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where P is the polarization density. When B(3)
is expanded to first order in £, (6) is readily
evaluated by first doing the angular integration,
with the result

—€.)? -
af{=v, [(i—e—oﬂ)—(—gE,E, + ils‘Ezﬁu)] ™

which is independent of both 8 and the details of
& S

When (2) and (7) are combined, the EE; terms
exactly cancel, and the sum precisely equals T
if the Clausius-Mossotti relation is used to eval-
uate p 3€/8p. The m1croscoplc derivation is sig-
nificant because it shows that T ™ is not entirely
an electrical force. Indeed, (1) should be inter-
preted not as the balance between a mechanical
force —vr, and an electrical force T® 5 but rath-
er as the balance between a mechanical force
~vm, +AT% and an electrical force £®, This
becomes crucial when the the_gry is extended to
time-dependent situations: AT% depends on a
change of p®’ induced by the field and therefore
does not assume the form given in (7) until a time
on the order of the relaxation time T of the two-
particle density, say 107'2 s for a liquid.

We are thus able to distinguish a number of
time-dependent cases. (i) For quasistatic situa-
tions, the force density is obtained by adding the
magnetic term (e —eo)a(ExB)/at to TH), (ii) At
higher frequencies this remains valid if all quan-
tities are regarded as averages over several cy-
cles. (iii) However, if the electromagnetic field
is a pulse shorter than T,—a situation not en-
countered experimentally up to now—A T js not
present and the force density reduces to that of

Peierls.? Details of the time-dependent theory
and a discussion on the momentum of light will be
given elsewhere.!®
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Spectral Broadening of Period-Doubling Bifurcation Sequences
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A perturbation calculation shows that the power spectrum of strange attractor near the
accumulation parameter of a period-doubling bifurcation sequence consists of peaks
broadened by a phase modulation, with broad skirts created by an amplitude modulation.
Moving toward the accumulation parameter, at each bifurcation the total noise power
decreases by a factor of 10.48, the average peak width decreases by a factor of 20.96,
and the spectral bandwidth of the skirts decreases by a factor of 2.

PACS numbers: 47.10.+g, 05.40.+j

This paper discusses properties of the power
spectrum of a continuous dynamical system in the
chaotic regime of period-doubling sequences.

The universal properties of power spectra on the
periodic side of doubling sequences were original-
ly discussed by Feigenbaum,! and his predictions
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are in qualitative agreement with convection ex-
periments by Libchaber and Maurer,? and Gollub,
Benson, and Steinman.® Since there is numerical
evidence that mathematical models with period-
doubling sequences contain strange attractors,
this agreement supports the hope that chaotic
fluid flow can be modeled by strange attractors.
The results presented here provide a more se-
vere test of this theory, They support previous*5
and concurrent® work, and, in addition, treat the
general case of dynamical systems that are not
periodically driven.

A dynamical system with a period-doubling se-
quence that accumulates at parameter 7, has on
one side a sequence of limit cycles whose period
repeatedly doubles as »_ is approached. On the
other side of 7., numerical evidence™® indicates
that there is a sequence of strange attractors as
shown in Fig. 1. To a good approximation, a
strange attractor near 7, is a thin two-dimen-
sional ribbon that makes 2" loops and then closes
onto itself. Aspects of this behavior can be sum-
marized with use of a return map, constructed
as follows: The intersection of the attractor and
a transverse surface is approximately a curve.
When this curve is parametrized by a variable y,
successive crossings at times ¢; yield a sequence
¥; given by a recursion relation y;,, = F(y;),
where F is a continuous function (see Shaw°),

On the chaotic side, near »_ the probability
density of ¥, is nonzero on 2" bands, correspond-
ing to the 2" loops of the continuous attractor.
Motion between bands is periodic with period 2",
but motion within each band is chaotic. This

chaotic motion, which introduces broad compo-
nents into a power spectrum, can be thought of

as an amplitude modulation of an otherwise period-
ic orbit,

For a limit cycle, for example, the sequence
of return times T;=¢,;,, —¢; is constant. The re-
turn times 7; are also constant for a strange at-
tractor of a periodically driven system, as long
as the surface of section used to construct the
return map is taken at a constant phase of the
driving force. The power spectrum in this case
contains 0-function peaks superimposed on the
broad background created by the amplitude modu-
lation,

For the more general case, the return times T
are not periodic. Nevertheless, numerical evi-
dence indicates that the chaotic sequence T; can
be approximated as a continuous function of y,,
i.e., T;=T(y;). Thus, orbits can gain or lose
phase due to the chaotic behavior of T(y;). Let-
ting T, = {(T;) (time average), and w,=27f,=27/T,,
the net phase fluctuation in completing a cycle is

wo(T; = T,). The chaotic return times effec-
tively create a random ‘“phase modulation” that
broadens the peaks of the power spectrum,

When the central-limit theorem holds for 66;,
it ensures that the cumulative phase drift 6,=6(¢,)
=3 %_ 86, has a Gaussian probability density for
large 2. Ratner'! has shown that the central-limit
theorem holds for dynamical systems that satisfy
Axiom A.? Unfortunately, there are no known
dynamical systems that satisfy Axiom A and also
have a period-doubling sequence. Fortunately,
behavior qualitatively similar to that in which we
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FIG. 1. Four simulations of strange attractors of the Rdssler dynamical system, taken from Ref. 9. Case (a) is
closest to 7., and is a period-8 attractor. A power spectrum is shown below each frame.
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are interested can be simulated by “arbitrarily”
choosing a return map F with a period-doubling
sequence, ‘“arbitrarily” choosing a continuous
time transformation 7, and using this pair to gen-
erate sequences 66;. In every case studied, the
coarse-grained probability density x(6,) ap-
proached a Gaussian. (See Fig. 2.)

Naturally, as time increases the spread in the
cumulative phase fluctuations 6, gets larger. It
can be shown that the variance oZ of x(6,) as-
ymptotically grows linearly in time at a rate c.
(This proof assumes that the sum of the autocor-
relation function of T, is finite.) For a limit
cycle, or a periodically driven system, 66;=0,
which implies that ¢ =0. In general, however, c
20,

We are now ready to compute the form of the
power spectrum. As a first approximation, the

@) X(36)

26 92
() X8,

48.7 516

Fig. 2. A coarse-grained probability density of 66;
=T (y;), obtained by iterating, by 10° times, the one-
dimensional map y; ,; = 3.7; (1~y;) and sorting the re-
sult into 1000 bins in order to estimate the frequency
of occurrence over each bin. For this case T(y)=y.
(b) Similar to (a), except the probability density is con-
structed for 6, =),%_,66;, with k=75, Several differ-
ent choices of smooth time transformations 7' all show
x(6¢5) approximately a Gaussian.

attractor is a limit cycle p(w,t), with period
2"(27). To take the chaotic motion into account,
write the transverse displacement from the limit
cycle p as w(wyt)R(wyt). w(w,t) is the width of the
attractor at phase w,f, and is periodic with period
27(27). Thus, all of the chaotic behavior of the
amplitude is contained in R. To take into account
the chaotic phase drifting, write the phase at
time ¢ as @(f) =wyt +6(¢). A trajectory on the
attractor can be written as

x(8) =p(¢(2)) +w(@(£)) R @(t)) . (1)

p(@(t)) is constructed so that (x(¢))=p(w,t), and
R is constructed so that (R)=0.

A complication in the application of these ideas
is that experiments are normally conducted with
use of a projection onto a single coordinate. All
of the following remarks remain true, however,
if x, R, p, w, and y; are consistently considered
to be the projected values.

The autocorrelation of ¥ can be computed from
Eq. (1) by assuming that x is uncorrelated with p
and w (see Thomae and Grossman?):

Q. (0 =Q,(t) +Q,(1) QK1) . (2)

Q,, @y, Q,, and Q; are the autocorrelation func-
tions of x, p, w, and R, respectively. In the
absence of phase fluctuations, ¢ =0, ¢(t) =w,t,
and therefore @,(¢) and @,(#) are periodic. In-
cluding phase fluctuations has the effect of multi-
plying @, and @, by a damping factor e~°¥2,

[To do this calculation it is necessary to assume
that 6(¢) is ergodic with a Gaussian probability
density, and convert time averages to ensemble
averages,| Letting P, and W, be the complex
Fourier coefficients of p and w, and f,=(k/2")f,,
Fourier transforming Eq. (2) gives the power
spectrum of x,

S, (f)

=2 ké [P, PL (F=F) + | WS f=£)]. (3)

S is the power spectrum of R, and L (f~f,) is
a Lorentzian peak of half power width c¢/47 cen-
tered at f,, i.e.,

L (f=f) =2¢/{c*+[4n(f - f.) I} . (4)

The effect of phase modulations has been neglect-
ed in the second term of Eq. (3), since for small
values of c this is a second-order effect. In the
first term, however, the phase modulations are
responsible for the broadening of the 6-function
peaks into Lorentzians. We will refer to the
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terms |W,|2Sg(f~f,) as “skirts” because they
are convolved about each peak. Taken together,
they form a broad background caused by the am-
plitude modulation.

As a parameter » is varied, the power spectrum
changes in a manner that becomes universal® as
r approaches »,. Let », be the parameter value
where the number of distinct bands in the return
map goes from 2" to 2"~!, At any given param-
eter value r,, the width w;(»,) of each band is
not constant, and varies considerably in complet-
ing a cycle. Nevertheless, our numerical investi-
gations show that

hm [<wi2(rn)>/<wi2('rn +1)>] g 463 (5)
no®

where 210,48 is a universal number (see also
Ref. 6). Parseval’s theorem implies that the total
noise power .., W,? also decreases by a factor
of y at each bifurcation. In addition, the ratio of
the square of the separation of the adjacent bands
at », to that at #,,, is given by . This implies
that the total power added to the periodic part of
the spectrum in going from », to »,,, is a factor
of y smaller than that added in going from r,_, to
7,. A more detailed prediction of the behavior
of the Fourier coefficients P, (which behave just
as they do on the periodic side of the bifurcation
sequence) has been made by Feigenbaum,’ and,
with somewhat different results, by Nauenberg
and Rudnick.'® At »=7,, if the 2" iterate of F is
restricted to a given band and rescaled appropri-
ately, a universal function is approached. In
passing to » =7,,, the 2"*! iterate must be used;
the number of iterations needed to construct a
universal function consequently doubles. As a
result, in passing from v, to 7»,,,, the frequency
of Sy must be rescaled by a factor of 2, i.e.,
2S (7 41y 2F) =Sg(7,,f). (The factor of 2 in ampli-
tude is necessary to maintain the integral of S;
constant.) Thus, the characteristic frequency of
Sgat »=7,,, is half that at »=» .

The half power width of the Lorentzian peaks
in the spectrum depends on ¢, the rate of growth
of the variance of the cumulative phase fluctua-
tions. At each bifurcation, the decrease by y in
the mean-square width of the bands causes a cor-
responding decrease in the mean-square value of
the phase fluctuations 66;. In addition, twice as
many iterations are needed to complete a cycle
and return to a universal function; the rate ¢
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must decrease altogether by a factor of 2y =20,96
at each bifurcation. In passing through successive
bifurcations ¢ decreases rapidly, justifying the
agsumptions used to compute Eq. (4). After only
a few bifurcations the peaks become experimental-
ly indistinguishable from 6 functions. This ex-
plains the sharpness of the peaks seen by Gollub,
Benson, and Steinman.?® It does not explain, how-
ever, why these sharp peaks frequently persist
long after all the bands merge, far away from
rc's' 14
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