example if ~ is sufficiently 
close to a nondegenerate  linear map. See ref. [36] 

#5By the implicit function theorem, the smoothness  condi- 
tion is satisfied if D ~  is of  full rank everywhere. Since the set 
of  points where D ~  fails to be of  full rank is generically of  
lower dimension than the set of  self-intersections [36], we will 
ignore smoothness  problems in the discussion of this para- 
graph. 
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YT x ]D ii!! 
x = x(t) x(t<) x(t-2x) 

Fig. 4. A dynamica l  view of r econs t ruc t ion  in t e rms  of  the 

evo lu t ion  of m e a s u r e m e n t  surfaces ,  wi th  d = 2 and  m = 3. 
Suppose  tha t  the m e a s u r e m e n t  funct ion  h co r r e sponds  to 

p ro jec t ion  on to  the  hor izon ta l  axis, so tha t  h ( s ) =  x .  A mea-  
s u r e m e n t  at  t ime  t impl ies  tha t  s l ies s o m e w h e r e  a long  the  

l ight  gray  ver t ica l  l ine def ined  by x = x ( t ) .  Similarly,  a mea-  

s u r e m e n t  at  t ime  t - 7 impl ies  tha t  it was on the  da rke r  l ine 
x = x ( t  - z ) ,  and  a m e a s u r e m e n t  at  t ime  t - 2 r  impl ies  tha t  it 

was  on the  da rkes t  l ine x = x ( t  - 2~'). To see wha t  this  impl ies  
w h e n  they are  t a k e n  toge ther ,  each  m e a s u r e m e n t  sur face  can  

be  m a p p e d  forward  by f to the same  t ime  t. The  s ta te  at  t ime  
t l ies on the  in te r sec t ion  of these  curves. 

for a more complete discussion of Takens '  theo- 
rem and its generalizations in the noise-free case. 

The reconstruction process can also be consid- 
ered in terms of the constraint that each mea- 
surement  causes in the original state space, as 
illustrated in fig. 4. This gives a more dynamical 
point of view, which turns out to be useful for 
visualization in higher dimensions, and particu- 
larly in the presence of noise. Let  the measure- 
ment surface S(t) be the set of possible states that 
are consistent with a given measurement  x(t) ,  i.e. 
S(t) = {s(t): x( t )  = h(s(t))}. When h is smooth, 
S(t)  is generically a surface of dimension d -  D. 
For example, when d = 2 and h is projection 
onto the horizontal axis, the measurement  sur- 
faces consist of vertical lines. The effect of a 
series of measurements  can be understood by 
transporting them to a common point in time. 
The state at that t ime must lie in their intersec- 

tion I(t),  

s(t)   I(t) =f- mfS(t +rmf)  n ... AS( t) 

n . . .  nf 'mpS(t -- rmp) .  (9) 

must be at least one state consistent with all the 
measurements .  If  I ( t )  does not consist of a single 
point, qb is not an embedding. If  I ( t )  does consist 
of a single point, and if the intersection is trans- 
verse at this point, then • is locally an embed- 
ding in the neighborhood of s(t). If  • is locally 
an embedding everywhere, then it is a (global) 
embedding. The extent to which the intersection 
is transverse can be quantified by the singular 
values of the matrix D@ evaluated at s(t), and 
will play an important  role in section 4. 

3. Geometry of reconstruction with noise 

In the presence of noise there are many states 
that are consistent with a given series of measure-  
ments. The probability that a given state occurred 
can be characterized by a conditional probability 
density function p(slx) .  This illustrates how the 
presence of noise complicates the reconstruction 
problem: without noise a point is sufficient to 
characterize what is learned from a measure- 
ment,  but with noise this requires a function 
giving the probability of all possible states. For 
chaotic dynamics the propert ies  of p (s lx )  can be 
very complicated, as has been demonstrated by 

Geweke [21]. 
In this section we derive several formulae for 

p ( s lx )  when h and f are known. We compute 
p(sLx) for several examples, to illustrate qualita- 
tively how it depends on x, the noise level, and 

the reconstruction. 

3.1. The likelihood function and the posterior 

We can derive p(slx_) from Bayes' theorem, 
making use of the fact that p (x l s )  is easier to 
compute.  According to the laws relating condi- 
tional and joint probability 

The intersection I( t )  is never empty, since there p ( s Jx )  p(_x) = p ( x _ l s ) p ( s ) .  (10) 
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This can be rearranged as ten as 

p(sl_x) ¢xp(s) p(_xls). (11) 

The factor p(_xls) on the right is often called the 
likelihood function, since it represents the likeli- 
hood that the series of observations x is due to 
the underlying state s. Normally p(_xls) would be 
interpreted as a family of functions of x, parame- 
terized by the condition s; in eq. (11), however, 
we can regard _x as given and interpret p(_xls) as 
a function of s. The prior p(s) encapsulates any 
information that we had before these observa- 
tions occurred. If we are studying a chaotic at- 
tractor, for example, and we know its natural 
measure, then we can take this as our prior. If we 
have no prior knowledge, however, then this term 
can be taken to be constant. The posteriorp(slx_) 
represents what we know about s after taking the 
observations x into account. 

When f and h are known we can derive a 
formula for the likelihood function as follows. By 
definition we have p (x l s )=p (~ ) ,  where ~: = x -  

=_x-  4(s) .  If we assume that the noise is liD, 
from eq. (4) we obtain 

p (x l s )  = p ( x - 4 ( s ) )  

i=mf 
= I-[ P ( X ( t + i r ) - h ( f i ' ( s ) ) ) .  

i=--mp 
(12) 

3.2. Gaussian noise 

If we assume that p(~:) is a Gaussian of vari- 
ance e z, eq. (12) becomes 

i=mf 1 

FI 2¢T4  i= --mp 

× e x p ( -  [x( t  + i t )  - h ( f ~ ¢ ( s ) ) ]  2 ) 

2 e 2  

(13) 

Letting [[. II denote the Euclidean norm, then 
from the definition of 4 ,  eq. (13) can be rewrit- 

p(_xls) = Z  exp( - ~--e2 II_x - 4 ( s ) l l :  ) , (14) 

where A is a normalization constant. 
Thus, p(x[s), interpreted as a function of x, is 

quite simple: it is an isotropic Gaussian centered 
on the true delay vector _~= 4(s).  However, 
p(xls) interpreted as a function of s is not a 
Gaussian, because of the nonlinear function 4.  
The probability for s given _x is obtained using 
Bayes' theorem (eq. (11)), which gives 

where A' is another normalization constant. 
Eq. (15) describes how the behavior of 4 (s )  

determines the properties of a reconstruction. 
When the surface 4(M) of fig. 3 is well-behaved, 
p(sl_x) is well-localized, as shown in fig. 5 for the 
case of a constant prior p(s). However, self-inter- 
sections or regions where 4(M) is tightly folded 
may complicate the structure of the conditional 
probability density p(sl_x). The properties of the 
reconstruction also depend on the stretching ac- 
tion of the map 4 on M. 

The behavior of eq. (14) is illustrated in fig. 6, 
where we plot the likelihood function p(_xls) of 
the Ikeda map #6 as a function of s for a fixed x. 

#6The Ikeda map is 

(Xn+l~ Yn+l) 

= (1 + / * ( x  n cos t n - Yn sin tn) , l*(xn sin t n + y, cos tn)) ,  

(16) 

where t , , = 0 . 4 - 6 . 0 / ( l + x  2+y2) .  We take p.=0.7.  The 
Ikeda map has an explicit inverse, and we use it in our 
numerical calculation of q~. A single true state .~ is randomly 
chosen and mapped by • into a noiseless delay vector _~, then 
perturbed by noise to obtain _x. For each point s on a grid, we 
calculate the likelihood function p(_x Is) by eq. (14). 
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P ( s l l  x )  l 
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Fig. 5. Good and bad reconstructions. The quality of a reconstruction depends on the shape of the surface ~(M).  In (a) the 
surface q~(M) is well-behaved within a "noise ball" of radius E about the true state g and the resulting conditional probability 
density p ( s lx )  is well-localized. In (b), g is near a self-intersection and p(sl_x) is bimodal. Even when q~ is a global embedding, 
problems can occur if qb(M) is tightly folded, as illustrated in (c). 
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Fig. 6 i l lus t ra tes  the  case  of  Gauss i an  noise  of  

two di f ferent  va r iances  E 2, with mf  = 2 and  mp = 

2. In  fig. 6a we show the  l ike l ihood  funct ion  for 

the  case  e = 0.2. Wi th  a high noise  level,  the  

l ike l ihood  funct ion  can  be  highly complex.  In  this 

case t h e r e  a re  many  local  minima,  so tha t  it is a 

nontr iv ia l  task  to find the  ma x imum l ike l ihood  

es t imate  g co r r e spond ing  to the  peak .  In  fig. 6b 

we show the  l ike l ihood  funct ion for  the  case  

E---0.02. H e r e  the  l ike l ihood  funct ion is approxi -  

mate ly  Gauss ian .  

3.3. Uniform bounded noise 

A n o t h e r  case  tha t  is easily t r e a t e d  is tha t  of  

un i fo rm b o u n d e d  noise  of  va r iance  e z, 

Fig. 6. Two likelihood functions for the Ikeda map, with the 
measurement function h(x ,y)=x.  The delay vector x is 
fixed, with mf = 2 ,  m~ = 2, and r = 1. The likelihood function 
p(xls) is computed using eq. (14). The value of p is plotted 
vertically and s = (x, y) horizontally. We assume Gaussian 
measurement errors with e ~ 0.2 in (a), and e = 0.02 in (b); 
the horizontal axes in (b) are blown up by a factor of 10 
relative to (a). Note that in (a) p is complicated, but when the 
noise level is decreased in (b) it approaches a Gaussian. 

p ( ~ )  = 1/2v~-E if I~r < v~-e, 

= 0 i f  I~:1 > x/-3-E. (17) 

The  effect of  a given m e a s u r e m e n t  can  be  

v isual ized geomet r ica l ly  in t e rms  of  the  measure- 

ment  strip S , ( t )  = {s: Ix( t )  - h ( s ) l  < v~-E}. The  

m e a s u r e m e n t  str ip is the  suppor t  of  p ,  and  is 

s imilar  to the  m e a s u r e m e n t  surface  S( t )  d iscussed 

ear l ier ,  except  tha t  it is " t h i c k e n e d "  by E. Fol low-  

ing eq. (12), the  l ike l ihood  funct ion can be  com- 

p u t e d  in a m a n n e r  ana logous  to eq. (9). The  s ta te  

s must  lie inside the  in te rsec t ion  of  the  measu re - ,  

men t  str ips,  

s ( t )  E I , ( t )  = f - ¢ m f s , ( t  + Tmf)  ( '1 . . .  f3 S , ( t )  

(~ . . .  ~ f ~ m " s , ( t  - ~'mp). (18) 

The  l ike l ihood  func t ion  is un i fo rm over  the  

domain  def ined  by I~(t),  and  ze ro  ou t s ide  this 

domain .  F o r  an  inver t ib le  dynamica l  system, a 

s imple  m e t h o d  for  d e t e r m i n i n g  w h e t h e r  a given 

po in t  s l ies within I , ( t )  is to tes t  w he the r  it 
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S 

(a) (b) 

(c) (d) 

(e) 10 

Fig. 7. State space reconstruction based on measurements of the x-coordinate of the Ikeda map with uniform noise of standard 
deviation 0.02. (a) and (c) are similar to fig. 4; each evolved measurement strip f i s , ( - i )  is assigned a different color, with the bluest 
corresponding to the past (largest i), and the reddest corresponding to the future (smallest i). In (b) and (d)-(f), s is colored 
according to how many evolved measurement strips it lies within; blue corresponds to lying in one measurement strip, red 
corresponds to lying in the intersection of all the measurement strips. The red point are therfore possible states, consistent with the 
entire sequence of measurements. For reference, sample points on the attractor are colored white. (a), (b) have mf = 0, mp = 2. 
Figures (c), (d) have the same state g as (a), (b), but mf = 2, mp = 2. The scale of the first two figures on the right (b), (d) is 
expanded relative to (a), (c) on the left. In (e), the state g is near a homoclinic tangency, with m r = 2, mp = 2. (f) is the same as (e), 
but mf = 4, m p =  4. 
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satisfies the condition 

f~me(S) ~ S, ( t  + zmr) A . . .  As ~ S , ( t )  A . . .  

quality of an embedding. This is discussed in the 
next section. 

Af-rmo(s) ~- S, ( t  - ~'mp) (19) 
4. Criteria for optimality of coordinates 

where " A "  denotes the logical "and"  function. 
To gain geometric insight into how the likeli- 

hood function p(xls )  is influenced by the state 
space reconstruction and by the properties of the 
dynamical system, in fig. 7 we have applied eq. 
(19) to the Ikeda map (eq. (16)) in a variety of 
different situations #7. As expected, in each figure 
there is a unique connected region of points that 
are in the intersection of all the evolved measure- 
ment strips. The true state lies inside this region. 
Figs. 7a, 7b correspond to a predictive recon- 
struction with m = 3. The likelihood function is 
well-localized along the stable manifold, but not 
along the unstable manifold. However, by using a 
nonpredictive reconstruction with m e = 2  and 
m p = 2, it is possible to make the likelihood func- 
tion well-localized along both unstable and the 
stable manifolds, as shown in figs. 7c, 7d. 

In fig. 7e, the state g is near a homoclinic 
tangency. The likelihood function is spread out 
along the attractor. This is because the images of 
the appropriate measurement strips S,(i) inter- 
sect almost tangentially. In fig. 7f, more measure- 
ments are taken, and the likelihood function 
becomes more well-localized. 

The geometric interplay between properties of 
the dynamics and properties of the reconstruction 
are investigated in more detail in section 5.3. 
However, before we can make this discussion 
more quantitative, we must introduce criteria for 
judging the localization of p(s Ix), and hence the 

As we showed in the previous section, the 
properties of a reconstructed coordinate system 
in the presence of noise depend on a conditional 
probability density function. To compare two 
functions quantitatively, we must adopt a crite- 
rion which assigns a scalar to each possible func- 
tion p. In this section we discuss various criteria, 
and investigate the properties of the criterion 
that we choose. 

4.1. Evaluating predictability 

For convenience, we assume the current state 
corresponds to t = 0, and that predictions are 
desired at t = T. We couch the discussion in 
terms of a general set of coordinates y = ~ (x ) ;  
for the special case of delay coordinates, ~ is the 
identity. 

In the previous section we discussed the recon- 
struction problem in terms of p(s[y), the proba- 
bility of the original state s given a series of 
measurements. This is useful for theoretical anal- 
ysis, but since s is unobservable, it is inadequate 
for many practical purposes. For time series pre- 
diction, the probability density function that is 
directly relevant is p(x(T)lY), the probability of a 
given value of the time series at a future time T. 
In the discussion that follows, the function p can 
be either p(x(T)ly) or p(sly). In section 4.4 we 
derive a relationship relating one to the other. 

#7Figs. 7a-7f  were made in the following manner: A single 
state g was chosen on the attractor at random. A single noisy 
delay vector x was obtained from g by iterating and applying 
the measurement function and then perturbing with a random 
number generator to generate _x. Then points s ~ ~2 on a 
400 x 400 grid were tested to see how many of the individual 
conditions f i (s)  E S,(i) of eq. (19) were satisfied, and colored 
according to the description in the caption. 

4.1.1. Possible criteria 
Some criteria commonly used to assess pre- 

dictability are: 
-Maximum expectation. The function p is 

ranked according to its maximum value. This is a 
criterion one might choose in a gambling prob- 
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p(x) 

< a 2a 

( ) ( ) 
L L=a 

a b 

Fig. 8. Hypothetical conditional probability density functions for prediction errors. (a) is not localized, corresponding to the 
behavior one might expect from a reconstruction that is not an embedding.  (b) is localized. The  conditional variance of (a) is much 
higher than that of (b), but  their entropies are the same. To determine whether  or not a reconstruction is an embedding,  

conditional variance is a more  sensitive test than mutual  information. 

lem, to maximize the expected return for a bet 

placed on the predicted value. 
-Mutual  information. Let H represent  the en- 

tropy e8 

H( x) = - f p( x) log p(  x)  dx.  (20) 

The mutual  information between the variables x 
and y is I(x, y ) = H ( x ) - H ( x l y ) ,  where H(xly)  
is the entropy associated with the conditional 
probability density p(xly)  averaged over y. 

-Mean-square error (conditional variance) is 

defined as 

-Mean-absolute error. The arithmetic mean- 

absolute error or geometric mean-absolute error 
are other common measures of predictability. 

4.1.2. Comparison of criteria 
Intuitively, for prediction of a continuous vari- 

able, the conditional probability p should be as 
well-localized as possible. Criteria such as mean- 
square error or mean-absolute error enforce this. 
In contrast, maximum expectation and mutual 
information do not enforce localization. Because 
of this they are more appropriate  for discrete 
variables #9. For example, consider the probability 

density function 

= )2.  

V a r ( x l y )  f x 2 p ( x l y ) d x  - (fxp(xly)dx 
(21) 

Var(xly)  measures the mean-square errors in x 
given y, and depends on the value taken on by y 
(a quantity analogous to mutual  information could 
be defined by integrating over y). Since the ex- 
pectat ion 2 = f xp(xly) dx  minimizes mean-  
square prediction errors [35], Var(x ly)  is a lower 
bound on the mean-square prediction error. If  x 
is vector-valued, then eq. (21) is modified so that 
Var(x ly)  is a covariance matrix. 

#8Note that the entropy is actually a functional of p(x) 
rather  than a function of x. 

' ½LI < 1  p ( x ) = l / 2 a  I x - ½ L I  < s a o r  I x +  ~a, 

= 0 otherwise, (22) 

shown in fig. 8 for two values of L. The entropy 
for this density is H = log(2a) and its variance is 
1 2 1 2 z (L  + 5-a ). Any of the criteria based on mean 

errors will assign a low value to fig. 8b, and a high 

#gAt any finite level of resolution, x and y may be thought  
of as "messages" ,  with a given number  of bits [38, 39]. The  
mutual  information gives the average uncertainty for predict- 
ing message x from message y. It weights the low order bits 
equally with the high order bits. In predicting a continuous 
variable, however, the consequences  of an error in the highest 
order bit are usually worse than one in the lowest order bit. 
The fact that mutual  information does not make this distinc- 
tion makes it a poor predictability criterion for continuous 
variables. 
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value to fig. 8a. This is in accord with the fact that 
8b is well-localized and 8a is not. However, the 
mutual information for figs. 8a and 8b is the 
same, and so is the maximum expectation. Crite- 
ria based on mean errors are better  at evaluating 
localization, and hence are better for detecting 
whether or not a reconstruction is an embedding. 

The requirement of locality leads us to choose 
mean errors as our criterion for predictability. 
Mean-square error  as compared to mean- 
absolute error has the disadvantage that it 
over-emphasizes outliers. However, it has the im- 
portant advantage that, when used in conjunction 
with Gaussian noise, many computations can be 
performed in closed form, a property of which we 
make much use in the next sections. Thus, local- 
ity and computational tractability are our primary 
reasons for using mean-square error to select 
reconstructed coordinates. 

4.1.3. Previous work 
Conditional variance #~° was originally sug- 

gested as a criterion for reconstruction by Packard 
et al. [33]. This was developed by (~enys and 
Pyragas [9], who used a more efficient method of 
estimating it, and considered scaling with the 
estimator resolution and ~'. Variations which 
amount to different estimators of conditional 
variance or related quantities, have also been 
suggested by Guckenheimer [24], Liebert et al. 
[30], Aleksi6 [2], and Savit and Green [37]. 

Shaw [39] originally suggested that the best 
coordinates should be those that maximize the 
mutual information between past and future 
states. This was pursued by Fraser and Swinney 
[19]. However, they did not compute it for the full 
reconstructed state space. Instead, they com- 
puted I(x(z), x(0)). This amounts to the mutual 
information between past and future in a one- 
dimensional projection of the dynamics. They 
then proposed that the value of ~" corresponding 

#~°Estimators of conditional variance can be used to mea- 
sure the total prediction error, which is a combination of 
effects due to estimation error and noise. See section 7. 

to the first minimum of I(x(~-), x(0)) should be a 
good choice for delay coordinates. They justified 
this procedure on the grounds that a small value 
of I(x(r), x(0)) implies that x(0) is statistically 
independent of x(~'), minimizing the redundance 
of the coordinates. There are several problems, 
though: There is no obvious reason to prefer the 
first minimum of I(x(z), x(0)) over others, and 
I(x(r), x(0)) may not even have any minima at 
finite ~-. Fraser [17] later proposed another 
heuristic quantity, which was designed to provide 
a compromise between redundance and relevance 
and to be applicable to higher dimensional sys- 
tems. However, the connection with Shaw's origi- 
nal criteria of maximizing the mutual information 
between the past and the future is unclear. Fi- 
nally, there are the problems with using mutual 
information for continuous variables mentioned 
in the previous section. 

Another  heuristic which is sometimes used is to 
choose ~- at the first minimum of the autocorrela- 
tion function, or alternatively, to choose a value 
of ~" that makes the autocorrelation function 
"small". This has some justification from the point 
of view of minimizing linear redundance. How- 
ever, in general a statistic such as the correlation 
function that measures only linear dependence is 
simply inadequate, as discussed in section 5.2. 

4.2. Noise amplification 

As we argued in section 4.1.2, a natural crite- 
rion for assessing predictability is the variance of 
the conditional probability density function 
p(x(T)ly). This quantity can be interpreted as 
measuring the thickness of the points in fig. 2 in 
the vertical direction. The conditional variance 
depends on the noise level e. When the recon- 
struction is an embedding, for small E the condi- 
tional variance is asymptotically proportional to 
e z. The constant of proportionality quantifies the 
predictive value of the reconstructed coordinate 
y at a given noise level. When the constant of 
proportionality is large, then the reconstructed 
coordinates amplify noise. 
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This motivates us to define the noise amplifica- 

tion at a given noise level e as 

(23) 

where for convenience we have suppressed the 
dependence of o-~(T) on y. We define the noise 

amplification ~r by taking the limit • ~ 0, 

or(T)  = lim o-~(T). (24) 
• ~ 0  

The noise amplification o-(T) characterizes the 
predictive value of a reconstructed coordinate y. 
In contrast to the conditional variance, it is inde- 

pendent o f  the noise level e. It depends on purely 
geometric factors, such as the dynamical system, 

the measurement  function, and the reconstruc- 
tion. Taking the limit as the noise goes to zero is 
quite different from simply setting the noise to 
zero, as was effectively done by Takens [41]. When 
the noise is set to zero, all reconstructions that 
are embeddings are equivalent. In the limit as the 
noise goes to zero, however, two embeddings may 
have quite different noise amplifications. 

The limit involved in defining o-(T) may not 
always exist; for example, it does not exist when 
the reconstruction is not an embedding. There  
are other situations where it does not exist be- 
cause ~r oscillates in the limit as • - o  0. This is 
true for highly regular fractals, for example, a 
simple Cantor set. In these cases, o-(T) can be 
made well-defined by replacing the simple limit 
with a limit of the supremum. 

If we are interested in a geometric object with 
an ergodic measure,  such as a chaotic attractor, 
we can also eliminate the dependence on the 
state y by taking an average over the values of y 
with respect to this measure.  We will call this the 
average nose amplification: 

(@z = (  ~2( y))y.  (25) 

For some purposes, such as noise reduction, we 
wish to predict the true value 2(T),  i.e. the value 
of x ( T )  in the absence of noise. In this case we 
can define a quantity 6 in terms of Var(£(T) ly) ,  
by analogy with eqs. (23) and (24). Since x ( t ) =  

2 0 )  + ~:(t), it follows that 

6 2 = ~r 2 - 1. (26) 

4.3. Distortion 

For many purposes it is useful to consider how 
the uncertainties in a reconstructed state y are 
manifested in the original state s. Although the 
probability density of the noise is isotropic in 
delay coordinates, in the original state space it is 
typically anisotropic. This was illustrated in fig. 
6b. For example, for Gaussian noise the surface 
on which the probability density function p(x l s )  
is a constant is an m-dimensional sphere. If q~ is 
an embedding, in the low noise limit the intersec- 
tion of this sphere and 4~(M) will map into a 
d-dimensional ellipsoid in the original state space 
M, as was illustrated in fig. 5a. The noise distribu- 
tion is thus "distorted" when transformed to the 
original state space. 

We define the distortion matrix at noise level • 

a s  

1 
.~  = ~-~Var(sly) .  (27) 

The dependence on • can be removed by taking 
the limit as • --* 0, 

X = lira X~. ( 2 8 )  
E--~O 

The distortion matrix X is a d × d symmetric real 
matrix, whose eigenvalues are proportional  to the 
squares of the lengths of the principal axes of the 
distorted ellipsoid in the original space. 

The distortion matrix describes the noise am- 
plification in each direction in d dimensions. For 



M. Casdagli et al. / S t a t e  space reconstruction with noise 69 

an overall summary, it is often more convenient 
to consider 

3 , =  TrffT-~, = l ~ / v a r ( l l s l l l y ) .  (29) 

variation of x(T) about its true value £ (T)  be 
A x = x ( T ) - £ ( T ) ,  and similarly let A s = s - g .  
When As is small, Ax = Dh D f r A s  + ~(T). The 
noise amplification at resolution • is 

We have taken the square root to make it easier 
to compare with noise amplification. As before, 
we can eliminate the dependence on • by taking 
the limit as • ~ 0. We call 3 the distortion #11 

= l im6~.  (30)  
E ~ 0  

Compared with noise amplification, the distor- 
tion has the advantage that it does not depend on 
the extrapolation time T. However, it has two 
disadvantages: First, it depends on the coordi- 
nates used to describe the dynamical system*12; 
for example, rescaling s changes the distortion. 
Second, it is not observable, and cannot be com- 
puted from a time series alone. Nonetheless, the 
distortion matrix is a valuable tool because of its 
relation to noise amplification, as shown in sec- 
tion 4.4. 

In addition, the distortion is of interest in its 
own right. In some engineering problems the 
form of f and h is known, and it is desirable to 
estimate the "hidden variables" s, or to estimate 
the unknown parameters of f and h, from a noisy 
time series. For example, in section 1, we consid- 
ered how accurately z could be inferred from x 
for the Lorenz equations. This is a problem 
sometimes faced in extended Kalman filtering, 
and has also been considered by Breeden et al. 
[4]. 

4.4. Relation between noise amplification and 
distortion 

o',2(T) = l ( A x  Ax*) 

X [ D h D f T A s + ~ ( T ) ] t ) .  (31) 

By definition ~ ,  = (1/•2)( As As*), and (~:2) = 

e 2. Since As and ~(T) are independent this im- 
plies, on taking the limit • --+ 0, 

~r2(T) = 1 +DhDfT .~ (Dfr )*Dh  *. (32) 

Intuitively this makes sense; the uncertainty in 
the initial state is first altered by the derivative of 
the dynamics, then projected down onto the time 
series. The first term is the result of convolution 
with noise. 

4.5. Low noise limit 

When q~ is an embedding, the likelihood func- 
tion p(x ls )  has a simple form in the low noise 
limit. This was illustrated for the Ikeda map in 
fig. 6b. In this section, we derive analytical formu- 
lae for the distortion matrix in the case of Gauss- 
ian noise with a uniform prior. 

With the assumption of a constant prior p(s), 
eq. (15) can be rewritten as 

In the low noise limit, there is a simple relation 
between noise amplification and distortion. Let a 

#t iThe  term "distort ion" was originally used for another  
related quantity defined by Fraser  [18]. 

#12The noise amplification depends  on the coordinates of 
x(t),  but, as long as these are fixed, it does not depend on the 
coordinates of  s. 

p ( s  Ix) = A e -  0( . /2,2,  (33) 

where A is a normalization constant and Q(s)= 
[Ix - ~(s)l[ 2. If f and h are smooth then Q is also 
smooth. When ~ is an embedding and • is small 
enough, p(sl_x) has a unique maximum g, called 
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the maximum likelihood estimate. In this case it is 

possible to get a good approximation for p(sl_x) 
by expanding Q in a Taylor series about #, mak- 
ing use of the fact that DQ(g)  = 0: 

Q( s) = Q( #) + ½( s - g) t DZQ(g)  ( s - # )  + . . . .  

(34) 

To differentiate Q, we take advantage of the fact 
that it is of the form Q = vtv, where v = x  - q~(s). 
Differentiat ing gives D Q  = D v t u  + v*Du = 
2Dvtc  ', and D2Q = 2[(D~ut)u + Du * Du]. Since 

u is of order e, while Dr, = Dq~ is typically of 
order  one, DZQ(#) = 2DqSt D ~ .  To leading order  

in s - # ,  this gives 

1 ( s _ # ) t D @ t D @ ( s _ # ) )  p(sl_x)---A'exp - 2e--- Z 

(35) 

where A'  is a normalization constant, which in 
the limit • ~ 0 becomes equal to A in eq. (33). 
The variance is Var(s lx)  = e2(D~b * D q 0  -1. By 
definition (eqs. (27) and (28)) the distortion ma- 
trix is 

2; = ( D q  ~t Dq~) - '  (36) 

The derivative Dq~ is evaluated at s = g, which 
depends on the particular realization ~ of the 
noise that gave rise to x. However,  g - g is almost 
always of order e. Since Dq~(g)= D ~ ( g ) +  
D2clg(g)(g-#)  + . . . ,  from the definition of the 

distortion matrix it follows that, to leading order, 
Dq)t(#) Dqb(#) = Dq)t(#) Dqb(#). Thus, taking the 
limit as E ~ 0, the distortion does not depend on 
the realization. We make use of this fact in nu- 
merical experiments, in which we compute the 
distortion matrix by evaluating the derivative Dq~ 
at s = g .  

Note that if q~ is an embedding then Dq~ is of 
full rank and 1; is well-defined. At low noise 
levels the uncertainty in the estimate of s is 

approximately an anisotropic Gaussian of covari- 
ance matrix E2Z, centered on the maximum like- 
lihood estimate g. This was illustrated in fig. 6b. 
Small eigenvalues of ~ imply that the Gaussian is 
sharply peaked. 

4.6. The obseruability matrix 

Since q~ is the vector function whose compo- 
nents are q~i = h ( f  i~), according to the chain rule 
the components  of the derivative a r e  Dqbi  = 

Dh D f i L  When the measurement  function h is 
one-dimensional,  Dq~ is the m × d matrix 

Dq~= 

Dh D f  ¢mf 

Dh 

Dh D f  -¢m~ 

(37) 

As long as q~ is an embedding, D ~  has d nonzero 
singular values. The inverse squares of these sin- 
gular values are equal to the eigenvalues of 1;. 
We often use this fact tO compute the distortion 

directly from the singular values of Dq~. 
The matrix Dq~ has a simple interpretation. In 

control theory it is called the observability matrix. 
For a system to be observable, in the sense that 
inferences about the state s can be made from 
the time series, the observability matrix must 
have full rank. This is one of the conditions for q~ 
to be an embedding. Whether  Dq~ has full rank 
depends on detailed propert ies of the coupling 
between variables in f ,  and on the measurement  
function h. For example, if the dynamical system 
f can be split into two noninteracting subsystems, 
and h measures only one of them, the other 
subsystem is unobservable. All the columns of the 
observability matrix corresponding to this subsys- 
tem are zero, and Dq~ is not of full rank. On the 
other hand, if the measurement  function depends 
on both subsystems, or if they are coupled, then 
from Takens '  theorem Dq~ is generically of full 
rank. 
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Fig. 9. The  d is tor t ion  c o m p u t e d  a long  a typical  t ra jectory of 

the Lorenz  equa t ions ,  us ing five d imens iona l  de lay  coordi-  
na tes  wi th  mf  = 0, m p =  4 and  r = 0.01. 

4. Z State dependence of distortion 

When f and h are known, the distortion matrix 
can easily be computed using eqs. (36), (37). This 
provides a useful quantitative tool for under- 
standing the propert ies of a reconstruction. For 
example, we can now make the discussion of 
information flow in the Lorenz equations from 
section 1 more precise by simply computing the 
distortion 6: Let h be projection onto the x axis. 
The dynamics f r  can be computed by numeri-  
cally integrating the Lorenz equations #13. The 

distortion ~ along a typical trajectory is shown in 
fig. 9. The graph is multi-valued, since ~ depends 
on y and z as well as x. The blowup of the 
distortion at x = 0 is a result of the poor  informa- 
tion flow from z to x when x = 0 .  Note that 
when r is small, all the coordinates in the delay 

#I3The  der ivat ive  mat r ix  D f  -i* of the m a p  assoc ia ted  wi th  
the  Lorenz  equa t ions  is found  by in tegra t ing  the equa t ions  for 
the  different ials ,  as is done  in compu t ing  Lyapunov  exponents .  

For  numer i ca l  stabili ty,  we are  of ten  forced  to in t eg ra t e  
forwards.  W e  then  use s ingu la r  va lue  decompos i t i on  to invert  
the resu l t ing  matr ices .  Final ly,  we c o m p u t e  the  d is tor t ion  
from the s ingu la r  va lue  decompos i t i on  of  the  mat r ix  D ~ .  

vector are sometimes near  zero simultaneously; 
when r is large the blowup is less severe. 

4.8. Comparison of finite noise and the zero 
noise limit 

At small noise levels, or, which is computed 
from purely deterministic quantities, can be used 
to estimate the noise amplification % at finite 
noise levels. In this section, for the Lorenz equa- 
tions we numerically investigate the accuracy of 
this approximation. Since this numerical experi- 
ment involves a long time integration of the 
Lorenz equations, it is natural to take the prior 
p(s) to be the natural measure on the Lorenz 
attractor. 

To compute the distortion at finite noise levels 
we make use of eq. (15), which gives an exact 
formula for p (s lx )  in terms of • and p(s). • is 
known from the dynamics, and p(s) can be esti- 
m a t e d  numer ica l ly  by comput ing  a t ime 
average #14. In order to compute the conditional 
variance as defined in eq. (21), we compute time 
averages of 4~l(s)=llsll2p(x_ls) and ~bz(s)= 
sp(x Is). For fixed x, the likelihood function p ( x  Is) 
is proportional  to to i = exp[ - I Ix  - ~(s(ti))llZ/2Ez], 
where S(ti)  = f i r ( s o ) .  Putting these statements to- 
gether gives 

~ N  i r  2 
2 2 i=lllf (s0)ll OJ i 

E 6, = lim 
N---~ ov 2 N I  0 ) 

~ N = I  f i , ( S o ) O ) i  2. 
- E~=,  to, ( 3 9 )  

The terms in the denominators make sure that 
this is properly normalized. For a numerical ap- 
proximation, N is taken large enough for conver- 
gence. Note that the smaller ~ is, the larger N 
must be for convergence. 

#14Since the system is ergodic, we can compute an ensem- 
ble average of any function 6 by a time average 

N 
1 fqb(s)p(s)ds = lim ~ ~ $(fi*(so) ). (38) 

N ~  i=1 
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Fig. 10. 8,  a t  finite r eso lu t ion  • as a funct ion  of  r for the 
Lorenz  equa t ion .  The  solid l ines  a re  for • = 0.5 and  • = 0.25. 
The  do t t ed  l ine is for the  l imit  • -~ 0. All  of  these  are  for a 

p red ic t ive  e m b e d d i n g  wi th  m = 5, and  a fixed s ta te  

( -  1 .8867 , -  5.1366, 24.7979). 

Fig. 10 shows the distortion 8~ as a function of 
r at finite noise levels corresponding to signal to 
noise ratios of about 20 and 40. This is compared 
to the low noise limit distortion 8 as computed 
from eq. (36). Note that for roughly 0 < r < 0.5, 
6~ has converged quite well. Through this range 8 
provides a good upper  bound for 8 E. However, g 
does not always provide a good approximation to 
6~, because a uniform prior was assumed in the 
analysis of section 4.5. The low noise limit ap- 
proximation breaks down for r > 0.5. We believe 
this is due to the phenomenon of multimodality, 
illustrated in fig. 5c, which cannot be approxi- 
mated  using the local analysis of section 4.5. 

4. 9. Effect of singularities 

When the embedding dimension m < 2d there 
may be points where Dq~ is not of full rank. 
These cause singularities in the distortion. For 
example, in fig. 11 we compute the distortion as a 
function of r for several different embeddings. 
There  are three reconstructions shown: for the 
first m = 3, which is too low, and S is singular for 

1000  
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10 I t 

0.1 ~ '  ' [_z. , , J I , ~ , ~ . _ t  , , ~ ,_ 

0 0 .5  1 1 5 
T 

Fig. 11. The  d is tor t ion  of  the Lorenz  equa t ions  as a funct ion 

of the lag t ime  r.  We  arb i t ra r i ly  fix the  t rue  s ta te  as in fig. 10. 
The  uppe r  curve  co r r e sponds  to a r econs t ruc t ion  with m ¢ = 0 

and m n = 2; the s ingu la r i t i e s  occur  because  the e m b e d d i n g  
d imens ion  m = d  = 3 is too low. The  midd le  curve is for 

mf  = 0 and mp  = 4, and  the  lower  curve is a mixed recons t ruc-  
t ion wi th  mf  = 5 and mp  = 4. The  th i rd  recons t ruc t ion  incor- 

pora tes  both  pas t  and  fu ture  informat ion ,  and  yields  a lower  

dis tor t ion.  

several values of r. For the second m = 5, and 
the singularities disappear. When m < 2d, a state 
space average of X is not well defined unless the 
singularities of X are integrable. We believe that 
the singularities are generically integrable as long 

a s m > d + l .  

5. Parameter dependence and limits to 
predictability 

The noise amplification depends on properties 
of the reconstruction, such as mr, mp, and r,  as 
well as properties of the problem, such as the 
measurement  function and dynamical system. 
Understanding the dependence on the recon- 
struction provides guidance for constructing the 
best possible coordinates. The propert ies  of the 
dynamical  system, such as the dimension 
and Lyapunov exponents, along with the mea- 
surement  function, determine the limits to 
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predictability. In appropriate  limits these depen- 

dencies can be characterized by scaling laws. 
One of the interesting results that emerges 

from our analysis is that in some situations the 
noise amplification is so large that determinism is 
completely lost. This result is important because 
it shows how the projection of a chaotic dynami- 
cal system onto a low dimensional time series can 
generate an irreducible random process which is 
unpredictable except for very short times, much 
shorter than the Lyapunov time, l o g ( 1 / E ) / h .  

For convenience we state most of our results in 

terms of distortion rather than the noise amplifi- 
cation, since distortion does not depend on the 
extrapolation time T. Distortion and noise ampli- 
fication are simply related by eq. (32), and we 
discuss effects relating to the extrapolation time T 
in section 5.5. Also, in this section we study only 
delay coordinates. As already mentioned, delay 
coordinates determine the information set on 
which the reconstruction is based. As we demon- 
strate in section 6, the choice of the information 

set provides a lower bound on the distortion, so 
delay coordinates alone are sufficient to give us 
an understanding of the limitations to general 
state space reconstruction in the presence of 
noise. 

5.1. More information implies less distortion 

We define an ordering on distortion matrices 

as follows: ~1-~<'~2 if ~ 2 - ~ 1  is positive semi- 
definite #15. One fact that is immediately apparent  

is that gathering more information can only de- 

crease the distortion matrix.  Suppose we are given 
two delay vectors x °) and X (2) for which x °) c 
x (2), i.e. x (a) is of higher dimension than x °), and 
contains x (~) as a subset. Then, letting ,v(1) be the 
distortion matrix associated with x ~), and simi- 
larly for x (z), we have 

~(2) < 27(1). (40) 

~'lSBy definit ion a d × d matrix M is positive semi-definite 
if vfMv > 0 for all vectors v ~ ~d. 

This follows from an elementary property of the 
conditional probability density function p ( s  Ix(i)). 
The more conditions that are imposed, the more 
sharply localized is the state s. Thus, the distor- 
tion is a monotonic nonincreasing function of the 

dimensions mf and r ap .  The distortion can typi- 
cally be reduced by increasing the dimension of 
the reconstructed space. 

It should be kept in mind that, with finite data, 
prediction error depends on the estimation error 
as well as distortion. While distortion decreases 
with m, estimation error increases. To make the 
best possible predictions requires an optimal 
compromise between distortion and estimation 
errors. In this section we focus our attention on 
the behavior of the error due to distortion, and 
address the problem of estimation error in sec- 
tion 7. 

5.2. Redundance and irrelevance 

The distortion is strongly influenced by two 
effects that we call redundance and irrelevance. 
For a smooth time series, measurements  with ~" 
very small are redundant.  Geometrically this 
means that measurement  surfaces corresponding 
to successive measurements  are roughly parallel 
near  the true state, as illustrated in fig. 12b. 
Because these surfaces intersect at a small angle, 
the intersection of the corresponding noisy mea- 
surement strips is delocalized along one o r  more 
directions, even for small noise levels e. We call 
the characteristic time for this to occur the redun- 

dance t ime r R. It depends on E, as will be made 
precise in section 5.3. I f  the window width w = 

(m - 1)~- < ~'R, then the distortion is very large. 
At the other extreme, for a chaotic system with 

predictive coordinates, measurements  made in 
the distant past are irrelevant. When transported 
to the present,  the associated measurement  strips 
collapse onto the unstable manifold in the vicinity 
of the true state. This is illustrated in fig. 12a, and 
was also illustrated earlier in fig. 7b. While mea- 
surements from the distant past may determine 
the state arbitrarily accurately along the stable 
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Fig. 12. Redundance  and irrelevance. Images of measurement  strips S,(t  - i t ) ,  t ransported to the same time t. (See fig. 4.) (a) 
illustrates irrelevance; ~ is large, and f "  is highly nonlinear. The measuremen t  strips are complicated. Strips from the distant past, 
with large i~', are roughly parallel along the unstable manifold near  the true state g. Increasing i r  better determines  the state along 
the stable manifold, but  gives no new information about the unstable manifold. Thus  at a finite level of  coarse-graining, 
measurements  from the distant past are irrelevant, since the limiting factor is determination along the unstable manifold. (b) 
illustrates redundance:  When  r is small fT is close to the identity, and is approximately linear, so that the images of the 
measu remen t  strips are nearly parallel at time t. Their  intersection is delocalized, making the conditional variance large. 

manifold, the eigenvalues of the distortion matrix 
associated with the unstable manifold reach a 
limiting value. As we prove later, for large times 
the eigenvectors of the distortion matrix are re- 
lated to those associated with the Lyapunov expo- 
nents. We call the irrelevance time r 1 the time 
when measurement strips become effectively tan- 
gent relative to the noise level ~, so that making 
w > ~'i gives no significant decrease in the leading 
eigenvalue of the distortion matrix ~16. 

#16The irrelevance time is related to the uncertainty time 
for prediction, - l o g  ~/A. However, the irrelevance time de- 
pends  on other  geometric factors, such as rotation rates onto 
the  unstable manifold, and is more  complicated. 

5.3. Scaling laws 

5.3.1. Overview 

In certain limits the distortion behaves accord- 
ing to well-defined scaling laws. There  are several 
distinct scaling regimes, which are organized 
schematically in fig. 13. As shown in the diagram, 
the scaling regime depends on the window width, 
the redundance time, whether the dynamics are 
chaotic, whether the coordinates are predictive, 
and whether r R > 3-1. An example that illustrates 
several distinct scaling regimes is shown in fig. 14. 
We will describe this example and consider it in 
some detail in section 5.4. 

For an overview of the scaling behavior see 
figs. 13 and 14. The scaling laws quoted are 
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Fig. 13. The scaling regimes of the distortion are defined 
according to the conditions shown, w is the window width, r 
is the lag time, m is the delay coordinate dimension, r R is the 
redundance time, r 1 is the irrelevance time, and & is the 
distortion in the limit as m --+ ~. 

derived later  in this section. W h e n  w is small the 

behavior  is domina ted  by redundance .  This is 

seen for small m in fig. 14. In  the limit as w --+ 0 
and  m -* % ~ ~ m -  1 ~ 2 ( m r ) l - d ,  i n d e p e n d e n t  of 

any o ther  condit ions.  This gives a quant i ta t ive  

explanat ion  for the wel l -known observat ion that  

making  r too small  results in poor  coordinates.  

The  exponent  that  de te rmines  the rate at which 

the dis tor t ion blows up in this limit is propor-  

t ional  to the d imension,  so this effect is much  

worse in higher d imens iona l  systems. This is ap- 

pa ren t  in fig. 14. 

W h e n  w is large and  the dynamics are not  

chaotic the dis tor t ion goes to zero as m --, oo. The 

ability to isolate a state is de t e rmined  by the 

central  limit theorem,  and the dis tor t ion goes to 

zero as 8 ~ m -  1/2. This behavior  is seen for large 
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Fig. 14. The distortion • as a function of the delay coordi- 
nate dimension m for the system defined by eqs. (60) and 
(61). The reconstruction uses predictive coordinates with a 
fixed delay time r = 0.01. For the dashed curves the Lyapunov 
exponents A i = h = 1 and the system is chaotic, while for the 
solid curves A = 0 and the system is not chaotic. Three dif- 
ferent dimensions are shown, d = 2, 4, and 6; the curves with 
larger distortion have higher dimension. For small m, w < ZR, 
and the behavior is dominated by the effect of redundance; 
for large m, when A > 0,w> r I, and the behavior is domi- 
nated by irrelevance. 

m in fig. 14. Note that  the dis tor t ion also in- 

creases with d. 

For  a chaotic system with mixed coordinates ,  

different e igenvalues of the dis tor t ion matrix ex- 

hibit different scaling behavior.  Past data  can be 

used to localize the state along the stable mani-  

fold; the dis tor t ion in this direct ion decreases 

exponent ia l ly  according to Aimpr, where  A i is the 

associated Lyapunov exponent .  Similarly, fu ture  

data  can be used to localize the state along the 

uns tab le  manifold;  the dis tor t ion in this direct ion 

decreases exponent ia l ly  according to - A ;m f r.  For  

a dynamical  system that  has any Lyapunov expo- 

nen t s  equal  to zero (a con t inuous- t ime  system 

always has at least one),  the e igenvalues  of the 

distort ion matrix associated with the neut ra l  man-  

ifold go to zero as  m -1 ,  following the central  

limit theorem (recall that  8 involves a square  

root, whereas  ~ does not).  Since this decrease 
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Fig. 15. The  d i s to r t ion  of the  Lorenz  equa t ions  as a funct ion 

of the  de lay  d i m e n s i o n  m,  wi th  r = 0.005, and  fixed ~ (differ- 
en t  f rom tha t  of  fig. 11). The  solid curve  is for a p red ic t ive  

e m b e d d i n g  wi th  mf  = 0, and  the da shed  curve  is for a mixed 
1 1 e m b e d d i n g  wi th  mf  = ~m and m p =  ~m - 1. 

follows a power law rather than an exponential, 
when there are zero exponents the neutral mani- 

fold is the limiting factor on the distortion. 

For chaotic systems with predictive coordinates 
the behavior is dominated by the fact that succes- 

sive measurements are irrelevant to the position 

on the unstable manifold. The distortion ap- 

proaches a constant 6= > 0, as seen for large m in 
fig. 14. Thus, no matter how many measurements 

are included, there is a limit to the localization of 
the state along the unstable manifold, as was 

illustrated in fig. 12a. 
Some of the above relationships are apparent 

in fig. 15 where we compute 6 for the Lorenz 
equations. Fig. 15 illustrates the distortion as a 

function of m. For small m, the scaling goes as 
m -s / z ,  as predicted by eq. (41). For larger m, for 

the case of mixed coordinates, the distortion de- 
creases as m-1/2.  In the case of purely predictive 

coordinates, a plateau is reached at m = 250, 
illustrating the fundamental limitation to pre- 

dictability. 
Note that 8= depends on r; by decreasing r it 

is possible to decrease 8=. However, in any physi- 

cal system there is inevitably a limiting sampling 

time, below which measurements become corre- 

lated and contain no new information. This im- 

plies a lower bound to ~ - i t  is never possible to 

reduce it to zero. Thus, for chaotic systems with 
predictive coordinates there is a limit to pre- 

dictability that does not exist in any of the other 
scaling regimes shown in fig. 13. 

The limiting distortion ~ is interesting, since it 
provides a quantitative measure of how predic- 

tion is limited by noise. If 6~ is reasonably low, 

then it is possible to determine well-localized 

states using measurements of reasonable preci- 

sion, and approximate the time series as a deter- 

ministic dynamical system. Whenever r R << r~ it 

is possible to make 6 reasonably small. 

When r R > %, however, there is a complete 
breakdown of predictability. With measurements 
of reasonable accuracy states cannot be well- 

localized, and the dynamics are not deterministic, 

even as an approximation. There is no pre- 
dictability, except over a uery short time scale, 

which we conjecture is related to the autocorrela- 

tion function rather than the leading Lyapunov 
exponent. The time series is effectively a random 

process. 

The origin of unpredictability comes from a 

lack of relevant data. The redundancy time r R 
represents the minimum window width needed to 

resolve independent coordinates. If r R > r t, then 
it is not possible to make enough relevant mea- 

surements to resolve all the degrees of freedom 
during the time interval where the measurements 

are relevant to the present state. As a result the 
state is not localized, and the system is not deter- 

ministic in any sense. 

Note that, since r R and % both depend on e, 
it is possible in principle to move from the deter- 
ministic to the random regime by varying e. How- 

ever, as we show in an example in section 5.4, the 
limiting distortion can increase exponentially as 
ha-~/2. When h and d are even moderately large, 
8~ quickly reaches astronomical proportions, 
making embedding impossible with any realisti- 
cally obtainable precision. 
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5.3.2. Precise statement and derivation 

o f  scaling laws 
Small  window width limit, w --* O. When m r  

0, m ~ 0% the scaling law is 

6 = ~ ( m - ] / Z ( m r ) ' - d ) ,  m ~ ' ~ O ,  m ~ = .  

(41) 

"C(  )" denotes " the  order of". For d >  1 the 
distortion blows up in the limit as ~- ~ 0, with an 
exponent that increases with dimension. Note 
that for almost all states the condition m ~ oo can 

be relaxed to m > d, and the ~- part  of the scaling 
law still holds. 

Derivation. Let  m be sufficiently large so that 

q) is locally an embedding. Consider the expan- 
sion of Dqb in a Taylor series in time around 
t = 0. For convenience assume a predictive em- 
bedding, with the first row of Dqb simply Dh; this 
does not effect the result. The rows of D ~  are of 
the form 

Dqbi+ 1 = at°) + a(1)(i'c) + a(2)(ir) 2 + . . . .  (42) 

where i = 0 . . . . .  m -  1, labels the row, and the 
a (i) are fixed d-dimensional row vectors. If  we 
truncate the Taylor series at order d -  2 the 
matrix cannot be of full rank, since it is con- 

structed from linear combinations of only d -  1 
independent  vectors a (s). Consequently the dth  
singular value is zero to order (m~') d-2. But if we 

truncate the Taylor series at order d - 1  the 
matrix will generically be of full rank at almost all 
states s, since the d vectors a (~) of dimension d 
involved in the expansion are typically indepen- 
dent. Therefore  the dth  singular value is typically 
of order  ( m r )  d-  1. The dominant eigenvalue of 

is the square of the inverse of  the dth  largest 
singular value of Dq), which implies the m r  scal- 
ing in eq. (41). 

The m scaling comes from the law of large 
numbers. If  we fix the window width w at a small 
value and increase m, then the variance de- 
creases as m - 1  because of the assumed indepen- 

dence of the measurement  errors. These two 
arguments taken together give the scaling law of 
eq. (41). [] 

Eq. (41) can be used to make the definition of 
the redundance time more precise. The recon- 
structed dynamical system ceases to be effectively 
deterministic #17 when ~ > 1/E. Substituting this 

for 6 and setting mz  = T R in eq. (41) gives 

'T R ~ ( E 2 m - l )  1/2(d-1). (43) 

Nonchaotic systems, w ~ oo, m ~ oo. When w is 
large the measurement  surfaces are no longer 
nearly parallel. In this case 

6 = @ ( m - ' / 2 ) ,  w ~ o o ,  m ~ o o .  (44) 

This is reasonable from the law of large numbers. 
This result can be obtained more rigorously as a 
special case of the scaling laws derived below for 
chaotic systems. 

We also hypothesize that 6 typically increases 
with d, since when d is large the information in 
the time series is spread over more coordinates. 
In the system studied in section 5.4, for example, 
we show that ~ = ( 1 / v / 2 ) d 3 / 2 m  -1/2. However, 

the precise nature of this scaling may depend on 
factors such as the measurement  function, and it 
is not clear that a general scaling law exists. 

Chaotic systems with mixed coordinates. When 
both past and future information are used for 
reconstruction, 6 ~ 0 in the limit as m ~ oo and 
w ~ oo. Transforming to coordinates where ,~ is 
diagonal, the eigenvalues scale as 

Unstable manifold (Ai > 0): 

"~ii = ~'(e-2mfAi~), (45) 

#17For a discussion of what we mean by "effectively deter- 
ministic", see section 5.5. 
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Neutral manifold (Ai = 0): - jd"r ,  and let 

~ii = ~ e ( m - 1 ) ,  (46) 

Stable manifoM (h  i ( 0)" 

~ i i = ~ ' ( e 2 m p x i ' ) .  ( 4 7 )  

For a flow the distortion is dominated by the 
scaling of the neutral manifold; for a discrete 
time map it decreases exponentially. 

Chaotic systems with predictive coordinates. This 
case is equivalent to that of mixed coordinates 
above, except for the unstable manifold. Eq. (45) 
is replaced by 

Unstable manifold (hi > 0): 

2,, = ~ ( 1 ) .  (48) 

The eigenvalues of distortion matrix for the un- 
stable manifold approach a constant, and provide 
the dominant term for noise amplification. 

Derivation o f  eqs. (44)-(48). Let x be a delay 
vector of dimension m perturbed by IID Gauss- 
ian noise of variance E 2, and let d' be the mini- 
mum dimension for which delay vectors define a 
predictive embedding q)d'. Let z = @d,(S) be a 
noise free d'-dimensional delay vector. Assume 
m >> d'. In this derivation we investi~ tte the scal- 
ing behavior of p(xls)  (and hence ~)  indirectly, 
by considering the likelihood function p (x lz )  in 
d'-dimensional delay space. 

We first consider the case where x is a predic- 
tive delay vector, i.e. m e = 0. For convenience we 
take m so that it is an integer multiple of d'. We 
now use the strategy of splitting the noisy delay 
vector x into d'-dimensional pieces: Let  

(d') _ _  - ( x ( - j a ' , )  . . . . .  x (  - ( j d ' +  d ' -  X ) , ) )  + 

(49) 

be a d'-dimensional delay vector rooted at time 

,¢:(d') ~ = ( ~(- jd '~ ' )  . . . . .  ~( - ( jd '  + d' - 1)~')) + 

(50) 

be a vector of d'-dimensional measurement 
errors. Let F be the d'-dimensional dynamics 
induced by f ,  and let j = 0 , . . . , m / d ' - 1 .  
Transporting z back to time - jd ' z ,  the fact that 
the noisy vector is the sum of the true vector and 
the measurements errors implies 

x_~d') = F-~d'~(Z) + y(a') ~_j • 

As in section 3.1, the likelihood function p(x[z)  
is given by 

p(x_lz) 
rn/d'-  1 

= I - I  
j=o 

= / e x p  2" 2 y ' .  2 . 

j=O 

(52) 

A is a normalization constant. Since E is assumed 
to be small, eq. (52) can be simplified by using a 
Taylor series expansion, as in section 4.5, to ob- 

p(  x~ a') - F-Jd" ( z )) 

tain 

p(xlz)_ - ~ C e x p ( -  1 ( 2 e  2 z - 2 ) t (z ' ) -  l(z - e ) ) ,  

(53) 
where C is a normalization constant, £ is the 
maximum likelihood estimate for z (based on x), 
and the matrix ,~' is given by eq. 54, where the 
derivatives DF -~d'~ are evaluated at £, 

( )' ~ ' =  m / ~ - I  ( D F  J d ' ) * ( D F  ~d~) (54) 

\ j=O 

It follows from the definition of the Lyapunov 
exponents  that  for sufficiently large jd 'r ,  
(DF-ia'~)*(DF-~d'~) tends to a matrix with eigen- 
v a l u e s  e -2jAjd'r,  . . . ,  e -2jAd'd''r Furthermore,  for 
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large j d ' r  the eigenvectors approach limiting val- 
ues, independent  of j. Since we are interested in 
the scaling behavior as m--+ ~, we assume that 
this happens rapidly enough that we can neglect 
the small j terms. Evaluating eq. (54) in the basis 
of eigenvectors yields 

m/d'-I ) -1 
~ii' = E e-2jAid'r (55)  

j=O 

When A :g 0 the summation reduces to 

1 -- e -2hid'r 

"Z~i 1 - e -2ma'~ " (56) 

in eq. (41). This gives 

t~ = ~ (T1 /2 ) t  d -  1/2) .  (58)  

This derivation may be unreliable, since it is not 

clear that r I - 1 / A  is generally true, and there 
may be prefactors in eq. (41) that depend on A. 
Nonetheless, it is encouraging that in the exam- 
ple of section 5.4 this at least approximately agrees 
with the observed behavior. 

In the regime where A is smaller so that r R < 
r I, we can repeat  the argument above using eq. 
(44) rather  than eq. (41). This gives the result that 

= ~ ' ( A ¢ ~ ) .  (59) 

To compute the distortion matrix ~ for p (x l s )  
we transform from the d'-dimensional delay space 
to the d-dimensional state space. Since z = ~d,(S), 

we obtain 

This result can also be derived using eq. (56) in 
the limit where m ~ o0 and h d r  << 1. 

5.4. A solvable example 

Z'  = Dqba, ,~ Dqbd*,. (57) 

Since d '  is independent  of m, it follows that the 
distortion matrix ~ has the same scaling laws in 
m as the matrix ~ ' .  Therefore,  the scaling rela- 
tionships are evident by considering eqs. (55) and 
(56). 

Although for simplicity we assumed predictive 
coordinates in the above, the calculation for mixed 
coordinates is essentially the same except that all 
the sums and products must be taken from 

- m f / d '  to m p / d ' .  When /~i < 0 the second term 
in the denominator  of eq. (56) dominates and we 
obtain eq. (47). When A i = 0, f rom eq. (55) the 
sum is of order  m, and we obtain eq. (46), which 
implies eq. (44). When A~ > 0, for predictive coor- 
dinates the denominator  of eq. (56) approaches 1 
as m ~ % and we obtain eq. (48). For mixed 
coordinates the behavior of the unstable manifold 
mimics that of the stable manifold, with my re- 
placing m o, and we obtain eq. (45). [] 

r R > r~: Irreducible random process. We can get 
a rough estimate of the scaling in this regime by 
assuming that "r I = l / A ,  and substituting w = 1 / h  

In this section we investigate the distortion for 
an example that is sufficiently simple that the 
observability matrix can be calculated explicitly. 
Consider a system of d / 2  negatively damped 
harmonic oscillators: 

A [ Ui --tO i U i 
i = 1 . . . . .  d / 2 .  

(60) 

The state space dimension d is even. u i and vi 
are both taken modulo 1, corresponding to 
(piecewise smooth) motion on a toms.  A~ > 0 are 
the Lyapunov exponents. For convenience we will 
take A i = A = constant. We take the measurement  
function to be 

d/2 
2 y ,  u,. (61) 

i=1 

We assume a predictive reconstruction with 

m f = 0 .  
This example is admittedly rather  contrived. 

The oscillators are independent,  so measure-  
ments only give information about the whole sys- 
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tem because the measurement  function involves a 
combination of all the degrees of freedom. In a 
more typical example the flow of information 
depends on the coupling of the unobserved de- 
grees of f reedom to the observed degrees of 

f reedom #~8. Nonetheless, as we shall see, even 
this very simple example exhibits nontrivial be- 
havior. Furthermore,  the behavior agrees with 
the general scaling laws derived in the previous 

section. 
This system has the following analytic solution: 

u i ( t  ) = c l j e a / c o s ( w f f  +c2j  ) m o d l ,  

v j ( t ) = c , i e a / s i n ( o ) f f  + c i i  ) m o d l ,  (62) 

where c~j and C2j a r e  arbitrary constants. Apply- 
ing the definition of q~ and differentiating, the 
observability matrix can be calculated explicitly 
everywhere except at the discontinuities: 

2 - ' i -  b* • cos(i  - 1) w i t ,  D~i,2j_ 1 = ~ e  ~ , 

DROi,2 j = _ 2 e - d - l ) a i r  s i n ( / -  1)wjr ,  (63) 

where i ranges from 1 to m and j ranges from 1 
to d / 2 .  Note that Dq~ is constant throughout the 

state space. 
To compute the distortion we must first evalu- 

ate Dq>* D@. The odd rows and columns are 

(Dcb* D q b ) 2  i_ 1,2j-1 

4 m - 1  

= d--- 7 ~ e -ktai+*p~ c o s  ko)ir COS kooj'r. 
k = 0  

(64) 

There  are similar expressions for the other terms, 
with sin cos and sin sin instead of cos cos. The 
distortion can be obtained from the singular value 
decomposit ion of D ~ *  Dq~ using eq. (36). 

#18This example can be thought of as one in which we 
observe equally all the eigenmodes of a system of oscillators. 
In a more realistic example we might observe a single variable 
which is not an eigenmode. When rotated into the eigenspace, 
for a typical system this will correspond to unequal observa- 
tions of each eigenmode. However, providing this inequality is 
not too extreme, it should not affect the scaling behavior. 

In fig. 14 we plot 6 as a function of m for 
several different values of the dimension and 
Lyapunov exponents. This illustrates several of 
the features derived in section 5.3. 

- S m a l l  w: For small values of m the window 
width w is also small. The chaotic and nonchaotic 
cases are approximately the same. As m de- 

creases the distortion increases as a power law 
1 with the predicted exponent ~ - d .  

- L a r g e  w: For the chaotic case the distortion 
approaches a constant 6~ > 0, while for the non- 

chaotic case the distortion decreases to zero ac- 
cording to m-~/2.  For the nonchaotic case the 
asymptotic behavior can be derived by consider- 
ing eq. (64) in the limit r--+ O, m r  ~ ~. Approxi- 
mating the sum by an integral, to leading order in 
m the diagonal terms are 2 m / d  2, and the off- 

diagonal terms are of order 1. Thus this matrix is 
trivial to invert to leading order in m, and by 
taking the trace we obtain 82 = d .  d 2 / 2 m ,  which 

implies 

~ ~ 2 d 3 / 2 m  I/2, mr---" ~,  r ~ O. (65) 

For chaotic systems, the behavior of 6~ can be 
investigated by taking the limit r--+ 0 in eq. (64) 
and approximating by an integral. This gives 

2 ( a i +  a j )  
( D @ t  D q b ) 2 i _  1,2j_ ! = r d  2 

X{[(/~.i-'}"-/~j)aq- (laJi-i-o)j)2]-I 
+ [(a, + (,,,, -,,,,)2] - '}. 

(66) 

The behavior of 6= under changes in parame-  
ter values is investigated by using eq. (66), and 
the associated sin cos and sin sin expressions, with 
Ai=A =const . ,  and the frequencies uniformly 
spaced so that w i = 2 / d ,  4 / d  . . . . .  d / d .  The result 
is shown in fig. 16. 

There  are two scaling regimes, one for low A, 
and one for high A. In the small A regime, the 
scaling can be derived by considering eq. (66). 
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Fig. 16. The  l imi t ing  d is tor t ion  ~ at  m =oo p lo t t ed  as a 

funct ion  of  the Lyapunov  exponen t  a for d imens ions  d = 

2, 4 . . . . .  40, for the  example  of  eqs. (60), (61). The  curves wi th  
the  lowest  d i s to r t ion  have  the  lowest  d imens ion  d. Not ice  tha t  

t he re  are  two scal ing regimes ,  one  for low a and a n o t h e r  for 

h ighe r  a.  In the  high A r eg ime  the e n o r m o u s  d is tor t ion  means  
tha t  even for small  E the  sys tem effectively behaves  as a 
r a n d o m  process.  

For sufficiently small A the diagonal terms domi- 
nate, and to leading order in A are 1/Ayd 2. Thus 
this matrix is trivial to invert to leading order in 
A. Taking the trace gives 62=d.d2Ar, which 
implies 

~ ~ d 3 / 2 ~ ,  a--+O, r--*O. (67) 

Thus, in the low A regime the motion is effec- 
tively predictable and a = ~'(~tl/2), as predicted 

by eq. (59). 
To derive the behavior in the large A limit we 

use eq. (66) and related expressions. The only 
case we have been able to solve in closed form is 
d = 2, which yields 

Dq~* D¢,  = 
4 r ( A 2  + t o 2 ) A  - t o A  0.92 

I 

(68) 

Using the fact that for 2 x 2 matrices 

Tr(DcP* Dq~) - I  Tr  DcP* Dq~ 
det D ~  t D ~  ' 

(69) 

it follows that 

~ ~ v/8rA(1 + A2/w2) , r - *  0. (70) 

Thus in the case d = 2, in the high A limit the 
distortion diverges at a rate which is consistent 
with the scaling law 6 = @(Aa-1/2), as predicted 

by eq. (58). For larger values of d, this scaling law 
is observed in fig. 16. However, we have observed 
somewhat different behavior in other examples. 

5.5. When chaotic dynamics becomes 
a random process 

A very large value of the distortion can cause a 
chaotic dynamical system of sufficiently high 
dimension to produce a time series for any prac- 
tical purpose must be regarded as a random 
process. Before elaborating on this, we should 
make the distinction between a deterministic dy- 
namical system and a " random process" more 
precise. 

In physical systems perfect determinism never 
exists. Operationally, when we say that a system 
is "deterministic",  we mean that measurements  
with precision E result in predictions that are 
accurate to roughly e. For a nonchaotic dynami- 
cal system this is true for any extrapolation time 
T; for a chaotic system, it is roughly true for 
times T < 1 / a .  

However, as we have shown above, when d and 
a are sufficiently large, projection onto a low 
dimensional time series can rnake it impossible to 
reconstruct a well-localized state. Because d is 
large, many measurements  are needed to recover 
the state; because A is large, measurements  suf- 
ficiently far in the past are irrelevant to the 
present. As a result r R > r l ,  and the distortion 
diverges, at a rate that depends exponentially on 
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the dimension. In this case reconstructing a well- 

defined state becomes impossible for measure- 

ments of any reasonable precision. For example, 
when ~= = 106, as observed for A > 0.1 and d > 20 

in fig. 16, it would be necessary to make E = 10 -s  

in order to reconstruct a state that was well-local- 
ized to within one part in a hundred #~9. 

Even when the state is not well-localized, the 

time series is still predictable for a short time. 

This is because the most recent measurement 

causes the state to be confined within the associ- 

ated measurement strip S,(0), and this strip takes 

a finite time to rotate so that its projection onto 

the time series is no longer well-localized. More 

precisely, this is because the measurement x(0) = 

h(s(O)) confines large eigendirections of X in a 

direction approximately orthogonal to Dh. How- 
ever, if the distortion matrix X has at least one 

very large eigenvalue, then generically, the vector 
Dh D f  T will have a significant component in the 

corresponding eigendirection after a short time 
T, causing an explosion in the noise amplification 

o'(T). 
Fig. 17 compares the behavior of the noise 

amplification for dynamical systems of low versus 

high dimension, using the example of section 5.4. 

The noise amplification o-(T) at m = ~ is plotted 
against T, using the integral approximation of eq. 

(66) to compute o-(T). We take the limit mp ~ 0% 

mf = 0, so that the delay vector x represents the 

entire past of the time series. For the case d = 2 
the noise amplification, which sets the limit to 

predictability with an ideal model, grows at a rate 
governed by the largest Lyapunov exponent. 

When d = 40, however, the noise amplification 
grows at a much faster rate, which is governed by 

the rotation rate associated with the linear dy- 
namics, and which we conjecture is related to the 
correlation time of the time series. If e > 10 - 9 ,  

the time series is predictable only over much 
shorter times than the Lyapunov time, and thus 
behaves like a random process. 

#19We will assume in such calculations that the variance of 
states s and the time series x ( t )  are on the order of 1. 
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Fig. 17. The noise amplification or(T) for the example of 

section 5.4, using predictive coordinates with m = ~ and r = 
0.01. The largest Lyapunov exponent A = 0.2. The curve on 

the bottom corresponds to dimension d = 2. In this case the 
state is well-localized, so the noise amplification starts out low 
and grows exponentially with time, at a rate governed by ,/. 
For d = 40, in contrast, the initial state is not well-localized, 

and ~ ( T )  grows at a much faster rate, determined by the 
rotation of the measurement  surface S(0). 

From a practical point of view, when data is 

limited, estimation error may cause a time series 
to appear to be a random process when the 

dimension of the dynamics is sufficiently high. 

This is true even for nonchaotic dynamics. The 

mechanism that we discuss here, however, creates 
a type of random process which is in a certain 

sense more fundamental than that caused by lim- 
ited data, in that it produces unpredictability 

even when the optimal model is known. 

6. Coordinate transformations 

Any reconstruction can be broken into two 
parts, ~ = ~ o q). The transformation x = q~(s) 

specifies the delay coordinates, which determine 
the "information set". Thus far we have focused 
our attention on this part of the problem. In this 
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section we study the possibilities of transforming 

to new coordinates y = ~ ( x ) .  Commonly used 
examples of  linear transformations ~ include 
derivatives and principal components.  In part  
motivated by the work of Fraser [18], we are 
particularly interested in the case where ~ is 
nonlinear. In section 6.2 we show a general 
method for constructing a nonlinear transforma- 

tion ~ *  that (in a certain sense) provides optimal 
coordinates. 

6.1. Effect on noise amplification 

What  is the effect of a coordinate transforma- 
tion ~ on the noise amplification? Two facts are 
immediately apparent:  

-Invertible coordinate transformations do not 
change the noise amplification. This is clear from 
the fact that the conditional probability density 
p(x(T)l~(x_))  is a function of x(T)  alone; ~ ( x )  
is not an argument  of p, but rather a label that 
identifies this as a particular member  of a family 
of different functions. As long as the function 
is one-to-one, it leaves p(x )  and hence o- un- 
changed. 

-Noninvertible coordinate transformations can 
increase the noise amplification, but they cannot 
decrease it. If  more than one state _x is mapped 
into the same state ~ ( x ) ,  this generally has the 
effect of broadening p. This is evident since 

p ( x ( T ) l y )  = E p(x(T)lx_)p(x_).  (71) 
{_x: y = qz(_x)} 

Summing probability densities either increases 
the variance or leaves it unchanged, so 

V a r ( x ( T ) l y )  >(Var(x(T)lx_))tx_:y=~,(~_) ~. (72) 

While coordinate transformations are not use- 
ful to reduce noise amplification, they can be 
useful for information compression. In some cases 
it is possible to reduce the dimension and leave 
the noise amplification unchanged, packing the 

same information into fewer coordinates #2°. We 

will show in section 6.3 that it suffices to study the 
effect of  changes of coordinates on the distortion 
matrix. The following results are a generalization 
of sections 3.1 and 4.5 to include (possibly nonin- 
vertible) changes of coordinates. 

In the low noise limit, to first order  in E the 
transformation 1/, can be approximated locally by 

its derivative D ~  (we leave out the constant term 
since it is an invertible translation). An expres- 
sion for p ( s l D q t ( x ) )  can be derived using a 
general izat ion of the a rgument  of  section 
3.1, as follows: Assuming a uniform prior gives 

p ( s l D ~ ( x ) ) ~ p ( D q ' ( x ) l s ) .  But p ( D ~ ' ( x ) l s ) =  
p ( D ~ ) ,  where ~: = x  - ~(s ) .  We obtain eq. (73) 
by transforming the isotropic Gaussian distribu- 
tion of the noise ~ through the linear map D ~ ,  

p(sIDV(_x)) -- A ex ( [ D r  _x - DV *(  s)l* 

X ( D ~  D ~  t)  - t [ D ~ _ x  - D ~  ~ ( x ) ] ) .  

(73) 

As before, in the limit that • is small we can 
expand this in a Taylor series. The arguments 
parallel those leading to eq. (35), and the result is 
that 

1 
p(  sly ) = C exp( - -~2 ( s - ~) * ~ -  l( s - ~) ), 

(74) 

where the distortion matrix ~ depends on 
according to eq. (75), 

-~ = [Dq~* D ~ * ( D ~  D ~ t ) - t  D ~  D ~ ]  -1 (75) 

As expected, a locally invertible coordinate trans- 

#2°This is trivial to do if nonsmooth coordinate transforma- 
tions are allowed, as all the information in a delay vector can 
be compressed into one dimension by coding the decimal 
expansions of the components of the delay vector into one 
real number. However, in this section, we restrict attention to 
smooth coordinate transformations ~, since we are ultimately 
interested in modeling smooth dynamics. 
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formation ~ does not alter the distortion matrix, 
since when D q  t is invertible ( D q S D ~ * )  - l =  
( D ~ * ) - 1  D ~ - 1 ,  and eq. (75) reduces to eq. (36). 

6.2. Optimal coordinate transformation 

In this section we show that in the low noise 
limit it is possible to compress the information 
contained in a delay vector x into a smaller 
number  of dimensions, while retaining all the 
available relevant information. We also show how 
to compute  a transformation ~ *  that does this 
from a singular value decomposit ion of the matrix 
D@. In section 8 we discuss the estimation of this 

t ransformation from a time series. 
Dq~ is an m x d matrix that maps variations in 

the d-dimensional state, 8g, into variations in the 
delay vector, ~£. The technique of singular value 

decomposition expresses Dqb as the product of 
three linear transformations, U, W, and V*: 

D ~  = UWV*.  (76) 

The first of these, V*, is represented by an or- 
thonormal d x d matrix that performs a rotation 
about g onto the principal axes in the tangent 
space ~d to the state space M. The second trans- 
formation W is represented by a diagonal d x d 
matrix that stretches or contracts the principal 
axes; its diagonal elements w/ are called the sin- 
gular values of Dq~. The third transformation U 
is represented by a column orthonormal  ~21 m × d 

matrix that maps the d-dimensional tangent space 
of the state space M into the tangent space to 
q~(M) at @(£). 

The distortion matrix for delay coordinates can 
be decomposed in these terms by inserting eq. 
(76) into eq. (36), which gives 

= (Dq3*D@) - 1 =  (VWU*UWV*)  ' 

= V W - 2 V  t . (77) 

'¢2~U is column orthonormal if U*U = ]d" 

The eigenvalues of the distortion matrix are 

the inverse squares of the singular values, since V 
can be viewed as a similarity transformation which 

diagonalizes the distortion matrix: 

Vt2 fV= W -2. (78) 

The singular values w i describe how well the 
observations determine the original state s along 

each of the principal axes of ~.  If w i is small 
then the observations are highly uncertain along 
the corresponding axis. To reduce distortion, the 
best coordinates are obviously those that make w i 
as large as possible for all i. 

Using eq. (79), we define a nonlinear transfor- 
mation ~* :  [~m ~ ~d ,  called local singular value 

decomposition, 

~ * ( x )  = Utx ,  (79) 

where U* is from the singular value decomposi- 
tion of Dq~ at g. Geometrically, the transforma- 
tion ~ *  projects noisy delay vectors in a direction 
orthogonal to the appropriate  tangent space to 
the embedded state space qO(M), collapsing the 
m-dimensional delay space onto a d-dimensional 
subspace. All information in directions orthogo- 
nal to the tangent space is consequently lost. This 
is desirable, since these are the directions domi- 
nated by noise. The transformation ~ *  is nonlin- 
ear, since a singular value decomposition at each 
point in the state space produces a different 

linear map U*. 
The local singular value decomposition qt* re- 

suits in the same distortion matrix as raw delay 
coordinates, i.e. it compresses all the relevant 
information in the m-dimensional delay coordi- 
nate into d dimensions. This can be seen by 
substituting D q  r* = U* and Dq~ = UWV* into eq. 

(75), 

~qt* = ( V W U * U U ~ f U W V ~ f )  -1  = V W  - 2 V t .  (80 )  

Comparing eq. (80) to eq. (77) shows that the 
distortion of ~ *  is equal to that of pure m- 
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dimensional delay coordinates. Thus fi* is opti- 
mal in the sense that it has the minimal distortion 
of any coordinate transformation from ~m ~ ~d.  

This minimum is not unique, as fi* can be com- 

posed with any invertible transformation of R a 
and the distortion will be unchanged. 

6.3. Simultaneous minimization o f  distortion and 

noise amplification 

In general, when we observe a time series we 
cannot observe the original coordinates, and so it 
is impossible to compute the distortion from the 
time series. Fraser originally posed the question 
of whether  or not it is possible to find a recon- 
struction which minimizes distortion by using only 
the information available in a time series [18]. We 
answer this question partially by showing that 
minimizing the distortion matrix 2 over coordi- 
nate transformations 1/: is equivalent to minimiz- 
ing the noise amplification o-(T), which can be 
estimated from a time series. This provides only a 
partial answer, because we optimize over ~ ,  
holding • fixed, whereas Fraser 's  question con- 
cerned the total reconstruction map ~ = fiq~. 

Consider the set of all coordinate transforma- 
tions y---fi(_x), where qt: R " ~  ~d' and m, ~" 

and d '  are fixed. If  there exists a ~ *  which 
satisfies 2~,. _< 2~, for all qt (according to the 
ordering defined in section 5.1), we claim fi* will 
also satisfy tr~,.(T) < trq,(T) for all f i  and T. The 
converse is also true under the condition that 
there exists a finite set of  times T 1 . . . . .  Tp such 
that the p vectors D h D f  ri span the tangent 
space R d to the state space M. Note that by 
Takens '  theorem this condition is a generic prop- 
erty of h and f for p >_ 2d + 1. Then the con- 
verse states that if there exists a qt, that satisfies 
tr~,,(T/) < ~r~,(T i) for all qt and i = 1 . . . . .  p, then 
~ , ,  < ~ ,  for all fi. Since t r (T)  is an observable, 
in principle it can be minimized by finding a 
transformation that gives a simultaneous mini- 
mum for several different times. In section 6.2 we 
showed how to construct the coordinates y * =  
~*(_x) by minimizing the distortion matrix, so the 

above optimal coordinate transformations do in- 
deed exist. In section 8 we show how to estimate 
them directly from a time series. 

Derivation. We can use eq. (32) to demonstrate  
that any coordinate transformation fi* that mini- 
mizes the distortion X will also minimize the 
noise amplification t r(T)  for any time T as fol- 
lows: Let y* = qt*(x). Then vt (Zq,  - Z~, . )v  > 0 

for any d-dimensional vector v and any coordi- 
nate transformation fi.  By taking v* = Dh D f  T, 
we have ~rq,(T) - tr~,.(T) > 0 for all T. 

To demonstrate  the converse, let there be a fit, 
such that tr~,,(T/)<¢rq,(T/) for all qt and i =  

1 . . . . .  p. We have shown in section 6.2 that there 
exists a transformation f i* such that ,~ , .  < ,~ ,  
for all fi. It  suffices to show that ,~, ,  = ,~, . .  By 
definition of f i ' ,  we have that tr~,,(T/)< tr~,,(T/) 
for i = 1 . . . . .  p ,  and by the first part  of the deriva- 
tion we have that tr~,,(T)_> o-~,.(T) for all T. It 

follows that vtiLv i = 0 for i --- 1 . . . . .  p, where vi* = 
Dh D f  ri, and L = 2q,, - ,~q, ,  is necessarily a 
positive semi-definite matrix. To  comple te  
the demonstration we must show that L = 0. 
Now transform to coordinates so that L = 
diag(l~, . . . ,  ld). We obtain a contradiction if one 
or more of the l i a re  non-zero, as follows: Sup- 
pose (without loss of generality) that 1~ > 0. Then 
u ~ L v  i >_ l l l lV:l)[[ 2 > 0, w h e r e  v/(1) d e n o t e s  

the first component  of v i in the new coordi- 
nates. Note that there must exist an i such that 
Iiv}l)[[ 2 > 0, by the condition that the v i span ~d. 

[] 

6.4. Linear versus nonlinear decomposition 

In this section we study the local singular value 
decomposition numerically, using the Lorenz 
equations as an example. We compare this to a 
global (linear) decomposition. For convenience, 
we take advantage of a result from ref. [22], 
showing that for small window widths global prin- 
cipal value decomposition is well approximated 
by Legendre polynomials. We use the first three 
Legendre polynomials as basis functions for a 
reconstruction, and use eq. (75) to compute the 
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Fig. 18. A compar i son  of  the distortion for local versus  global 
decomposi t ion,  for the Lorenz equations.  The solid curve is 
for local singular value decomposi t ion,  and the dashed curve 
is for Legendre  polynomials.  In both  cases d = 3, r = 0.005, 
and m r = 0; the state is the same as that  used in fig. 11. 

dis tor t ion .  To  c o m p u t e  the  d i s to r t ion  for  local 

s ingular  va lue  decompos i t i on  we m a k e  use of  the  

fact  we jus t  der ived ,  tha t  the  d i s to r t ion  of  local  

S V D  is op t imal ,  and  is equa l  to tha t  of  de lay  

coord ina tes .  T h e  resul t  of  the  compa r i son  is 

shown in fig. 18. 
F o r  this example  the  l inear  t r ans fo rma t ion  is 

c lose to op t ima l  over  a wide  range  of  window 

widths.  W e  be l ieve  this  is because  the  t ransfor -  

m a t i o n  U* genera l ly  converges  on to  L e g e n d r e  

po lynomia l s  in the  l imit  of  small  window widths.  

A t  l a rge r  window widths  this is no longer  t rue,  

and  the  op t ima l  non l inea r  m e t h o d  gives d is tor-  

t ions tha t  a re  some t imes  lower  by as much  as an 

o r d e r  of  magn i tude .  

In  fig. 19 we i l lus t ra te  the  s t ruc tu re  of  the  basis  

vec tors  p r o d u c e d  by local  s ingular  va lue  decom-  

pos i t ion ,  at  two d i f ferent  va lues  of  m. F o r  m = 10 

the  basis  vec tors  a re  qui te  s imi lar  to  L e g e n d r e  

po lynomia ls ,  as expec ted .  F o r  m = 100, however ,  

this  is no longe r  t rue.  F o r  a given window wid th  

these  basis  vec tors  may  be  though t  of  as op t ima l  

p red ic t ive  f i l t e r s - n o i s e  can be  r e m o v e d  f rom the  

t ime  ser ies  by convolving it wi th  each  basis  vec to r  

to r econs t ruc t  s ta tes  of  d imens ion  3. Unfo r tu -  

nately ,  when  f and  h are  unknown  these  fi l ters 
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Fig. 19. First three basis vectors for local singular value de- 
composi t ion of the Lorenz equations.  U/~ f rom eq. (76) is 
plotted against j for i = 1, 2, 3. The  solid curve is for the case 
i = 1, which cor responds  to the largest singular value. In (a) 
m = 10, and the basis vectors are quite similar to Legendre  
polynomials;  in (b) m = 100, and they reflect the more  nonlin- 
ear  behavior  associated with larger window widths. 

must  be  estimated f rom a t ime  ser ies  x(t). This  

in t roduces  p rob lems ,  pa r t i cu la r ly  for  la rge  win- 

dow widths.  This  is not  the  case  for  L e g e n d r e  

polynomia ls .  A t  leas t  for  this  example ,  they are  

close to op t ima l  over  a fair ly wide  range  of  win- 

dow widths ,  and  so are  difficult to improve  upon.  
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7. Est imat ion  error 

In this section, we compare noise amplifica- 
tion to prediction errors, and show how the 
framework we have developed can be used to 
understand the relationship between state space 
reconstruction and estimation errors. We show 
how scaling laws for estimation errors, together 
with those for noise amplification, explain the 
behavior of prediction errors under changes of 
coordinates. For delay coordinates this gives in- 
sight into the selection of parameters such as m 
and r for optimizing predictions. 

7.1. Analysis of estimation error 

In this section, we will initially assume the 
states s are observable and the dynamics f and 
measurement function h are unknown. Once we 
have discussed estimation error in these terms, 
we will address the problem of estimation error 
for delay coordinates. 

In constructing a nonlinear model of a dynami- 
cal system from a time series, with a finite 
number of data points there is inevitably a 
discrepancy between the true dynamics f and the 
approximation ~ Furthermore,  there is a discrep- 
ancy between the true measurement function h 
and the approximation/~. This leads to estimation 
error E(s)=/~f(s)-hf(s).  The total prediction 
error is governed by the sum of estimation error 
and the error due to noise amplification. 

Estimation errors depend on the method of 
approximation. There are many possible methods 
of approximation, and studying them all is be- 
yond the scope of this paper. We shall focus on 
one class of methods, local approximation, which 
have been shown to be effective in many predic- 
tion problems in nonlinear dynamics [8, 14, 15]. 
For clarity we shall begin by being even more 
specific, and studying first order  local approxima- 
tion. A simple example is nearest neighbor ap- 
proximation: For the current state s(t), find the 
nearest neighbor s'(t') in the historical record. 
The prediction 2 is given by 2( t ,T)=x( t '+ T). 

There  are many variations on this method, for 
example using weighted averages over several 
nearby states. Such methods come under the gen- 
eral heading of kernel density estimation [40]. 

For first order  local approximation, for small 
the error in predicting the time series is 

E = D h D f  r~, (81) 

where • = s ' ( t ) -  s(t) is the difference vector be- 
tween the current state and the k th nearest 
neighbor (although we also use ~ to represent 
noise level, the meaning should be clear from the 
context). Eq. (81) gives an error estimate that is 
accurate to first order in E = Ildl. 

Providing e is chosen small enough, we expect 
to find k points out of N inside a ball of radius e 
if 

(82) N 

where ( p ( s ) )  is the average probability density in 
the ball, d I is the information dimension, and c is 
a constant which depends on the dimension of 
the ball. 

To understand the estimation error, our overall 
strategy is to use the original state space as a 
fixed reference frame. First we transform the 
probability density function p(s) in the original 
space into delay space; this will allow us to com- 
pute the radius of a ball containing the k nearest 
neighbors in delay space. We then transform this 
ball back into the original space, and use eq. (81) 
to compute the estimation error. We will assume 
throughout that qO is an embedding. 

Providing the probability density is smooth, un- 
der a coordinate transformation x = ~ ( s )  the 
probability density transforms as 

p(_x) = IDa* D~I- - I /2p(S) ,  (83) 

where I I denotes the determinant. 
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In the case that p(s) is fractal #22, eq. (83) must 

be modified. For example, consider a chaotic 
at tractor which is locally the Cartesian product  of 
a Euclidean manifold and a Cantor  set. For con- 
venience, assume that the first d -  1 eigendirec- 
tions of the distortion matrix X = (Dq  ~t D q 0  -1 
are tangent to the Euclidean manifold, and the 
last is transverse. For a chaotic attractor, from 
the derivations of section 5.3, this becomes true 
in the large window width limit. Letting the singu- 
lar values of Dq) be w i, the transformation rule is 

d - I  

p(_x) = p ( s )  w2 (d'-td'l) I-I wj - l ,  (84) 
j = l  

where [d l] is the integer part  of the information 
dimension. Note that eq. (84) approaches eq. (83) 
in the limit as  d I - [ d  I] ~ 1. 

Using eqs. (82) and (84), the radius of a ball 
containing k points in reconstructed coordinates 

is 

d - 1  
• X_ = ~" W(d d l - [ d l ] ) / d l  H W ; / d l "  (85) 

j = l  

When a ball in delay coordinates is t ransformed 
back to original coordinates, to first order in e, it 
becomes an ellipsoid whose principal axes are of 
length 

d - 1  

e; = • W, - - lw (ad ' - t d 'D /d '  I-I w]/d'.  (86) 
j = l  

The principal axes are the eigendirections of 2;. 
Substituting vi•' i, where v i is the ith singular 

#22For a fractal the measure is singular, so strictly speaking 
p(s)  must be viewed as a functional. This alters the transfor- 
mation. 

vector of Dq~, for • in eq. (81) gives the estima- 
tion error along axis i, 

d - 1  

E i = Dh D f r ( s )  vie w 7 'W(d d'-[d'])/d~ l--[ W]/d'. 
j = l  

(87) 

Since Dh,  D f  T, and e are in the original space, 

under changes of coordinates these terms may 
regarded as constants. We expect changes in c i to 
be second order. Changes in estimation error 
then occur because of changes in the singular 

values w i. 
The underlying reason for the change in esti- 

mation error is that changing coordinates changes 
neighborhood relationships. This is illustrated in 
figs. 20 and 21. Consider a ball in M containing k 
points which has radius e. D& maps this ball into 
an ellipsoid centered on x, with principal axes of 
length wiE. In contrast, a ball in @(M) generally 
contains a different set of points. When mapped  
back to the original space these points are 
stretched along the principal axes of the distor- 
tion matrix, according to w 7 ~. Thus, if the singu- 
lar values of D ~  vary across a wide range, the 
stretching is severe, and the nearest  neighbors in 
reconstructed coordinates correspond to an un- 
natural set of "neighbors"  from the point of view 
of the original space. 

Scaling laws for the estimation error can be 
obtained by substituting the scaling laws for the 
distortion matrix, as derived in section 5.3, into 
eq. (86). For chaotic dynamical systems with pre- 
dictive coordinates, in the limit as the window 
width w ~ 0% according to eqs. (46)-(48) the sin- 
gular values w i corresponding to positive Lya- 
punov exponents approach a constant, while those 
corresponding to negative Lyapunov exponents 
diverge as w i ~ e -x'w. Thus the singular values 
are very different, and we expect unnatural  neigh- 
bors. To simplify the scaling law, we assume that 
the Lyapunov dimension can be substituted for 
the information dimension, according to the 
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Fig. 20. Geometrical cause of change in estimation error due to coordinate reconstruction. The nearest neighbors in the original 
space may differ from the nearest neighbors in a reconstructed space. In the original state space (a), the solid points are the five 
nearest neighbors to the point marked by " ×  ". These points are bounded by the solid ball. In a reconstructed state space (b) this 
ball is distorted; the nearest neighbors in this space include the open circles shown and are bounded by the dashed ball. The ball 
enclosing the nearest neighbors in the reconstructed space is distorted when it is transformed back to the original space. Neighbors 
found in the reconstructed space may form an unnatural set of "neighbors" for local approximation, causing a change in estimation 
error. 
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d t = n + )tn+-------~, ( 8 8 )  

w h e r e  n is t h e  l a r g e s t  i n t e g e r  s u c h  t h a t  E~= t hi -~ 

0. S u b s t i t u t i n g  i n t o  eq.  (87),  t a k i n g  l o g a r i t h m s ,  

a n d  a v e r a g i n g  i m p l i e s  t h a t  in  t h e  l im i t  as  E ~ 0 

a n d  w ~ ~ ,  

ht.zw 
( l o g l E l >  ~ C + d----~-' ( 8 9 )  

w h e r e  h ~  is t h e  m e t r i c  e n t r o p y ,  w h i c h  is e q u a l  t o  

t h e  s u m  o f  p o s i t i v e  L y a p u n o v  e x p o n e n t s ,  a n d  C is 

a c o n s t a n t  t h a t  d e p e n d s  o n  p r o p e r t i e s  o f  t h e  

d y n a m i c a l  s y s t e m  in  t h e  o r i g i n a l  c o o r d i n a t e s ,  as  

wel l  as  t h e  n u m b e r  o f  d a t a  p o i n t s  a n d  e x t r a p o l a -  

t i o n  t i m e s  #24. T h i s  s c a l i n g  b e h a v i o r  is i l l u s t r a t e d  

in  figs. 22  a n d  23. 

Fig. 21. Neighborhoods for the original state space compared 
to those in delay coordinates, for the Ikeda map with/z = 0.9. 
The points marked with " x "  are neighbors of a given point in 
the original state space. Points marked by a square are neigh- 
bors of the same point in a delay delay space with ~- = 1 and 
m = 6, but are no longer neighbors in the original space. 

#2aThe Kaplan-Yorke conjecture essentially requires that 
the attractor is locally the Cartesian product of a Euclidean 
manifold and a Cantor set, just as we have have assumed in 
eq. (84). 

#24The scaling properties of C under variations in N and T 
were derived in ref. [15]. 
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Fig. 22. Estimation error as a function of ~'. Prediction errors 
for nearest neighbor prediction are plotted with boxes, and 
the expected scaling based on eq. (89) (with the prefactor fit 
by inspection) is plotted with a solid line. The noiseless 10000 
point time series is from the x coordinate of the Ikeda map 
(eq. (16)) with p. = 0.6465. The embedding dimension is m = 4. 
In this and subsequent figures, the prediction error is evalu- 
ated with respect to the noiseless time series, E = 
.~(T)- £(T). Here T = 1. 

The  der ivat ion of these scaling laws depends  

on  the assumpt ion  that  the error  is small (or 

equivalently,  that  the data  set is sufficiently large), 

so that  eqs. (81)-(87) are all valid #25. Fur ther -  

more,  the scaling law of eq. (89) assumes that  the 

window width is sufficiently large to reach the 

asymptotic  behavior  derived in section 5.3. We  

have tes ted eq. (89) for a variety of different 

examples,  inc luding  the H 6 n o n  and  Ikeda  maps  

and  the Lorenz  and  M a c k e y - G l a s s  equat ions ,  

and  we find that  it is in good ag reemen t  with 

numer ica l  exper iments ,  providing these condi-  

t ions are met.  

This  analysis makes  it clear that  the geometr ic  

causes of dis tor t ion and  es t imat ion  error  are simi- 

#25For systems whose fractal dimension is less than two, 
there may be significant predictive information in a single 
coordinate. In this case, even as the window width w ~ 
some predictability is retained. In a plot of error as a function 
of ~', for example, this will cause (loglEI) to prematurely 
reach a plateau. 

space reconstruction with noise 
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Fig. 23. Estimation error as a function of embedding dimen- 
sion m. Similar to fig. 22, except that the lag time is fixed at 
~'= 17 and m is varied. The time series is from the 
Mackey-Glass equation [12] at a delay parameter value of 17. 
The extrapolation time is T = 1. 

lar. In both cases a ball in recons t ruc ted  coordi- 

nates  is dis torted when  it is m a p p e d  back into the 

original  space. The re  is an impor tan t  difference, 

however: For  dis tor t ion the size of this ball is 

fixed by the noise level, and is i n d e p e n d e n t  of the 

reconstruct ion.  For  es t imat ion  error,  in contrast ,  

the size of the ball varies. This  causes the est ima- 

t ion error  to vary differently from noise amplifi- 

cation, as i l lustrated in fig. 24. 

Fig. 24 demons t ra tes  how predic t ion errors are 

governed by the sum of noise amplif icat ion error  

and  es t imat ion  error. For  low values of m the 

noise amplif icat ion provides the d o m i n a n t  source 

of error;  it is a decreasing funct ion  of m which 

reaches a p la teau  as m becomes  large. The  esti- 

mat ion  error,  in contrast ,  increases exponent ia l ly  

with m. The  best  value of m occurs when  these 

two effects are roughly comparable .  At  least for 

simple examples, the prefactors  of the scaling law 

for es t imat ion  error  may be worked out. This  

makes  it possible to sum the es t imat ion  error  and  

the error  due to noise amplification, and  to find 

the opt imal  rn and  ~- by minimiza t ion .  The  opti-  
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Fig. 24. Prediction error as a function of embedding dimen- 
sion m for the H6non map. The time series is x(t) with 
additive Gaussian noise of variance 5.2 × 10 -5 (e = 1%). A 
state space is reconstructed using delay coordinates with 
~" = 1. Predictions were made using the average value of the 
five nearest neighbors. The points marked with diamonds are 
prediction errors for a training set of N = 1000 points; those 
marked by squares are for N= 10000. The dot-dashed lines 
show the predictions of eq. (87) for the estimation error. The 
solid line is an estimate of errors due to noise amplification, 
E2~ 2, based on eqs. (26), (32), and (36). Some predictions dip 
slightly below the minimum indicated by noise amplification; 
we attribute this to the effects of a fractal prior and a finite ~. 

mal values depend on factors that might not have 
been obvious in advance, such as the number of 
data points. 

The analysis given here can be extended to 
higher order local approximation. For qth order 

approximation in one dimension, the error is 

roughly E ~f(q)(x)e q, where f(q) is the qth or- 
der derivative. Higher dimensions require multi- 

ple separation vectors, which complicates the 

situation. We conjecture that the result of gener- 
alizing eq. (87) to higher orders gives a similar 
answer, but involving powers of q and higher 
derivatives. For direct approximation (see ref. 
[15]), the scaling law of eq. (89) is the same, 
except that the last term is multiplied by a factor 

of q. This roughly agrees with the behavior we 
have observed in numerical experiments. 

7.2. Extensions o f  noise amplification to estimation 
error and dynamic noise 

When we defined the conditional variance of 

section 4.1, we assumed that the uncertainties in 

the time series came from observational noise. 

However, we conjecture that the ideas of that 

section can be extended to include estimation 
error and dynamic noise. 

A data set can be viewed as a particular real- 
ization of an ensemble of possible data sets. For a 

given realization, function approximation pro- 

duces a prediction 2(T)  for the time series value 

x ( T ) .  Using the same estimation procedure, an- 

other realization of the data set would yield a 

different value for 2(T). There is thus an ensem- 

ble of different estimates, characterized by a 
probability density function p(2(T)lx).  This den- 

sity function in turn defines a conditional vari- 

ance associated with the estimation error. The 
square of the estimation error computed in eq. 

(81) is an estimate of the variance; this estimate 

can be improved by averaging over several neigh- 
bors, several nearby values of _x, or several real- 
izations. 

A conditional variance can also be associated 

with dynamic noise. It is important to realize that 
the properties of dynamic noise are significantly 

different from those of observational noise. One 

of the essential differences is that observational 
noise acts on the time series, whereas dynamic 

noise acts in the original state space. Thus, as a 
first approximation the effect of dynamic noise is 

closer to that of estimation error, and follows the 
geometrical behavior illustrated in fig. 20. As a 

result, we conjecture that the scaling properties 

of dynamic noise should be similar to those of 
estimation error. This obviously requires further 
investigation. 

When either observational noise, dynamic 
noise, or estimation error dominates, we can as- 
sign a corresponding notion of noise amplifica- 
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tion. This is done by dividing the square root of 
the conditional variance by E, as in eq. (23). For 

estimation error e can be defined as the mean 
distance to a nearest  neighbor, and for dynamic 
noise as the dynamic noise level. Just as for 
observational noise, normalizing by e has the 
advantage that when q~ is an embedding, the 
result becomes independent  of E in the limit as 
e ~ 0 (except for possible oscillation problems 
ment ioned earlier). This can be very useful for 
theoretical analysis, derivation of scaling laws, 

etc. 
In real t ime series the effects of observational 

noise, dynamic noise, and estimation error are 
combined, and may be difficult to separate.  For 
some practical purposes,  such as optimization of 
parameters ,  it may be more useful to work di- 
rectly in terms of estimators of the conditional 
variance. This has been the point of view in 
earlier work which has not focused on the distinc- 
tion between different sources of error [2, 9, 24, 

30, 33, 37]. 

8. Practical implications for time series analysis 

In this section we discuss the practical implica- 
tions of  our theory for the problems of numerical 
state space reconstruction and prediction from a 
time series. In section 8.1, we examine a proce- 
dure for estimating the optimal nonlinear coordi- 
nates discussed in section 6.2, when the dynamics 
f and the measurement  function h are unknown. 
We perform numerical experiments comparing 
prediction errors using estimated nonlinear coor- 
dinates to prediction errors using delay coordi- 
nates. We also introduce a new algorithm for 
reducing estimation errors by "distorting" coordi- 

nates. 

8.1. Numerical local principal value decomposition 

In section 6.2, for the case when f and h are 
known, we showed how to construct nonlinear 
coordinates through local singular value decom- 

position. The resulting coordinates are optimal, 
in the sense that for a given information set they 
have minimal distortion in only d dimensions. In 
this section we discuss a method of estimating 

these coordinates directly from the time series. 
In section 6 we showed that an optimal coordi- 

nate transformation ~ can be constructed by 
decomposing Dq~ = UWV*, and choosing ~(_x) = 
U tx. But since U* is a transformation which 
maps noisy delay vectors onto the tangent space 
to 49(M) its domain is observable, and its range 
can be estimated from observables. This allows us 

to estimate ~ directly from a time series. Al- 
though a/, is in general a nonlinear transforma- 

tion, the estimation can be done locally, by find- 
ing a set of nearest  neighbors of the given delay 
vector _x and performing a principal value decom- 
position #26. 

The principal value decomposition yields a d x 
m matrix 0*  which spans the d principal direc- 
tions of the data. Let N be the number  of points 
in the data set. In the limit as N ~ oo and the 
noise level e-- ,  0, providing the data spans the 
region of state space of interest, the space 
spanned by the data is the same as the tangent 
space of the embedded state space. The dimen- 
sion d is equal to the number  of nonzero singular 
values in the local decomposition. Except for 
rotations within the tangent space, as N ~ ~, 0 '  
converges to U*. For finite N we call the matrix 
0*  the local principal value decomposition #27 (lo- 

cal PVD), to distinguish it f rom the exact trans- 
formation U*. 

Local PVD is fundamentally different from 
global PVD. For local PVD, flatness of neighbor- 
hoods in the limit as the neighborhood size goes 
to zero implies that there are only d nonzero 

#26In general,  the point _x and its neighbors are not cen- 
tered on the origin, so we perform the PVD in translated 
coordinates whose origin is at the mean  of the local neighbor- 
hood. 

#27This procedure was originally suggested as a means  of 
computing dimension by Broomhead et al. [6], which im- 
proved upon a related method suggested by Froehling et al. 
[20]. It has also been used for computing local coordinates for 
spatiotemporal  chaos [5]. 
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singular values. For global PVD, in contrast, due 
to curvature of the embedded state space there 
are an infinite number of nonzero singular values 
[22]. Of course, for finite neighborhood sizes there 
are always deviations from flatness, which causes 
problems. The neighborhood must be chosen 
large enough to contain sufficient data, and it 
must also be large enough to ensure that the 
extension of the data in the tangent space is 
significantly greater than the magnitude of the 
noise. To the extent that there is significant cur- 
vature within the neighborhood, the advantages 
of local over global PVD are lost. 

In the absence of noise, the degree to which 
the tangent space is a bad approximation to q~(M) 
is measured by the combined magnitudes of the 
last m -  d singular values #2s. Fig. 25 illustrates 
typical local singular spectra for the Ikeda map, 
with varying m. Note that the last m - d singular 
values increase as the dimension of the delay 
reconstruction increases, indicating greater curva- 
ture within neighborhoods for larger m. 

Curvature within neighborhoods tends to cause 
estimation problems in prediction with local PVD 
coordinates. Fig. 26 illustrates this for the Ikeda 
map. For low embedding dimensions m, local 
PVD coordinates are roughly as good as delays. 
However, as m increases, curvature within neigh- 
borhoods causes local PVD coordinates to give 
predictions several orders of magnitude less accu- 
rate than delays. 

In contrast, when the prediction errors are 
dominated by noise rather than estimation error, 
local PVD is often superior to delay coordinates, 
particularly when the time series is finely sampled 
from a continuous time system. In fig. 27, we 
show the results of a prediction experiment for 
x(t) of the Lorenz attractor. We increase m and 
decrease ~ in order to hold the window width 
constant. As m increases the noise amplification 

#28Whether noise or curvature dominates  a singular value 
can be determined by examining its scaling with increasing 
neighborhood size. See ref. [6]. 
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Fig. 25. Singular spectra for local PVD, based on a 1000 
point time series of  the x coordinate of  the Ikeda map with 
1% noise. The decomposition is based on predictive delay 
coordinates with ~- = 1 and m = 2 through 10. Local PVD is 
performed on the 20 nearest  neighbors of  an arbitrary point. 
Note that as m increases, the distinction between the first two 
singular values and the rest becomes less significant, due to 
increasing curvature. 

decreases; however, with constant window width 
the curvature stays the same. For large m and 
small ~-, local PVD coordinates are better  than 
delays. However, in this regime we have found 
that appropriate linear filtering of delay coordi- 
nates produces results that are just as good as 
those of local PVD. Linear filtering of delay 
coordinates has the advantage of being less com- 
putationally intensive, but the disadvantage that 
it must be done carefully, or it can increase the 
dimension of the time series [3]. We do not 
understand why global PVD for m >> d behaves 
so poorly in this example. 

In conclusion, while local PVD is optimal in 
the limit of low noise and a large number of data 
points, because of estimation problems due to 
curvature this advantage may be difficult to real- 
ize in practice. However, with certain data sets, 
Townshend [43] and Hunter  [26] have found local 
PVD to be significantly advantageous. 
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Fig. 26. Average prediction error for local PVD compared to 
delay coordinates, for the x-coordinate of the Ikeda map in 
the absence of noise. Both coordinate systems are based on 
predictive delay coordinates with ~- = 1 and m = 2 through 10. 
The vertical axis show the average error for 1000 predictions, 
made with local linear approximation using neighborhoods of 
20 points from a 10000 point data set. The solid lines indicate 
prediction errors for delay coordinates. Diamonds indicate 
prediction errors for local PVD coordinates, where d = 2. For 
small m, delays and local PVD are roughly equivalent. At 
larger values of m, errors due to curvature dominate local 
PVD, resulting in less accurate predictions than delay coordi- 
nates. The dotted lines indicate errors due to curvature within 
local neighborhoods, estimated by the first (i.e. future-most) 
component of the difference between delay vectors and their 
projections onto the estimated tangent spaces. 

A 

V 

0.5 

r r i i i l l [  I l I I I I ~ I [  

+ + 
+ 

(~ x X 
X 

0 
X [] F'I 

D 

x 

13 

O 
O 

0 

, J ~ ~ , , , I  ~ J B , 0 
0 

i l l l  

2 5 1 0  2 0  5 0  1 0 0  2 0 0  

m ,  ( m - 1 ) ' r  f i x e d  

Fig. 27. Average prediction error for different coordinates 
from the Lorenz x(t) time series versus m. In this plot, as m 
increases, ~- decreases to keep w = (m - 1)r constant. Predic- 
tion errors for delay coordinates are plotted with squares, 
local PVD (d' = 3) with octagons, global PVD (d'  = 4) with 
plus signs, and global PVD (d'  = 7) with crosses. Local PVD 
coordinates are superior to delay coordinates for large rn, 
because of a smaller number of parameters needed to esti- 
mate maps. All prediction was done with local linear approxi- 
mation from a 10000 point time series, sampled at At = 0.01 
in the time units of the Lorenz equations. The window was 
fixed at w = 1.28; predictions were made for extrapolation 
time T = 0.10. 

8.2. Improving estimation by warping 

of  coordinates 

T h e  a n a l y s i s  o f  s e c t i o n  7.1 s h o w s  t h a t  t h e  es t i -  

m a t i o n  e r r o r s  in  o n e  c o o r d i n a t e  s y s t e m  m a y  d i f f e r  

f r o m  t h o s e  in  a n o t h e r  c o o r d i n a t e  s y s t e m .  T h i s  

i m m e d i a t e l y  s u g g e s t s  t h a t  e s t i m a t i o n  e r r o r s  c a n  

b e  r e d u c e d  b y  a n  a p p r o p r i a t e  w a r p i n g  o f  c o o r d i -  

n a t e s .  I n  t h i s  s e c t i o n  w e  p r o p o s e  a n  a l g o r i t h m  fo r  

r e d u c i n g  e s t i m a t i o n  e r r o r s .  A l t h o u g h  t h i s  a lgo-  

r i t h m  w a s  m o t i v a t e d  by  t h e  p r o b l e m  o f  s t a t e  

s p a c e  r e c o n s t r u c t i o n ,  w e  b e l i e v e  t h a t  i t  c a n  b e  

u s e d  to  i m p r o v e  p e r f o r m a n c e  o f  loca l  f u n c t i o n  

a p p r o x i m a t i o n  m e t h o d s  in  a g e n e r a l  c o n t e x t .  

F r o m  eq.  (81),  f o r  d e l a y  c o o r d i n a t e s ,  t h e  es t i -  

m a t i o n  e r r o r  is 

E = ~r DFTEx_, ( 9 0 )  

w h e r e  F r =  dPfTdP -1 is t h e  d y n a m i c a l  s y s t e m  in  

d e l a y  c o o r d i n a t e s ,  w h i c h  c a n  b e  e s t i m a t e d  di-  

r e c t l y  f r o m  t h e  t i m e  se r i e s ,  "rr is a r o w  v e c t o r  

w h i c h  p r o j e c t s  a d e l a y  v e c t o r  o n t o  t h e  f i rs t  c o o r -  

d i n a t e  axis,  a n d  ~x is t h e  d i s t a n c e  v e c t o r  to  t h e  

n e a r e s t  n e i g h b o r  in  d e l a y  c o o r d i n a t e s .  T h e  o r i e n -  

t a t i o n  o f  ~_~ t h a t  g ives  t h e  l a r g e s t  e r r o r  in  a n  

a p p r o x i m a t i o n  o f  "rrF r f o r  a g i v e n  ]l~xll is g i v e n  by  
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the unit vector 

( D F r ) t w  * 

u= II(DF ), ,11 
(91) 

The shape of the local neighborhood can be 
changed to reduce the errors by simply transform- 
ing to coordinates x'  that are dilated by a factor 
a > l  along the c axis. A ball in the primed 
coordinates corresponds to an ellipsoid which is 
squeezed along the v-axis in the original coordi- 
nates. 

In order to guarantee that the neighborhood 
contains K points, the neighborhood must be 
expanded in other directions to compensate for 
its contraction in the u direction. However, in the 
limit as e --* 0, directions orthogonal to v do not 
effect the estimation error in the direction corre- 

sponding to the projection operator "rr. As a result, 
the estimation error in this direction is reduced 
by a factor of o~-x. Of course, for finite E x there 
is an upper bound on a above which nonlineari- 
ties will dominate, and beyond which it is impos- 
sible to reduce the estimation error without carry- 
ing this procedure to higher order. 

This suggests the following algorithm for adap- 
tively improving the approximation of ~ F r ( x )  

near the point £. 
(1) Approximate w F  r ~ avF r near _~ using 

balls in the original coordinate system. 
(2) Compute the vector v for the projection 

wff r according to eq. (91). 

(3) Transform to new coordinates x '  by dilat- 
ing the coordinates of each nearby point _x by a 
factor ot along the v-axis. 

(4) Use the distorted neighborhood to approxi- 
mate avff r locally. 

(5) Compute the estimation error ( E  z)  = 

((av DffT%,) 2) for the points in the neighbor- 
hood of x'. 

(6) Try another value of the scalar parameter  
a, and repeat steps (3)-(5), searching for the 
value that minimizes ( E  2). 

This procedure is straightforward to generalize 
to higher orders, for example distorting the 
neighborhood by a quadratic rather than a linear 
transformation. This may improve the effective- 
ness of the algorithm if the original approxima- 
tion wf f  r is accurate enough to support this. 

This algorithm could be applied to the local 
approximation of more general mappings F 
and w. 

9. Conclusions 

In dynamical systems theory it is customary to 
emphasize invariance under changes of coordi- 
nates. In practical problems, however, the choice 
of coordinates can be very important. State space 
reconstruction is a case in point. Although a 
naive interpretation of Takens'  theorem might 
suggest that any coordinate system that forms an 
embedding is equivalent to any other, in practice 
the choice of coordinates dramatically affects the 
ability to make predictions. A poor reconstruc- 
tion amplifies noise and increases estimation 
error. 

The theoretical treatment that we have pre- 
sented here is designed to help understand these 
problems, and give insight into the construction 
of the best possible coordinates. Errors due to 
state space reconstruction involve a tradeoff be- 
tween two effects: For small window widths, ob- 
servational noise amplification is typically the 
dominant source of errors; it can be minimized by 
making the embedding dimension and window 
width as large as possible. For large window 
widths, estimation error is typically the dominant 
effect; it can be minimized by making the window 
width as small as possible. An optimal choice of 
coordinates balances these two effects. 

For chaotic dynamical systems, mixed recon- 
structions, which use both past and future in- 
formation, are preferable to those that are 
exclusively based on either the past or future. By 
making the past and future window widths suffi- 
ciently large, the noise amplification of a mixed 
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reconstruction can be made arbitrarily small. For 
problems such as computation of fractal dimen- 
sion, mixed coordinates, in combination with a 
noise reduction algorithm, may give better  results 
[15, 16, 25]. However, for prediction problems 
past-based coordinates are unavoidable. 

The limits to state space reconstruction depend 
on the properties of the dynamical system. The 
behavior of the noise amplification is compli- 
cated, with several different scaling regimes (as 
schematically illustrated in fig. 13). However, if 
all other factors are held constant, the noise 
amplification generally increases according to the 
largest Lyapunov exponent and the dimension of 
the attractor. Similarly, for large window widths 
the logarithm of the estimation error increases 
according to the ratio of the metric entropy over 
the dimension (eq. (89)). We have suggested an 
algorithm for minimizing the effect of estimation 
errors, which we hope someone else will explore 
in more detail in a future paper. 

One of the problems we have investigated is 
that of reconstructing smooth coordinates which 
compress all the available information into the 
smallest possible dimensional space. In general, 
to do this it is necessary that the coordinates be 
nonlinear. We have shown that in the low noise 
limit, coordinates which are optimal in this sense 
can be constructed by the method of local singu- 
lar value decomposition. When the dynamical 
system and measurement function are unknown, 
these coordinates can be estimated directly from 
a time series. However, this involves estimation 
errors. If predictability is limited by noise such 
nonlinear coordinates may be useful, but if pre- 
dictability is limited by lack of data, delay coordi- 
nates are probably a better  choice. 

Perhaps our most significant result in this pa- 
per concerns the limits of predictability. It is now 
a well known fact that chaos limits long-term 
predictability. We have shown that when pro- 

jected into lower dimensions, chaos may also im- 

pose limits to short term predictability. For a 
dynamical system whose dimension and leading 
Lyapunov exponent are sufficiently large, projec- 

tion onto a low dimensional time series causes an 
explosion in the noise amplification. As a result, 
it is impossible to reconstruct localized states 
from measurements of any reasonable precision. 
The time series is unpredictable for times much 
less than the Lyapunov time and it becomes in- 
distinguishable from one generated by a random 
process. This is true even when the dynamical 
system is known. Note that this is not true for 
nonchaotic sys tems-as  long as the dimension is 
finite, it is always possible to localize states by 
taking a sufficient number of measurements. The 
projection of chaos onto lower dimensions may 
explain the origin of many random processes. 

The results we have presented here suggest 
many avenues for future work. One obvious prob- 
lem is to extend the framework we have devel- 
oped to include dynamic noise; although we have 
argued that the effects of dynamic noise are simi- 
lar to those of local estimation error, this is only 
true as a first approximation, and more work 
needs to be done. Another  interesting problem is 
to extend the treatment of estimation error to 
other function approximation methods, in partic- 
ular those involving global function representa- 
tions. Finally, with a limited number of data 
points and finite noise levels the problem of opti- 
mal coordinate reconstruction still remains to be 

solved. 
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