
Physica D 42 (1990) 153-187
North-Holland

A R O S E T r A STONE FOR CONNECTIONISM

J. Doyne FARMER
Complex Systems Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
and Santa Fe Institute, 1120 Canyon Road, Santa Fe NM 87501, USA

The term connectionism is usually applied to neural networks. There are, however, many other models that are
mathematically similar, including classifier systems, immune networks, autocatalytic chemical reaction networks, and others.
In view of this similarity, it is appropriate to broaden the term connectionism. I define a connectionist model as a dynamical
system with two properties: (1) The interactions between the variables at any given time are explicitly constrained to a finite
list of connections. (2) The connections are fluid, in that their strength a n d / o r pattern of connectivity can change with time.

This paper reviews the four examples listed above and maps them into a common mathematical framework, discussing their
similarities and differences. It also suggests new applications of connectionist models, and poses some problems to be
addressed in an eventual theory of connectionist systems.

1. Introduction

This paper has several purposes. The first is to
identify a common language across several fields
in order to make their similarities and differences
clearer. A central goal is that practitioners in
neural nets, classifier systems, immune nets, and
autocatalytic nets will be able to make correspon-
dences between work in their own field as
compared to the others, more easily importing
mathematical results across disciplinary bound-
aries. This paper attempts to provide a coherent
statement of what connectionist models are and
how they differ in mathematical structure and
philosophy from conventional "fixed" dynamical
system models. I hope that it provides a first step
toward clarifying some of the mathematical issues
needed for a generally applicable theory of con-
nectionist models. Hopefully this will also provide
a natural framework for connectionist models in
other areas, such as ecology, economics, and game
theory.

i'llll I,l ~ l l i'.)

7"I ' r ' oA E ~ A I o ~"

Fig. 1. "Ptolemy", in hieroglyphics, Demotic, and Greek. This
cartouche played a seminal role in deciphering hieroglyphics,
by providing a hint that the alphabet was partially phonetic
[12]. (The small box is a "p" , and the half circle is a " t " - liter-
ally it reads "ptolmis".)

1.1. Breaking the jargon barrier

Language is the medium of cultural evolution.
To a large extent differences in language define
culture groupings. Someone who speaks Romany,
for example, is very likely a Gypsy; the existence
of a common and unique language is one of the
most important bonds preserving Gypsy culture.
At times, however, communication between sub-

0167-2789/90/$03.50 © Elsevier Science Publishers B.V.
(North-Holland)

154 J.D. Farmer/A Rosetta Stone for connec~omsm

cultures becomes essential, so that we must map
one language to another.

The language of science is particularly special-
ized. It is also particularly fluid; words are tools
onto which we map ideas, and which we invent or
redefine as necessary. Our jargon evolves as sci-
ence changes. Although jargon is a necessary fea-
ture of communication in science, it can also pose
a barrier impeding scientific progress.

When models are based on a given class of
phenomena, such as neurobiology or ecology, the
terminology used in the models tends to reflect the
phenomenon being modeled rather than the un-
derlying mathematical structure. This easily ob-
scures similarities in the mathematical structure.
"Neura l activation" may appear quite different
from "species population", even though relative to
given mathematical models the two may be identi-
cal. Differences in j argon place barriers to commu-
nication that prevent results in one field from
being transparent to workers in another field.
Proper nomenclature should identify similar things
but distinguish those that are genuinely different.

At present this problem is particularly acute for
adaptive systems. The class of mathematical mod-
els that are employed to understand adaptive
systems contain subtle but nonetheless significant
new features that are not easily categorized by
conventional mathematical terminology. This adds
to the problem of communication between disci-
plines, since there are no standard mathematical
terms to identify the features of the models.

1.2. What is connectionism?

Connectionism is a term that is currently ap-
plied to neural network models such as those
described in refs. [59, 15]. The models consist
of elementary units, which can be "connected"
together to form a network. The form of the
resulting connection diagram is often called the
architecture of the network. The computations
performed by the network are highly dependent
on the architecture. Each connection carries infor-
mation in its weight, which specifies how strongly

the two variables it connects interact with each
other. Since the modeler has control over how the
connections are made, the architecture is plastic.

This contrasts with the lasual approach in dy-
namics and bifurcation theory, where the dynami-
cal system is a fixed object whose variability is
concentrated into a few parameters. The plasticity
of the connections and connection strengths means
that we must think about the entire family of
dynamical systems described by all possible archi-
tectures and all possible combinations of weights.
Dynamics occurs on as many as three levels, that
of the states of the network, the values of connec-
tion strengths, and the architecture of the connec-
tions themselves.

Mathematical models with this basic structure
are by no means unique to neural networks. They
occur in several other areas, including classifier
systems, immune networks, and autocatalytic net-
works. They also have potential applications in
other areas, such as economics, game-theoretic
models and ecological models. I propose that the
term connectionism be extended to this wider
class of models.

By comparing connectionist models for different
phenomena using a common nomenclature, we get
a clear view of the extent to which these models
are similar or different. We also get a glimpse of
the extent to which the underlying phenomena are
similar or different. I emphasize the word glimpse
to make it clear that we are simplifying a compli-
cated phenomenon when we model it in connec-
tionist terms. Comparing two connectionist
models of, for example, the nervous systems and
the immune system, provides a means of extract-
ing certain aspects of their similarities, but we
must be very careful in doing this; much richness
and complexity is lost at this level of description.

Connectionism represents a particular level of
abstraction. By reducing the state of a neuron to a
single number, we are collapsing its properties
relative to a real neuron, or relative to those of
another potentially more comprehensive mathe-
matical formalism. For example, consider fluid
dynamics. At one level of description the state of a

J.D. Farmer/A Rosetta Stone for connectionism 155

fluid is a function whose evolution is governed by
a partial differential equation. At another level we
can model the fluid as a finite collection of spatial
modes whose interactions are described by a set of
ordinary differential equations. The partial differ-
ential equation is not a connectionist model; there
are no identifiable elements to connect together; a
function simply evolves in time. The ordinary
differential equations are more connectionist; the
nature of the solution depends critically on the
particular set of modes, their connections, and
their coupling parameters. In fluid dynamics we
can sometimes calculate the correct couplings from
first principles, in which case the model is just a
fixed set of ordinary differential equations. In con-
trast, for a connectionist model there are dynam-
ics for the couplings a n d / o r connections. In a
fully connectionist model, the connections and
couplings would be allowed to change, to find the
best possible model with a given degree of com-
plexity.

Another alternative is to model the fluid on a
grid with a finite difference scheme or a cellular
automaton. In this case each element is "con-
nected" to its neighbors, so there might be some
justification for calling these connectionist models.
However, the connections are fixed, completely
regular, and have no dynamics. I will not consider
them as "connectionist".

Just as there are limits to what can be described
by a finite number of distinct modes, there are
also limits to what can be achieved by connection-
ist models. For more detailed descriptions of many
adaptive phenomena we may need models with
explicit spatial structure, such as partial differen-
tial equations or cellular automata. Nonetheless,
connectionism is a useful level of abstraction,
which solves some problems efficiently.

The Rosetta Stone is a fragment of rock in
which the same text is inscribed in several differ-
ent languages and alphabets (fig. 1). It provides a
key that greatly facilitated the decoding of these
languages, but it is by no means a complete de-
scription of them. My goal is similar; by present-
ing several connectionist models side by side, I

hope to make it clear how some aspects of the
underlying phenomena compare with one another,
but I offer the warning that quite a bit has been
omitted in the process.

1.3. Organization of this paper

In section 2, I describe the basic mathematical
framework that is common to connectionist mod-
els. I then discuss four different connectionist
models: neural networks, classifier systems, im-
mune networks, and autocatalytic networks. In
each case I begin with a background discussion,
make a correspondence to the generic framework
described in section 2, and then discuss general
issues. Finally, the conclusion contains the
"Roset ta Stone" in table 3, which maps the jargon
of each area into a common nomenclature. I also
make a few suggestions for applications of con-
nectionist models and comment on what I learned
in writing this paper.

Connectionist models are ultimately dynamical
systems. Readers who are not familiar with terms
such as automaton, map, or lattice model may
wish to refer to the appendix.

2. The general mathematical framework of
connectionist models

In this section I present the mathematical
framework of a "generic" connectionist model. I
make some arbitrary choices about nomenclature,
in order to provide a standard language, noting
common synonyms whenever appropriate.

To first approximation a connectionist model is
a pair of coupled dynamical systems living on a
graph. In some cases the graph itself may also
have dynamics. The remainder of this section ex-
plains this in more detail.

2.1. The graph

The foundation of any connectionist model is a
graph consisting of nodes (or vertices) and connec-

156 J.D. Farmer/A Rosetta Stone for connectionism

Cy c

a

d

Fig. 2. A directed graph.

tions (also called links or edges) between them as
shown in fig. 2. The graph describes the architec-
ture of the system and provides the channels in
which the dynamics takes place. There are differ-
ent types of graphs; for example, the links can be
either directed (with arrows), or undirected
(without arrows). For some purposes, such as
modeling catalysis, it is necessary to allow compli-
cated graphs with more than one type of node or
more than one type of link.

For many purposes it is important to specify the
pattern of connections, with a graph representa-

tion. The simplest way to represent a graph is to
draw a picture of it, but for many purposes a more
formal description is necessary. One common
graph representation is a connection matrix. The
nodes are assigned an arbitrary order, correspond-
ing to the rows or columns of a matrix. The row
corresponding to each node contains a nonzero
entry, such as "1", in the columns corresponding
to the nodes to which it makes connections. For
example, if we order the nodes of fig. 2 lexico-
graphically, the connection matrix is [101]

0 0 0
c = o 1 o . (1)

1 0 0
1 0 0

If the graph is undirected then the connection
matrix is symmetric. It is sometimes economical to
combine the representation of the graph and the
connection parameters associated with it into a
matrix of connection parameters.

A connection list is an alternative graph repre-
sentation. For example, the graph of fig. 2 can also
be represented as

a ~ b , a ~ d , b ~ a , c ~ c , d ~ b , e ~ b .

(2)

Note that the nodes are implicitly contained in the
connection list. In some cases, if there are isolated
nodes, it may be necessary to provide an addi-
tional list of nodes that do not appear on the
connection list. For the connectionist models dis-
cussed here isolated nodes, if any, can be ignored.

A graph can also be represented by an algo-
rithm. A simple example is a program that creates
connections "a t random" using a deterministic
random number generator. The program, together
with the initial speed, forms a representation of a
graph.

For a dense graph almost every node is con-
nected to almost every other node. For a sparse
graph most nodes are connected to only a small
fraction of the other nodes. A connection matrix is
a more efficient representation for a dense graph,
but a connection list is a more efficient representa-
tion for a sparse graph.

2.2. Dynamics

In conventional dynamical models the form of
the dynamical system is fixed. The only part of the
dynamical system that changes is the state, which
contains all the information we need to know
about the system to determine its future behavior.
The possible ways the "fixed" dynamical form
"might change" are encapsulated as parameters.
These are usually thought of as fixed in any given
experiment, but varying from experiment to exper-
iment. Alternatively we can think of the parame-
ters as knobs that can be slowly changed in the
background. In reality the quantities that we in-
corporate as parameters are usually aspects of the
system that change on a time scale slower than
those we are modeling with the dynamical system.

J.D. Farmer / A Rosetta Stone for connectionism 15 7

Connectionist models extend this view by giving
the parameters an explicit dynamics of their own,
and in some cases, by giving the list of variables
and their connections a dynamics of its own.
Typically this also involves a separation of time
scales. Although a separation of time scales is not
necessary, it provides a good starting point for the
discussion. The fast scale dynamics, which changes
the states of the system, is usually associated with
short-term information processing. This is the
transition rule. The intermediate scale dynamics
changes the parameters, and is usually associated
with learning. I will call this the parameter dynam-
ics or the learning rule. On the longest time scale,
the graph itself may change. I will call this the
graph dynamics. The graph dynamics may also be
used for learning; hopefully this will not lead to
confusion.

Of course, strictly speaking the states, parame-
ters, and graph representation described above are
just the states of a larger dynamical system with
multiple time scales. Reserving the word state for
the shortest time scale is just a convenience. The
association of time scales given above is the natu-
ral generalization of "conventional" dynamical
systems, in which the states change quickly, the
parameters change slowly, and the graph is fixed.
For some purposes, however, it might prove to be
useful to relax this separation, for example, letting
the graph change at a rate comparable to that of
the states. Although all the models discussed here
have at most three time scales, in principle this
framework could be iterated to higher levels to
incorporate an arbitrary number of time scales.

The information that resides on the graph typi-
cally consists of integers, real numbers, or vectors,
but could in principle be any mathematical ob-
jects. The state transition and learning rules can
potentially be any type of dynamical system. For
systems with continuous states and continuous
parameters the natural dynamics are ordinary
differential equations or discrete time maps. In
principle, the states or parameters could also be
functions whose dynamics are partial differential
equations or functional maps. This might be natu-

ral, for example, in a more realistic model of
neurons where the spatio-temporal form of pulse
propagation in the axon is important [60]. When
the activities or parameters are integers, their dy-
namics are naturally automata, although it is also
common to use continuous dynamics even when
the underlying states are discrete.

Since the representation of the graph is intrinsi-
cally discrete, the graph dynamics usually has a
different character. Often, as in classifier systems,
immune networks, or autocatalytic networks, the
graph dynamics contains random elements. In
other cases, it may be a deterministic response to
statistical properties of the node states or the
connection strengths, for example, as in pruning
algorithms. Dynamical systems with graph dynam-
ics are sometimes called metadynamical systems
[20, 8].

In all of the models discussed here the states of
the system reside on the nodes of the graph .1. The
states are denoted xi, where i is an integer label-
ing the node. The parameters reside at either
nodes or connections; 0i refers to a node parame-
ter residing at node i, and w~j refers to a connec-
tion parameter residing at the connection between
node i and node j.

The degree to which the activity at one node
influences the activity at another node, or the
connection strength, is an important property of
connectionist models. Although this is often con-
trolled largely by the connection parameters w~j,
the node parameters 0~ may also have an influ-
ence, and in some cases, such as B-cell immune
networks, provide the only means of changing the
average connection strength. Thus, it is misleading
to assume that the connection parameters are
equivalent to the connection strengths. Since the
connection strength of any given instant may vary
depending on the states of the system, and since
the form of the dynamics may differ considerably
in different models, we need to discuss connection

**tit is also possible that states could be attached to connec-
tions, bu t this is not the case in any of the models discussed
here.

158 J.D. Farmer/A Rosetta Stone for connectionism

strength in terms of a quantity that is representa-
tion-independent, which is well defined for any
dynamical model.

For a continuous transition rule the natural way
to discuss the connection strength is in terms of
the Jacobian. When the transition rule is an ordi-
nary differential equation, of the form

dx~ = f . (xx , x2, . . xN)
dt "' '

the instantaneous connection strength of the con-
nection from node i to node j (where i is an input
to j) is the corresponding term in the Jacobian
matrix

J / , = - a x , -

A connection is excitatory if J/i > 0 and inhibitory
if J/~ < 0. Similarly, for discrete time dynamical
systems (continuous maps), of the form

x j (t + 1) = . f j (x l , x 2 x N) ,

a connection is excitatory if Ij/il > 1 and in-
hibitory if Ij/'il < 1. In a continuous system, the
average connection strength is (J/i), where ()
denotes an appropriate average; in a discrete sys-
tem it is (IJ/A)- To make this more precise it is
necessary to specify the ensemble over which the
average is taken.

For automaton transition rules, since the states
x~ are discrete the notion of instantaneous connec-
tion strength no longer makes sense. The average
connection strength may be defined in one of
many ways; for example, as the fraction of times
node j changes state when node i changes state.
In situations where x~ is an integer but nonethe-
less approximately preserves continuity, if I Ax~ (t) I
is the magnitude of the change in x~ at time t, the
average connection strength can be defined as

IAxj(t ÷ 1)

IAxi(t) I)lax,0"

3. Neural nets

3.1. Background

Neural networks originated with early work of
McCulloch and Pitts [42], Rosenblatt [58], and
others. Although the form of neural networks was
originally motivated by neurophysiology, their
properties and behavior are not constrained by
those of real neural systems, and indeed are often
quite different. There are two basic applications
for neural networks: one is to understand the
properties of real neural systems, and the other is
for machine learning. In either case, a central
question for developing a theory of learning is:
Which behaviors of real neurons are essential tc
their information processing capabilities, and
which are simply irrelevant side effects?

For machine learning problems neural networks
have many uses that go considerably beyond the
problem of modeling real neural systems. There
are several reasons for dropping the constraints of
modeling real neurons:

(i) We do not understand the behavior of real
neurons.

(ii) Even if we understood them, it would be
computationaUy inefficient to implement the full
behavior of real neurons.

(iii) It is unlikely that we need the full complex-
ity of real neurons in order to solve problems in
machine learning.

(iv) By experimenting with different approaches
to simplified models of neurons, we can hope to
extract the basic principles under which they oper-
ate, and discover which of their properties are
truly essential for learning.

Because of the factors listed above, for machine
learning problems there has been a movement
towards simpler artificial neural networks that are
less motivated by real neural networks. Such net-
works are often called "artificial neural networks",
to distinguish them from the real thing, or from
more realistic models. Similar arguments apply to
all the models discussed here; it might also be
appropriate to say "artificial immune networks"

J.D. Farmer/A Rosetta Stone for connectionism 159

and "artificial autocatalytic networks". However,
this is cumbersome and I will assume that the
distinction between the natural and artificial
worlds is taken for granted.

Neural networks are constructed with simple
units, often called "neurons". Until about five
years ago, there were almost as many different
types of neural networks as there were active
researchers in the field. In the simplest and proba-
bly currently most popular form, each neuron is a
simple element that sums its inputs with respect to
weights, subtracts a threshold, and applies an acti-
vation function to the result. If we assume that
time is discrete so that we can write the dynamics
as a map, then we have

t = I, 2 = time;
x~(t) = state of neuron i;
w~j = weight of connection from i to j ;
Oj = threshold;
S = the activation function, often a sigmoidal

function such as tanh.
The response of a single neuron can be charac-

terized as

x,<,+1, -- -,,). (3)

We could also write the dynamics in terms of
automata, differential equations, or, if we assume
that the neurons have a refractory period during
which they do not change their state, as delay
differential equations.

The instantaneous connection strength is

of input units, one or two layers of "h idden"
units, and a layer of output units, with full con-
nections between adjacent layers. For a feed-for-
ward architecture the graph has no loops so that
the fixed parameters information flows only in one
direction, from the inputs to the outputs. If the
graph has loops so that the activity of a neuron
feeds back on itself then the network is recurrent.

For layered networks it is sometimes convenient
to assign the neurons an extra label that indicates
which layer they are in. For feed-forward net-
works the dynamics across layers is particularly
simple, since first the input layer is active, then the
first hidden layer, then the next, etc., until the
output layer is reached. If, for definiteness, we
choose tanh as the activation function, and let 1
refer to the input layer, 2 to the first hidden layer,
etc., the dynamics can be described by eq. (5).
Note that because the activity of each layer is
synchronized and depends only on that of the
previous layer at the previous time step, the role of
time is trivial. Since each variable only changes its
value once during a given feed-forward step, we
can drop time labels without ambiguity:

(5)

Oxj(t + 1) = wijS' (- 0 j) ,
Oxi(t) ~i wijxi(t) (4)

where S' is the derivative of S. If S is a sigmoid,
then S' is always positive and a connection with
w~j > 0 is always excitatory and a connection with
wij < 0 is always inhibitory.

A currently popular procedure for constructing
neural networks is to line the neurons up in rows,
or "layers". A standard architecture has one layer

From this point of view the neural network
simply implements a particular family of nonlin-
ear functions, parameterized by the weights w and
the thresholds 0 [22]. For feed-forward networks
the transition rule dynamics is equivalent to a
single (instantaneous) mapping. For a recurrent
network, in contrast, the dynamics is no longer
trivial; any given neuron can change state more
than once during a computation. This more inter-
esting dynamics effectively gives the network a

160 J.D. Farmer/A Rosetta Stone for connectionism

memory, so that the set of functions that can be
implemented with a given number of neurons is
much larger. However, it becomes necessary to
make a decision as to when the computation is
completed, which complicates the learning prob-
lem.

To solve a given problem we must select values
of the parameters w and 0, i.e. we must select a
particular member of the family of functions spec-
ified by the network. This is done by a learning
rule.

The Hebbian learning rules are perhaps the
simplest and most time honored. They do not
require detailed knowledge of the desired outputs,
and are easy to implement locally. The idea is
simply to strengthen neurons with coincident ac-
tivity. One simple implementation changes the
weights according to the product of the activities
on each connection,

Aw, j = cxix j. (6)

Hebbian rules are appealing because of their
simplicity and particularly because they are local.
They can be implemented under very general cir-
cumstances. However, learning with Hebbian rules
can be ineffective, particularly when there is more
detailed knowledge available for training. For ex-
ample, in some situations we have a training set of
patterns for which we know both the correct input
and the correct output. Hebbian rules fail to ex-
ploit this information, and are correspondingly
inefficient when compared with algorithms that
do.

Given a learning set of desired input /output
vectors, the parameters of the network can be
determined to match these input /output vectors
by minimizing an error function based on them.
The back-propagation algorithm, for example,
minimizes the least mean square error and is ef-
fectively a nonlinear least-squares fitting algo-
rithm. For more on this, see ref. [59].

Since there is an extensive and accessible litera-
ture on neural networks, I will not review it fur-
ther [59, 15].

3.2. Comparison to a generic network

Neural networks are the canonical example of
connectionism and their mapping into generic
connectionist terms is straightforward.

Nodes correspond to neurons.

Connections correspond to the axons, synapses,
and dendrites of real neurons. The average con-
nection strength is proportional to the weight of
each connection.

Node dynamics. There are many possibilities.
For feed-forward networks the dynamics is re-
duced to function evaluation. For recurrent net-
works the node dynamics may be an automaton, a
system of coupled mappings, or a system of ordi-
nary differential equations. The attractors of such
systems can be fixed points, limit cycles, or chaotic
attractors. More realistic models of the refractory
periods of the neurons yield systems of delay-
differential equations.

Learning rules. Again, there are many possibili-
ties. For feed-forward networks with carefully
chosen neural activation functions such as radial
basis functions [11, 13, 54] where the weights can
be solved through a linear algorithm, the dynamics
reduces to a function evaluation. Nonlinear search
algorithms such as back-propagation are nonlinear
mappings which usually have fixed point attrac-
tors. Nondeterministic algorithms such as simu-
lated annealing have stochastic dynamics.

Graph dynamics. For real neural systems this
corresponds to plasticity of the synapses. There is
increasing evidence that plasticity plays an impor-
tant role, even in adults [2]. As currently prac-
ticed, most neural networks do not have explicit
graph dynamics; the user simply tinkers with the
architecture attempting to get good results. This
approach is clearly limited, particularly for large
problems where the graph must be sparse and the
most efficient way to restrict the architecture is not

J.D. Farmer/A Rosetta Stone for connectionism 161

obvious from the symmetries of the problem. There
is currently a great deal of interest in implement-
ing graph dynamics for neural networks, and there
are already some results in this direction [26, 43,
46, 65, 67]. This is likely to become a major field
of interest in the future.

4. Classifier systems

4.1. Background

The classifier system is an approach to machine
learning introduced by Holland [30]. It was in-
spired by many influences, including production
systems in artificial intelligence [48], population
genetics, and economics. The central motivation
was to avoid the problem of brittleness encoun-
tered in expert systems and conventional ap-
proaches to artificial intelligence. The classifier
system learns and adapts using a low-level ab-
stract representation that it constructs itself, rather
than a high-level explicit representation con-
structed by a human being.

On the surface the classifier system appears
quite different from a neural network, and at first
glance it is not obvious that it is a connectionist
system at all. On closer examination, however,
classifier systems and neural networks are quite
similar. In fact, by taking a sufficiently broad
definition of "classifier systems" and "neural net-
works", any particular implementation of either
one may be viewed as a special case of the other.
Classifier systems and neural networks are part of
the same class of models, and represent two dif-
ferent design philosophies for the connectionist
approach to learning. The analogy between neural
networks and classifier systems has been explored
by Compiani et al. [14], Belew and Gherrity [9],
and Davis [16]. There are many different versions
of classifier systems; I will generally follow the
version originally introduced by Holland [30], but
with a few more recent modifications such as
intensity and support [31].

At its core, the classifier system has a rule-based
language with content addressable memories. The
addressing of instructions occurs by matching of
patterns or rules rather than by the position of
the instructions, as it does in traditional von
Neumann languages. Each rule or classifier con-
sists of a condition and an action, both of which
are fixed length strings. One rule invokes another
when the action part of one matches the condition
part of the other. This makes it possible to set up
a chain of associations; when a given rule is active
it may invoke a series of other rules, effecting a
computation. The activity of the rules is mediated
by a message list, which serves as a blackboard or
short-term memory on which the rules post mes-
sages for each other. While many of the messages
on the list are posted by other classifiers, some of
them are also external messages, inputs to the
program posted by activity from the outside world.
In the most common implementations the message
list is of fixed length, although there are applica-
tions where its length may vary. See the schematic
diagram shown in fig. 3. You may also want to
refer to the example in section 5.

The conditions, actions, and messages are all
strings of the same fixed length. The messages are
strings over the binary alphabet (0,1}, while the
conditions and actions are over the alphabet
(0 , 1 , # } , where # is a "wildcard" or "don ' t
care" symbol. The length of the message list con-
trols how many messages can be active at a given
time, and is typically much smaller than the total
number of rules.

The way in which a classifier system "executes
programs" is apparent by examining what hap-
pens during a cycle of its operation. At a given
time, suppose there is a set of messages on the
message list, some of which were posted by other
classifiers, and some of which are inputs from the
external world. The condition parts of all the rules
are matched against all the messages on the mes-
sage list. A match occurs if each symbol matches
with the symbol in the corresponding position.
The symbol # matches everything. The rules that
make matches on a given time step post their

162 J.D. Farmer/A Rosetta Stone for connectionism

Strength Condition Action Effector

-----7

v

Message list

!

External
messages

Messages
posted by
classifiers

C lassifiers

Fig. 3. A schematic diagram of the classifier system.

actions as messages on the next time step. By
going through a series of steps like this, the classi-
fier system can perform a computation. Note that
in most implementations of the classifier system
each rule can have more than one condition part;
a match occurs only when both conditions are

satisfied.
In general, because of the # symbol, more than

one rule may match a given message. The parame-
ters of the classifier system (frequency of # , length
of messages, length of message list, etc.) are usu-
ally chosen so that the number of matches typi-
cally exceeds the size of the message list. The rules

then bid against each other to decide which of
them will be allowed to post messages. The bids
are used to compute a threshold, which is adjusted
to keep the number of messages on the message
list (that will be posted on the next step) less than
or equal to the size of the message list. Only those
rules whose bids exceed the threshold are allowed
to post their messages on the next time step #2.

An important factor determining the size of the
bid is the strength of a classifier, which is a real
number attached to each classifier rule. The
strength is a central part of the learning mecha-
nism. If a classifier wins the bidding competit ion
and successfully posts a message, an amount equal

~2Some implementations allow stochastic bidding.

to the size of its bid is subtracted from its strength
and divided among the classifiers that (on the
previous time step) posted the messages that match
the bidding classifier's condition parts on the cur-
rent time step #3.

Another factor in determining the size of bids is

the specificity of a classifier, which is defined as
the percentage of characters in its condition part
that are either zero or one, i.e. that are not # . The

motivation is that when there are "specialists" to
solve a problem, their input is more valuable than
that of "generalists".

The final factor that determines the bid size is
the intensity xi(t) associated with a given message.
In older implementations of the classifier system,
the intensity is a Boolean variable, whose value is
one if the message is on the message list, and zero
otherwise. In newer implementations the intensity
is allowed to take on real values 0 < x i < 1. Thus,
some messages on the list are "more intense" than
others, which means they have more influence on
subsequent activity. Under the support rule, the
intensity of a message is computed by taking the
sum over all the matching messages on the previ-
ous time step, weighted by the strength of the
classifier making the match.

*~3Other variants are also used. Many authors think that this
step is unnecessary, or even harmful; this is a topic of active
controversy.

J.D. Farmer/A Rosetta Stone for connectionism 163

The size of a bid is

bid = const × w × specificity × F(intensi ty) . (7)

F(intensity) is a function of the intensities of the
matching messages. There are many options; for
example, it can be the intensity of the message
generating the highest bid, or the sum of the
intensities of all the matching messages [57].

To produce outputs the classifier system must
have a means of deciding when a computat ion
halts. The most common method is to designate
certain classifiers as outputs. When these classi-
fiers become active the classifier system makes the

output associated with that classifier's message. If
more than one output classifier becomes active it
is necessary to resolve the conflict. There are vari-

ous means of doing this; a simple method is to
simply pick the output with the largest bid.

Neglecting the learning process, the state of a
classifier system is determined by the intensities of
its messages (most of which may be zero). In
many cases it is important to be able to pass along
a particular set of information from one time step
to another. This is done by a construction called
pass-through. The # symbol in the action part of
the rule has a different meaning than it has in the
condition part of the rule. In the action part of the
rule it is used to "pass through" information from
the message list on one time step to the message
list on the next time step; anywhere there is a #
symbol in the action part, the message that is
subsequently posted contains either a zero or a
one according to whether the message matched by
the condition part on the previous time step con-
tained a zero or a one.

The procedure described above allows the clas-
sifier system to implement any finite function, as
long as the necessary rules are present in the

system with the proper strengths (so that the cor-
rect rules will be evoked). The transfer of strengths
according to bid size defines a learning algorithm
called the bucket brigade. The problem of making
sure the necessary rules are present is addressed
by the use of genetic algorithms that operate on

the bit strings of the rules as though they were
haploid chromosomes. For example, point muta-
tions randomly changes a bit in one of the rules.
Crossover or recombination mimics sexual repro-

duction. It is performed by selecting two rules,
picking an arbitrary position, and interchanging
substrings so that the left part of the first rule is
concatenated to the right part of the second rule
and vice versa. When the task to be performed has
the appropriate structure, crossover can speed up
the time required to generate a good set of rules,
as compared to pure point mutat ion #4.

4.2. Comparison to generic network

The classifier system is rich with structure,
nomenclature, and lore, and has a literature of its
own that has evolved more or less independently
of the neural network literature. Nonetheless, the
two are quite similar, as can be seen by mapping
the classifier system to standard connectionist
terms.

For the purpose of this discussion we will as-
sume that the classifiers only have one condition
part. The extension to classifiers with multiple
condition parts has been made by Compiani et al.
[14].

Nodes. The messages are labels for the nodes of
the connectionist network. For a classifier system
with word length N the 2 N possible messages
range from i = 0,1 2 N - 1. (In practice, for a

given set of classifiers, only a small subset of these

may actually occur.) The state of the i th node is
the intensity x i. The node activity also depends on
a globally defined threshold B(t), which varies in
time.

Connections. The condition and action parts of
the classifier rules are a connection list representa-
tion of a graph, in the form of eq. (2). Each

*~4Several specialized graph manipulation operators, for ex-
ample triggered cover operators, have also been developed for
classifier systems [57].

1 6 4 J.D. Farmer/A Rosetta Stone for connectionism

classifier rule connects a set of nodes (i } to a
node j and can be written (i} -*j . A rule consist-

ing entirely of ones and zeros corresponds to a
single connection; a rule with n don' t care sym-
bols represents 2" different connections. Note that
if two rules share their output node j and some of
their input nodes i then there are multiple connec-

tions between two nodes. The connection parame-
ters w~j are computed as the product of the classi-
fier rule strength and the classifier rule specificity,

i.e.

thus a more efficient graph representation, and
pass-through is just a representational conve-

nience.

Transition rule. In traditional classifier systems
a node j becomes active on time step t + 1 if it
has an input connection i on time step t such that

x~(t)wij > 0. Using the support rule,

x j (t + 1) = Y'~x i (t) wij, (8)
i

Wij = specificity × strength.

When the graph is sparse there are many nodes
that have no rule connecting them so that implic-

itly w~j = O.
Note that only the connections are represented

explicitly; the nodes are implicitly represented by

the right-hand parts of the connection representa-
tions, which give all the nodes that could ever
conceivably become active. Thus nodes with no
inputs are not represented. This can be very effi-

cient when the graph is sparse.
Although on the surface pass-through appears

to be a means of keeping recurrent information, as
first pointed out by Miller and Forrest [44], in
connectionist terms it is a mechanism for efficient
graph representation. Pass-through occurs when a
classifier has # symbols at the same location in

both its condition and action parts. (If the # is
only in the action part, then the pass-through
value is always the same, and so it is irrelevant.)

The net effect is that the node that is activated on
the output depends on the node that was active on
the input. This amounts to representing more than
one connection with a single classifier. For exam-
ple, consider the classifier 0 # ~ 1 # . If node 00
becomes active, then the second 0 is "passed
through", so the output is 10. Similarly, if 01
becomes active, the output is 11. The net result is
that two connections are represented by the same
classifier. F rom the point of view of the network,
the classifier 0 # ~ 1 # is equivalent to the two
classifiers 00 ~ 10 and 01 --, 11. The net effect is

where the sum is taken over all i that satisfy
xi(t)wij > O. With the support rule the dynamics
is thus piecewise linear, with nonlinearity due to
the effect of the threshold 0. Without the support
rule the intensity is x j (t + 1) = maxi{x i (t) }.

There are two approaches to computing the

threshold 0. The simplest approach is to simply

set it to a constant value 0. A more commonly
used approach in traditional classifier systems is to
adjust O(t) on each time step so that the number
of messages that are active on the message list is
less than or equal to a constant, which is equivalent
to requiring that the number of nodes active on a
given time step is less than or equal to a constant.
In connectionist terms this may be visualized as
adding a special thresholding unit that has input
and output connections to every node.

Learning rule. The traditional learning algo-
r i thm for classifier systems is the bucket brigade,
which is a particular modified Hebbian learning
rule. (See eq. (6).) When a node becomes active,

strength is transferred from its active output
connections to its active input connections. This
transfer occurs on the time step after it was active.
To be more precise,, consider a wave of activity
x j (t) > 0 propagating through node j , as shown in

fig. 4.
Suppose this activity is stimulated by m

activities xi(t - 1) > 0 through input connection
parameters wij, and in turn stimulates activities
x , (t + 1) > 0 through output connection param-
eters Wjk. Letting H be the Heaviside function

J.D. Farmer/A Rosetta Stone for connectionism 165

/ / / /
/ / / INPUTSOUTPUTS

i j k

Fig. 4. The bucket brigade learning algorithm. A wave of activ-
ity propagates from nodes { i } at time t - 1 through node j at
time t to nodes (k } at time t + 1. The solid lines represent
active connections, and the dashed lines represent inactive
connections. Strength is transferred from the input connections
of j to output connections of j according to eq. (11). The
motivation is that connections "pay" the connections that
activate them.

H (x) = 1 for x > 0, H (x) = 0 for x < 0, the inpu t

connec t ions gain s t rength according to

xj
Awij = -~ ~., wykH(xjwjk - 0) , (9)

k

Awjk = - xjwjI, H (xjwjk - 0), (10)

where

Awij = wi j (t + 1) - wij(t) . (11)

Al l the quant i t i es on the r igh t -hand side are

eva lua ted at t ime t.

This is on ly one of several var iants of the bucke t

b r i ga de lea rn ing a lgor i thm; for d iscuss ion of o ther

poss ib i l i t ies see ref. [10].

In o rde r to learn, the system must receive

f eedback a b o u t the qual i ty of its pe r fo rmance .5.

To p rov ide f eedback abou t the overal l pe r fo rmance

#5It is clearly important to maintain an appropriate distri-
bution of strength within a classifier system, which does not
overly favor input or output classifiers and which can set up
chains of appropriate associations. Strength is added to classi-
tiers that participate in good outputs, and then the bucket
brigade causes a local transfer of feedback, in the form of
connection strength, from outputs to inputs. This is further
complicated by the recursive structure of classifier systems,
which corresponds to loops in the graph. Maintaining an
appropriate gradient of strength from outputs to inputs has
proved to be a difficult issue in classifier systems.

of the system, the ou tpu t connec t ions of the sys-

tem, or the effectors, are given s t rength accord ing

to the qua l i ty of their ou tputs . Judgemen t s as to

the qua l i ty mus t be m a d e accord ing to a predef ined

eva lua t ion funct ion. To p reven t the sys tem f rom

accumula t ing useless classifiers, causing i so la ted

connect ions , there is an ac t iv i ty tax which a moun t s

to a d i s s ipa t ion term. Put t ing all of these effects

together and fo l lowing ref. [21] we can wri te the

bucke t b r igade dynamics (the lea rn ing rule) as

mwij~_ 1 m E xjwjkI4(xjw, k - o)
k

- x iw i jH (xiwijO)

+ x i P (t) + kwij, (12)

where k is the d i s s ipa t ion ra te for the ac t iv i ty tax,

and P (t) is the eva lua t ion func t ion for ou tpu t s at

t ime t.

Graph dynamics. The g raph d y n a m i c s occurs

th rough m a n i p u l a t i o n s of the g raph r ep resen ta t ion

(the classifier rules) th rough genet ic a lgor i thms

such as po in t m u t a t i o n and crossover. These

ope ra t ions are s tochas t ic and are h ighly nonloca l ;

they preserve ei ther the inpu t or ou tpu t of each

connect ion , bu t the o ther pa r t can move to a very

different pa r t of the graph. The app l i ca t ion of

these ope ra to r s genera tes new connect ions , which

is usual ly a c c o m p a n i e d b y the remova l of o ther

connect ions .

4.3. An example

A n example makes the g raph- theore t i c view of

classifier sys tems clearer . F o r example , cons ider

the classic p r o b l e m of exclusive-or. (See also ref.

[9].) The exclusive-or func t ion is 0 if bo th inputs

are the same and 1 if bo th inpu t s are different.

The s t a n d a r d neura l net so lu t ion of this p r o b l e m

is easi ly i m p l e m e n t e d with three classifiers:

(i) 0 # -+ 10: + 1 ;

(ii) 0 # ---, 11: + 1 ;

(iii) 10 ---, 11: - 2 .

166 J.D. Farmer/A Rosetta Stone for connectionism

Table 1
A wave of activity caused by the inputs (1,1) is shown. The
numbers from left to right are the intensifies on successive
iterations. Initially the two input messages have intensity 1,
and the others are 0. The input messages activate messages
10 and 11, and then 10 switches 11 off. For the input (0,0), in
contrast, the network immediately settles to a fixed point
with the intensities of all the nodes at zero.

node intensity

O0 1 1 1 1
O1 1 1 1 1
10 0 1 1 1
11 0 1 0 0

Fig. 5. A classifier network implementing the exclusive-or in
standard neural net fashion. The binary numbers, which in
classifier terms would be messages on the message fist, label the
nodes of the network.

(The number after the colon is w = strength ×

specificity.) Although there are only three classi-

fiers, because of the # symbols they make five

connections, as shown in fig. 5.

With this representation the node 00 represents

one of the inputs, and 01 represents the other

input; the state of each input is its intensity. If

both inputs are 1, for example, then nodes 00 and

01 become active, in other words, they have inten-

sity > 0, which is equivalent to saying that the

messages 00 and 01 are placed on the message list.

Assume that we use the support rule, eq. (8), that

outputs occur when the activity on the message
list settles to a fixed point, and that the message

list is large enough to accommodate at least four

messages. An example illustrating how the compu-
tation is accomplished is shown in table 1.

This example is unusual from the point of view
of common classifier system practice in several
respects. (1) The protocol of requiring that the
system settle to a fixed point in order to make an
output. A more typical practice would be to make

an output whenever one of the output classifiers
becomes active. (2) The message list is rather large

for the number of classifiers, so the threshold is
never used. (3) There are no recursive connections
(loops in the graph).

There are simpler ways to implement exclusive-
or with a classifier system. For example, if we

change the input protocol and let the input mes-

sage be simply the two inputs, then the classifier

system can solve this with four classifiers whose

action parts are the four possible outputs. This

always solves the problem in one step with a

message list of length one. Note that in network

terms this corresponds to unary inputs, with the

four possible input nodes representing each possi-

ble input configuration. While this is a cumber-

some way to solve the problem with a network, it
is actually quite natural with a classifier system.

4. 4. Comparison of classifiers and neural networks

There are many varieties of classifier systems

and neural networks. Once the classifier system is

described in connectionist terms, it becomes dif-

ficult to distinguish between them. In practice,
however, there are significant distinctions between
neural nets as they are commonly used and classi-
fier systems as they are commonly used. The appro-
priate distinction is not between classifiers and

neural networks, but rather between the two de-

sign philosophies represented by the typical imple-
mentations of connectionist networks within the

classifier system and neural net communities. A
comparison of classifier systems and neural net-
works in a common language illustrates their

J.D. Farmer / A Rosetta Stone for connectionism 167

differences more clearly and suggests a natural
synthesis of the two approaches.

Graph topology and representation. The connection
list graph representation of the classifier system is
efficient for sparse graphs, in contrast to the
connection matrix representation usually favored
by neural net researchers. This issue is not critical
on small problems that can be solved by small
networks which allow the luxury of a densely
connected graph. On larger problems, use of a
sparsely connected graph is essential. If a large
problem cannot be solved with a sparsely connec-
ted network, then it cannot feasibly be imple-
mented in hardware or on parallel machines where
there are inevitable constraints on the number of
connections to a given node.

To use a sparse network it is necessary to
discover a network topology suited to a given
problem. Since the number of possible network
topologies is exponentially large, this can be
difficult. For a classifier system the sparseness of
the network is controlled by the length of each
message, and by the number of classifiers and
their specificity. Genetic algorithms provide a
means of discovering a good network, while
maintaining the sparseness of the network
throughout the learning process. (Of course, there
may be problems with convergence time.) For
neural nets, in contrast, the most commonly used
approach is to begin with a network that is fully
wired across adjacent layers, train the network,
and then prune connections if their weights decay
to zero. This is useless for a large problem because
of the dense network that must be present at the
beginning.

The connection list representation of the clas-
sifier system, which can be identified with that of
production systems, potentially makes it easier to
incorporate prior knowledge. For example, Forrest
has shown that the semantic networks of KL-One
can be mapped into a classifier system [23]. On the
other hand, another common form of prior
knowledge occurs in problems such as vision, when
there are group invariances such as translation

and rotation symmetry. In the context of neural
nets, Giles et al. [25] have shown that such invari-
ances can be hard-wired into the network by re-
stricting the network weights and connectivity
in the proper manner. This could also be done
with a classifier system by imposing appropriate
restrictions on the rules produced by the genetic
algorithm.

Transition rule. Typical implementations of the
classifier system apply a threshold to each input
separately, before it is processed by the node,
whereas in neural networks it is more common to
combine the inputs and then apply thresholds and
activation functions. It is not clear which of these
approaches is ultimately more powerful, and more
work is needed.

Most implementations of the classifier system
are restricted to either linear threshold activation
functions or maximum input activation functions.
Neural nets, in contrast, utilize a much broader
class of activation functions. The most common
example is probably the sigmoid, but in recent
work there has been a move to more flexible
functions, such as radial basis functions [11, 13,
47, 54] and local linear functions [22, 35, 68].
Some of these functions also have the significant
speed advantage of linear learning rules ~6. In
smooth environments, smooth activation functions
allow more compact representations. Even in en-
vironments where a priori it is not obvious the
smoothness plays a role, such as learning Boolean
functions, smooth functions often yield better
generalization results and accelerate the learning
process [68]. Implementation of smoother activa-
tion functions may improve performance of
classifier systems in some problems.

Traditionally, classifier systems use a threshold
computed on each time step in order to keep the
number of active nodes below a maximum value.
Computation of the threshold in this way requires

'~6Linear learning rules are sometimes criticized as "not
local". Linear algorithms are, however, easily implemented in
parallel by systolic arrays, and converge in logarithmic time.

168 J.D. Farmer/A Rosetta Stone for connectionism

a global computation that is expensive from a
connectionist point of view. Future work should
concentrate on constant or locally defined
thresholds.

From a connectionist point of view, classifiers
with the # symbol correspond to multiple
connections constrained to have the same strength.
There is no obvious reason why their lack of
specificity should give them less connection
strength. This intuition seems to be borne out in
numerical experiments using simplified classifier
systems [66].

Learning rule. The classifier system traditionally
employs the bucket brigade learning algorithm,
whose feedback is condensed into an overall
performance score. In problems where there is
more detailed feedback, for example a set of known
input-output pairs, the bucket-brigade algorithm
fails to use this information. This, combined with
the lack of smoothness in the activation function,
causes it to perform poorly in problems such as

Liqht chain f Poratope

° S EpiI°pe e p

| t o'o"ooo11'"o'ooo I
Antibody Antibody Representation

~A' ntibody

Fig. 6. A schematic representation of the structure of an anti-
body, an antibody as we represent it in our model, and a
B-lymphocyte with antibodies on its surface that function as
antigen detectors.

learning and forecasting smooth dynamical sys-
tems [55]. Since there are now recurrent
implementations of back-propogation [53], it
makes sense to incorporate this into a classifier
system with smooth activation functions, to see
whether this gives better performance on such
problems [9].

For problems where there is only a performance
score, the bucket brigade is more appropriate.
Unfortunately, there have been no detailed com-
parisons of the bucket brigade algorithm against
other algorithms that use "learning with a critic".
The form of the bucket brigade algorithm is
intimately related to the activation dynamics, in
that the size of the connection strength transfers
are proportional to the size of the input activation
signal (the bid). Although coupling of the con-
nection strength dynamics to the activation
dynamics is certainly necessary for learning, it is
not clear that the threshold activation level is the
correct or only quantity to which the learning
algorithm should be coupled. Further work is
needed in this area.

5. Immune networks

5.1. Background

The basic task of the immune system is to
distinguish between self and non-self, and to
eliminate non-self. This is a problem of pattern
learning and pattern recognition in the space of
chemical patterns. This is a difficult task, and the
immune system performs it with high fidelity, with
an extraordinary capacity to make subtle distinc-
tions between molecules that are quite similar.

The basic building blocks of the immune system
are antibodies, " y " shaped molecules that serve as
identification tags for foreign material; lympho-
cytes, cells that produce antibodies and perform
discrimination tasks; and macrophages, large cells
that remove material tagged by antibodies. Lym-
phocytes have antibodies attached to their surface
which serve as antigen detectors. (See fig. 6.) For-

J.D. Farmer/A Rosetta Stone for connectionism 169

eign material is called antigen. A human contains
roughly 10 20 antibodies and 1012 lymphocytes,
organized into roughly 10 s distinct types, based on
the chemical structure of the antibody. Each lym-
phocyte has only one type of antibody attached to
it. Its type is equivalent to the type of its attached
antibodies. The majority of antibodies are free
antibodies, i.e. not attached to lymphocytes. The
members of a given type form a clone, i.e. they are
chemically identical.

The difficulty of the problem solved by the
immune system can be estimated from the fact
that mammals have roughly 105 genes, coding for
the order of 105 proteins. An antigenic determi-
nant is a region on the antigen that is recognizable
by an antibody. The number of antigenic determi-
nants on a protein such as myoglobin is the order
of 50, with 6 -8 amino acids per region. We can
compare the difficulty of telling proteins apart to a
more familar task by assuming that each antigenic
determinant is roughly as difficult to recognize as
a face. In this case the pattern recognition task
performed by the immune system is comparable to
recognizing a million different faces. A central
question is the means by which this is accom-
plished. Does the immune system function as a
gigantic look up table, like a neural network with
billions of "grandmother cells"? Or, does it have
an associative memory with computational capa-
bilities?

The argument given above neglects the impor-
tant fact that there are 105 distinct proteins only if
we neglect the immune system. Each antibody is
itself a protein, and there are 10 s distinct anti-
body, which appears to be a contradiction: How
do we generate l0 s antibody types with only 105
genes? The answer lies in combinatorics. Each
antibody is chosen from seven gene segments, and
each gene segment is chosen from a "family" or
set of possible variants. The total number of possi-
ble antibody types is then the product of the sizes
of each gene family. This is not known exactly,
but is believed to be on the order of 107-108 .
Additional diversity is created by somatic muta-
tion. When the lymphocytes replicate, they do so

with an unusually large error rate in their anti-
body genes. Although it is difficult to estimate the
number of possible types precisely, it is probably
much larger than the number of types that are
actually present in a given organism.

The ability to recognize and distinguish self is
learned. How the immune system accomplishes
this task is unknown. However, it is clear that one
of the main tools the immune system uses is clonal
selection. The idea is quite simple: A particular
lymphocyte can be stimulated by a particular anti-
gen if it has a chemical reaction with it. Once
stimulated it replicates, producing more lympho-
cytes of the same type, and also secreting free
antibodies. These antibodies bind to the antigen,
acting as a " tag" instructing macrophages to re-
move the antigen. Lymphocytes that do not recog-
nize antigen do not replicate and are eventually
removed from the system.

While clonal selection explains how the immune
system recognizes and removes antigen, it does
not explain how it distinguishes it from self. From
both experiments and theoretical arguments, it is
quite clear that this distinction is learned rather
than hard-wired. Clonal selection must be sup-
pressed for the molecules of self. How this actu-
ally happens is unknown.

A central question for self-nonself discrimina-
tion is: Where is the seat of computation? It is
clear that a significant amount of computation
takes place in the lymphocytes, which have a
sophisticated repertoire of different behaviors. It is
also clear that there are complex interactions be-
tween lymphocytes of the same type, for example,
between the different varieties of T-lymphocytes
and B-lymphocytes. These interactions are partic-
ularly strong during the early stages of develop-
ment.

Jerne proposed that a significant component of
the computational power of the immune system
may come from the interactions of different types
of antibodies and lymphocytes with each other [33,
34]. The argument for this is quite simple: Since
antibodies are after all just molecules, then from
the point of view of a given molecule other

170 J.D. Farmer / A Rosetta Stone for connectionism

molecules are effectively indistinguishable from
antigens. He proposed that much of the power of
the immune system to regulate its own behavior
may come from interacting antibodies and lym-
phocytes of many different types .7.

There is good experimental evidence that net-
work interactions take place, particularly in young
animals. Using the nomenclature that an antibody
that reacts directly with antigen AB1, an antibody
that reacts directly with AB1 is AB2, etc., antibod-
ies in categories as deep as AB4 have been ob-
served experimentally #8. Furthermore, rats raised
in sterile environments have active immune sys-
tems, with activity between types. Nonetheless, the
relevance of networks in immunology is highly
controversial.

5.2. Connectionist models of the immune system

While Jerne proposed that the immune system
could form a network similar to that of the ner-
vous system, his proposal was not specific. Early
work on immune networks put this proposal into
more quantitative terms, assuming that a given
AB1 type interacted only with one antigen and
one other AB2 type. These interactions were mod-
eled in terms of simple differential equations whose
three variables represented antigen, AB1, and AB2
[56, 28]. A model that treats immune interactions
in a connectionist network #9, allowing interac-
tions between arbitrary types, was proposed in ref.
[21]. The complicated network of chemical inter-
actions between different antibody types, which
are impossible to model in detail from first princi-
ples, was taken into account by constructing an
artificial antibody chemistry. Each antigen and
antibody type is assigned a random binary string,
describing its "chemical properties". Chemical in-
teractions are assigned based on complementary

~TSuch networks are often called idiotypic networks.
*~SThis classification of antibodies should not be confused

with their type; a given type can simultaneously be AB1 and
AB2 relative to different antigens, and many different types
may be AB1.

#gAnother connectionist model with a somewhat different
philosophy was also proposed by Hoffmann et al. [29].

matching between strings. The strength of a chem-
ical reaction is proportional to the length of the
matching substrings, with a threshold below which
no reaction occurs. Even though this artificial
chemistry is unrealistic in detail, hopefully it cor-
rectly captures some essential qualitative features
of real chemistry.

A model of gene shuffling provides metady-
namics for the network. This is most realistically
accomplished with a gene library of patterns,
mimicking the gene families of real organisms.
These families are randomly shuffled to produce
an initial population of antibody types. This gives
an initial assignment of chemical reactions,
through the matching procedure described above,
including rate constants and other parameters #1°.
Kinetic equations implement clonal selection;
some types are stimulated by their chemical reac-
tions, while others are suppressed. Types with no
reactions are slowly flushed from the system so
that they perish. Through reshuffling of the gene
library new types are introduced to the system. It
is also possible to stimulate somatic mutation
through point mutations of existing types, propor-
tional to their rate of replication.

It is difficult to model the kinetics of the im-
mune system realistically. There are five different
classes of antibodies, with distinct interactions
and properties. There are different types of lym-
phocytes, including helper, killer and supressor
T-cells, which perform regulatory functions, as
well as B-cells, which can produce free antibodies.
All of these have developmental stages, with dif-
ferent responses in each stage. Chemical reactions
include cell-cell, antibody-antibody, and cell-an-
tibody interactions. Furthermore, the responses of
cells are complicated and often state dependent.
Thus, any kinetic equations are necessarily highly
approximate, and applicable to only a subset of
the phenomena.

In our original model we omitted T-cells, treat-
ing only B-cells. (This can also be thought of as

~*l°The genetic operations described here are more sophisti-
cated than those actually used in ref. [21]; more realistic
mechanisms have been employed in subsequent work [50, 17,
18].

J.D. Farmer/,4 Rosetta Stone for connectionism 171

modeling the response to certain polymeric anti-
gens, for which T-cells seem to be irrelevant.) We
assumed that the concentration of free antibodies
is in equilibrium with the concentration of lym-
phocytes, so that their populations can be lumped
together into a single concentration variable. Since
the characteristic time scale for the production of
free antibodies is minutes or hours, while that of
the population of lymphocytes is days, this is a
good approximation for some purposes. It turns
out, however, that separating the concentration of
lymphocytes and free antibodies and considering
the cell-cell, antibody-antibody, and cell-anti-
body reactions separately give rise to new phe-
nomena that are important for the connectionist
view. In particular, this generates a more interest-
ing repertoire of steady states, including "mildly
excited" self-stimulated states suggestive of those
observed in real immune systems [50, 17, 18].

5.3. Comparison to a generic network

As with classifier systems and neural networks,
there are several varieties of immune networks [21,
17, 29, 64], and it is necessary to choose one in
order to make a comparison. The model described
here is based on that of Farmer, Packard and
Perelson [21], with some modifications due to later
work by Perelson [50] and De Boer and Hogeweg
[17]. Also, since this model only describes B-cells,
whenever necessary I will refer to it as a B-cell
network, to distinguish it from models that also
incorporate the activity of T-cells.

To discuss immune networks in connectionist
terms it is first necessary to make the appropriate
map to nodes and connections. The most obvious
mapping is to assign antibodies and antigens to
nodes. However, since antibodies and antigens
typically have more than one antigenic determi-
nant, and each region has a distinct chemical
shape .11, we could also make the regions (or

*11"Chemical shape" here means all the factors that influ-
ence chemical properties, including geometry, charge, polariza-
tion, etc.

chemical shapes) the fundamental variable. Since
all the models discussed above treat the concentra-
tion of antibodies and lymphocytes as the funda-
mental variables, I shall make the identification at
this]level. This leads to the following connectionist
description:

~odes correspond to antibodies, or more accur-
ately, to distinct antibody types. Antigens are
anolher type of node with different dynamics;
from a certain point of view the antigen concen-
trations may be regarded as the input and output
nodes of the network #12. The free antibody con-
centrations, which can change on a rapid time
scale, are the states of the nodes. They are the
immediate indicators of information processing in
the network. The lymphocyte concentrations,
which change on an intermediate time scale, are
node parameters. (Recall that there is a one-to-one
correspondence between free antibody types and
lymphocyte types.) Changes in lymphocyte
concentration are the mechanism for learning in
the network.

Connections. The physical mechanisms which
cause connections between nodes are chemical
reactions between antibodies, lymphocytes, and
antigens. The strength of the connections depends
on the strength of the chemical reactions. This is
in part determined by chemical properties, which
are fixed in time, and in part by the concentrations
of the antibodies, lymphocytes, and antigens,
which change with time. Thus the instantaneous
connection strength changes in time as conditions
change in the network. The precise way of
representing and modeling the connections is
explained in more detail in the following.

Graph representation. To model the notion of
"chemical properties" we assign each antibody
type a binary string. To determine the rate of the
chemical reaction between type i and type j, the
binary string corresponding to type i is compared

#12Future models should include chemical types identified
with self as yet another type of node.

172 J.D. Farmer/A Rosetta Stone for connectionism

to binary string corresponding to type j. A match
strength matrix mij is assigned to this connection,
which depends on the degrees of complementary
matching between the two strings. Types whose
strings have a high degree of complementary
matching are assigned large reaction rates. Since
the matching algorithm is symmetric #13 mij = mji.

There is a threshold for the length of the
complementary matching region below which we
assume that no reaction occurs and set mij = O.

Since mq is the connection matrix of the graph,
s e t t i n g m i j = 0 amounts to deleting the corres-
ponding connection from the graph. We thus
neglect reactions that are so weak that they have
an insignificant effect on the behavior of the
network. The match threshold together with
the length of the binary strings determines the
sparseness of the graph. When the system is sparse
the matrix mij can be represented in the form of a
connection list. The match strength for a given
pair of immune types does not change with time.
However, as new types are added or deleted from
the system, the mij that are relevant to the types
in the network change.

The graph dynamics provides a mechanism of
learning in the immune system; as new types are
tested by clonal selection, the graph changes, and
the system "evolves". Another mechanism for
dynamical learning depends on the lymphocyte
concentrations, as discussed below.

Dynamics. The mq are naturally identified as
connection parameters for the network. For any
given i and j, however, the m~j are fixed. Thus, in
B-cell immune networks the parameter dynamics,
analogous to the learning rule in neural networks,
occurs not by changing connection parameters,
but rather by changing the lymphocyte concen-
tration, which is a parameter node. The net
reaction flux (or strength of the reaction) is a
nonlinear function of the lymphocyte concen-

**13In our original paper [21] we also considered the case of
asymmetric interactions. However, this is difficult to justify
chemically, and it is probably safe to assume that the connec-
tions are symmetric [28].

trations. Thus changing the lymphocyte concen-
tration changes the effective connection strength.
This is a fundamental difference between neural
networks and B-cell immune networks; while the
connection strength is changeable in both cases, in
B-cell immune networks all the connection
strengths to a given node change in tandem as the
lymphocyte concentration varies. However, since
the reaction rates are nonlinear functions, a change
in lymphocyte concentration may affect each con-
nection differently, depending on the concentration
of the other nodes.

The dynamics of the real immune system are
not well understood. The situation is similar to
that of neural networks; we construct simplified
heuristic immune dynamics based on a combina-
tion of chemical kinetics and experimental
observations, attempting to recover some of the
phenomena of real immune systems. The real
complication arises because lymphocytes are cells,
and understanding their kinetics requires under-
standing how they respond to stimulation and
suppression by antigens, antibodies, and other
cells. At this point our understanding of this is
highly approximate and comes only from
experimental data. The kinetic equations used in
our original paper were highly idealized [21]. The
more realistic equations quoted here are due to De
Boer and Hogeweg #14 [17].

Let i label the nodes of the system, x i the
concentration of antibodies, and #i the concen-
tration of lymphocytes #15. The amount of
stimulation received by lymphocytes of type i is
approximated as

s, = Y'~mijx j. (13)
J

The rate of change of antibody concentration is

#14More realistic equations have also been proposed by
Segel and Perelson [61], Perelson [51, 50], and Varela et al. [64].

#15Note that I use 8 to represent lymphocytes because they
play the role of node parameters. However, they are not
thresholds, but rather quantities whose primary function is to
modify connection strength.

J.D. Farmer/A Rosetta Stone for connectionism 173

due to production by lymphocytes, removal from
the system, and binding with other antibodies.
The equations are

d x i
a t = o f f (s ,) - kx~ - cx ,s , . (14)

k is a dissipation constant and c the binding
constant, f is a function describing the degree of
stimulation of a lymphocyte. Experimental obser-
vations show that f is bell-shaped. A function
with this rough qualitative behavior can be
constructed by taking the product of a sigmoid
with an inverted sigmoid, for example

z k 2
f (z) = (k x + z) (k 2 + z) . (15)

The product ion of lymphocytes is due to
replenishment by the bone marrow, cell replica-
tion, and removal from the system. The equations
a r e

dO,
- r + p O J (s ,) - kO~. (16)

d t

r is the rate of replenishment and p is a rate
constant for replication.

5.4. Compar i son to neural ne tworks and classifier

s y s t ems

There are significant differences between the
dynamics of immune networks and neural net-
works. The most obvious is in the form of the
transition and learning rules. The nodes of the
immune network are activated by a bell-shaped
function rather than a sigmoid function. Since the
bell-shaped function undergoes an inflection and
its derivative changes sign, the dynamics are po-
tentially more complicated.

B-cell immune networks differ from neural net-
works in that there is no variable which acts as a

connection parameter. Instead, the connection
strength is indirectly determined by the node pa-
rameters (concentrations and kinetic equations).
The instantaneous connection strength is

3x j - [Oi f ' (s i) - cxi] miJ - csi - k 3 i j ' (17)

where 3ij = 0 for i 4:j, 8, = 1. All of the terms in
this equation except for f ' are greater than or
equal to zero. For low values of s i, f ' (s ,) > 0, but
for large values of s i, f ' (s i) < 0. Given the struc-
ture of these equations, as s~ increases, at some
point before f reaches a maximum, all the connec-
tions to a given node change from excitatory to
inhibitory. The point at which this happens de-
pends on the lymphocyte concentration of i, the
antibody concentration, the concentration of the
other antibodies, and on the exact form of the
stimulation function. Thus, in contrast to neural
networks or the classifier system, a given connec-
tion can be either excitatory or inhibitory depend-
ing on the state of the system.

The connections in the immune system are
chemical reactions. Insofar as the immune system
is well stirred, this allows a potentially very large
connectivity, as high as the number of different
chemical types a given type can react with. In
practice, t h e number of types that a given type
reacts with can be as high as about 1000. Thus, the
connectivity of real immune networks is appar-
ently of the same order of magnitude as that of
real neural networks.

One of the central differences between the B-cell
immune networks and neural or classifier net-
works is that for the immune system there are no
independent parameters on the connections. If the
average strength of a connection to a given node
cannot be adjusted independently of that of other
nodes, the learning capabilities of the network
may be much weaker or more inefficient than
those of networks where the connection parame-
ters are independent. As discussed in section 5.5,
this may be altered by the inclusion of T-cells in
the models.

174 J.D. Farmer/A Rosetta Stone for connectionism

5. 5. Directions for future research

Whether immune networks are a major compo-
nent of the computational machinery of the im-
mune system is a subject of great debate. The

analogy between neural networks and immune
networks suggests that immune networks poten-
tially possess powerful capabilities, such as asso-
ciative memory, that could be central to the
functioning of the immune system. However, be-
fore this idea can reach fruition we need more
demonstrat ions of what immune networks can do.
At this point the theory of immune networks is
still in its infancy and their utility remains an

open question.
The immune network may be able to perform

tasks that would be impossible for individual cells.

Cons ider , for example, a large antigen such as a
bacterium with many distinct antigenic determi-

nants. If each region is chemically distinct, a sin-
gle type can interact with at most a few of them
(and thus a single cell can interact with at most a
few of them). Network interactions, in contrast,
potentially allow different cells and cell types to
communicate with each other and make a collec-
tive computat ion to reinforce or suppress each
o the r ' s immune responses. For example, suppose
A, B, C and D are active sites. It might be useful
for a network to implement an associative mem-
ory rule such as: If any three of A, B, C, and D
are present, then generate an immune response;

otherwise do not. Such an associative memory
requires the capability to implement a repertoire

of Boolean functions. A useful rule might be:
"Genera te an immune response if active site A is
present, or active site B ispresent, but not if both
are present simultaneously". Such a rule, which is
equivalent to taking the exclusive-or function of A
and B, might be useful for implementing self
tolerance. Such logical rules are easily imple-
mented by networks. It is difficult to see how they
could be implemented by individual cells acting

on their own.
Immune memory is another task in which net-

works may play an essential role. Currently the

prevailing belief is that immune memory comes
about because of special memory cells. It is cer-
tainly true that some cells go into developmental

states that are indicative of memory. Although the
typical lifetime of a lymphocyte is about five days,
there are some lymphocytes that have been

demonstrated to persist for as long as a month.
This is a far cry, however, from the eighty or more
years that a human may display an immune mem-
ory. Since cells are normally flushed from the
system at a steady rate, it is difficult to believe that
any individual cell could last this long. It is only
the type, then, that persists, but in order to achieve
this individual cells must periodically replicate
themselves. However, in order to hold the popula-
tion stable the replication rate must be perfectly
balanced against the removal rate. This is an un-

stable process unless there is feedback holding the
population stable. It is difficult to see how feed-
back on the population size can be given unless

there are network interactions.
In an immune network a memory can poten-

tially be modeled by a fixed point of the network.
The concentrations at the fixed point are held
constant through the feedback of one type to
another type. Models of the form of eqs. (14) and
(16) contain fixed points that might be appropri-
ate for immune memory. However, it is clear from
experiments that T-cells are necessary for mem-
ory, and so must be added to immune networks to

recover this effect.
T-cells are a key element missing from most

current immune network models. T-cells play an
important role in stimulating or suppressing reac-
tions between antibodies and antigens, and are
essential to immune memory. From the point of
view of learning in the network, they may also
indirectly act as specific connection parameters.

One of the most interesting activities of the
immune system is "ant igen presentation". When a
B-cell or macrophage reacts with an antigen it
may process it, discarding all but the antigenic
determinants. It then presents the antigenic deter-
minant on its surface (as a peptide bound to an
M H C molecule). The T-cell reacts with the anti-

J.D. Farmer/A Rosetta Stone for connectionism 175

genic determinant and the B-cell, and based on
this information may either stimulate or suppress
the B-cell. Note that antigen presentation provides
information about both the B-cell and an antigen,
and thus potentially about a specific connection in
the network.

In a connectionist model, this may amount to a
connection strength parameter; a B-cell presenting
a given active site contains information that is
specific to two nodes, one for the B-cell of the
same type as the T-cell, and one for the antigen
whose active site is being presented (which may
also be another antibody). Due to their interac-
tions with T-cells, the B-cell populations of type i
presenting antigenic determinants from type j may
play the roles of the connection parameters wij.

At this point, it is not clear how strongly the
absence of explicit connection parameters limits
the computational and learning power of immune
networks. However, it seems likely that before
they can realize their full potential, connection
parameters must be included, taking into account
the operation of T-cells. T-cells act like catalysts,
either suppressing or enhancing reactions. Since
catalytic activity is one of the primary tools used
to implement the internal functions of living or-
ganisms, it is not surprising that it should play a
central role in the immune system as well. Auto-
catalytic activity is discussed in more detail in
section 6.

6. Autocatalytic networks

6.1. Background

All the models discussed so far are designed to
perform learning tasks. The autocatalytic network
model of this section differs in that it is designed
to solve a problem in evolutionary chemistry. Of
course, evolution may also be regarded as a form
of learning. Still, the form that learning takes in
autocatalytic networks is significantly different
from the other models discussed here.

The central goal of the autocatalytic network is
to solve a classic problem in the origin of life,

namely, to demonstrate an evolutionary pathway
from a soup of monomers to a polymer metabolism
with selected autocatalytic properties, which in
turn could provide a substrate for the emergence
of contemporary (or other) life forms. When Miller
and Urey discovered that amino acids could be
synthesized de novo from the hypothetical primor-
dial constituents "earth, fire and water" [45], it
seemed but a small step to the synthesis of poly-
mers built out of amino acids (polypeptides and
proteins). It was hoped that RNA and DNA could
be created similarly. However, under normal cir-
cumstances longer polymers are not favored at
equilibrium. Living systems, in contrast, contain
DNA, RNA, and proteins, specific long polymers
which exist in high concentration. They are main-
tained in abundance by their symbiotic relation-
ship with each other: Proteins help replicate RNA
and DNA, and DNA and RNA help synthesize
proteins. Without the other, neither would exist.
How did such a complex system ever get started,
unless there were proteins and RNA to begin
with? The question addressed in refs. [36, 20, 8] is:
Under what circumstances can the synthesis of
specific long polymers be achieved beginning with
simple constituents such as monomers and dimers?

The model here applies to any situation in which
unbranched polymers are built out of monomers
through a network of catalytic activity. The
monomers come from a fixed alphabet, a, b, c , . . .
They form one-dimensional chains which are rep-
resented as a string of monomers, acabbacbc.. .
The monomer alphabet could be the twenty amino
acids, or it could equally well be the four nu-
cleotides. This changes the parameters but not the
basic properties of the model. The model assumes
that the polymers have catalytic properties, i.e.
that they can undergo reactions in which one
polymer catalyzes the formation of another. If A,
B, C, and E are polymers, and H is water, then the
basic reaction is:

E
A + B # C + H , (18)

where E is written over the arrows to indicate that
it catalyzes the reaction.

176 J.D. F a r m e r / A Rosetta Stone fo r connectionism

Our purpose is to model a chemostat, a reaction
vessel into which monomers are added at a steady
rate. The chemical species that are added to the
chemostat are called the food set. We assume that
the mass in the vessel is conserved, for example,
by simply letting the excess soup overflow. For
convenience we assume that the soup is well
stirred, so that we can model it by a system of
ordinary differential equations.

In any real system it is extremely difficult to
determine from first principles which reactions
will be catalyzed, and with what affinity. Very few
if any of the relevant properties have been mea-
sured experimentally in any detail, and the num-
ber of measurements or computations that would
have to be made in order to predict all the chemi-
cal properties is hopelessly complex. Our ap-
proach is to invent an artificial chemistry and
attempt to make its properties at least qualita-
tively similar to those of a real chemical system.
Actually we use one of two different artificial
chemistries, based on two different principles:

(i) Random assignment of catalytic properties.
(ii) Assignment of catalytic properties based on

string matching.
These two simple artificial chemistries lie on the

borders of extreme behavior in real chemistry. In
some cases, we know that changing one monomer
can have a dramatic effect on the chemical proper-
ties of a polymer, either because it causes a drastic
change in the configuration of the polymer or
because it alters a critical site. If this were always
the case, then random chemistry would be a rea-
sonable model.

In other cases, changing a monomer has only a
small effect on the chemical properties. Our string
matching model is closer to this case; altering a
single monomer will only change the quality of
matching between two strings by an incremental
amount, and should never cause a dramatic alter-
ation in the chemical properties of the polymer.

Another difficulty of modeling real chemistry is
that there is an extraordinarily large number of
possible reactions. In a vessel with all polymers
of length l or less, for example, the total number

of polymer species is x~i=t" t where m is the ~..,i--1 eft ,

number of distinct monomers. For example, with
m = 20 and l = 100, the number of polymer species
is in excess of 201°° , an extremely large number,
and the number of possible reactions is still larger
than this. To get around this problem, to first
approximation, we neglect spontaneous reactions,
and assume that the catalytic properties are suf-
ficiently strong that all catalyzed reactions are
much faster than spontaneous reactions #16.

Once we have assigned chemical properties, we
can represent the network of catalyzed chemical
reactions as a graph, or more precisely, as a poly-
graph with two types of nodes and two types of
connections [20]. Because of catalysis the graph
must be more complicated than for any of the
other networks discussed so far. An example is
shown in fig. 7. One type of node is labeled by
ovals containing the string representation of the
polymer species. The other type of node corre-
sponds to catalyzed reactions, and is labeled by
black dots. The dark black connections are undi-
rected (because the reactions are reversible), and
connect each reaction to the three polymer species
that participate in it; the dotted connections are
directed, and connect the reaction to its catalysts.
All the edges connect polymers to reactions, and
each reaction has at least four connections, three
connections for the reaction products and one or
more for the catalyst(s). In this illustration we
have labeled the members of the food set by
double ovals.

If we use the random method of assigning
chemical properties, then the graph is a random
graph and can be studied using standard tech-
niques. The probability p that a reaction selected
at random will be catalyzed controls the ratio of
connections to nodes. As p increases so does this

#16In more recent work [7] we make a tractable model for
approximate treatment of spontaneous reactions by lumping
together all the polymer species of a given length that are not
in the autocatalytic network, assuming that they all have the
same concentration. These can be viewed as a new type of
node in the network. This allows us to include the effect of
spontaneous reactions when necessary.

J.D. Farmer / A Rosetta Stone for connectionism 177

u b u b b b

0 ~ 0 J 0 Q 0

o
°

l=klmabbbab

6 U D O 9 O O I Q 0 O O 4

= f o o d set

0 = other chemicals

= reactions

• = a c t i o n o f c a t a l y s t s

Fig. 7. The graph for an autocatalytic network. The ovals represent polymer species, labeled by strings. The black dots represent
reactions. The solid lines are connections from polymer nodes to the reactions in which they participate. The dotted lines go from
polymer species to the reactions they catalyze. The double ovals are special polymer nodes corresponding to the elements of the food
set, whose concentrations are supplied externally.

ratio. As p grows the graph becomes more and
more connected, i.e. more dense.

The graph-theoretic analysis only addresses the
question of who reacts with whom, and begs the
central (and much more difficult) question of con-
centrations. Numerical modeling of the kinetics
for any given catalyzed reaction is straightforward
but cumbersome. We introduced a simplified tech-
nique for treating catalyzed reactions of this type
in ref. [20] that approximates the true catalyzed
kinetics fairly well.

Modeling of the complete kinetics for an entire
reaction graph is impossible, since the graph is
infinite and under the laws of continuous mass
action, even if we initialize all but a finite number
of the species to zero concentration, an instant
later they will all have non-zero concentrations.
From a practical point of view, however, it is
possible to circumvent this problem by realizing
that any chemical reaction vessel is finite, and
species whose continuous concentrations are sig-
nificantly below the concentration corresponding

178 J.D. Farmer / A Rosetta Stone for connectionism

to the presence of a single molecule are unlikely to
participate in any reactions. Thus, to cope with
this problem we introduce a concentration thresh-
old, and only consider reactions where all the
members on either side of the reaction equation
(either A, B, and E, or C and E) are above the
concentration threshold. This then becomes a
metadynamical system: At any given time, only a
finite number of species are above the threshold,
and we only consider a finite graph. As the kinet-
ics act, species may rise above the concentration
threshold, so that the graph grows, or they may
drop below the threshold, so that the graph shrinks.

One of the main goals of this model is to obtain
closure in the form of an autocatalytic set, which is
a set of polymer species such that each member of
the set is produced by at least one catalyzed
reaction involving only other members of the set
(including the catalysts). Since the reactions are
reversible, a species can be "produced" either by
cleavage or condensation, depending on which
side of equilibrium it finds itself. Thus an autocat-
alytic set can be quite simple; for example,

A
A + B ~ C + H (19)

is an autocatalytic set, and so is

A + B C c + H . (20)

A, B, and C will be regenerated by supplying
either A and B, or by supplying C. Note, however,
that such simple autocatalytic sets are only likely
to occur when the probability of catalysis is very
high. Even for small values of p it is always
possible to find autocatalytic sets as long as the
food set is big enough. However, the typical auto-
catalytic set is more complicated than the exam-
pies given in eqs. (19) and (20). There is a critical
transition from the case where graphs with auto-
catalytic sets are very rare to that in which they
are very common, as described in refs. [20, 36].
The results given there show that it is possible to
create autocatalytic sets (in this graph theoretic

sense) under reasonably plausible prebiotic condi-
tions.

There are three notions of the formation of
autocatalytic sets, depending on what we mean by
"produced by" in the definition given above:

(i) Graph theoretic. The subgraph defined by the
autocatalytic set is closed, so that each member is
connected (by a solid connection) to at least one
reaction catalyzed by another member.

(ii) Kinetics. Each member is produced at a
level exceeding a given concentration threshold.

(iii) Robust. The autocatalytic set is robust un-
der at least some changes in its food set, i.e. its
members are at concentrations sufficiently large
and there are enough pathways so that for some
alterations of the food set it remains a kinetic
autocatalytic set, capable of regenerating removed
elements at concentrations above the threshold.

These notions are arranged in order of their
strength, i.e. an autocatalytic set in the sense of
kinetics is automatically an autocatalytic set in the
graph-theoretic sense, and a robust autocatalytic
set is automatically a kinetic autocatalytic set.

Describing the details of the conditions under
which autocatalytic sets can be created is outside
of the scope of this paper. Suffice it to say that,
within our artificial chemistry we can create ro-
bust autocatalytic sets. Consider, for example, an
autocatalytic set based on the monomers a and b,
originally formed by a food set consisting of the
species a, b, ab, and bb, as shown in fig. 8 and
table 2.

We plot the concentrations of the 21 polymer
species in the reactor against an index that is
arbitrary except that it orders the species accord-
ing to their length. We compare four different
alterations of the original food set, all of which
have the same rate of mass input. For two of the
altered food sets the concentration of the members
of the autocatalytic set remains almost the same;
they are all maintained at high concentration. For
the other two, the autocatalytic set "dies" in that
some of the members of the set fall below the
concentration threshold, and most of the concen-
trations decrease dramatically [7].

J.D. Farmer / .4 Rosetta Stone for connectionism 179

0

0
r.)

lO

1

o.1

O.Ol

o.ooi

o.oooi

1o-6

lO -6

1o-7

10 -a
0

/•'A' ' I ' ' ' ' I '

f V

l"

! " .-x
• ~-

F

I"

I0 20

Poly

Fig. 8. An experiment demonstrating the robust properties of
an autocatalytic set. The food set is originally a, b, ab, and bb.
The food set is altered in four different ways, as shown in table
2. For each alteration of the food set the concentrations of all
21 polymers in the autocatalytic set are plotted against the
"polymer index". (The polymer index assigns a unique label to
each polymer. It is ordered according to length, but is other-
wise arbitrary.) Two of the alterations of the food set cause the
autocatalytic set to die, while the other two hardly change it.
Like a robust metabolism, the autocatalytic set can digest a
variety of different foods.

Table 2
An experiment in varying the food set of an autocatalytic set.
The table shows the four species of the food set, and the
concentration of each that is supplied externally per unit
time. Case v is used to "grow" the autocatalytic set, and
cases w-z are four changes made once the autocatalytic set is
established, x and z kill the autocatalytic set, while w and y
sustain it with only minimal alteration, as shown in fig. 8.

a b ab bb

v 5 5 5 5
w 5 0 5 7.5
x 0 0 10 5
y 10 20 0 0
z 0 10 10 0

Our numerical evidence suggests that any fixed
reaction network always approaches a fixed point
where the concentrations are constant• However,
since spontaneous reactions always take place,
there is the possibility that a new species will be
created that is on the graph of the autocatalytic

set, but which the kinetics did not yet reach• If the
catalyzed pathway is sufficiently strong, then the
new species may be regenerated and added to
the (kinetic) autocatalytic set. This is the way the

autocatalytic sets evolve; spontaneous reactions
provide natural variation, and kinetics provides
selection.

Autocatalytic networks create a rich, focused set
of enzymes at high concentration• They form sim-
ple metabolisms, which might have provided a
substrate for contemporary life.

The results discussed here, as well as many
others, will be described in more detail in a future
paper [7]. We intend to study the evolution of
autocatalytic sets, and to make a closer correspon-
dence to experimental parameter values.

6.2. Comparison to generic network

(i) Nodes correspond to both polymer species
and to reactions. The states are determined by the
concentrations of the polymers•

(ii) Connections. The graph connections are
quite different in this system, in that there are no
direct reaction connections to the same types of
nodes. Each reaction node is connected by
undirected links to exactly three polymer nodes,
and contains one (directed) catalytic link to one or
more polymer nodes. A polymer node can be
connected by a solid link to any number of reaction
nodes, and can have any number of catalytic links
to reaction nodes•

(iii) Dynamics. The dynamics is based on the
laws of mass action. The equations are physically
realistic, and are considerably more complicated
than those of the other networks we have discussed.
Arbitrarily label all the polymer species by an
index i, and let x i represent the concentration of
the ith species. Assume that all the forward
reactions in eq. (18) have the same rate constant
k f , all the backward reactions have the same rate
constant kr, and that all catalyzed reactions have
the same velocity u. Let the quantity mq~ e
represent the connections in the two graphs, where
i and j refer to the two species that join together

180 J.D. Farmer / A Rosetta Stone for connectionism

to form k under enzyme e. mijke = 1 when there
is a catalyzed reaction, and mijk~ = 0 otherwise.
mijke = mjike. Let the dissipation constant be k,
let the rate at which elements are added to the
foodset be d, and let h be the concentration of
water. Neglecting the effects of enzyme saturation,
the equations can be written

occasionally happens that one of the new species
catalyzes a pathway that feeds back to create that
species. Such a fluctuation can be amplified
enormously, altering the part of the catalyzed
graph that is above the concentration threshold.
This provides a mechanism for the evolution of
autocatalytic networks.

d x k
dt = E mijke(1 + PXe) (k tx ix j -krhXk)

e . i , j

+ 2 ~., mktme(1 + PXe)(krhxm -- kfXkXi)
I ,m , e

- k x k + d f (X k) . (21)

f is a function whose value is one if x k is in the
food set, and is zero otherwise. More accurate
equations incorporating the effect of enzyme
saturation are given in ref. [20].

An effective instantaneous connection strength
can be computed by evaluating 02k/OX p. The
resulting expression is too complicated to write
here. Like the immune network, the instantaneous
connection strength can be either excitatory or
inhibitory depending on where the network is
relative to its steady state value. In contrast to the
other networks we have studied, there are no
special variables in eq. (21) that explicitly play the
role of either node or connection parameters. The
concentration of the enzymes x e that catalyze a
given reaction is suggestive of the connection
parameters in other connectionist networks. How-
ever, since any species can be a reactant in one
equation and an enzyme in another, there is no
explicit separation of time scales between x e and
the other variables.

(iv) Graph dynamics. The separation of time
scales usually associated with learning occurs
entirely through modification of the graph. The
deterministic behavior for any given graph
apparently goes to a fixed point. However, in a
real autocatalytic system there are always
spontaneous reactions creating new species not
contained in the catalytic reaction graph. It

Autocatalytic networks are interesting from a
connectionist point of view because of their rich
graph structure and because of the possibilities
opened up by catalytic activity. Catalytic activity
is analogous to amplification in electronic circuits;
it results in multiplicative terms that either amplify
or suppress the activity of a given node. The fixed
points of the network may be thought of as self-
sustaining memories, caused by the feedback of
catalytic activity. The dynamical equations that
we use here are based on reversible chemical
reactions, and lead to unique fixed points. How-
ever, other chemical reaction networks can have
multiple fixed points, and it seems likely that
when we alter the model to study irreversible
reactions such as those observed in contemporary
metabolisms, we will see multiple fixed points. In
this case the computational possibilities of such
networks become much more complex.

7. Other potential examples and applications

The four examples discussed here are by no
means the only ones where connectionist models
have been used, or could be used. Limitations of
space and time prevent a detailed examination of
all the possibilities, but a few deserve at least
cursory mention.

Bayesian inference networks, Markov networks,

and constraint networks are procedures used in
artificial intelligence and decision theory for orga-
nizing and codifying casual relationships in com-
plex systems [49]. Each variable corresponds to a
node of the network. Each node is connected to

J.D. Farmer//A Rosetta Stone for connectionism 181

the other variables on which it depends. Bayesian
networks are based on conditional probability dis-
tributions, and use directed graphs; Markov net-
works are based on joint probability and have
undirected graphs; constraint networks assume
deterministic constraints between variables. These
networks are most commonly used to incorporate
prior knowledge, make predictions and test hy-
potheses. Learning good graph representations is
an interesting problem where further work is
needed.

Boolean networks. A neural network whose tran-
sition rule is a binary automaton is an example of
a Boolean network. In general there is no need to
restrict the dynamics to the sum and threshold
rules usually used in neural nets (other than the
fact that this may make the learning problem
simpler). Instead, the nodes can implement arbi-
trary logical (Boolean) functions. Kauffman stud-
ied the emergent properties of networks in which
each node implements a random Boolean function
[38, 37]. (The functions are fixed in time, but each
node implements a different function.) More re-
cently, Miller and Forrest [44] have shown that the
dynamics of classifier systems can be mapped into
Boolean networks. This allows them to describe
the emergent properties of classifier systems. Their
work implicitly maps Boolean networks to the
generic connectionist framework. The formulation
of learning rules for general Boolean networks is
an interesting problem that deserves further study.
Kauffman has done some work using point muta-
tion to modify the graph [39].

Ecological models and population genetics are a
natural area for the application of connectionism.
There is a large body of work modeling plant and
animal populations and their interactions with
their environment in terms of differential equa-
tions. In these models it is necessary to explicitly
state how the populations interact, and translate
this into mathematical form. An alternative is to
let these interactions evolve. A natural framework
for such models is provided by the work of

Maynard Smith in the application of game-theo-
retic models to population genetics and ethology
[63]. The interactions of the populations with each
other are modeled as game-theoretic strategies. In
these models, however, it is necessary to state in
advance what these strategies are. A natural alter-
native is to let the strategies evolve. Some aspects
of this have been addressed in the fledgling theory
of evolutionary games [24]. A connectionist ap-
proach is a natural extension of this work. The
immune networks discussed here are very similar
to predator-prey models. The strings encoding
chemical properties are analogous to genotypes of
a given population, and the matrix of interactions
are analogous to phenotypes.

Economics is another natural area of applica-
tion. Again, existing game-theoretic work suggests
a natural avenue for a connectionist approach,
which could be implemented along the lines of the
immune model. The binary strings can be viewed
as encoding simple strategies, specifying the inter-
actions of economic agents. Indeed, there are al-
ready investigations of models of this type based
on classifier systems [4, 5, 41].

Game theory is a natural area of application.
For example, Axelrod [6] has studied the game of
iterated prisoner's dilemma. His approach was to
encode recent past moves as binary variables, and
encode the strategy of the player as a Boolean
function. He demonstrated that genetic algorithms
can be used to evolve Boolean functions that
correspond to good strategies. An alternative ap-
proach would be to distribute the strategy over
many nodes, and use a connectionist model in-
stead of a look-up table. Such models may have
applications in many different problems where
evolutionary games are relevant, such as eco-
nomics and ethology.

Molecular evolution models. The autocatalytic
model discussed in detail here is by no means the
only connectionist model for molecular evolution.
Perhaps one of the earliest example is the hypercy-

182 ,I.D. Farmer/A Rosetta Stone for eonnectionism

cle model of Eigen and Schuster [19], which has
recently been compared to the Hopfield neural
network models [32, 52]. For a review see ref. [27].

8. Conclusions

I hope that presenting four different connection-
ist systems in a common framework and notation
will make it easier to transfer results from one
field to another. This should be particularly useful
in areas such as immune networks, where connec-
tionist models are not as well developed as they
are in other areas, such as neural networks. By
showing how similar mathematical structure mani-
fests itself in quite different contexts, I hope that I
have conveyed the broad applicability of connec-
tionism. Finally, I hope that these mathematical
analogies make the underlying phenomena clearer.
For example, comparing the role of the lympho-
cyte in these models to the role of neurons may
give more insight into the construction of immune
networks with more computational power.

8.1. Open questions

Hopefully the framework for connectionist
models presented here will aid the development of
a broader mathematical theory of connectionist
systems. From an engineering point of view, the
central question is: What is the most effective way
to construct good connectionist networks? Ques-
tions that remain unclear include:

(i) In some systems, such as neural networks
and classifier systems, a connection is always ei-
ther inhibitory or excitatory. In others, such as
immune networks and autocatalytic networks, a
connection can be either inhibitory or excitatory,
depending on the state of the system. Does the
latter more flexible approach complicate learning?
Does it give the network any useful additional
computational power?

(ii) Is it essential to have independent parame-
ters for each connection? In neural nets, each
connection has its own parameter. In classifier

systems, the use of the "don ' t care" symbol means
that many connections are represented by one
classifier, and thus share a common connection
parameter. This decreases the flexibility of the
network, but at the same time gives an efficient
graph representation, and aids the genetic algo-
rithms in finding good graphs. In B-cell immune
networks the parameters reside entirely in the
nodes, and thus as a single parameter changes
many different connections are effected. Does this
make it impossible to implement certain func-
tions? How does this effect learning and evolu-
tion? (It is conceivable that the reduction of
parameters may actually cause some improve-
ments.)

(iii) What is the optimal level of complexity for
the transition rule? Some neural nets and classifier
systems employ simple activation functions, such
as linear threshold rules. Somewhat more compli-
cated nonlinear functions, such as sigmoids, have
the advantage of being smooth; immune networks
have even more complicated activation functions.
An alternative is to make each node a flexible
function approximation box, for example, with its
own set of local linear functions, so that the node
can approximate functions with more general
shapes [22, 68]. However, complexity also in-
creases the number of free parameters and poten-
tially increases the amount of data needed for
learning.

(iv) A related question concerns the role of
catalysis. In autocatalytic networks, a node can be
switched on or off by another node through multi-
plicatioe coupling terms. In contrast to networks
in which inputs can only be summed, this allows a
single unit to exert over-riding control over an-
other. A similar approach has been suggested in
Y'.-FI neural networks [59]; T-cells and neuro-
transmitters may play a similar role in real biolog-
ical systems. How valuable is specific catalysis to a
network? How difficult is the learning problem
when it is employed?

(v) What are the optimal approaches to evolv-
ing good graph representations? Most of the work
in this area has been done for classifier systems,

J.D. Farmer/A Rosetta Stone for connectionism 183

although even here many important issues remain
to be clarified. All known algorithms that can
create connections and nodes, such as the genetic
algorithms, are stochastic; there are deterministic
pruning algorithms that can only destroy connec-
tions, such as orthogonal projection. Are there
efficient deterministic algorithms for creating new
graph connections?

(vi) What are the best learning algorithms? A
great deal of effort has been devoted to answering
this question, but the answer is still obscure. A
perusal of the literature suggests certain general
conclusions. For example, in problems with de-
tailed feedback, e.g. a list of known input-output
pairs, deterministic function fitting algorithms such
as least-squares minimization (of which back-
propagation is an example) can be quite effective.
However, if the search space is not smooth, for
example because the samples are too small to be
statistically stable, stochastic algorithms such as
crossover are often more effective [1]. In more
general situations where there is no detailed feed-
back, there seems to be no general consensus as to
which learning algorithms are superior.

Thus far, very few connectionist networks make
use of nontrivial computational capabilities. In
typical applications most connectionist networks
end up functioning as stimulus-response systems,
simply mapping inputs to outputs without making
use of conditional looping, subroutines, or any of
the power we take for granted in computer pro-
grams. Even in systems that clearly have a great
deal of computational power in principle, such as
classifier systems, the solutions actually learned
are usually close to look-up tables. It seems to be
much easier to implement effective learning rules
in simpler architectures that sacrifice computa-
tional complexity, such as feed-forward networks.

It may be that there is an inherent trade-off
between the complexity of learning and the com-
plexity of computation, so that the difficulty of
learning increases with computational power. At
one end of the spectrum is a look-up table. Learn-
ing is trivial; examples are simply inserted as they

occur. Unfortunately, all too often neural network
applications have not been compared to this sim-
ple approach. In the infamous NET-talk problem
[62], for example, a simple look-up table gives
better performance than a sum/sigmoid back-
propagation network [3]. Simple function approx-
imation is one level above a look-up table in
computational complexity; functions can at least
attempt to interpolate between examples, and gen-
eralize to examples that are not in the learning
data set. Learning is still fairly simple, although
already the subtleties of probability and statistics
begin to complicate the matter. However, simple
function approximation has less computational ca-
pability than a finite state machine. At present,
there are no good learning algorithms for finite
state machines. Without counting, conditional
looping, etc., many problems will simply remain
insoluble.

It is probably more likely that learning is possi-
ble with more sophisticated computational power,
and that we simply do not yet know how to
accomphsh it. I suspect that the connectionist
networks of the future will be full of loops.

Connectionist models are a useful tool for solv-
ing problems in learning and adaptation. They
make it possible to deal with situations in which
there are an infinite number of possible variables,
but in which only a finite number are active at any
given time. The connections are explicit but
changeable. We have only recently begun to ac-
quire the computational capabilities to reahze their
potential. I suspect that the next decade will wit-
ness an enormous explosion in the application of
the connectionist methodology.

However, connectionism represents a level of
abstraction that is ultimately limited by such fac-
tors as the need to specify connections explicitly,
and the lack of builtin spatial structure. Many
problems in adaptive systems ultimately require
models such as partial differential equations or
cellular automata with spatial structure [40]. The
molecular evolution models of Fontana et al., for
example, explicitly model the spatial structure of
individual polymers in an artificial chemistry. As a

184

Table 3
A Rosetta Stone for connectionism.

J.D. Farmer/A Rosetta Stone for connectionism

Generic Neural net Classifier system Immune net Autocatalytic net

node neuron message antibody type

state activation intensity free antibody/
level antigen concentration

connection axonflsynapse/ classifier chemical reaction
dendrite of antibodies

parameters connection strength and reaction affinity
weight specificity lymphocyte concentration

interaction sum/sigmoid linear threshold bell-shaped
rule and maximum

learning Hcbb, bucket brigade clonal selection
algorithm back-propagation (gen. Hcbb) (gen. Hcbb)

graph synaptic genetic genetic
dynamics plasticity algorithms algorithms

polymer species

polymer
concentration

catalyzed
chemical reaction

catalytic
velocity

mass action

approach to
attractor

artificial
chemistry rules,
spontaneous
reactions

result the phenotypes emerge more naturally than
in the artificial chemistry in the autocatalytic network
model discussed here. On the other hand, the
approach of Fontana et al. requires more com-
putational resources. For many problems connec-
tionism may provide a good compromise between
accurate modeling and tractability, appropriate to
the study of adaptive phenomena during the last
decade of this millenium.

8.2. Rosetta Stone

This paper is a modest start toward creating a
common vocabulary for connectionist systems, and
unifying work on adaptive systems. Like the
Rosetta Stone, it contains only a small fragment

of knowledge. I hope it will nonetheless lead to a
deeper understanding in the future. Table 3 sum-
marizes the analogies developed in this paper.

Acknowledgements

I would like to thank Rob De Boer, Walter
Fontana, Stephanie Forrest, Andr~ Longtin, Steve

Omohundro, Norman Packard, Alan Perelson, and
Paul Stolorz for valuable discussions, and Ann
and Bill Beyer for lending valuable references on
the Rosetta Stone.

I urge the reader to use these results for peace-
ful purposes.

Appendix. A superficial taxonomy of dynamical
systems

Dynamical systems can be trivially classified
according to the continuity or locality of the
underlying variables. A variable either can be dis-
crete, i.e. describable by a finite integer, or contin-
uous. There are three essential properties:

(i) Time. All dynamical systems contain time as
either a discrete or continuous variable.

(ii) State. The state can either be a vector of
real numbers, as in an ordinary differential equa-
tion, or integers, as for an automaton.

(iii) Space plays a special role in dynamical
systems. Some dynamical models, such as au-
tomata or ordinary differential equations, do not
contain the notion of space. Other models, such as

J.D. Farmer/A Rosetta Stone for connectionism

Table 4

Types of dynamical systems, characterized by the nature of time, space, and state. "Local" means that while this
there is typically some degree of continuity and a clear notion of neighborhood.

185

property is discrete,

Type of dynamical system Space Time Representation

partial differential equations continuous continuous continuous
computer representation of a PDE local local local
functional maps continuous discrete continuous
ordinary differential equations none continuous continuous
lattice models local discrete or continuous continuous
maps (difference equations) none discrete continuous
cellular automata local discrete discrete
automata none discrete discrete

lattice maps or cellular automata, contain a notion
of locality and therefore space even though they
are not fully continuous. Partial differential equa-
tions or functional maps have continuous spatial
variables.

This is summarized in table 4.

References

[1] D.H. Ackley, An empirical study of bit vector function
optimization, in: Genetic Algorithms and Simulated An-
nealing, ed. L. Davis (Kaufmann, Los Altos, CA, 1987).

[2] D.L. Alkon, Memory storage and neural systems, Sci. Am.
261 (1989) 26-34.

[3] Z.G. An, S.M. Mniszewski, Y.C. Lee, G. Papcun and
G.D. Doolen, HI-ERtalker: a default hierarchy of high
order neural networks that learns to read English aloud,
Technical Report, Center for Nonlinear Studies Newslet-
ter, Los Alamos National Laboratory (1987).

[4] W.B. Arthur, Nash-discovery automata for finite-action
games, working paper, Santa Fe Institute (1989).

[5] W.B. Arthur, On the use of classifier systems on eco-
nomics problems, working paper, Santa Fe Institute (1989).

[6] R. Axelrod, An evolutionary approach to norms, Am.
Political Sci. Rev. 80 (December 1986) 1095-1111.

[7] R.J. Bagley and J.D. Farmer, Robust autocatalytic sets
(1990), in progress.

[8] R.J. Bagley, J.D. Farmer, S.A. Kaufmann, N.H. Packard,
A.S. Perelson and I.M. Stadnyk, Modeling adaptive bio-
logical systems, Biocybernetics (1990), to appear.

[9] R.K. Belew and M. Gherrity, Back propagation for the
classifier system, Technical Report, University of Califor-
nia, San Diego (1989).

[10] L.B. Booker, D.E. Goldberg and J.H. Holland, Classifier
systems and genetic algorithms, Artificial Intelligence 40
(1989) 235-282.

[11] D. Broomhead and D. Lowe, Radial basis functions,
multivalued functional interpolation and adaptive net-
works, Technical Report Memorandum 4148, Royal Sig-

nals and Radar Establishment (1988).
[12] E.A. Wallis Budge, The Rosetta Stone (The Religious

Tract Society, London, 1929) (reprinted by Dover, 1989).
[13] M. Casdagli, Nonlinear prediction of chaotic time series,

Physica D 35 (1989) 335-356.
[14] M. Compiani, D. Montanari, R. Serra and G. Valastro,

Classifier systems and neural networks, in: Proceedings of
the Second Workshop on Parallel Architectures and Neu-
ral Networks, ed. E. Caianiello (World Scientific, Singa-
pore, 1988).

[15] J.D. Cowan and D.H. Sharp, Neural nets, Quart. Rev.
Biophys. 21 (1988) 365-427.

[16] L. Davis, Mapping classifier systems into neural networks,
in: Neural Information Processing Systems 1, ed. D.S.
Touretzsky (Kaufmann, Los Altos, CA, 1989).

[17] R.J. De Boer and P. Hogeweg, Unreasonable implications
of reasonable idiotypic network assumptions, Bull. Math.
Biol. 51 (1989) 381-408.

[18] R.J. De Boer, Dynamical and topological patterns in
developing idiotypic networks, Technical Report, Los
Alamos National Laboratory (1990).

[19] M. Eigen and P. Schuster, The Hypercycle (Springer,
Berlin, 1979).

[20] J.D. Farmer, S.A. Kauffman and N.H. Packard, Autocat-
alytic replication of polymers, Physica D 22 (1986) 50-67.

[21] J.D. Farmer, N.H. Packard and A.S. Perelson, The im-
mune system, adaptation and machine learning, Physica
D 22 (1986) 187-204.

[22] J.D. Farmer and J.J. Sidorowich, Exploiting chaos to
predict the future and reduce noise, in: Evolution, Learn-
ing and Cognition, ed. Y.C. Lee (World Scientific, Singa-
pore, 1988).

[23] S. Forrest, Implementing semantic network structures us-
ing the classifier system, in: Proceedings of the First
International Conference on Genetic Algorithms and their
Applications, 1985.

[24] D. Friedman, Evolutionary games in economics, Techni-
cal Report, Stanford University (1989).

[25] C.L. Giles, R.D. Griffin and T. Maxwell, Encoding geo-
metric invariances in higher order neural networks, in:
Neural Networks for Computing, ed. J.S. Denker (AIP,
New York, 1986).

186 J.D. Farmer / A Rosetta Stone for connectionism

[26] S.A. Harp, T. Samad and A Guha, Towards the genetic
synthesis of neural networks, in: Proceedings of the Third
International Conference on Genetic Algorithms, ed. J.D.
Schaffer (Kaufmann, Los Altos, CA, 1989).

[27] J. Hofbauer and K. Sigmund, The Theory of Evolution
and Dynamical Systems (Cambridge Univ. Press, Cam-
bridge, 1988).

[28] G.W. Hoffmann, A theory of regulation and self-nonself
discrimination in an immune network, European J. Im-
munol. 5 (1975) 638-647.

[29] G.W. Hoffmann, T.A. Kion, R.B. Forsyth, K.G. Soga and
A. Cooper-Willis, The n-dimensional network, in: Theo-
retical Immunology, Part II, ed. A.S. Perelson (Santa Fe
Institute/Addison-Wesley, Redwood City, CA, 1988).

[30] J. Holland, Escaping brittleness: the possibilities of gen-
eral purpose machine learning algorithms applied to paral-
lel rule-based systems, in: Machine Learning II, eds.
Michalski, Carbonell and Mitchell (Kaufmann, Los Altos,
1986).

[31] J. Holland, K.J. Holyoak, R.F. Nisbett and P.R. Thagard,
Induction: Process of Inference, Learning and Discovery
(MIT Press, Cambridge, MA, 1986).

[32] J. Hopfield and D.W. Tank, "Neural" computation of
decisions in optimization problems, Biol. Cybern. 52 (1985)
141-152.

[33] N.K. Jerne, The immune system, Sci. Am. 229 (1973)
52-60.

[34] N.K. Jerne, Towards a network theory of the immune
system, Ann. Immunology (Inst. Pasteur) 125 C (1974)
373-389.

[35] R. Jones, C. Barnes, Y.C. Lee and K. Lee, Fast algorithm
for localized prediction, private communication (1989).

[36] S.A. Kauffman, Autocatalytic sets of proteins, J. Theor.
Biol. 119 (1986) 1-24.

[37] S.A. Kauffman, Emergent properties in random complex
automata, Physica D 10 (1984) 145-156.

[38] S.A. Kauffman, Metabolic stability and epigenesis in ran-
domly constructed genetic nets, J. Theor. Biol. 22 (1969)
437.

[39] S.A. Kauffman, Origins of Order, Self-Organization, and
Selection in Evolution (Oxford Univ. Press, Oxford, 1990),
in press.

[40] C.G. Langton, ed., Artificial Life (Addison-Wesley, Red-
wood City, CA 1989).

[41] R. Marimon, E. McGrattan and T.J. Sargeant, Money as a
medium of exchange in an economy with artificially intel-
ligent agents, Technical Report 89-004, Santa Fe Institute,
Santa Fe, NM (1989).

[42] W.S. McCulloch and W. Pitts, A logical calculus of the
ideas immanent in nervous activity, Bull. Math. Biophys.
5 (1943) 115-133.

[43] G.F. Miller, P.M. Todd and S.U. Hegde, Designing neural
networks using genetic algorithms, in: Proceedings of the
Third International Conference on Genetic Algorithms,
ed. J.D. Schaffer (Kaufmann, Los Altos, CA, 1989).

[44] J. Miller and S. Forrest, The dynamical behavior of classi-
fier systems, in: Proceedings of the Third International

Conference on Genetic Algorithms, ed. J.D. Schaffer
(Kaufmann, Los Altos, CA), in press.

[45] S.L. Miller and H.C. Urey, Organic compound synthesis
on the primitive earth, Science 130 (1959) 245-251.

[46] D. Montana and L. Davis, Training feedforward neural
networks using genetic algorithms, in: Proceedings of the
Eleventh International Joint Conference on Artificial In-
telligence, 1989.

[47] J. Moody and C. Darken, Learning with localized recep-
tive fields, Technical Report, Department of Computer
Science, Yale University (1988).

[48] A. Newell, Production systems: models of control struc-
tures, in: Visual Information Processing, ed. W.G. Chase
(Academic Press, New York, 1973).

[49] J. Pearl, Probabihstic Reasoning in Intelligent Systems:
Networks of Plausible Inference (Kaufmann, Los Altos,
CA, 1988).

[50] A.S. Perelson, Immune network theory, Immunol. Rev.
110 (1989) 5-36.

[51] A.S. Perelson, Toward a realistic model of the immune
system, in: Theoretical Immunology, Part II, ed. A.S.
Perelson (Santa Fe Institute/Addison-Wesley, Redwood
City, CA, 1988).

[52] E.S. Pichler, J.D. Keeler and J. Ross, Comparison of
self-organization and optimization in evolution and neural
network models, Technical Report, Chemistry Depart-
ment, Stanford University (1989).

[53] F.J. Pineda, Generalization of backpropagation to recur-
rent and higher order neural networks, in: Neural Infor-
mation Processing Systems, ed. D.Z. Anderson (AIPI New
York, 1988).

[54] T. Poggio and F. Girosi, A theory of networks for approx-
imation and learning, MIT preprint (1989).

[55] S. Pope, unpublished research.
[56] P.H. Richter, A network theory of the immune system,

European J. Immunol. 5 (1975) 350-354.
[57] R. Riolo, CFS-C: a package of domain independent sub-

routines for implementing classifier systems in arbitrary,
user-defined environments, Technical Report, Logic of
Computers Group, University of Michigan (1986).

[58] F. Rosenblatt, The perceptron: a probabilistic model for
information storage and organization in the brain, Psycho-
logical Rev. 65 (1958) 386.

[59] D. Rummelhart and J. McClelland, Parallel Distributed
Processing, Vol 1 (MIT Press, Cambridge, MA, 1986).

[60] A.C. Scott, Neurophysics (Wiley, New York, 1977).
[61] L.A. Segel and A.S. Perelson, Shape space analysis of

immune networks, in: Cell to Cell Signalling: From Ex-
periments to Theoretical Models, ed. A. Goldbeter
(Academic Press, New York, 1989).

[62] T.J. Sejnowski and C.R. Rosenberg, Parallel networks that
learn to pronounce English text, Complex Systems 1 (1987)
145-168.

[63] J. Maynard Smith, Evolutionary game theory, Physica D
22 (1986) 43-49.

[64] F.J. Varela, A. Coutinho, B. Dupire and N.N. Vaz, Cogni-
tive networks: immune neural and otherwise, in: Theoreti-

J.D. Farmer / A Rosetta Stone for connectionism 187

cal Immunology, Part II, ed. A.S. Perelson (Santa Fe
Institute/Addison-Wesley, Redwood City, CA, 1988).

[65] D. Whitley and T. Hanson, Optimizing neural networks
using faster, more accurate genetic search, in: Proceedings
of the Third International Conference on Genetic Algo-
rithms, ed. J.D. Schaffer (Kaufmann, Los Altos, CA,
1989).

[66] S.W. Wilson, Bid competition and specificity reconsid-
ered, Complex Systems 2 (1989) 705-723.

[67] S.W. Wilson, Perceptron redux: emergence of structure,
Physica D 42 (1990) 249-256, these Proceedings.

[68] D.H. Wolpert, A benchmark for how well neural nets
generalize, Biol. Cybern. 61 (1989) 303-313.

