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The term connectionism is usually applied to neural networks. There are, however, many other models that are 
mathematically similar, including classifier systems, immune networks, autocatalytic chemical reaction networks, and others. 
In view of this similarity, it is appropriate to broaden the term connectionism. I define a connectionist model as a dynamical 
system with two properties: (1) The interactions between the variables at any given time are explicitly constrained to a finite 
list of connections. (2) The connections are fluid, in that their strength a n d / o r  pattern of connectivity can change with time. 

This paper reviews the four examples listed above and maps them into a common mathematical framework, discussing their 
similarities and differences. It also suggests new applications of connectionist models, and poses some problems to be 
addressed in an eventual theory of connectionist systems. 

1. Introduction 

This paper has several purposes. The first is to 
identify a common language across several fields 
in order to make their similarities and differences 
clearer. A central goal is that practitioners in 
neural nets, classifier systems, immune nets, and 
autocatalytic nets will be able to make correspon- 
dences between work in their own field as 
compared to the others, more easily importing 
mathematical results across disciplinary bound- 
aries. This paper attempts to provide a coherent 
statement of what connectionist models are and 
how they differ in mathematical structure and 
philosophy from conventional "fixed" dynamical 
system models. I hope that it provides a first step 
toward clarifying some of the mathematical issues 
needed for a generally applicable theory of con- 
nectionist models. Hopefully this will also provide 
a natural framework for connectionist models in 
other areas, such as ecology, economics, and game 
theory. 
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Fig. 1. "Ptolemy", in hieroglyphics, Demotic, and Greek. This 
cartouche played a seminal role in deciphering hieroglyphics, 
by providing a hint that the alphabet was partially phonetic 
[12]. (The small box is a "p" ,  and the half circle is a " t "  - liter- 
ally it reads "ptolmis".) 

1.1. Breaking the jargon barrier 

Language is the medium of cultural evolution. 
To a large extent differences in language define 
culture groupings. Someone who speaks Romany, 
for example, is very likely a Gypsy; the existence 
of a common and unique language is one of the 
most important bonds preserving Gypsy culture. 
At times, however, communication between sub- 
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cultures becomes essential, so that we must map 
one language to another. 

The language of science is particularly special- 
ized. It is also particularly fluid; words are tools 
onto which we map ideas, and which we invent or 
redefine as necessary. Our jargon evolves as sci- 
ence changes. Although jargon is a necessary fea- 
ture of communication in science, it can also pose 
a barrier impeding scientific progress. 

When models are based on a given class of 
phenomena, such as neurobiology or ecology, the 
terminology used in the models tends to reflect the 
phenomenon being modeled rather than the un- 
derlying mathematical structure. This easily ob- 
scures similarities in the mathematical structure. 
"Neura l  activation" may appear quite different 
from "species population", even though relative to 
given mathematical models the two may be identi- 
cal. Differences in j argon place barriers to commu- 
nication that prevent results in one field from 
being transparent to workers in another field. 
Proper nomenclature should identify similar things 
but distinguish those that are genuinely different. 

At present this problem is particularly acute for 
adaptive systems. The class of mathematical mod- 
els that are employed to understand adaptive 
systems contain subtle but nonetheless significant 
new features that are not easily categorized by 
conventional mathematical terminology. This adds 
to the problem of communication between disci- 
plines, since there are no standard mathematical 
terms to identify the features of the models. 

1.2. What is connectionism? 

Connectionism is a term that is currently ap- 
plied to neural network models such as those 
described in refs. [59, 15]. The models consist 
of elementary units, which can be "connected" 
together to form a network. The form of the 
resulting connection diagram is often called the 
architecture of the network. The computations 
performed by the network are highly dependent 
on the architecture. Each connection carries infor- 
mation in its weight, which specifies how strongly 

the two variables it connects interact with each 
other. Since the modeler has control over how the 
connections are made, the architecture is plastic. 

This contrasts with the lasual approach in dy- 
namics and bifurcation theory, where the dynami- 
cal system is a fixed object whose variability is 
concentrated into a few parameters. The plasticity 
of the connections and connection strengths means 
that we must think about the entire family of 
dynamical systems described by all possible archi- 
tectures and all possible combinations of weights. 
Dynamics occurs on as many as three levels, that 
of the states of the network, the values of connec- 
tion strengths, and the architecture of the connec- 
tions themselves. 

Mathematical models with this basic structure 
are by no means unique to neural networks. They 
occur in several other areas, including classifier 
systems, immune networks, and autocatalytic net- 
works. They also have potential applications in 
other areas, such as economics, game-theoretic 
models and ecological models. I propose that the 
term connectionism be extended to this wider 
class of models. 

By comparing connectionist models for different 
phenomena using a common nomenclature, we get 
a clear view of the extent to which these models 
are similar or different. We also get a glimpse of 
the extent to which the underlying phenomena are 
similar or different. I emphasize the word glimpse 
to make it clear that we are simplifying a compli- 
cated phenomenon when we model it in connec- 
tionist terms. Comparing two connectionist  
models of, for example, the nervous systems and 
the immune system, provides a means of extract- 
ing certain aspects of their similarities, but we 
must be very careful in doing this; much richness 
and complexity is lost at this level of description. 

Connectionism represents a particular level of 
abstraction. By reducing the state of a neuron to a 
single number, we are collapsing its properties 
relative to a real neuron, or relative to those of 
another potentially more comprehensive mathe- 
matical formalism. For example, consider fluid 
dynamics. At one level of description the state of a 
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fluid is a function whose evolution is governed by 
a partial differential equation. At another level we 
can model the fluid as a finite collection of spatial 
modes whose interactions are described by a set of 
ordinary differential equations. The partial differ- 
ential equation is not a connectionist model; there 
are no identifiable elements to connect together; a 
function simply evolves in time. The ordinary 
differential equations are more connectionist; the 
nature of the solution depends critically on the 
particular set of modes, their connections, and 
their coupling parameters. In fluid dynamics we 
can sometimes calculate the correct couplings from 
first principles, in which case the model is just a 
fixed set of ordinary differential equations. In con- 
trast, for a connectionist model there are dynam- 
ics for the couplings a n d / o r  connections. In a 
fully connectionist model, the connections and 
couplings would be allowed to change, to find the 
best possible model with a given degree of com- 
plexity. 

Another alternative is to model the fluid on a 
grid with a finite difference scheme or a cellular 
automaton. In this case each element is "con- 
nected" to its neighbors, so there might be some 
justification for calling these connectionist models. 
However, the connections are fixed, completely 
regular, and have no dynamics. I will not consider 
them as "connectionist". 

Just as there are limits to what can be described 
by a finite number of distinct modes, there are 
also limits to what can be achieved by connection- 
ist models. For  more detailed descriptions of many 
adaptive phenomena we may need models with 
explicit spatial structure, such as partial differen- 
tial equations or cellular automata. Nonetheless, 
connectionism is a useful level of abstraction, 
which solves some problems efficiently. 

The Rosetta Stone is a fragment of rock in 
which the same text is inscribed in several differ- 
ent languages and alphabets (fig. 1). It provides a 
key that greatly facilitated the decoding of these 
languages, but  it is by no means a complete de- 
scription of them. My goal is similar; by present- 
ing several connectionist models side by side, I 

hope to make it clear how some aspects of the 
underlying phenomena compare with one another, 
but I offer the warning that quite a bit has been 
omitted in the process. 

1.3. Organization of this paper 

In section 2, I describe the basic mathematical 
framework that is common to connectionist mod- 
els. I then discuss four different connectionist 
models: neural networks, classifier systems, im- 
mune networks, and autocatalytic networks. In 
each case I begin with a background discussion, 
make a correspondence to the generic framework 
described in section 2, and then discuss general 
issues. Finally, the conclusion contains the 
"Roset ta  Stone" in table 3, which maps the jargon 
of each area into a common nomenclature. I also 
make a few suggestions for applications of con- 
nectionist models and comment on what I learned 
in writing this paper. 

Connectionist models are ultimately dynamical 
systems. Readers who are not familiar with terms 
such as automaton, map, or lattice model may 
wish to refer to the appendix. 

2. The general mathematical framework of 
connectionist models 

In this section I present the mathematical 
framework of a "generic" connectionist model. I 
make some arbitrary choices about nomenclature, 
in order to provide a standard language, noting 
common synonyms whenever appropriate. 

To first approximation a connectionist model is 
a pair of coupled dynamical systems living on a 
graph. In some cases the graph itself may also 
have dynamics. The remainder of this section ex- 
plains this in more detail. 

2.1. The graph 

The foundation of any connectionist model is a 
graph consisting of nodes (or vertices) and connec- 
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Fig. 2. A directed graph. 

tions (also called links or edges) between them as 
shown in fig. 2. The graph describes the architec- 
ture of the system and provides the channels in 
which the dynamics takes place. There are differ- 
ent types of graphs; for example, the links can be 
either directed (with arrows), or undirected 
(without arrows). For some purposes, such as 
modeling catalysis, it is necessary to allow compli- 
cated graphs with more than one type of node or 
more than one type of link. 

For  many purposes it is important to specify the 
pattern of connections, with a graph representa- 

tion. The simplest way to represent a graph is to 
draw a picture of it, but for many purposes a more 
formal description is necessary. One common 
graph representation is a connection matrix. The 
nodes are assigned an arbitrary order, correspond- 
ing to the rows or columns of a matrix. The row 
corresponding to each node contains a nonzero 
entry, such as "1", in the columns corresponding 
to the nodes to which it makes connections. For 
example, if we order the nodes of fig. 2 lexico- 
graphically, the connection matrix is [ 101 ] 

0 0 0 
c =  o 1 o . (1) 

1 0 0 
1 0 0 

If the graph is undirected then the connection 
matrix is symmetric. It is sometimes economical to 
combine the representation of the graph and the 
connection parameters associated with it into a 
matrix of connection parameters. 

A connection list is an alternative graph repre- 
sentation. For example, the graph of fig. 2 can also 
be represented as 

a ~ b ,  a ~ d ,  b ~ a ,  c ~ c ,  d ~ b ,  e ~ b .  

(2) 

Note that the nodes are implicitly contained in the 
connection list. In some cases, if there are isolated 
nodes, it may be necessary to provide an addi- 
tional list of nodes that do not appear on the 
connection list. For the connectionist models dis- 
cussed here isolated nodes, if any, can be ignored. 

A graph can also be represented by an algo- 
rithm. A simple example is a program that creates 
connections "a t  random" using a deterministic 
random number generator. The program, together 
with the initial speed, forms a representation of a 
graph. 

For a dense graph almost every node is con- 
nected to almost every other node. For a sparse 
graph most nodes are connected to only a small 
fraction of the other nodes. A connection matrix is 
a more efficient representation for a dense graph, 
but a connection list is a more efficient representa- 
tion for a sparse graph. 

2.2. Dynamics 

In conventional dynamical models the form of 
the dynamical system is fixed. The only part of the 
dynamical system that changes is the state, which 
contains all the information we need to know 
about the system to determine its future behavior. 
The possible ways the "fixed" dynamical form 
"might  change" are encapsulated as parameters. 
These are usually thought of as fixed in any given 
experiment, but varying from experiment to exper- 
iment. Alternatively we can think of the parame- 
ters as knobs that can be slowly changed in the 
background. In reality the quantities that we in- 
corporate as parameters are usually aspects of the 
system that change on a time scale slower than 
those we are modeling with the dynamical system. 
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Connectionist models extend this view by giving 
the parameters an explicit dynamics of their own, 
and in some cases, by giving the list of variables 
and their connections a dynamics of its own. 
Typically this also involves a separation of time 
scales. Although a separation of time scales is not 
necessary, it provides a good starting point for the 
discussion. The fast scale dynamics, which changes 
the states of the system, is usually associated with 
short-term information processing. This is the 
transition rule. The intermediate scale dynamics 
changes the parameters, and is usually associated 
with learning. I will call this the parameter dynam- 
ics or the learning rule. On the longest time scale, 
the graph itself may change. I will call this the 
graph dynamics. The graph dynamics may also be 
used for learning; hopefully this will not lead to 
confusion. 

Of course, strictly speaking the states, parame- 
ters, and graph representation described above are 
just the states of a larger dynamical system with 
multiple time scales. Reserving the word state for 
the shortest time scale is just a convenience. The 
association of time scales given above is the natu- 
ral generalization of "conventional" dynamical 
systems, in which the states change quickly, the 
parameters change slowly, and the graph is fixed. 
For  some purposes, however, it might prove to be 
useful to relax this separation, for example, letting 
the graph change at a rate comparable to that of 
the states. Although all the models discussed here 
have at most three time scales, in principle this 
framework could be iterated to higher levels to 
incorporate an arbitrary number of time scales. 

The information that resides on the graph typi- 
cally consists of integers, real numbers, or vectors, 
but could in principle be any mathematical ob- 
jects. The state transition and learning rules can 
potentially be any type of dynamical system. For 
systems with continuous states and continuous 
parameters the natural dynamics are ordinary 
differential equations or discrete time maps. In 
principle, the states or parameters could also be 
functions whose dynamics are partial differential 
equations or functional maps. This might be natu- 

ral, for example, in a more realistic model of 
neurons where the spatio-temporal form of pulse 
propagation in the axon is important [60]. When 
the activities or parameters are integers, their dy- 
namics are naturally automata, although it is also 
common to use continuous dynamics even when 
the underlying states are discrete. 

Since the representation of the graph is intrinsi- 
cally discrete, the graph dynamics usually has a 
different character. Often, as in classifier systems, 
immune networks, or autocatalytic networks, the 
graph dynamics contains random elements. In 
other cases, it may be a deterministic response to 
statistical properties of the node states or the 
connection strengths, for example, as in pruning 
algorithms. Dynamical systems with graph dynam- 
ics are sometimes called metadynamical systems 
[20, 8]. 

In all of the models discussed here the states of 
the system reside on the nodes of the graph .1. The 
states are denoted xi, where i is an integer label- 
ing the node. The parameters reside at either 
nodes or connections; 0i refers to a node parame- 
ter residing at node i, and w~j refers to a connec- 
tion parameter residing at the connection between 
node i and node j.  

The degree to which the activity at one node 
influences the activity at another node, or the 
connection strength, is an important property of 
connectionist models. Although this is often con- 
trolled largely by the connection parameters w~j, 
the node parameters 0~ may also have an influ- 
ence, and in some cases, such as B-cell immune 
networks, provide the only means of changing the 
average connection strength. Thus, it is misleading 
to assume that the connection parameters are 
equivalent to the connection strengths. Since the 
connection strength of any given instant may vary 
depending on the states of the system, and since 
the form of the dynamics may differ considerably 
in different models, we need to discuss connection 

**tit is also possible that states could be attached to connec- 
tions, bu t  this is not  the case in any of the models  discussed 
here. 
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strength in terms of a quantity that is representa- 
tion-independent, which is well defined for any 
dynamical model. 

For a continuous transition rule the natural way 
to discuss the connection strength is in terms of 
the Jacobian. When the transition rule is an ordi- 
nary differential equation, of the form 

dx~ = f . (xx ,  x2, . .  xN ) 
dt  "' ' 

the instantaneous connection strength of the con- 
nection from node i to node j (where i is an input 
to j )  is the corresponding term in the Jacobian 
matrix 

J / ,  = - a x , -  

A connection is excitatory if J/i > 0 and inhibitory 
if J/~ < 0. Similarly, for discrete time dynamical 
systems (continuous maps), of the form 

x j ( t  + 1) = . f j ( x l ,  x 2 . . . . .  x N )  , 

a connection is excitatory if Ij/il > 1 and in- 
hibitory if Ij/'il < 1. In a continuous system, the 
average connection strength is (J/i),  where ( ) 
denotes an appropriate average; in a discrete sys- 
tem it is (IJ/A)- To make this more precise it is 
necessary to specify the ensemble over which the 
average is taken. 

For automaton transition rules, since the states 
x~ are discrete the notion of instantaneous connec- 
tion strength no longer makes sense. The average 
connection strength may be defined in one of 
many ways; for example, as the fraction of times 
node j changes state when node i changes state. 
In situations where x~ is an integer but nonethe- 
less approximately preserves continuity, if I Ax~ (t) I 
is the magnitude of the change in x~ at time t, the 
average connection strength can be defined as 

IAxj( t ÷ 1) 

IAxi( t)  I )lax,<Ol>0" 

3. Neural nets 

3.1. Background 

Neural networks originated with early work of 
McCulloch and Pitts [42], Rosenblatt [58], and 
others. Although the form of neural networks was 
originally motivated by neurophysiology, their 
properties and behavior are not constrained by 
those of real neural systems, and indeed are often 
quite different. There are two basic applications 
for neural networks: one is to understand the 
properties of real neural systems, and the other is 
for machine learning. In either case, a central 
question for developing a theory of learning is: 
Which behaviors of real neurons are essential tc 
their information processing capabilities, and 
which are simply irrelevant side effects? 

For machine learning problems neural networks 
have many uses that go considerably beyond the 
problem of modeling real neural systems. There 
are several reasons for dropping the constraints of 
modeling real neurons: 

(i) We do not understand the behavior of real 
neurons. 

(ii) Even if we understood them, it would be 
computationaUy inefficient to implement the full 
behavior of real neurons. 

(iii) It is unlikely that we need the full complex- 
ity of real neurons in order to solve problems in 
machine learning. 

(iv) By experimenting with different approaches 
to simplified models of neurons, we can hope to 
extract the basic principles under which they oper- 
ate, and discover which of their properties are 
truly essential for learning. 

Because of the factors listed above, for machine 
learning problems there has been a movement 
towards simpler artificial neural networks that are 
less motivated by real neural networks. Such net- 
works are often called "artificial neural networks", 
to distinguish them from the real thing, or from 
more realistic models. Similar arguments apply to 
all the models discussed here; it might also be 
appropriate to say "artificial immune networks" 
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and "artificial autocatalytic networks". However, 
this is cumbersome and I will assume that the 
distinction between the natural and artificial 
worlds is taken for granted. 

Neural networks are constructed with simple 
units, often called "neurons". Until about five 
years ago, there were almost as many different 
types of neural networks as there were active 
researchers in the field. In the simplest and proba- 
bly currently most popular form, each neuron is a 
simple element that sums its inputs with respect to 
weights, subtracts a threshold, and applies an acti- 
vation function to the result. If we assume that 
time is discrete so that we can write the dynamics 
as a map, then we have 

t = I, 2 . . . .  = time; 
x~(t) = state of neuron i; 
w~j = weight of connection from i to j ;  
Oj = threshold; 
S = the activation function, often a sigmoidal 

function such as tanh. 
The response of a single neuron can be charac- 

terized as 

x,<,+1, -- -,,). (3) 

We could also write the dynamics in terms of 
automata, differential equations, or, if we assume 
that the neurons have a refractory period during 
which they do not change their state, as delay 
differential equations. 

The instantaneous connection strength is 

of input units, one or two layers of "h idden"  
units, and a layer of output units, with full con- 
nections between adjacent layers. For  a feed-for- 
ward architecture the graph has no loops so that 
the fixed parameters information flows only in one 
direction, from the inputs to the outputs. If the 
graph has loops so that the activity of a neuron 
feeds back on itself then the network is recurrent. 

For layered networks it is sometimes convenient 
to assign the neurons an extra label that indicates 
which layer they are in. For  feed-forward net- 
works the dynamics across layers is particularly 
simple, since first the input layer is active, then the 
first hidden layer, then the next, etc., until the 
output layer is reached. If, for definiteness, we 
choose tanh as the activation function, and let 1 
refer to the input layer, 2 to the first hidden layer, 
etc., the dynamics can be described by eq. (5). 
Note that because the activity of each layer is 
synchronized and depends only on that of the 
previous layer at the previous time step, the role of 
time is trivial. Since each variable only changes its 
value once during a given feed-forward step, we 
can drop time labels without ambiguity: 

(5) 

Oxj( t + 1) = wijS' ( - 0 j ) ,  
Oxi( t) ~i wijxi( t) (4) 

where S'  is the derivative of S. If S is a sigmoid, 
then S'  is always positive and a connection with 
w~j > 0 is always excitatory and a connection with 
wij < 0 is always inhibitory. 

A currently popular procedure for constructing 
neural networks is to line the neurons up in rows, 
or "layers".  A standard architecture has one layer 

From this point of view the neural network 
simply implements a particular family of nonlin- 
ear functions, parameterized by the weights w and 
the thresholds 0 [22]. For  feed-forward networks 
the transition rule dynamics is equivalent to a 
single (instantaneous) mapping. For  a recurrent 
network, in contrast, the dynamics is no longer 
trivial; any given neuron can change state more 
than once during a computation. This more inter- 
esting dynamics effectively gives the network a 
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memory, so that the set of functions that can be 
implemented with a given number of neurons is 
much larger. However, it becomes necessary to 
make a decision as to when the computation is 
completed, which complicates the learning prob- 
lem. 

To solve a given problem we must select values 
of the parameters w and 0, i.e. we must select a 
particular member of the family of functions spec- 
ified by the network. This is done by a learning 
rule. 

The Hebbian learning rules are perhaps the 
simplest and most time honored. They do not 
require detailed knowledge of the desired outputs, 
and are easy to implement locally. The idea is 
simply to strengthen neurons with coincident ac- 
tivity. One simple implementation changes the 
weights according to the product of the activities 
on each connection, 

Aw, j = cxix j. (6) 

Hebbian rules are appealing because of their 
simplicity and particularly because they are local. 
They can be implemented under very general cir- 
cumstances. However, learning with Hebbian rules 
can be ineffective, particularly when there is more 
detailed knowledge available for training. For ex- 
ample, in some situations we have a training set of 
patterns for which we know both the correct input 
and the correct output. Hebbian rules fail to ex- 
ploit this information, and are correspondingly 
inefficient when compared with algorithms that 
do. 

Given a learning set of desired input /output  
vectors, the parameters of the network can be 
determined to match these input /output  vectors 
by minimizing an error function based on them. 
The back-propagation algorithm, for example, 
minimizes the least mean square error and is ef- 
fectively a nonlinear least-squares fitting algo- 
rithm. For more on this, see ref. [59]. 

Since there is an extensive and accessible litera- 
ture on neural networks, I will not review it fur- 
ther [59, 15]. 

3.2. Comparison to a generic network 

Neural networks are the canonical example of 
connectionism and their mapping into generic 
connectionist terms is straightforward. 

Nodes correspond to neurons. 

Connections correspond to the axons, synapses, 
and dendrites of real neurons. The average con- 
nection strength is proportional to the weight of 
each connection. 

Node dynamics. There are many possibilities. 
For feed-forward networks the dynamics is re- 
duced to function evaluation. For  recurrent net- 
works the node dynamics may be an automaton, a 
system of coupled mappings, or a system of ordi- 
nary differential equations. The attractors of such 
systems can be fixed points, limit cycles, or chaotic 
attractors. More realistic models of the refractory 
periods of the neurons yield systems of delay- 
differential equations. 

Learning rules. Again, there are many possibili- 
ties. For feed-forward networks with carefully 
chosen neural activation functions such as radial 
basis functions [11, 13, 54] where the weights can 
be solved through a linear algorithm, the dynamics 
reduces to a function evaluation. Nonlinear search 
algorithms such as back-propagation are nonlinear 
mappings which usually have fixed point attrac- 
tors. Nondeterministic algorithms such as simu- 
lated annealing have stochastic dynamics. 

Graph dynamics. For real neural systems this 
corresponds to plasticity of the synapses. There is 
increasing evidence that plasticity plays an impor- 
tant role, even in adults [2]. As currently prac- 
ticed, most neural networks do not have explicit 
graph dynamics; the user simply tinkers with the 
architecture attempting to get good results. This 
approach is clearly limited, particularly for large 
problems where the graph must be sparse and the 
most efficient way to restrict the architecture is not 
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obvious from the symmetries of the problem. There 
is currently a great deal of interest in implement- 
ing graph dynamics for neural networks, and there 
are already some results in this direction [26, 43, 
46, 65, 67]. This is likely to become a major field 
of interest in the future. 

4. Classifier systems 

4.1. Background 

The classifier system is an approach to machine 
learning introduced by Holland [30]. It was in- 
spired by many influences, including production 
systems in artificial intelligence [48], population 
genetics, and economics. The central motivation 
was to avoid the problem of brittleness encoun- 
tered in expert systems and conventional ap- 
proaches to artificial intelligence. The classifier 
system learns and adapts using a low-level ab- 
stract representation that it constructs itself, rather 
than a high-level explicit representation con- 
structed by a human being. 

On the surface the classifier system appears 
quite different from a neural network, and at first 
glance it is not obvious that it is a connectionist 
system at all. On closer examination, however, 
classifier systems and neural networks are quite 
similar. In fact, by taking a sufficiently broad 
definition of "classifier systems" and "neural  net- 
works", any particular implementation of either 
one may be viewed as a special case of the other. 
Classifier systems and neural networks are part of 
the same class of models, and represent two dif- 
ferent design philosophies for the connectionist 
approach to learning. The analogy between neural 
networks and classifier systems has been explored 
by Compiani et al. [14], Belew and Gherrity [9], 
and Davis [16]. There are many different versions 
of classifier systems; I will generally follow the 
version originally introduced by Holland [30], but 
with a few more recent modifications such as 
intensity and support [31]. 

At its core, the classifier system has a rule-based 
language with content addressable memories. The 
addressing of instructions occurs by matching of 
patterns or rules rather than by the position of 
the instructions, as it does in traditional von 
Neumann languages. Each rule or classifier con- 
sists of a condition and an action, both of which 
are fixed length strings. One rule invokes another 
when the action part of one matches the condition 
part of the other. This makes it possible to set up 
a chain of associations; when a given rule is active 
it may invoke a series of other rules, effecting a 
computation. The activity of the rules is mediated 
by a message list, which serves as a blackboard or 
short-term memory on which the rules post mes- 
sages for each other. While many of the messages 
on the list are posted by other classifiers, some of 
them are also external messages, inputs to the 
program posted by activity from the outside world. 
In the most common implementations the message 
list is of fixed length, although there are applica- 
tions where its length may vary. See the schematic 
diagram shown in fig. 3. You may also want to 
refer to the example in section 5. 

The conditions, actions, and messages are all 
strings of the same fixed length. The messages are 
strings over the binary alphabet (0,1}, while the 
conditions and actions are over the alphabet 
( 0 , 1 , # } ,  where # is a "wildcard" or "don ' t  
care" symbol. The length of the message list con- 
trols how many messages can be active at a given 
time, and is typically much smaller than the total 
number of rules. 

The way in which a classifier system "executes 
programs" is apparent by examining what hap- 
pens during a cycle of its operation. At a given 
time, suppose there is a set of messages on the 
message list, some of which were posted by other 
classifiers, and some of which are inputs from the 
external world. The condition parts of all the rules 
are matched against all the messages on the mes- 
sage list. A match occurs if each symbol matches 
with the symbol in the corresponding position. 
The symbol # matches everything. The rules that 
make matches on a given time step post their 
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Fig. 3. A schematic diagram of the classifier system. 

actions as messages on the next time step. By 
going through a series of steps like this, the classi- 
fier system can perform a computation. Note that 
in most  implementations of the classifier system 
each rule can have more than one condition part; 
a match occurs only when both conditions are 

satisfied. 
In general, because of the # symbol, more than 

one rule may match a given message. The parame- 
ters of the classifier system (frequency of # ,  length 
of messages, length of message list, etc.) are usu- 
ally chosen so that the number of matches typi- 
cally exceeds the size of the message list. The rules 

then bid against each other to decide which of 
them will be allowed to post messages. The bids 
are used to compute a threshold, which is adjusted 
to keep the number  of messages on the message 
list (that will be posted on the next step) less than 
or equal to the size of the message list. Only those 
rules whose bids exceed the threshold are allowed 
to post  their messages on the next time step #2. 

An important  factor determining the size of the 
bid is the strength of a classifier, which is a real 
number  attached to each classifier rule. The 
strength is a central part of the learning mecha- 
nism. If  a classifier wins the bidding competit ion 
and successfully posts a message, an amount equal 

~2Some implementations allow stochastic bidding. 

to the size of its bid is subtracted from its strength 
and divided among the classifiers that (on the 
previous time step) posted the messages that match 
the bidding classifier's condition parts on the cur- 
rent time step #3. 

Another factor in determining the size of bids is 

the specificity of a classifier, which is defined as 
the percentage of characters in its condition part  
that are either zero or one, i.e. that are not # .  The 

motivation is that when there are "specialists" to 
solve a problem, their input is more valuable than 
that of "generalists". 

The final factor that determines the bid size is 
the intensity xi(t ) associated with a given message. 
In older implementations of the classifier system, 
the intensity is a Boolean variable, whose value is 
one if the message is on the message list, and zero 
otherwise. In newer implementations the intensity 
is allowed to take on real values 0 < x i < 1. Thus, 
some messages on the list are "more  intense" than 
others, which means they have more influence on 
subsequent activity. Under  the support rule, the 
intensity of a message is computed by taking the 
sum over all the matching messages on the previ- 
ous time step, weighted by the strength of the 
classifier making the match. 

*~3Other variants are also used. Many authors think that this 
step is unnecessary, or even harmful; this is a topic of active 
controversy. 
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The size of a bid is 

bid = const × w × specificity × F(intensi ty) .  (7) 

F(intensity) is a function of the intensities of the 
matching messages. There are many options; for 
example, it can be the intensity of the message 
generating the highest bid, or the sum of the 
intensities of all the matching messages [57]. 

To  produce outputs the classifier system must 
have a means of deciding when a computat ion 
halts. The most  common method is to designate 
certain classifiers as outputs. When these classi- 
fiers become active the classifier system makes the 

output  associated with that classifier's message. If  
more than one output classifier becomes active it 
is necessary to resolve the conflict. There are vari- 

ous means of doing this; a simple method is to 
simply pick the output with the largest bid. 

Neglecting the learning process, the state of a 
classifier system is determined by the intensities of 
its messages (most of which may be zero). In 
many  cases it is important to be able to pass along 
a particular set of information from one time step 
to another. This is done by a construction called 
pass-through. The # symbol in the action part  of 
the rule has a different meaning than it has in the 
condition part  of the rule. In the action part  of the 
rule it is used to "pass  through" information from 
the message list on one time step to the message 
list on the next time step; anywhere there is a # 
symbol in the action part, the message that is 
subsequently posted contains either a zero or a 
one according to whether the message matched by 
the condition part on the previous time step con- 
tained a zero or a one. 

The procedure described above allows the clas- 
sifier system to implement any finite function, as 
long as the necessary rules are present in the 

system with the proper strengths (so that the cor- 
rect rules will be evoked). The transfer of strengths 
according to bid size defines a learning algorithm 
called the bucket brigade. The problem of making 
sure the necessary rules are present is addressed 
by the use of genetic algorithms that operate on 

the bit strings of the rules as though they were 
haploid chromosomes. For example, point muta- 
tions randomly changes a bit in one of the rules. 
Crossover or recombination mimics sexual repro- 

duction. It  is performed by selecting two rules, 
picking an arbitrary position, and interchanging 
substrings so that the left part  of the first rule is 
concatenated to the right part  of the second rule 
and vice versa. When the task to be performed has 
the appropriate  structure, crossover can speed up 
the time required to generate a good set of rules, 
as compared to pure point mutat ion #4. 

4.2. Comparison to generic network 

The classifier system is rich with structure, 
nomenclature, and lore, and has a literature of its 
own that has evolved more or less independently 
of the neural network literature. Nonetheless, the 
two are quite similar, as can be seen by mapping 
the classifier system to standard connectionist 
terms. 

For the purpose of this discussion we will as- 
sume that the classifiers only have one condition 
part. The extension to classifiers with multiple 
condition parts has been made by Compiani  et al. 
[14]. 

Nodes. The messages are labels for the nodes of 
the connectionist network. For a classifier system 
with word length N the 2 N possible messages 
range from i = 0,1 . . . . .  2 N -  1. (In practice, for a 

given set of classifiers, only a small subset of these 

may actually occur.) The state of the i th node is 
the intensity x i. The node activity also depends on 
a globally defined threshold B(t), which varies in 
time. 

Connections. The condition and action parts of 
the classifier rules are a connection list representa- 
tion of a graph, in the form of eq. (2). Each 

*~4Several specialized graph manipulation operators, for ex- 
ample triggered cover operators, have also been developed for 
classifier systems [57]. 
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classifier rule connects a set of nodes ( i  } to a 
node j and can be written ( i} -*j .  A rule consist- 

ing entirely of ones and zeros corresponds to a 
single connection; a rule with n don' t  care sym- 
bols represents 2" different connections. Note that 
if two rules share their output node j and some of 
their input nodes i then there are multiple connec- 

tions between two nodes. The connection parame- 
ters w~j are computed as the product of the classi- 
fier rule strength and the classifier rule specificity, 

i.e. 

thus a more efficient graph representation, and 
pass-through is just a representational conve- 

nience. 

Transition rule. In traditional classifier systems 
a node j becomes active on time step t + 1 if it 
has an input connection i on time step t such that 

x~(t)wij > 0. Using the support  rule, 

x j ( t  + 1) = Y'~x i ( t )  wij, ( 8 )  
i 

Wij = specificity × strength. 

When the graph is sparse there are many nodes 
that have no rule connecting them so that implic- 

itly w~j = O. 
Note  that only the connections are represented 

explicitly; the nodes are implicitly represented by 

the right-hand parts of the connection representa- 
tions, which give all the nodes that could ever 
conceivably become active. Thus nodes with no 
inputs are not represented. This can be very effi- 

cient when the graph is sparse. 
Although on the surface pass-through appears 

to be a means of keeping recurrent information, as 
first pointed out by Miller and Forrest [44], in 
connectionist terms it is a mechanism for efficient 
graph representation. Pass-through occurs when a 
classifier has # symbols at the same location in 

both its condition and action parts. (If the # is 
only in the action part, then the pass-through 
value is always the same, and so it is irrelevant.) 

The net effect is that the node that is activated on 
the output depends on the node that was active on 
the input. This amounts to representing more than 
one connection with a single classifier. For exam- 
ple, consider the classifier 0 #  ~ 1 # .  If node 00 
becomes active, then the second 0 is "passed 
through", so the output is 10. Similarly, if 01 
becomes active, the output is 11. The net result is 
that two connections are represented by the same 
classifier. F rom the point of view of the network, 
the classifier 0 #  ~ 1 #  is equivalent to the two 
classifiers 00 ~ 10 and 01 --, 11. The net effect is 

where the sum is taken over all i that satisfy 
xi( t)wij  > O. With the support  rule the dynamics 
is thus piecewise linear, with nonlinearity due to 
the effect of the threshold 0. Without the support 
rule the intensity is x j ( t  + 1) = maxi{x i ( t )  }. 

There are two approaches to computing the 

threshold 0. The simplest approach is to simply 

set it to a constant value 0. A more commonly 
used approach in traditional classifier systems is to 
adjust O(t) on each time step so that the number  
of messages that are active on the message list is 
less than or equal to a constant, which is equivalent 
to requiring that the number  of nodes active on a 
given time step is less than or equal to a constant. 
In connectionist terms this may be visualized as 
adding a special thresholding unit that has input 
and output connections to every node. 

Learning rule. The traditional learning algo- 
r i thm for classifier systems is the bucket brigade, 
which is a particular modified Hebbian learning 
rule. (See eq. (6).) When a node becomes active, 

strength is transferred from its active output 
connections to its active input connections. This 
transfer occurs on the time step after it was active. 
To be more precise,, consider a wave of activity 
x j ( t )  > 0 propagating through node j ,  as shown in 

fig. 4. 
Suppose this activity is stimulated by m 

activities xi( t  - 1) > 0 through input connection 
parameters wij, and in turn stimulates activities 
x , ( t  + 1) > 0 through output connection param- 
eters Wjk. Letting H be the Heaviside function 
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Fig. 4. The bucket brigade learning algorithm. A wave of activ- 
ity propagates from nodes { i } at time t - 1 through node j at 
time t to nodes (k } at time t + 1. The solid lines represent 
active connections, and the dashed lines represent inactive 
connections. Strength is transferred from the input connections 
of j to output connections of j according to eq. (11). The 
motivation is that connections "pay" the connections that 
activate them. 

H ( x )  = 1 for  x > 0, H ( x )  = 0 for x < 0, the inpu t  

connec t ions  gain  s t rength according  to 

xj  
Awij = -~  ~., wykH( xjwjk - 0) ,  (9)  

k 

Awjk = - xjwjI, H ( xjwjk - 0 ), (10) 

where  

Awij = wi j ( t  + 1) - wij( t  ) . (11)  

Al l  the quant i t i es  on the r igh t -hand  side are 

eva lua ted  at  t ime t. 

This  is on ly  one of  several var iants  of  the bucke t  

b r i ga de  lea rn ing  a lgor i thm;  for d iscuss ion of  o ther  

poss ib i l i t ies  see ref. [10]. 

In  o rde r  to learn,  the system must  receive 

f eedback  a b o u t  the qual i ty  of its pe r fo rmance  .5. 

To p rov ide  f eedback  abou t  the overal l  pe r fo rmance  

#5It is clearly important to maintain an appropriate distri- 
bution of strength within a classifier system, which does not 
overly favor input or output classifiers and which can set up 
chains of appropriate associations. Strength is added to classi- 
tiers that participate in good outputs, and then the bucket 
brigade causes a local transfer of feedback, in the form of 
connection strength, from outputs to inputs. This is further 
complicated by the recursive structure of classifier systems, 
which corresponds to loops in the graph. Maintaining an 
appropriate gradient of strength from outputs to inputs has 
proved to be a difficult issue in classifier systems. 

of  the system, the ou tpu t  connec t ions  of  the sys- 

tem, or  the effectors, are  given s t rength  accord ing  

to the qua l i ty  of  their  ou tputs .  Judgemen t s  as to 

the qua l i ty  mus t  be  m a d e  accord ing  to a predef ined  

eva lua t ion  funct ion.  To  p reven t  the sys tem f rom 

accumula t ing  useless classifiers, causing i so la ted  

connect ions ,  there  is an ac t iv i ty  tax which a moun t s  

to a d i s s ipa t ion  term. Put t ing  all of  these effects 

together  and  fo l lowing ref. [21] we can  wri te  the 

bucke t  b r igade  dynamics  ( the lea rn ing  rule) as 

mwij~_ 1 m E xjwjkI4(xjw,  k - o)  
k 

- x iw i jH (xiwijO) 

+ x i P (  t ) + kwij, (12) 

where  k is the d i s s ipa t ion  ra te  for the ac t iv i ty  tax, 

and  P ( t )  is the eva lua t ion  func t ion  for ou tpu t s  at  

t ime t. 

Graph dynamics. The  g raph  d y n a m i c s  occurs  

th rough  m a n i p u l a t i o n s  of  the g raph  r ep resen ta t ion  

(the classifier rules) th rough  genet ic  a lgor i thms 

such as po in t  m u t a t i o n  and  crossover.  These  

ope ra t ions  are s tochas t ic  and  are h ighly  nonloca l ;  

they preserve  ei ther  the  inpu t  or  ou tpu t  of  each 

connect ion ,  bu t  the o ther  pa r t  can  move  to a very 

different  pa r t  of  the graph.  The  app l i ca t ion  of  

these ope ra to r s  genera tes  new connect ions ,  which 

is usual ly  a c c o m p a n i e d  b y  the remova l  of  o ther  

connect ions .  

4.3. An example 

A n  example  makes  the g raph- theore t i c  view of  

classifier sys tems clearer .  F o r  example ,  cons ider  

the classic p r o b l e m  of  exclusive-or.  (See also ref. 

[9].) The  exclusive-or  func t ion  is 0 if bo th  inputs  

are the same and  1 if  bo th  inpu t s  are  different.  

The  s t a n d a r d  neura l  net  so lu t ion  of  this p r o b l e m  

is easi ly i m p l e m e n t e d  with  three  classifiers: 

(i) 0 #  -+ 10: + 1 ;  

(ii) 0 #  ---, 11: + 1 ;  

(iii) 10 ---, 11: - 2 .  
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Table 1 
A wave of activity caused by the inputs (1,1) is shown. The 
numbers from left to right are the intensifies on successive 
iterations. Initially the two input messages have intensity 1, 
and the others are 0. The input messages activate messages 
10 and 11, and then 10 switches 11 off. For the input (0,0), in 
contrast, the network immediately settles to a fixed point 
with the intensities of all the nodes at zero. 

node intensity 

O0 1 1 1 1 
O1 1 1 1 1 
10 0 1 1 1 
11 0 1 0 0 

Fig. 5. A classifier network implementing the exclusive-or in 
standard neural net fashion. The binary numbers, which in 
classifier terms would be messages on the message fist, label the 
nodes of the network. 

(The number after the colon is w = strength × 

specificity.) Although there are only three classi- 

fiers, because of the # symbols they make five 

connections, as shown in fig. 5. 

With this representation the node 00 represents 

one of the inputs, and 01 represents the other 

input; the state of each input is its intensity. If 

both inputs are 1, for example, then nodes 00 and 

01 become active, in other words, they have inten- 

sity > 0, which is equivalent to saying that the 

messages 00 and 01 are placed on the message list. 

Assume that we use the support rule, eq. (8), that 

outputs occur when the activity on the message 
list settles to a fixed point, and that the message 

list is large enough to accommodate at least four 

messages. An example illustrating how the compu- 
tation is accomplished is shown in table 1. 

This example is unusual from the point of view 
of common classifier system practice in several 
respects. (1) The protocol of requiring that the 
system settle to a fixed point in order to make an 
output. A more typical practice would be to make 

an output whenever one of the output classifiers 
becomes active. (2) The message list is rather large 

for the number of classifiers, so the threshold is 
never used. (3) There are no recursive connections 
(loops in the graph). 

There are simpler ways to implement exclusive- 
or with a classifier system. For example, if we 

change the input protocol and let the input mes- 

sage be simply the two inputs, then the classifier 

system can solve this with four classifiers whose 

action parts are the four possible outputs. This 

always solves the problem in one step with a 

message list of length one. Note that in network 

terms this corresponds to unary inputs, with the 

four possible input nodes representing each possi- 

ble input configuration. While this is a cumber- 

some way to solve the problem with a network, it 
is actually quite natural with a classifier system. 

4. 4. Comparison of  classifiers and neural networks 

There are many varieties of classifier systems 

and neural networks. Once the classifier system is 

described in connectionist terms, it becomes dif- 

ficult to distinguish between them. In practice, 
however, there are significant distinctions between 
neural nets as they are commonly used and classi- 
fier systems as they are commonly used. The appro- 
priate distinction is not between classifiers and 

neural networks, but rather between the two de- 

sign philosophies represented by the typical imple- 
mentations of connectionist networks within the 

classifier system and neural net communities. A 
comparison of classifier systems and neural net- 
works in a common language illustrates their 
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differences more clearly and suggests a natural 
synthesis of the two approaches. 

Graph topology and representation. The connection 
list graph representation of the classifier system is 
efficient for sparse graphs, in contrast to the 
connection matrix representation usually favored 
by neural net researchers. This issue is not critical 
on small problems that can be solved by small 
networks which allow the luxury of a densely 
connected graph. On larger problems, use of a 
sparsely connected graph is essential. If a large 
problem cannot be solved with a sparsely connec- 
ted network, then it cannot feasibly be  imple- 
mented in hardware or on parallel machines where 
there are inevitable constraints on the number of 
connections to a given node. 

To use a sparse network it is necessary to 
discover a network topology suited to a given 
problem. Since the number of possible network 
topologies is exponentially large, this can be 
difficult. For a classifier system the sparseness of 
the network is controlled by the length of each 
message, and by the number of classifiers and 
their specificity. Genetic algorithms provide a 
means of discovering a good network, while 
maintaining the sparseness of the network 
throughout the learning process. (Of course, there 
may be problems with convergence time.) For 
neural nets, in contrast, the most commonly used 
approach is to begin with a network that is fully 
wired across adjacent layers, train the network, 
and then prune connections if their weights decay 
to zero. This is useless for a large problem because 
of the dense network that must be present at the 
beginning. 

The connection list representation of the clas- 
sifier system, which can be identified with that of 
production systems, potentially makes it easier to 
incorporate prior knowledge. For example, Forrest 
has shown that the semantic networks of KL-One 
can be mapped into a classifier system [23]. On the 
other hand, another common form of prior 
knowledge occurs in problems such as vision, when 
there are group invariances such as translation 

and rotation symmetry. In the context of neural 
nets, Giles et al. [25] have shown that such invari- 
ances can be hard-wired into the network by re- 
stricting the network weights and connectivity 
in the proper manner. This could also be done 
with a classifier system by imposing appropriate 
restrictions on the rules produced by the genetic 
algorithm. 

Transition rule. Typical implementations of the 
classifier system apply a threshold to each input 
separately, before it is processed by the node, 
whereas in neural networks it is more common to 
combine the inputs and then apply thresholds and 
activation functions. It is not clear which of these 
approaches is ultimately more powerful, and more 
work is needed. 

Most implementations of the classifier system 
are restricted to either linear threshold activation 
functions or maximum input activation functions. 
Neural nets, in contrast, utilize a much broader 
class of activation functions. The most common 
example is probably the sigmoid, but in recent 
work there has been a move to more flexible 
functions, such as radial basis functions [11, 13, 
47, 54] and local linear functions [22, 35, 68]. 
Some of these functions also have the significant 
speed advantage of linear learning rules ~6. In 
smooth environments, smooth activation functions 
allow more compact representations. Even in en- 
vironments where a priori it is not obvious the 
smoothness plays a role, such as learning Boolean 
functions, smooth functions often yield better 
generalization results and accelerate the learning 
process [68]. Implementation of smoother activa- 
tion functions may improve performance of 
classifier systems in some problems. 

Traditionally, classifier systems use a threshold 
computed on each time step in order to keep the 
number of active nodes below a maximum value. 
Computation of the threshold in this way requires 

'~6Linear learning rules are sometimes criticized as "not  
local". Linear algorithms are, however, easily implemented in 
parallel by systolic arrays, and converge in logarithmic time. 
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a global computation that is expensive from a 
connectionist point of view. Future work should 
concentrate on constant or locally defined 
thresholds. 

From a connectionist point of view, classifiers 
with the # symbol correspond to multiple 
connections constrained to have the same strength. 
There is no obvious reason why their lack of 
specificity should give them less connection 
strength. This intuition seems to be borne out in 
numerical experiments using simplified classifier 
systems [66]. 

Learning rule. The classifier system traditionally 
employs the bucket brigade learning algorithm, 
whose feedback is condensed into an overall 
performance score. In problems where there is 
more detailed feedback, for example a set of known 
input-output  pairs, the bucket-brigade algorithm 
fails to use this information. This, combined with 
the lack of smoothness in the activation function, 
causes it to perform poorly in problems such as 

Liqht chain f Poratope 
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Fig. 6. A schematic representation of the structure of an anti- 
body, an antibody as we represent it in our model, and a 
B-lymphocyte with antibodies on its surface that function as 
antigen detectors. 

learning and forecasting smooth dynamical sys- 
tems [55]. Since there are now recurrent 
implementations of back-propogation [53], it 
makes sense to incorporate this into a classifier 
system with smooth activation functions, to see 
whether this gives better performance on such 
problems [9]. 

For problems where there is only a performance 
score, the bucket brigade is more appropriate. 
Unfortunately, there have been no detailed com- 
parisons of the bucket brigade algorithm against 
other algorithms that use "learning with a critic". 
The form of the bucket brigade algorithm is 
intimately related to the activation dynamics, in 
that the size of the connection strength transfers 
are proportional to the size of the input activation 
signal (the bid). Although coupling of the con- 
nection strength dynamics to the activation 
dynamics is certainly necessary for learning, it is 
not clear that the threshold activation level is the 
correct or only quantity to which the learning 
algorithm should be coupled. Further work is 
needed in this area. 

5. Immune networks 

5.1. Background 

The basic task of the immune system is to 
distinguish between self and non-self, and to 
eliminate non-self. This is a problem of pattern 
learning and pattern recognition in the space of 
chemical patterns. This is a difficult task, and the 
immune system performs it with high fidelity, with 
an extraordinary capacity to make subtle distinc- 
tions between molecules that are quite similar. 

The basic building blocks of the immune system 
are antibodies, " y "  shaped molecules that serve as 
identification tags for foreign material; lympho- 
cytes, cells that produce antibodies and perform 
discrimination tasks; and macrophages, large cells 
that remove material tagged by antibodies. Lym- 
phocytes have antibodies attached to their surface 
which serve as antigen detectors. (See fig. 6.) For- 
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eign material is called antigen. A human contains 
roughly 10 20 antibodies and 1012 lymphocytes, 
organized into roughly 10 s distinct types, based on 
the chemical structure of the antibody. Each lym- 
phocyte has only one type of antibody attached to 
it. Its type is equivalent to the type of its attached 
antibodies. The majority of antibodies are free 
antibodies, i.e. not attached to lymphocytes. The 
members of a given type form a clone, i.e. they are 
chemically identical. 

The difficulty of the problem solved by the 
immune system can be estimated from the fact 
that mammals have roughly 105 genes, coding for 
the order of 105 proteins. An antigenic determi- 
nant is a region on the antigen that is recognizable 
by an antibody. The number of antigenic determi- 
nants on a protein such as myoglobin is the order 
of 50, with 6 -8  amino acids per region. We can 
compare the difficulty of telling proteins apart to a 
more familar task by assuming that each antigenic 
determinant is roughly as difficult to recognize as 
a face. In this case the pattern recognition task 
performed by the immune system is comparable to 
recognizing a million different faces. A central 
question is the means by which this is accom- 
plished. Does the immune system function as a 
gigantic look up table, like a neural network with 
billions of "grandmother cells"? Or, does it have 
an associative memory with computational capa- 
bilities? 

The argument given above neglects the impor- 
tant fact that there are 105 distinct proteins only if 
we neglect the immune system. Each antibody is 
itself a protein, and there are 10 s distinct anti- 
body, which appears to be a contradiction: How 
do we generate l0  s antibody types with only 105 
genes? The answer lies in combinatorics. Each 
antibody is chosen from seven gene segments, and 
each gene segment is chosen from a "family" or 
set of possible variants. The total number of possi- 
ble antibody types is then the product of the sizes 
of each gene family. This is not known exactly, 
but is believed to be on the order of 107-108 . 
Additional diversity is created by somatic muta- 
tion. When the lymphocytes replicate, they do so 

with an unusually large error rate in their anti- 
body genes. Although it is difficult to estimate the 
number of possible types precisely, it is probably 
much larger than the number of types that are 
actually present in a given organism. 

The ability to recognize and distinguish self is 
learned. How the immune system accomplishes 
this task is unknown. However, it is clear that one 
of the main tools the immune system uses is clonal 
selection. The idea is quite simple: A particular 
lymphocyte can be stimulated by a particular anti- 
gen if it has a chemical reaction with it. Once 
stimulated it replicates, producing more lympho- 
cytes of the same type, and also secreting free 
antibodies. These antibodies bind to the antigen, 
acting as a " tag"  instructing macrophages to re- 
move the antigen. Lymphocytes that do not recog- 
nize antigen do not replicate and are eventually 
removed from the system. 

While clonal selection explains how the immune 
system recognizes and removes antigen, it does 
not explain how it distinguishes it from self. From 
both experiments and theoretical arguments, it is 
quite clear that this distinction is learned rather 
than hard-wired. Clonal selection must be sup- 
pressed for the molecules of self. How this actu- 
ally happens is unknown. 

A central question for self-nonself discrimina- 
tion is: Where is the seat of computation? It is 
clear that a significant amount of computation 
takes place in the lymphocytes, which have a 
sophisticated repertoire of different behaviors. It is 
also clear that there are complex interactions be- 
tween lymphocytes of the same type, for example, 
between the different varieties of T-lymphocytes 
and B-lymphocytes. These interactions are partic- 
ularly strong during the early stages of develop- 
ment. 

Jerne proposed that a significant component of 
the computational power of the immune system 
may come from the interactions of different types 
of antibodies and lymphocytes with each other [33, 
34]. The argument for this is quite simple: Since 
antibodies are after all just molecules, then from 
the point of view of a given molecule other 
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molecules are effectively indistinguishable from 
antigens. He proposed that much of the power of 
the immune system to regulate its own behavior 
may come from interacting antibodies and lym- 
phocytes of many different types .7. 

There is good experimental evidence that net- 
work interactions take place, particularly in young 
animals. Using the nomenclature that an antibody 
that reacts directly with antigen AB1, an antibody 
that reacts directly with AB1 is AB2, etc., antibod- 
ies in categories as deep as AB4 have been ob- 
served experimentally #8. Furthermore, rats raised 
in sterile environments have active immune sys- 
tems, with activity between types. Nonetheless, the 
relevance of networks in immunology is highly 
controversial. 

5.2. Connectionist models of the immune system 

While Jerne proposed that the immune system 
could form a network similar to that of the ner- 
vous system, his proposal was not specific. Early 
work on immune networks put this proposal into 
more quantitative terms, assuming that a given 
AB1 type interacted only with one antigen and 
one other AB2 type. These interactions were mod- 
eled in terms of simple differential equations whose 
three variables represented antigen, AB1, and AB2 
[56, 28]. A model that treats immune interactions 
in a connectionist network #9, allowing interac- 
tions between arbitrary types, was proposed in ref. 
[21]. The complicated network of chemical inter- 
actions between different antibody types, which 
are impossible to model in detail from first princi- 
ples, was taken into account by constructing an 
artificial antibody chemistry. Each antigen and 
antibody type is assigned a random binary string, 
describing its "chemical properties". Chemical in- 
teractions are assigned based on complementary 

~TSuch networks are often called idiotypic networks. 
*~SThis classification of antibodies should not be confused 

with their type; a given type can simultaneously be AB1 and 
AB2 relative to different antigens, and many different types 
may be AB1. 

#gAnother connectionist model with a somewhat different 
philosophy was also proposed by Hoffmann et al. [29]. 

matching between strings. The strength of a chem- 
ical reaction is proportional to the length of the 
matching substrings, with a threshold below which 
no reaction occurs. Even though this artificial 
chemistry is unrealistic in detail, hopefully it cor- 
rectly captures some essential qualitative features 
of real chemistry. 

A model of gene shuffling provides metady- 
namics for the network. This is most realistically 
accomplished with a gene library of patterns, 
mimicking the gene families of real organisms. 
These families are randomly shuffled to produce 
an initial population of antibody types. This gives 
an initial assignment of chemical reactions, 
through the matching procedure described above, 
including rate constants and other parameters #1°. 
Kinetic equations implement clonal selection; 
some types are stimulated by their chemical reac- 
tions, while others are suppressed. Types with no 
reactions are slowly flushed from the system so 
that they perish. Through reshuffling of the gene 
library new types are introduced to the system. It 
is also possible to stimulate somatic mutation 
through point mutations of existing types, propor- 
tional to their rate of replication. 

It is difficult to model the kinetics of the im- 
mune system realistically. There are five different 
classes of antibodies, with distinct interactions 
and properties. There are different types of lym- 
phocytes, including helper, killer and supressor 
T-cells, which perform regulatory functions, as 
well as B-cells, which can produce free antibodies. 
All of these have developmental stages, with dif- 
ferent responses in each stage. Chemical reactions 
include cell-cell, antibody-antibody, and cell-an- 
tibody interactions. Furthermore, the responses of 
cells are complicated and often state dependent. 
Thus, any kinetic equations are necessarily highly 
approximate, and applicable to only a subset of 
the phenomena. 

In our original model we omitted T-cells, treat- 
ing only B-cells. (This can also be thought of as 

~*l°The genetic operations described here are more sophisti- 
cated than those actually used in ref. [21]; more realistic 
mechanisms have been employed in subsequent work [50, 17, 
18]. 
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modeling the response to certain polymeric anti- 
gens, for which T-cells seem to be irrelevant.) We 
assumed that the concentration of free antibodies 
is in equilibrium with the concentration of lym- 
phocytes, so that their populations can be lumped 
together into a single concentration variable. Since 
the characteristic time scale for the production of 
free antibodies is minutes or hours, while that of 
the population of lymphocytes is days, this is a 
good approximation for some purposes. It turns 
out, however, that separating the concentration of 
lymphocytes and free antibodies and considering 
the cell-cell, antibody-antibody, and cell-anti- 
body reactions separately give rise to new phe- 
nomena that are important for the connectionist 
view. In particular, this generates a more interest- 
ing repertoire of steady states, including "mildly 
excited" self-stimulated states suggestive of those 
observed in real immune systems [50, 17, 18]. 

5.3. Comparison to a generic network 

As with classifier systems and neural networks, 
there are several varieties of immune networks [21, 
17, 29, 64], and it is necessary to choose one in 
order to make a comparison. The model described 
here is based on that of Farmer, Packard and 
Perelson [21], with some modifications due to later 
work by Perelson [50] and De Boer and Hogeweg 
[17]. Also, since this model only describes B-cells, 
whenever necessary I will refer to it as a B-cell 
network, to distinguish it from models that also 
incorporate the activity of T-cells. 

To discuss immune networks in connectionist 
terms it is first necessary to make the appropriate 
map to nodes and connections. The most obvious 
mapping is to assign antibodies and antigens to 
nodes. However, since antibodies and antigens 
typically have more than one antigenic determi- 
nant, and each region has a distinct chemical 
shape .11, we could also make the regions (or 

*11"Chemical shape" here means all the factors that influ- 
ence chemical properties, including geometry, charge, polariza- 
tion, etc. 

chemical shapes) the fundamental variable. Since 
all the models discussed above treat the concentra- 
tion of antibodies and lymphocytes as the funda- 
mental variables, I shall make the identification at 
this ]level. This leads to the following connectionist 
description: 

~odes correspond to antibodies, or more accur- 
ately, to distinct antibody types. Antigens are 
anolher type of node with different dynamics; 
from a certain point of view the antigen concen- 
trations may be regarded as the input and output 
nodes of the network #12. The free antibody con- 
centrations, which can change on a rapid time 
scale, are the states of the nodes. They are the 
immediate indicators of information processing in 
the network. The lymphocyte concentrations, 
which change on an intermediate time scale, are 
node parameters. (Recall that there is a one-to-one 
correspondence between free antibody types and 
lymphocyte types.) Changes in lymphocyte 
concentration are the mechanism for learning in 
the network. 

Connections. The physical mechanisms which 
cause connections between nodes are chemical 
reactions between antibodies, lymphocytes, and 
antigens. The strength of the connections depends 
on the strength of the chemical reactions. This is 
in part determined by chemical properties, which 
are fixed in time, and in part by the concentrations 
of the antibodies, lymphocytes, and antigens, 
which change with time. Thus the instantaneous 
connection strength changes in time as conditions 
change in the network. The precise way of 
representing and modeling the connections is 
explained in more detail in the following. 

Graph representation. To model the notion of 
"chemical properties" we assign each antibody 
type a binary string. To determine the rate of the 
chemical reaction between type i and type j, the 
binary string corresponding to type i is compared 

#12Future models should include chemical types identified 
with self as yet another type of node. 
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to binary string corresponding to type j. A match 
strength matrix mij  is assigned to this connection, 
which depends on the degrees of complementary 
matching between the two strings. Types whose 
strings have a high degree of complementary 
matching are assigned large reaction rates. Since 
the matching algorithm is symmetric #13 mij  = mji. 

There is a threshold for the length of the 
complementary matching region below which we 
assume that no reaction occurs and set mij  = O. 

Since mq is the connection matrix of the graph, 
s e t t i n g  m i j =  0 amounts to deleting the corres- 
ponding connection from the graph. We thus 
neglect reactions that are so weak that they have 
an insignificant effect on the behavior of the 
network. The match threshold together with 
the length of the binary strings determines the 
sparseness of the graph. When the system is sparse 
the matrix mij can be represented in the form of a 
connection list. The match strength for a given 
pair of immune types does not change with time. 
However, as new types are added or deleted from 
the system, the mij  that are relevant to the types 
in the network change. 

The graph dynamics provides a mechanism of 
learning in the immune system; as new types are 
tested by clonal selection, the graph changes, and 
the system "evolves". Another mechanism for 
dynamical learning depends on the lymphocyte 
concentrations, as discussed below. 

Dynamics. The mq are naturally identified as 
connection parameters for the network. For any 
given i and j,  however, the m~j are fixed. Thus, in 
B-cell immune networks the parameter dynamics, 
analogous to the learning rule in neural networks, 
occurs not by changing connection parameters, 
but rather by changing the lymphocyte concen- 
tration, which is a parameter node. The net 
reaction flux (or strength of the reaction) is a 
nonlinear function of the lymphocyte concen- 

**13In our original paper [21] we also considered the case of 
asymmetric interactions. However, this is difficult to justify 
chemically, and it is probably safe to assume that the connec- 
tions are symmetric [28]. 

trations. Thus changing the lymphocyte concen- 
tration changes the effective connection strength. 
This is a fundamental difference between neural 
networks and B-cell immune networks; while the 
connection strength is changeable in both cases, in 
B-cell immune networks all the connection 
strengths to a given node change in tandem as the 
lymphocyte concentration varies. However, since 
the reaction rates are nonlinear functions, a change 
in lymphocyte concentration may affect each con- 
nection differently, depending on the concentration 
of the other nodes. 

The dynamics of the real immune system are 
not well understood. The situation is similar to 
that of neural networks; we construct simplified 
heuristic immune dynamics based on a combina- 
tion of chemical kinetics and experimental 
observations, attempting to recover some of the 
phenomena of real immune systems. The real 
complication arises because lymphocytes are cells, 
and understanding their kinetics requires under- 
standing how they respond to stimulation and 
suppression by antigens, antibodies, and other 
cells. At this point our understanding of this is 
highly approximate and comes only from 
experimental data. The kinetic equations used in 
our original paper were highly idealized [21]. The 
more realistic equations quoted here are due to De 
Boer and Hogeweg #14 [17]. 

Let i label the nodes of the system, x i the 
concentration of antibodies, and #i the concen- 
tration of lymphocytes #15. The amount of 
stimulation received by lymphocytes of type i is 
approximated as 

s, = Y'~mijx j. (13) 
J 

The rate of change of antibody concentration is 

#14More realistic equations have also been proposed by 
Segel and Perelson [61], Perelson [51, 50], and Varela et al. [64]. 

#15Note that I use 8 to represent lymphocytes because they 
play the role of node parameters. However, they are not 
thresholds, but rather quantities whose primary function is to 
modify connection strength. 
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due to production by lymphocytes, removal from 
the system, and binding with other antibodies. 
The equations are 

d x  i 
a t  = o f f ( s , )  - kx~ - cx ,s , .  (14) 

k is a dissipation constant and c the binding 
constant, f is a function describing the degree of 
stimulation of a lymphocyte. Experimental obser- 
vations show that f is bell-shaped. A function 
with this rough qualitative behavior can be 
constructed by taking the product of a sigmoid 
with an inverted sigmoid, for example 

z k  2 
f ( z ) =  (k  x + z ) ( k 2 + z  ) .  (15) 

The product ion of lymphocytes is due to 
replenishment by the bone marrow, cell replica- 
tion, and removal from the system. The equations 
a r e  

dO, 
- r + p O J ( s , )  - kO~. (16) 

d t  

r is the rate of replenishment and p is a rate 
constant for replication. 

5.4. Compar i son  to neural  ne tworks  and  classifier 

s y s t ems  

There are significant differences between the 
dynamics of immune networks and neural net- 
works. The most obvious is in the form of the 
transition and learning rules. The nodes of the 
immune network are activated by a bell-shaped 
function rather than a sigmoid function. Since the 
bell-shaped function undergoes an inflection and 
its derivative changes sign, the dynamics are po- 
tentially more complicated. 

B-cell immune networks differ from neural net- 
works in that there is no variable which acts as a 

connection parameter. Instead, the connection 
strength is indirectly determined by the node pa- 
rameters (concentrations and kinetic equations). 
The instantaneous connection strength is 

3x j  - [ Oi f ' (  s i )  - cxi] miJ  - csi - k 3 i j '  (17) 

where 3ij = 0 for i 4:j, 8,  = 1. All of the terms in 
this equation except for f '  are greater than or 
equal to zero. For  low values of s i, f ' ( s , )  > 0, but 
for large values of s i, f ' ( s i )  < 0. Given the struc- 
ture of these equations, as s~ increases, at some 
point before f reaches a maximum, all the connec- 
tions to a given node change from excitatory to 
inhibitory. The point at which this happens de- 
pends on the lymphocyte concentration of i, the 
antibody concentration, the concentration of the 
other antibodies, and on the exact form of the 
stimulation function. Thus, in contrast to neural 
networks or the classifier system, a given connec- 
tion can be either excitatory or inhibitory depend- 
ing on the state of the system. 

The connections in the immune system are 
chemical reactions. Insofar as the immune system 
is well stirred, this allows a potentially very large 
connectivity, as high as the number of different 
chemical types a given type can react with. In 
practice, t h e  number of types that a given type 
reacts with can be as high as about 1000. Thus, the 
connectivity of real immune networks is appar- 
ently of the same order of magnitude as that of 
real neural networks. 

One of the central differences between the B-cell 
immune networks and neural or classifier net- 
works is that for the immune system there are no 
independent parameters on the connections. If the 
average strength of a connection to a given node 
cannot be adjusted independently of that of other 
nodes, the learning capabilities of the network 
may be much weaker or more inefficient than 
those of networks where the connection parame- 
ters are independent. As discussed in section 5.5, 
this may be altered by the inclusion of T-cells in 
the models. 
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5. 5. Directions for future research 

Whether immune networks are a major compo- 
nent of the computational machinery of the im- 
mune system is a subject of great debate. The 

analogy between neural networks and immune 
networks suggests that immune networks poten- 
tially possess powerful capabilities, such as asso- 
ciative memory,  that could be central to the 
functioning of the immune system. However, be- 
fore this idea can reach fruition we need more 
demonstrat ions of what immune networks can do. 
At this point the theory of immune networks is 
still in its infancy and their utility remains an 

open question. 
The immune network may be able to perform 

tasks that would be impossible for individual cells. 

Cons ider ,  for example, a large antigen such as a 
bacterium with many distinct antigenic determi- 

nants. If  each region is chemically distinct, a sin- 
gle type can interact with at most a few of them 
(and thus a single cell can interact with at most a 
few of them). Network interactions, in contrast, 
potentially allow different cells and cell types to 
communicate  with each other and make a collec- 
tive computat ion to reinforce or suppress each 
o the r ' s  immune responses. For example, suppose 
A, B, C and D are active sites. It might be useful 
for a network to implement an associative mem- 
ory rule such as: If any three of A, B, C, and D 
are present, then generate an immune response; 

otherwise do not. Such an associative memory 
requires the capability to implement a repertoire 

of Boolean functions. A useful rule might be: 
"Genera te  an immune response if active site A is 
present, or active site B ispresent, but not if both 
are present simultaneously". Such a rule, which is 
equivalent to taking the exclusive-or function of A 
and B, might be useful for implementing self 
tolerance. Such logical rules are easily imple- 
mented by networks. It is difficult to see how they 
could be implemented by individual cells acting 

on their own. 
Immune  memory  is another task in which net- 

works may play an essential role. Currently the 

prevailing belief is that immune memory  comes 
about because of special memory cells. It  is cer- 
tainly true that some cells go into developmental 

states that are indicative of memory.  Although the 
typical lifetime of a lymphocyte is about five days, 
there are some lymphocytes that have been 

demonstrated to persist for as long as a month. 
This is a far cry, however, from the eighty or more 
years that a human may display an immune mem- 
ory. Since cells are normally flushed from the 
system at a steady rate, it is difficult to believe that 
any individual cell could last this long. It is only 
the type, then, that persists, but in order to achieve 
this individual cells must periodically replicate 
themselves. However, in order to hold the popula- 
tion stable the replication rate must be perfectly 
balanced against the removal rate. This is an un- 

stable process unless there is feedback holding the 
population stable. It  is difficult to see how feed- 
back on the population size can be given unless 

there are network interactions. 
In an immune network a memory  can poten- 

tially be modeled by a fixed point of the network. 
The concentrations at the fixed point are held 
constant through the feedback of one type to 
another type. Models of the form of eqs. (14) and 
(16) contain fixed points that might be appropri-  
ate for immune memory.  However, it is clear from 
experiments that T-cells are necessary for mem- 
ory, and so must be added to immune networks to 

recover this effect. 
T-cells are a key element missing from most 

current immune network models. T-cells play an 
important  role in stimulating or suppressing reac- 
tions between antibodies and antigens, and are 
essential to immune memory.  From the point of 
view of learning in the network, they may also 
indirectly act as specific connection parameters.  

One of the most interesting activities of the 
immune system is "ant igen presentation". When a 
B-cell or macrophage reacts with an antigen it 
may process it, discarding all but the antigenic 
determinants. It then presents the antigenic deter- 
minant  on its surface (as a peptide bound to an 
M H C  molecule). The T-cell reacts with the anti- 
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genic determinant and the B-cell, and based on 
this information may either stimulate or suppress 
the B-cell. Note that antigen presentation provides 
information about both the B-cell and an antigen, 
and thus potentially about a specific connection in 
the network. 

In a connectionist model, this may amount to a 
connection strength parameter; a B-cell presenting 
a given active site contains information that is 
specific to two nodes, one for the B-cell of the 
same type as the T-cell, and one for the antigen 
whose active site is being presented (which may 
also be another antibody). Due to their interac- 
tions with T-cells, the B-cell populations of type i 
presenting antigenic determinants from type j may 
play the roles of the connection parameters wij. 

At this point, it is not clear how strongly the 
absence of explicit connection parameters limits 
the computational and learning power of immune 
networks. However, it seems likely that before 
they can realize their full potential, connection 
parameters must be included, taking into account 
the operation of T-cells. T-cells act like catalysts, 
either suppressing or enhancing reactions. Since 
catalytic activity is one of the primary tools used 
to implement the internal functions of living or- 
ganisms, it is not surprising that it should play a 
central role in the immune system as well. Auto- 
catalytic activity is discussed in more detail in 
section 6. 

6. Autocatalytic networks 

6.1. Background 

All the models discussed so far are designed to 
perform learning tasks. The autocatalytic network 
model of this section differs in that it is designed 
to solve a problem in evolutionary chemistry. Of 
course, evolution may also be regarded as a form 
of learning. Still, the form that learning takes in 
autocatalytic networks is significantly different 
from the other models discussed here. 

The central goal of the autocatalytic network is 
to solve a classic problem in the origin of life, 

namely, to demonstrate an evolutionary pathway 
from a soup of monomers to a polymer metabolism 
with selected autocatalytic properties, which in 
turn could provide a substrate for the emergence 
of contemporary (or other) life forms. When Miller 
and Urey discovered that amino acids could be 
synthesized de novo from the hypothetical primor- 
dial constituents "earth, fire and water" [45], it 
seemed but a small step to the synthesis of poly- 
mers built out of amino acids (polypeptides and 
proteins). It was hoped that RNA and DNA could 
be created similarly. However, under normal cir- 
cumstances longer polymers are not favored at 
equilibrium. Living systems, in contrast, contain 
DNA, RNA, and proteins, specific long polymers 
which exist in high concentration. They are main- 
tained in abundance by their symbiotic relation- 
ship with each other: Proteins help replicate RNA 
and DNA, and DNA and RNA help synthesize 
proteins. Without the other, neither would exist. 
How did such a complex system ever get started, 
unless there were proteins and RNA to begin 
with? The question addressed in refs. [36, 20, 8] is: 
Under what circumstances can the synthesis of 
specific long polymers be achieved beginning with 
simple constituents such as monomers and dimers? 

The model here applies to any situation in which 
unbranched polymers are built out of monomers 
through a network of catalytic activity. The 
monomers come from a fixed alphabet, a, b, c , . . .  
They form one-dimensional chains which are rep- 
resented as a string of monomers, acabbacbc.. .  
The monomer alphabet could be the twenty amino 
acids, or it could equally well be the four nu- 
cleotides. This changes the parameters but not the 
basic properties of the model. The model assumes 
that the polymers have catalytic properties, i.e. 
that they can undergo reactions in which one 
polymer catalyzes the formation of another. If A, 
B, C, and E are polymers, and H is water, then the 
basic reaction is: 

E 
A + B # C + H ,  (18) 

where E is written over the arrows to indicate that 
it catalyzes the reaction. 



176 J.D.  F a r m e r / A  Rosetta Stone fo r  connectionism 

Our purpose is to model a chemostat, a reaction 
vessel into which monomers are added at a steady 
rate. The chemical species that are added to the 
chemostat are called the food set. We assume that 
the mass in the vessel is conserved, for example, 
by simply letting the excess soup overflow. For 
convenience we assume that the soup is well 
stirred, so that we can model it by a system of 
ordinary differential equations. 

In any real system it is extremely difficult to 
determine from first principles which reactions 
will be catalyzed, and with what affinity. Very few 
if any of the relevant properties have been mea- 
sured experimentally in any detail, and the num- 
ber of measurements or computations that would 
have to be made in order to predict all the chemi- 
cal properties is hopelessly complex. Our ap- 
proach is to invent an artificial chemistry and 
attempt to make its properties at least qualita- 
tively similar to those of a real chemical system. 
Actually we use one of two different artificial 
chemistries, based on two different principles: 

(i) Random assignment of catalytic properties. 
(ii) Assignment of catalytic properties based on 

string matching. 
These two simple artificial chemistries lie on the 

borders of extreme behavior in real chemistry. In 
some cases, we know that changing one monomer 
can have a dramatic effect on the chemical proper- 
ties of a polymer, either because it causes a drastic 
change in the configuration of the polymer or 
because it alters a critical site. If this were always 
the case, then random chemistry would be a rea- 
sonable model. 

In other cases, changing a monomer has only a 
small effect on the chemical properties. Our string 
matching model is closer to this case; altering a 
single monomer will only change the quality of 
matching between two strings by an incremental 
amount, and should never cause a dramatic alter- 
ation in the chemical properties of the polymer. 

Another difficulty of modeling real chemistry is 
that there is an extraordinarily large number of 
possible reactions. In a vessel with all polymers 
of length l or less, for example, the total number 

of polymer species is x~i=t" t where m is the ~..,i--1 eft , 

number of distinct monomers. For example, with 
m = 20 and l = 100, the number of polymer species 
is in excess of 201°° , an extremely large number, 
and the number of possible reactions is still larger 
than this. To get around this problem, to first 
approximation, we neglect spontaneous reactions, 
and assume that the catalytic properties are suf- 
ficiently strong that all catalyzed reactions are 
much faster than spontaneous reactions #16. 

Once we have assigned chemical properties, we 
can represent the network of catalyzed chemical 
reactions as a graph, or more precisely, as a poly- 
graph with two types of nodes and two types of 
connections [20]. Because of catalysis the graph 
must be more complicated than for any of the 
other networks discussed so far. An example is 
shown in fig. 7. One type of node is labeled by 
ovals containing the string representation of the 
polymer species. The other type of node corre- 
sponds to catalyzed reactions, and is labeled by 
black dots. The dark black connections are undi- 
rected (because the reactions are reversible), and 
connect each reaction to the three polymer species 
that participate in it; the dotted connections are 
directed, and connect the reaction to its catalysts. 
All the edges connect polymers to reactions, and 
each reaction has at least four connections, three 
connections for the reaction products and one or 
more for the catalyst(s). In this illustration we 
have labeled the members of the food set by 
double ovals. 

If we use the random method of assigning 
chemical properties, then the graph is a random 
graph and can be studied using standard tech- 
niques. The probability p that a reaction selected 
at random will be catalyzed controls the ratio of 
connections to nodes. As p increases so does this 

#16In more recent work [7] we make a tractable model for 
approximate treatment of spontaneous reactions by lumping 
together all the polymer species of a given length that are not 
in the autocatalytic network, assuming that they all have the 
same concentration. These can be viewed as a new type of 
node in the network. This allows us to include the effect of 
spontaneous reactions when necessary. 
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Fig. 7. The graph for an autocatalytic network. The ovals represent polymer species, labeled by strings. The black dots represent 
reactions. The solid lines are connections from polymer nodes to the reactions in which they participate. The dotted lines go from 
polymer species to the reactions they catalyze. The double ovals are special polymer nodes corresponding to the elements of the food 
set, whose concentrations are supplied externally. 

ratio. As p grows the graph becomes more and 
more connected, i.e. more dense. 

The graph-theoretic analysis only addresses the 
question of who reacts with whom, and begs the 
central (and much more difficult) question of con- 
centrations. Numerical modeling of the kinetics 
for any given catalyzed reaction is straightforward 
but cumbersome. We introduced a simplified tech- 
nique for treating catalyzed reactions of this type 
in ref. [20] that approximates the true catalyzed 
kinetics fairly well. 

Modeling of the complete kinetics for an entire 
reaction graph is impossible, since the graph is 
infinite and under the laws of continuous mass 
action, even if we initialize all but a finite number 
of the species to zero concentration, an instant 
later they will all have non-zero concentrations. 
From a practical point of view, however, it is 
possible to circumvent this problem by realizing 
that any chemical reaction vessel is finite, and 
species whose continuous concentrations are sig- 
nificantly below the concentration corresponding 
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to the presence of a single molecule are unlikely to 
participate in any reactions. Thus, to cope with 
this problem we introduce a concentration thresh- 
old, and only consider reactions where all the 
members on either side of the reaction equation 
(either A, B, and E, or C and E) are above the 
concentration threshold. This then becomes a 
metadynamical system: At any given time, only a 
finite number of species are above the threshold, 
and we only consider a finite graph. As the kinet- 
ics act, species may rise above the concentration 
threshold, so that the graph grows, or they may 
drop below the threshold, so that the graph shrinks. 

One of the main goals of this model is to obtain 
closure in the form of an autocatalytic set, which is 
a set of polymer species such that each member of 
the set is produced by at least one catalyzed 
reaction involving only other members of the set 
(including the catalysts). Since the reactions are 
reversible, a species can be "produced"  either by 
cleavage or condensation, depending on which 
side of equilibrium it finds itself. Thus an autocat- 
alytic set can be quite simple; for example, 

A 
A + B ~ C + H (19) 

is an autocatalytic set, and so is 

A + B C c + H .  (20) 

A, B, and C will be regenerated by supplying 
either A and B, or by supplying C. Note, however, 
that such simple autocatalytic sets are only likely 
to occur when the probability of catalysis is very 
high. Even for small values of p it is always 
possible to find autocatalytic sets as long as the 
food set is big enough. However, the typical auto- 
catalytic set is more complicated than the exam- 
pies given in eqs. (19) and (20). There is a critical 
transition from the case where graphs with auto- 
catalytic sets are very rare to that in which they 
are very common, as described in refs. [20, 36]. 
The results given there show that it is possible to 
create autocatalytic sets (in this graph theoretic 

sense) under reasonably plausible prebiotic condi- 
tions. 

There are three notions of the formation of 
autocatalytic sets, depending on what we mean by 
"produced by" in the definition given above: 

(i) Graph theoretic. The subgraph defined by the 
autocatalytic set is closed, so that each member is 
connected (by a solid connection) to at least one 
reaction catalyzed by another member. 

(ii) Kinetics. Each member is produced at a 
level exceeding a given concentration threshold. 

(iii) Robust. The autocatalytic set is robust un- 
der at least some changes in its food set, i.e. its 
members are at concentrations sufficiently large 
and there are enough pathways so that for some 
alterations of the food set it remains a kinetic 
autocatalytic set, capable of regenerating removed 
elements at concentrations above the threshold. 

These notions are arranged in order of their 
strength, i.e. an autocatalytic set in the sense of 
kinetics is automatically an autocatalytic set in the 
graph-theoretic sense, and a robust autocatalytic 
set is automatically a kinetic autocatalytic set. 

Describing the details of the conditions under 
which autocatalytic sets can be created is outside 
of the scope of this paper. Suffice it to say that, 
within our artificial chemistry we can create ro- 
bust autocatalytic sets. Consider, for example, an 
autocatalytic set based on the monomers a and b, 
originally formed by a food set consisting of the 
species a, b, ab, and bb, as shown in fig. 8 and 
table 2. 

We plot the concentrations of the 21 polymer 
species in the reactor against an index that is 
arbitrary except that it orders the species accord- 
ing to their length. We compare four different 
alterations of the original food set, all of which 
have the same rate of mass input. For two of the 
altered food sets the concentration of the members 
of the autocatalytic set remains almost the same; 
they are all maintained at high concentration. For 
the other two, the autocatalytic set "dies" in that 
some of the members of the set fall below the 
concentration threshold, and most of the concen- 
trations decrease dramatically [7]. 
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Fig. 8. An experiment demonstrating the robust properties of 
an autocatalytic set. The food set is originally a, b, ab, and bb. 
The food set is altered in four different ways, as shown in table 
2. For each alteration of the food set the concentrations of all 
21 polymers in the autocatalytic set are plotted against the 
"polymer index". (The polymer index assigns a unique label to 
each polymer. It is ordered according to length, but is other- 
wise arbitrary.) Two of the alterations of the food set cause the 
autocatalytic set to die, while the other two hardly change it. 
Like a robust metabolism, the autocatalytic set can digest a 
variety of different foods. 

Table 2 
An experiment in varying the food set of an autocatalytic set. 
The table shows the four species of the food set, and the 
concentration of each that is supplied externally per unit 
time. Case v is used to "grow" the autocatalytic set, and 
cases w-z  are four changes made once the autocatalytic set is 
established, x and z kill the autocatalytic set, while w and y 
sustain it with only minimal alteration, as shown in fig. 8. 

a b ab bb 

v 5 5 5 5 
w 5 0 5 7.5 
x 0 0 10 5 
y 10 20 0 0 
z 0 10 10 0 

Our numerical evidence suggests that any fixed 
reaction network always approaches a fixed point 
where the concentrations are constant• However, 
since spontaneous reactions always take place, 
there is the possibility that a new species will be 
created that is on the graph of the autocatalytic 

set, but which the kinetics did not yet reach• If the 
catalyzed pathway is sufficiently strong, then the 
new species may be regenerated and added to 
the (kinetic) autocatalytic set. This is the way the 

autocatalytic sets evolve; spontaneous reactions 
provide natural variation, and kinetics provides 
selection. 

Autocatalytic networks create a rich, focused set 
of enzymes at high concentration• They form sim- 
ple metabolisms, which might have provided a 
substrate for contemporary life. 

The results discussed here, as well as many 
others, will be described in more detail in a future 
paper  [7]. We intend to study the evolution of 
autocatalytic sets, and to make a closer correspon- 
dence to experimental parameter  values. 

6.2. Comparison to generic network 

(i) Nodes correspond to both polymer species 
and to reactions. The states are determined by the 
concentrations of the polymers• 

(ii) Connections. The graph connections are 
quite different in this system, in that there are no 
direct reaction connections to the same types of 
nodes. Each reaction node is connected by 
undirected links to exactly three polymer nodes, 
and contains one (directed) catalytic link to one or 
more polymer nodes. A polymer node can be 
connected by a solid link to any number  of reaction 
nodes, and can have any number  of catalytic links 
to reaction nodes• 

(iii) Dynamics. The dynamics is based on the 
laws of mass action. The equations are physically 
realistic, and are considerably more complicated 
than those of the other networks we have discussed. 
Arbitrarily label all the polymer species by an 
index i, and let x i represent the concentration of 
the ith species. Assume that all the forward 
reactions in eq. (18) have the same rate constant 
k f ,  all the backward reactions have the same rate 
constant kr, and that all catalyzed reactions have 
the same velocity u. Let the quantity mq~ e 
represent the connections in the two graphs, where 
i and j refer to the two species that join together 
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to form k under enzyme e. mijke = 1 when there 
is a catalyzed reaction, and mijk~ = 0 otherwise. 
mijke = mjike. Let the dissipation constant be k, 
let the rate at which elements are added to the 
foodset be d, and let h be the concentration of 
water. Neglecting the effects of enzyme saturation, 
the equations can be written 

occasionally happens that one of the new species 
catalyzes a pathway that feeds back to create that 
species. Such a fluctuation can be amplified 
enormously, altering the part of the catalyzed 
graph that is above the concentration threshold. 
This provides a mechanism for the evolution of 
autocatalytic networks. 

d x  k 
dt  = E mijke(1 + PXe) (k tx ix j -krhXk)  

e . i , j  

+ 2 ~., mktme(1 + PXe)(krhxm -- kfXkXi) 
I ,m , e  

- k x  k + d f ( X k ) .  (21) 

f is a function whose value is one if x k is in the 
food set, and is zero otherwise. More accurate 
equations incorporating the effect of enzyme 
saturation are given in ref. [20]. 

An effective instantaneous connection strength 
can be computed by evaluating 02k/OX p. The 
resulting expression is too complicated to write 
here. Like the immune network, the instantaneous 
connection strength can be either excitatory or 
inhibitory depending on where the network is 
relative to its steady state value. In contrast to the 
other networks we have studied, there are no 
special variables in eq. (21) that explicitly play the 
role of either node or connection parameters. The 
concentration of the enzymes x e that catalyze a 
given reaction is suggestive of the connection 
parameters in other connectionist networks. How- 
ever, since any species can be a reactant in one 
equation and an enzyme in another, there is no 
explicit separation of time scales between x e and 
the other variables. 

(iv) Graph dynamics. The separation of time 
scales usually associated with learning occurs 
entirely through modification of the graph. The 
deterministic behavior for any given graph 
apparently goes to a fixed point. However, in a 
real autocatalytic system there are always 
spontaneous reactions creating new species not 
contained in the catalytic reaction graph. It 

Autocatalytic networks are interesting from a 
connectionist point of view because of their rich 
graph structure and because of the possibilities 
opened up by catalytic activity. Catalytic activity 
is analogous to amplification in electronic circuits; 
it results in multiplicative terms that either amplify 
or suppress the activity of a given node. The fixed 
points of the network may be thought of as self- 
sustaining memories, caused by the feedback of 
catalytic activity. The dynamical equations that 
we use here are based on reversible chemical 
reactions, and lead to unique fixed points. How- 
ever, other chemical reaction networks can have 
multiple fixed points, and it seems likely that 
when we alter the model to study irreversible 
reactions such as those observed in contemporary 
metabolisms, we will see multiple fixed points. In 
this case the computational possibilities of such 
networks become much more complex. 

7. Other potential examples and applications 

The four examples discussed here are by no 
means the only ones where connectionist models 
have been used, or could be used. Limitations of 
space and time prevent a detailed examination of 
all the possibilities, but a few deserve at least 
cursory mention. 

Bayesian inference networks, Markov networks, 

and constraint networks are procedures used in 
artificial intelligence and decision theory for orga- 
nizing and codifying casual relationships in com- 
plex systems [49]. Each variable corresponds to a 
node of the network. Each node is connected to 
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the other variables on which it depends. Bayesian 
networks are based on conditional probability dis- 
tributions, and use directed graphs; Markov net- 
works are based on joint probability and have 
undirected graphs; constraint networks assume 
deterministic constraints between variables. These 
networks are most commonly used to incorporate 
prior knowledge, make predictions and test hy- 
potheses. Learning good graph representations is 
an interesting problem where further work is 
needed. 

Boolean networks. A neural network whose tran- 
sition rule is a binary automaton is an example of 
a Boolean network. In general there is no need to 
restrict the dynamics to the sum and threshold 
rules usually used in neural nets (other than the 
fact that this may make the learning problem 
simpler). Instead, the nodes can implement arbi- 
trary logical (Boolean) functions. Kauffman stud- 
ied the emergent properties of networks in which 
each node implements a random Boolean function 
[38, 37]. (The functions are fixed in time, but each 
node implements a different function.) More re- 
cently, Miller and Forrest [44] have shown that the 
dynamics of classifier systems can be mapped into 
Boolean networks. This allows them to describe 
the emergent properties of classifier systems. Their 
work implicitly maps Boolean networks to the 
generic connectionist framework. The formulation 
of learning rules for general Boolean networks is 
an interesting problem that deserves further study. 
Kauffman has done some work using point muta- 
tion to modify the graph [39]. 

Ecological models and population genetics are a 
natural area for the application of connectionism. 
There is a large body of work modeling plant and 
animal populations and their interactions with 
their environment in terms of differential equa- 
tions. In these models it is necessary to explicitly 
state how the populations interact, and translate 
this into mathematical form. An alternative is to 
let these interactions evolve. A natural framework 
for such models is provided by the work of 

Maynard Smith in the application of game-theo- 
retic models to population genetics and ethology 
[63]. The interactions of the populations with each 
other are modeled as game-theoretic strategies. In 
these models, however, it is necessary to state in 
advance what these strategies are. A natural alter- 
native is to let the strategies evolve. Some aspects 
of this have been addressed in the fledgling theory 
of evolutionary games [24]. A connectionist ap- 
proach is a natural extension of this work. The 
immune networks discussed here are very similar 
to predator-prey  models. The strings encoding 
chemical properties are analogous to genotypes of 
a given population, and the matrix of interactions 
are analogous to phenotypes. 

Economics is another natural area of applica- 
tion. Again, existing game-theoretic work suggests 
a natural avenue for a connectionist approach, 
which could be implemented along the lines of the 
immune model. The binary strings can be viewed 
as encoding simple strategies, specifying the inter- 
actions of economic agents. Indeed, there are al- 
ready investigations of models of this type based 
on classifier systems [4, 5, 41]. 

Game theory is a natural area of application. 
For  example, Axelrod [6] has studied the game of 
iterated prisoner's dilemma. His approach was to 
encode recent past moves as binary variables, and 
encode the strategy of the player as a Boolean 
function. He demonstrated that genetic algorithms 
can be used to evolve Boolean functions that 
correspond to good strategies. An alternative ap- 
proach would be to distribute the strategy over 
many nodes, and use a connectionist model in- 
stead of a look-up table. Such models may have 
applications in many different problems where 
evolutionary games are relevant, such as eco- 
nomics and ethology. 

Molecular evolution models. The autocatalytic 
model discussed in detail here is by no means the 
only connectionist model for molecular evolution. 
Perhaps one of the earliest example is the hypercy- 
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cle model of Eigen and Schuster [19], which has 
recently been compared to the Hopfield neural 
network models [32, 52]. For a review see ref. [27]. 

8. Conclusions 

I hope that presenting four different connection- 
ist systems in a common framework and notation 
will make it easier to transfer results from one 
field to another. This should be particularly useful 
in areas such as immune networks, where connec- 
tionist models are not as well developed as they 
are in other areas, such as neural networks. By 
showing how similar mathematical structure mani- 
fests itself in quite different contexts, I hope that I 
have conveyed the broad applicability of connec- 
tionism. Finally, I hope that these mathematical 
analogies make the underlying phenomena clearer. 
For example, comparing the role of the lympho- 
cyte in these models to the role of neurons may 
give more insight into the construction of immune 
networks with more computational power. 

8.1. Open questions 

Hopefully the framework for connectionist 
models presented here will aid the development of 
a broader mathematical theory of connectionist 
systems. From an engineering point of view, the 
central question is: What is the most effective way 
to construct good connectionist networks? Ques- 
tions that remain unclear include: 

(i) In some systems, such as neural networks 
and classifier systems, a connection is always ei- 
ther inhibitory or excitatory. In others, such as 
immune networks and autocatalytic networks, a 
connection can be either inhibitory or excitatory, 
depending on the state of the system. Does the 
latter more flexible approach complicate learning? 
Does it give the network any useful additional 
computational power? 

(ii) Is it essential to have independent parame- 
ters for each connection? In neural nets, each 
connection has its own parameter. In classifier 

systems, the use of the "don ' t  care" symbol means 
that many connections are represented by one 
classifier, and thus share a common connection 
parameter. This decreases the flexibility of the 
network, but at the same time gives an efficient 
graph representation, and aids the genetic algo- 
rithms in finding good graphs. In B-cell immune 
networks the parameters reside entirely in the 
nodes, and thus as a single parameter changes 
many different connections are effected. Does this 
make it impossible to implement certain func- 
tions? How does this effect learning and evolu- 
tion? (It is conceivable that the reduction of 
parameters may actually cause some improve- 
ments.) 

(iii) What is the optimal level of complexity for 
the transition rule? Some neural nets and classifier 
systems employ simple activation functions, such 
as linear threshold rules. Somewhat more compli- 
cated nonlinear functions, such as sigmoids, have 
the advantage of being smooth; immune networks 
have even more complicated activation functions. 
An alternative is to make each node a flexible 
function approximation box, for example, with its 
own set of local linear functions, so that the node 
can approximate functions with more general 
shapes [22, 68]. However, complexity also in- 
creases the number of free parameters and poten- 
tially increases the amount of data needed for 
learning. 

(iv) A related question concerns the role of 
catalysis. In autocatalytic networks, a node can be 
switched on or off by another node through multi- 
plicatioe coupling terms. In contrast to networks 
in which inputs can only be summed, this allows a 
single unit to exert over-riding control over an- 
other. A similar approach has been suggested in 
Y'.-FI neural networks [59]; T-cells and neuro- 
transmitters may play a similar role in real biolog- 
ical systems. How valuable is specific catalysis to a 
network? How difficult is the learning problem 
when it is employed? 

(v) What are the optimal approaches to evolv- 
ing good graph representations? Most of the work 
in this area has been done for classifier systems, 
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although even here many important issues remain 
to be clarified. All known algorithms that can 
create connections and nodes, such as the genetic 
algorithms, are stochastic; there are deterministic 
pruning algorithms that can only destroy connec- 
tions, such as orthogonal projection. Are there 
efficient deterministic algorithms for creating new 
graph connections? 

(vi) What are the best learning algorithms? A 
great deal of effort has been devoted to answering 
this question, but the answer is still obscure. A 
perusal of the literature suggests certain general 
conclusions. For example, in problems with de- 
tailed feedback, e.g. a list of known input-output  
pairs, deterministic function fitting algorithms such 
as least-squares minimization (of which back- 
propagation is an example) can be quite effective. 
However, if the search space is not smooth, for 
example because the samples are too small to be 
statistically stable, stochastic algorithms such as 
crossover are often more effective [1]. In more 
general situations where there is no detailed feed- 
back, there seems to be no general consensus as to 
which learning algorithms are superior. 

Thus far, very few connectionist networks make 
use of nontrivial computational capabilities. In 
typical applications most connectionist networks 
end up functioning as stimulus-response systems, 
simply mapping inputs to outputs without making 
use of conditional looping, subroutines, or any of 
the power we take for granted in computer pro- 
grams. Even in systems that clearly have a great 
deal of computational power in principle, such as 
classifier systems, the solutions actually learned 
are usually close to look-up tables. It seems to be 
much easier to implement effective learning rules 
in simpler architectures that sacrifice computa- 
tional complexity, such as feed-forward networks. 

It may be that there is an inherent trade-off 
between the complexity of learning and the com- 
plexity of computation, so that the difficulty of 
learning increases with computational power. At 
one end of the spectrum is a look-up table. Learn- 
ing is trivial; examples are simply inserted as they 

occur. Unfortunately, all too often neural network 
applications have not been compared to this sim- 
ple approach. In the infamous NET-talk problem 
[62], for example, a simple look-up table gives 
better performance than a sum/sigmoid back- 
propagation network [3]. Simple function approx- 
imation is one level above a look-up table in 
computational complexity; functions can at least 
attempt to interpolate between examples, and gen- 
eralize to examples that are not in the learning 
data set. Learning is still fairly simple, although 
already the subtleties of probability and statistics 
begin to complicate the matter. However, simple 
function approximation has less computational ca- 
pability than a finite state machine. At present, 
there are no good learning algorithms for finite 
state machines. Without counting, conditional 
looping, etc., many problems will simply remain 
insoluble. 

It is probably more likely that learning is possi- 
ble with more sophisticated computational power, 
and that we simply do not yet know how to 
accomphsh it. I suspect that the connectionist 
networks of the future will be full of loops. 

Connectionist models are a useful tool for solv- 
ing problems in learning and adaptation. They 
make it possible to deal with situations in which 
there are an infinite number of possible variables, 
but in which only a finite number are active at any 
given time. The connections are explicit but 
changeable. We have only recently begun to ac- 
quire the computational capabilities to reahze their 
potential. I suspect that the next decade will wit- 
ness an enormous explosion in the application of 
the connectionist methodology. 

However, connectionism represents a level of 
abstraction that is ultimately limited by such fac- 
tors as the need to specify connections explicitly, 
and the lack of builtin spatial structure. Many 
problems in adaptive systems ultimately require 
models such as partial differential equations or 
cellular automata with spatial structure [40]. The 
molecular evolution models of Fontana et al., for 
example, explicitly model the spatial structure of 
individual polymers in an artificial chemistry. As a 
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Table 3 
A Rosetta Stone for connectionism. 

J.D. Farmer/A Rosetta Stone for connectionism 

Generic Neural net Classifier system Immune net Autocatalytic net 

node neuron message antibody type 

state activation intensity free antibody/ 
level antigen concentration 

connection axonflsynapse/ classifier chemical reaction 
dendrite of antibodies 

parameters connection strength and reaction affinity 
weight specificity lymphocyte concentration 

interaction sum/sigmoid linear threshold bell-shaped 
rule and maximum 

learning Hcbb, bucket brigade clonal selection 
algorithm back-propagation (gen. Hcbb) (gen. Hcbb) 

graph synaptic genetic genetic 
dynamics plasticity algorithms algorithms 

polymer species 

polymer 
concentration 

catalyzed 
chemical reaction 

catalytic 
velocity 

mass action 

approach to 
attractor 

artificial 
chemistry rules, 
spontaneous 
reactions 

result the phenotypes emerge more naturally than 
in the artificial chemistry in the autocatalytic network 
model discussed here. On the other hand, the 
approach of Fontana et al. requires more com- 
putational resources. For many problems connec- 
tionism may provide a good compromise between 
accurate modeling and tractability, appropriate to 
the study of adaptive phenomena during the last 
decade of this millenium. 

8.2. Rosetta Stone 

This paper  is a modest start toward creating a 
common vocabulary for connectionist systems, and 
unifying work on adaptive systems. Like the 
Rosetta Stone, it contains only a small fragment 

of knowledge. I hope it will nonetheless lead to a 
deeper understanding in the future. Table 3 sum- 
marizes the analogies developed in this paper. 
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Appendix. A superficial taxonomy of dynamical 
systems 

Dynamical  systems can be trivially classified 
according to the continuity or locality of the 
underlying variables. A variable either can be dis- 
crete, i.e. describable by a finite integer, or contin- 
uous. There are three essential properties: 

(i) Time. All dynamical systems contain time as 
either a discrete or continuous variable. 

(ii) State. The state can either be a vector of 
real numbers, as in an ordinary differential equa- 
tion, or integers, as for an automaton.  

(iii) Space plays a special role in dynamical 
systems. Some dynamical models, such as au- 
tomata  or ordinary differential equations, do not 
contain the notion of space. Other models, such as 
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Table 4 

Types of dynamical systems, characterized by the nature of time, space, and state. "Local" means that while this 
there is typically some degree of continuity and a clear notion of neighborhood. 
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property is discrete, 

Type of dynamical system Space Time Representation 

partial differential equations continuous continuous continuous 
computer representation of a PDE local local local 
functional maps continuous discrete continuous 
ordinary differential equations none continuous continuous 
lattice models local discrete or continuous continuous 
maps (difference equations) none discrete continuous 
cellular automata local discrete discrete 
automata none discrete discrete 

lattice maps or cellular automata, contain a notion 
of locality and therefore space even though they 
are not fully continuous. Partial differential equa- 
tions or functional maps have continuous spatial 
variables. 

This is summarized in table 4. 
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