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We investigate a type of intermittency that occurs in space as well as time, studying a one dimensional lattice of coupled 
quadratic maps. This system naturally forms spatial domains. Motion of the domain walls causes spatially localized changes 
from chaotic to almost periodic behavior. The almost periodic phases have eigenvalues quite close to one, resulting in 
long-lived laminar bursts with a 1 / f  low frequency spectrum. This behavior has aspects of both Crutchfield and 
Pomeau-Manneville intermittency. Unlike Pomeau-Manneville, however, the behavior that we observe here is quite robust 
under changes of parameters. 

1. Introduction 

Space-time intermittency is one of the most 
baffling phenomena observed in spatially extended 
systems. A common manifestation occurs in fluid 
flows, where patches of turbulence are sometimes 
isolated in space. The interface between laminar 
and turbulent behavior is dynamic and, at least to 
the casual observer, unpredictable; without chang- 
ing parameters, turbulence can spread through the 
entire flow, or dissapear, so that the entire flow 
becomes laminar. A good example are the turbu- 
lent spots seen in doubly rotating Taylor- 
Couette flow [1]. In general, space-time intermit- 
tency occurs whenever two qualitatively different 
types of behavior are intermittent in both space 
and time. 

To our knowledge there are no theories for 
space-time intermittency, even though it is ob- 
served in many physical systems. Our approach to 
this problem is to study the simplest possible 
example, in this case a one dimensional lattice of 
coupled quadratic maps, as studied by Crutchfield 
[2], Diessler [3], Kaneko [4, 5], and Waller and 

Kapral [6]. This system displays space-time inter- 
mittency through a wide range of parameter val- 
ues. An example is shown in fig. 1. 

Before describing our results, we would like to 
make a few remarks about our approach. Recent 
developments in the study of low dimensional 
dynamics have shown the efficacy of obtaining 
qualitative results through the study of maps rather 
than flows. Many important physical phenomena 
such as the discovery of the U-sequence [7], 
period-doubling [8], etc., were originally dis- 
covered in low dimensional maps and later ob- 
served in experiments. Low dimensional maps are 
not sufficient, however, to describe phenomena 
that are intrinsically spatial. 

Physical models with spatial degrees of'freedom 
tend to be written down either as partial differen- 
tial equations or continuous-time lattice models. 
Such models are difficult to study, both numeri- 
cally and analytically. Through the method of 
Poincar6 section, however, partial differential 
equations can always be reduced to iterated func- 
tional mappings, continuous in space but discrete 
in time. Thus every partial differential equation 
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Fig. 1. (a) A perspective view of time evolution of eq. (4) with r = 3.654 and a = I8{. Time increases from front to back and the 
lattice is arranged from left to right. The vertical dimension represents the value of the solution. Lines were d rawn  between each point 
on the lattice to approximate a continuous function by linear interpolation. Due to the periodicity of the laminar  phases, only every 
32nd iteration is shown. The laminar regions look smooth, in contrast to the chaotic regions. At any given time the lattice may be 
entirely chaotic, entirely laminar, or contain a mixture of chaotic and laminar phases. (b) The configuration of the lattice at a given 
ins tant  in time; for this snapshot  one domain is chaotic while the other is laminar. (c) Several configurations of the lattice plotted 
simultaneously,  illustrating the difference between laminar and chaotic behavior. (d) The time series produced at a fixed lattice 
position. 
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Fig. 1. continued. 

has an infinite set of equivalent iterated functional 
mappings, even though it may be difficult if not 
impossible to explicitly write any of them down. 
We reverse this procedure, explicitly writing down 
a functional map that is easy to study, knowing 
that there are classes of partial differential equa- 
tions corresponding to it. In fact, the functional 
map that we study here is the type expected from 
a reduction of a driven reaction-diffusion equa- 
tion [91. To simplify things still further, we use a 
discrete spatial lattice, reducing the functional map 
to a lattice map. As the simplest systems with 
spatial degrees of freedom, lattice maps provide a 
natural environment for the qualitative study of 
dynamics in higher dimensions. 

2. A brief review of previous theories 
of intermittency 

There is very little literature on space-time 
intermittency. What is known tends to be very 
heuristic. For example, a variety of space-time 
intermittency occurs in turbulent wakes: Often 

there is a fluctuating interface between turbulent 
and laminar flow, which is quite well defined. If a 
probe is placed in fixed point in space in the 
region of the wake, the resulting time series shows 
sharp transitions between turbulent and laminar 
behavior. This is quite different, however, from 
space-time intermittency that we discuss here, 
which has more complicated spatial behavior. We 
know of no previous theories for the variety of 
space-time intermittency studied here. 

There are three known types of temporal inter- 
mittency, described by Pomeau and Manneville 
[10], Grebogi et al. [11], and Crutchfield [12]. We 
present a brief review. 

A major step in the understanding of temporal 
intermittency was made by Pomeau and Manne- 
ville [10]. The basic idea is quite simple: When a 
periodic cycle becomes unstable, by continuity 
there is a region in parameter space near the 
bifurcation point where the magnitude of the in- 
stability remains small. Orbits near the cycle re- 
main so for some time, during which the motion is 
nearly periodic. If the cycle is embedded in a 
chaotic attractor, at irregular intervals trajectories 
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passes near the cycle, causing sporadic bursts of 
nearly periodic behavior. 

The resulting intermittent behavior can be clas- 
sified according to the nature of the bifurcation 
which causes it. There are three basic types: 

1) The largest eigenvalue exists through 1. 
2) A complex conjugate pair of eigenvalues 

crosses the unit circle. 
3) The largest eigenvalue exists through through 

- -1 .  

Pomeau-Manneville intermittency occurs only 
near bifurcations, typically in narrow parameter 
windows. In addition, there is no explanation of 
how intermittency might occur in space as well. 

Kaneko [5] has shown that Pomeau-Manneville 
intermittency can turn into space-time intermit- 
tency in systems that are spatially extended, pro- 
viding the spatial coupling is not too large. This 
behavior exists in only a narrow range of parame- 
ters, and is substantially different from what we 
study here. 

Crisis intermittency, originally described by 
Grebogi et al. [11], occurs when a dynamical sys- 
tem has multiple basins of attractions. For a 
system with two attractors, for example, it some- 
times happens that the basin boundaries of each 
attractor approaches the other attractor, so that a 
small noise fluctuation can knock the orbit from 
one attractor to the other. Like Pomeau-Manne- 
viUe intermittency, this occurs only in narrow 
parameter windows, and there is no explanation of 
how this might occur in space as well. 

A very different type of intermittency was pro- 
posed by Crutchfield [12]. To understand his idea, 
consider a dynamical system whose degrees of 
freedom can be decomposed into fast variables x, 
and slow variables s, in the following form: 

= F ( x ,  s) ,  (la) 

g = S ( s ) .  (lb) 

If s is sufficiently slow it can be viewed as a 
control parameter of the fast system. Suppose that 
the fast system has a bifurcation from periodic to 
chaotic behavior on a critical surface s c. If s is 

chaotic and crosses through s c, x will exhibit 
bursts of chaotic and periodic behavior. This is 
not restricted to bifurcation points, and can occur 
through a wide range of parameters. 

It is fairly easy to construct examples of 
Crutchfield intermittency by hand, using familiar 
systems with the appropriate properties, e.g., two 
Rossler systems with different time scales. It would 
be much more convincing, however, to find such 
behavior in a more natural context. The system we 
study here provides just such a context. Slow scale 
variables emerge spontaneouslly from the interac- 
tions between the faster scale variables. Since these 
variables change in space as well as time, the 
resulting bifurcations are localized in space. As we 
shall show, the "laminar" behavior corresponds to 
nearly stable cycles, so in this sense our 
model for intermittency combines elements of both 
Crutchfield and Pomeau-ManneviUe intermit- 
tency. 

3. Description of the quadratic map lattice 

The system we study here consists of a lattice of 
N quadratic maps coupled together by taking a 
simple weighted average of each lattice point with 
its neighbors. That is, at each point we apply the 
map f and then average over A adjacent positions. 
More precisely, 

i+A 

X t + l ( i ) =  E f ( x t ( j ) ) w ( i , j ) ) ,  
j=i-A 

; = 0 , 1 , 2  . . . . .  N, (2) 

where the integer t indicates the time step, x( i )  is 
the value at the ith lattice site, and w(i, j )  is a 
weighting function. In all of the results reported 
here f is the logistic map, i.e. 

f ( x )  = rx(1 - x ) .  (3) 

We generally study periodic boundary conditions, 
x ( O ) = x ( N ) ,  but at times we also use fixed 
boundary conditions as a diagnostic tool. 
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As mentioned above, this system corresponds to 
a reaction-diffusion equation. The averaging pro- 
cess supplies the diffusion, and the iteration of the 
logistic map supplies the reaction. In fact, as 
N ~ o¢, for a Gaussian weighting function eq. (2) 
is equivalent to 

~X 
9---[ = a2Xyy + [ f ( x )  - x]G(t), 

where G(t) = ~..n°¢=l 8 ( t -  n), and a is the diffusion 
constant. The quadratic form of f is somewhat 
arbitrary. We have also tried other types of maps, 
including a sin map and an exponential map. 
Providing the map has a single maximum, the 
results we obtain are qualitatively similar. For 
convenience, though, all the results presented here 
are for the logistic map. 

Our numerical experience shows that the quali- 
tative behavior is not very sensitive to the precise 
form of the weighting function, provided the effec- 
tive diffusion length is kept constant. For conveni- 
ence, then, for the remainder of this study we take 
w to be a boxcar function, i.e., w(i, j )  = 1/(2A + 
1) for l i - j l  <A, and w(i, j )=O for ]i-j] > A. 
Equation (2) then takes the simple form 

1 j=i+A 

Xt+l ( i )=  2A + 1 E f(xt(j)))" (4) 
j = i - A  

This system has three parameters, r, A, and N. 
r plays the role of a forcing parameter, and A 
determines the effective diffusion rate. Most of our 
calculations were done with A = 1 and N = 50, 
although many of them were checked with A = 2 
and N = 100. Providing N/A is held constant we 
find that the qualitative behavior is unchanged by 
varying N, providing roughly N > 30. Varying this 
ratio has much the same effect as varying the 
aspect in other spatial systems, and by analogy we 
call a = N/(2A + 1) the aspect ratio. 

Although all of our simulations are done on a 
finite lattice, we often make use of the continuum 
limit in the discussion. Letting y represent the 
continuous lattice variable, the diffusion operator 

that we are using can be written as 

(5) 

and the lattice mapping becomes 

xt+~(y) =Dy(f(x ,)) .  (6) 

The behavior of eq. (2) is quite rich. In spite of 
the complexity of phenomena there are, however, 
certain organizing principles that make the behav- 
ior of this system more comprehensible. Before 
giving an overview of the phenomenology, we 
discuss two important properties of the system, 
namely kinks and the existence of a natural wave- 
length. 

4. Kinks and spatial domains 

One of the interesting properties of this system 
is that it spontaneously organizes itself into do- 
mains, spatial structures that are reminiscent of 
solitons. This comes about due to the formation of 
kinks, i.e., regions in which the lattice makes sharp 
upward transitions, and antikinks, regions in which 
the lattice makes sharp downward transitions, as 
shown in fig. 2. As seen in fig. 2(a), kinks and 
antikinks are naturally paired, together form- 
ing domain walls that divide the lattice into do- 
mains. Coupling between points inside the same 
domain is strong, but coupling between points in 
different domains is weak. These domains play an 
important role in organizing the space time behav- 
ior of the system. 

For r < 3 kinks are not allowed, due to the fact 
that the uncoupled logistic map has a unique 

"stable fixed point. Even when coupling is added, 
the flattening effect of the diffusion on the lattice 
combines with the tendency of the individual maps 
to move the solution toward the fixed point, so 
that regardless of initial conditions the lattice 
asymptotically approaches a unique flat solution. 

As r is increased past 3 the system period 
doubles. As a result, nonuniform initial conditions 
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Fig. 2. A typical period doubling sequence. The configuration of the lattice is shown at 40 successive iterations, once transients have 
died away. In every case a = 18~, and the initial condition was chosen to generate two spatial domains. (a) r = 3.328: A period 2 
solution, as seen from the fact that there are only two distinct lattice configurations. The kink-antikink pair forms a domain wall, 
while the straight sections in between form domains. (b) r = 3.518: A period 4 solution. (c) r = 3.556: A period 8 solution. 

can generate kinks, as illustrated in fig. 2. To 
understand why this happens, first consider the 
case of no coupling (A = 0), in which each indi- 
vidual map behaves  independently of its neigh- 
bors. Although the period two cycle of each 
individual map has a unique basin of attraction, 
different initial conditions can asymptotically ap- 
proach solutions of different phase. In other words, 
if the stable two cycle consists of x 1 and x 2, some 
orbits asymptotically approach xt, x 2, x~ . . . .  while 
others approach x 2, x 1, x 2 . . . . .  When the initial 

configuration of the lattice is nonuniformm, differ- 
ent sections of the lattice chose different phases, 
so that at any given iteration, one section may he 
close to x~, while another lies close to x2, gener- 
ating a discontinuity or "kink" in the lattice. 

With coupling the kinks persist, except that they 
are somewhat smoothed out and may extend over 
several lattice sites. With circular boundary condi- 
tions continuity requires that the number of kinks 
equal the number of antikinks. On each iteration 
the flat sections of the lattice trade places, causing 
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a temporal oscillation of period 2. The kinks trade 
place with antikinks, but there is a special point in 
the center which remains roughly stationary, which 
we call a node. Typically nodes do not lie pre- 
cisely on lattice sites, but since the system has a 
continuum limit this is not a problem. 

Mobility of the domains depends on the nature 
of the coupling. For stable periodic motion the 
kinks and hence the domains are completely sta- 
tionary. For chaotic motion the kinks can move, 
although since the lattice map studied here has 
symmetric coupling, there is no overall dynamical 
bias, and the long term average of the movement 
is zero. Nonetheless, the local movement of the 
kinks plays an important role in space-time inter- 
mittency. 

Whether or not the number of kinks and hence 
the number of domains is conserved depends on 
parameter values, and is in general related to 
temporal periodicity properties. A problem in this 
is that the notion of a kink is not always well 
defined. We define a "kink" as any region in 
which x(i) makes a significant and sharp change. 
For examples such as those of fig. 2, this is clear, 
but for an arbitrary initial condition, it may be 
very difficult to predict what will generate a kink 
and what will not. 

Consideration of the uncoupled case makes this 
clearer. Assume, for example, that r is picked so 
that the simple one dimensional map has a stable 
period 2 solution. Consider an arbitrary initial 
condition, which may or may not have features 
that obviously give rise to kinks. After iterating 
for a while some of the individual maps will settle 
into one phase of the orbit, while others settle into 
the opposite phase. After transients have died out 
sufficiently the lattice will consist of flat sections 
separated by discontinuities. The notion of kinks 
is now clear and the total number of kinks is 
conserved for subsequent times. Because the phase 
basins of the f (x)  are in general quite complicated 
[13] the initial condition may offer few clues about 
the final configuration of kinks. The definition 
might be extended to an arbitrary initial condition 
by defining a kink in terms of basins of attraction, 

but this would not carry over to the coupled case. 
Nonetheless, even with coupling, it is intuitively 
clear that once the solution gets sufficiently close 
to a stable cycle the number of kinks is conserved. 

The number of kinks can also be conserved 
when the behavior is chaotic, providing the un- 
derlying behavior of the uncoupled maps is 
semiperiodic [14, 15]. To review briefly, for low 
dimensional strange attractors there are often 
parameter regions where chaotic behavior is con- 
fined to narrow strips or "bands". On successive 
iterations the orbit cycles between these bands 
periodically, even though motion within each band 
is chaotic. The result is chaos that nevertheless has 
a rough periodicity, dubbed semi-periodicity by 
Lorenz [14]. 

To understand how this effects conservation of 
kinks, begin by considering an uncoupled lattice. 
For simplicity, assume that the individual maps 
are semiperiodic with period 2. Choose an initial 
condition so that one section of the lattice is 
trapped inside in the right band, while a neighbor- 
ing section is trapped in the left. Since the phase 
difference between the two sections of the lattice is 
preserved, the kink that joins them is automati- 
cally conserved. With coupling the situation is 
much the same, although the kinks are not as 
sharp and can spread over several lattice sites. 
Once the band ceases to exist, however, this con- 
straint is relaxed to that new kinks can form and 
old kinks can annihilate. 

5. The natural spatial wavelength 

Another aspect of this system that plays an 
important role in space-time intermittecy is the 
existence of a stable natural spatial wavelength. 
This comes about through the competition be- 
tween reaction and diffusion: Chaos tends to 
buckle the lattice, while diffusion tends to smooth 
it. At the proper spatial wavelength these effects 
balance and the lattice is more stable than it is at 
any other wavelength. Even when the motion is 
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chaotic this remains the characteristic wavelength 

of spatial oscillations. 
The natural wavelength varies with aspect ratio 

more or less as you might expect. As the diffusion 
is increased the lattice gets smoother. This is clearly 
seen in fig. 3. r is held fixed at 4, and the aspect 
ratio is varied by changing A. For a = N (A = 0) 
each logistic map behaves independently and the 
spatial variations are random with a white spec- 
trum. As the diffusion increases the spatial vari- 
ations become more gradual, so that the central 
frequency in the spectrum goes down. Finally, if 

the aspect ratio is on the order of 1 the diffusion 
dominates and the solution is fiat. The dimension 
d behaves in a corresponding manner: Assuming 
the individual maps are chaotic, for a = N, d = N; 
for a = 1, d = 1; otherwise d is somewhere be- 

tween these two values. 
The natural wavelength can be crudely esti- 

mated as follows: In the continuum limit (in 
space), let xt(y) be the solution at position y and 
time step t. Providing the slope of f is greater 
than one, iteration amplifies spatial variations, i.e., 
it tends to steepen the lattice by increasing x'(y) 
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= Ox/cgy. Diffusion, in contrast, tends to flatten 
the lattice, countering this process. In steady state 
these two effects balance on average, i.e., Ix,+ll 
Ix~l. Differentiating eq. (6) and applying the chain 
rule, gives* 

X;+l=ft(xt)m;(xt). (7) 

(Here prime denotes differentiation with respect to 
the argument.) Expanding the integrand in eq. (5) 
to second order using Taylor's theorem and in- 
tegrating yields: 

A 2 
Dy(X)  = x ( y )  + ~ - x " ( y ) .  (8) 

Differentiating (8) with respect to y and setting 
x,+ t '  = - x t' (since the map is orientation revers- 
ing) yields the following differential equation: 
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Fig. 4. The largest eigenvalue of the Jacobian matrix for a 
spatially sinusoidal lattice configuration, as a function of the 
spatial frequency of the initial condition. The minimum is at 
roughly the natural wavelength. 

If f '  is taken as constant, this has a solution of 
the form sin (2~ry/h) where the wavelength 

2~rA 
h =  

~/6(1 + 1 I f ' )  " 

which is within a factor of 2 of the true value. This 
result demonstrates that the natural wavelength 
depends linearly on the strength of the diffusion. 

The natural wavelength can also be estimated in 
a different way: Given a lattice configuration with 
a given wavenumber k, of the form 

( Xo(i  ) = a o + alsin 2~r~- , (11) 

In fact f '  is not constant, but noting from our 
numerical experiments that the solution exists 
roughly in the range 0.4 < x < 0.9, f '  is almost 
always negative. As a crude approximation the 
average value of f '  in this range is - ( I f ' I ) .  For 
r=4,  (If'l> =2,  the Lyapunov number. The 
wavelength is roughly 

x2qrA (10) 

we linearize the solution and compute the largest 
eigenvalue of the Jacobian matrix. When this is 
plotted as a function of k it has a sharp minimum 
which corresponds to the natural wavelength, as 
seen in fig. 4. This estimate agrees quite well with 
the true value. 

The natural frequency plays an important role 
in space-time intermittency. Before discussing this, 
however, we must first discuss other important 
aspects of the phenomenology. 

*For convenience we have interchanged the order of the 
reaction f and the diffusion operator D. This can be thought of 
as shifting the point at which we observe the dynamics by half 
an iteration. It makes a small difference in the properties, 
which is negligible here since we are only making a rough 
estimate anyway. 

6. Overview of phenomenology 

The phenomenology of the lattice map is com- 
plicated, and a complete picture is beyond the 
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scope of this paper. We present only a few salient 
features here, stressing aspects that are relevant to 
space- t ime intermittency. For a discussion of other 
aspects see Crutchfield and Kaneko [16]. 

As already mentioned, for r < 3 this system has 
a unique attracting fixed point with a flat lattice. 
At r = 3 the logistic map period doubles, so that 
for r > 3 the lattice admits kinks. This complicates 
the dynamics considerably, since conservation of 
kinks implies that a lattice with a given number of 
kinks cannot approach an attractor with a differ- 
ent number of kinks. The result is a proliferation 
of attractors, one for each kink number. The num- 
ber is not infinite, however, since due to the effect 
of diffusion there is a high frequency spatial cutoff 
above which kinks are damped so fast that they 
cannot  persist. 

Following along as r is increased, intuition 
based on low dimensional systems suggests that 
further period doublings should occur. Whether or 
not  this happens, however, depends strongly on 
spatial properties. For example, consider a - -20 .  
At one extreme, if the lattice is initially flat, it 
remains so and behaves like a single map, with a 
complete period doubling sequence accumulating 
at the usual value r = 3.59 . . . .  At the other ex- 
treme, if the initial condition has the appropriate 
number of kinks, it approaches a cycle of period 2, 

4 or 8 whose spatial oscillations are near the 
natural wavelength. These cycles are stable through 
a wide range of r values. An example is given in 
fig. 5. For  a = 18~, for example, the cycle shown 
in fig. 5 is stable for 3 < r < 3.92. 

Other types of initial conditions give behavior 
that is intermediate between these two extremes. 
As r is increased there are typically period dou- 
blings, although except for the flat solution they 
never reach the accumulation point, due to the 
intervention of a second order spatial oscillation 
at roughly the natural wavelength. A typical ex- 
ample of this spatial oscillation is shown in fig. 6. 
As r is raised still further, this oscillation induces 
its own transition to chaos, pre-empting the period 
doubling transition. At a - -20 ,  for example, for 
two domains the period doubling sequence con- 
tinues to period 16, at which point the spatial 
oscillation intervenes. The period 16 orbit gives 
way to chaos confined in bands of period 16, 
which then undergo a reverse cascade*. Increasing 
a tends to reduce the number of period doublings, 
as does changing the number of domains to be 
commensurate with the natural wavelength. 

As we have seen, the parameter value where the 
onset of chaos takes place depends on several 
factors. This complication aside, however, the 
chaotic regime can roughly be divided into three 

regions: 

.8  

.6  z~ 

.4 

.2  

0 .  
I0 20 30 40 50 

Lattice site, i r= 3.;'~ 

Fig. 5. A cycle whose spatial frequency is near the natural 
wavelength, stable in the range 3 < r < 3.92. 

Region I 
(3.59 < r < 3.7) Space time intermittency or sta- 

ble periodic motion. (depending on initial condi- 

tions). 
Region I I  

(3.7 < r < 3.92) Stable periodic motion with pos- 
sible long lived transients. 
Region 111 

(3.92 < r < 4) Fully chaotic motion. 

(Where it makes a difference, the quoted values 

*In this case there are different sizes of kinks, corresponding 
to the possible transitions between the bands. 
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Fig. 6. As r is increased past 3.594 the period doubling se- 
quence is interrupted by a spatial oscillation, at the natural 
wavelength of  the system. This oscillation stabilizes the system, 
truncating the period doubling sequence and then eventually 
causing a chaotic transition of its own. (a) A periodic attractor 
prior to the transition to chaos; (b) chaos after the transition. 

are for a - - 2 0  and spatial solutions with two do- 
mains.) 

The strong dependence on initial conditions in 
Region I is largely due to conservation of kinks. 
Although there are several stable cycles around 
the natural wavelength, initial conditions that do 
not have the proper number of kinks are pre- 
vented from reaching them. Instead, there is spa- 
tial intermittency, as shown in fig. 1. 

Region II is defined by the breakdown of kink 
conservation. Kinks annihilate against antikinks 
or create new kink-antikink pairs, allowing the 
number of kinks to adjust until the solution ap- 
proaches a stable cycle near the natural wave- 
length. 

The parameter value at which kink conservation 
ceases to occur is highly uncertain. First, there is 
dependence on initial conditions; the parameter 
value at which a given number of domains can 
gain or lose a kink may be different from that for 
a different number. For example, a transition from 
four to five domains may become possible at a 
different parameter value than a transition from 
five to six. A further complication is strong meta- 
stable behavior. This can be understood from the 
nature of the semiperiodic bands in low dimen- 
sional systems; when the bands that generate 
semiperiodic behavior merge, they do so in a 
continuous way; near breakdown there is still 
considerable overlap in the bands, which means 
that the phase is still approximately conserved and 
band desynchronization is still rare. The result is 
that there is a parameter band near the breakdown 
of kink conservation where kinks are nearly con- 
served, which generates strong metastable chaos 
that persists for large numbers of iterations, mak- 
ing it difficult to pinpoint the transition. 

The behavior of the uncoupled map provides a 
guideline for estimating the transition point. The 
period 2 band which ceases to exist at roughly 
r = 3.685, dominates the behavior we discuss here. 
For  the uncoupled lattice this is the value at which 
kink conservation ceases. Dissipative coupling re- 
sists the formation of new kinks. Most of the 
initial conditions that we consider have fewer do- 
mains than a cycle near the natural wavelength, so 
that the lattice must add kinks to approach a 
stable state. For these cases the breakdown of 
kink conservation is shifted to a larger value of r. 
Numerically we saw kink conservation until 
roughly r = 3.7. Initial conditions with more kinks, 
in contrast, must shed kinks to approach a stable 
state; coupling makes this easier, so that for these 
cases the breakdown of kink conservation comes 
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at a lower value of r. The net result is that the 
boundary between Regions I and II is difficult to 
define precisely. 

Finally, Region III is defined by the parameter 
value at which all the cycles near the natural 
wavelength go unstable, giving way to chaos. In 
this region the number of kinks is variable and 
there is no space-time intermittency. There is a 
small band of crisis intermittency near r = 3.92, 
but this occurs only in a very narrow parameter 
window, in contrast to the phenomenon of interest 
here. 
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E i g e n v e c t o r  N u m b e r  r= 3.634 

7. Description of space-time intermittency 

Our primary interest in this paper is the com- 
plicated space-time intermittency observed in Re- 
gion I. For convenience, we pick our initial condi- 
tions to be symmetric, with two spatial domains, 
since this is the simplest case with the correct 
qualitative behavior, and consider a- -20.  We 
should emphasize, however, that except for a few 
details, most of our remarks apply equally well to 
a wide range of parameter values and initial con- 
ditions. 

Space-time intermittency is illustrated in fig. 1. 
As seen in fig. l(c), the distinction between chaotic 
and laminar behavior is sharp. Chaos is confined 
by the domain walls, so that it exists throughout 
one domain, but almost not at all in the other. 
This comes about because the coupling between 
internal degrees of freedom inside a given domain 
is quite strong, whereas coupling between points 
in neighboring domains much weaker. Distur- 
bances have a difficult time propagating across the 
domain walls. This can be seen eq. (8): Near a 
nodal point, x " = O ,  and also xt+ ~ =xt .  Thus 
information propagation through a node depends 
on higher order terms, which are typically small. 
This has been studied numerically by Kaneko [5]. 

Up until now we have been somewhat vague 
about what we mean by "laminar". Plotting the 
temporal behavior at a fixed lattice point makes 
this clear, as shown in fig. l(d): A given point is 

Fig. 7. The spectrum of Lyapunov exponents, with r = 3.634, 
a ~ 18~ and N =  50. There are six positive Lypunov expo- 
nents. The Lyapunov dimension is roughly 11.1. 

laminar when its motion is nearly periodic. 
"Near ly"  is a qualitative distinction, which re- 
quires an arbitrary threshold to be well defined. 
Since the distinction between laminar and chaotic 
is so sharp, this does not present a problem in 
practice. As seen in fig. l(d), the temporal period 
during laminar bursts is typically approximately 2, 
4, 8, or 16. Over one iteration the deviation from 
periodicity is small, but over many iterations there 
can be a significant drift in the position of the 
orbit. During a given laminar burst there can be 
"bifurcations" in the approximate period, as seen 
in the fig. l(d). During the chaotic bursts, in 
contrast, there is no apparent period. 

One immediate question is how many degrees of 
freedom are involved. To get an idea of this, we 
computed the spectrum of Lyapunov exponents, 
as shown in fig. 7, and found six positive Lyapunov 
exponents, giving a Lyapunov dimension [17] of 
roughly 11.1. This varies with parameters, but it 
does make it clear that quite a few modes are 
participating, and that the space-time intermit- 
tency that we are observing is not a transition 
phenomenon. 

An indication of the sharp distinction between 
laminar and chaotic states can be obtained by 
linearizing the system at each iteration and plot- 



J.D. Keeler and J.D. Farmer~Robust space-time intermittency and l / f  noise 425 

16 

14 

12 

10 

8 

6 

4 

2 

0 

O O 
O O 

¢ 

O O  

o 

o 
o ¢ 

o o o 
o 

o o o 

o g o oo ° 

o 
o o o 

o_ o ¢o  o¢  
o ~o o ° o°  

° o o ° ~ g  o0 ° 
g o 8 o ° ° 0  oo o oo 

¢ 8  ¢ 

° 050° 80 ++°o o 8 ° 
o 8 0  ° °  o~ o • 

o 3 o o 0 ¢  
OJ Ooo 0 ¢ ¢ 0 5 o  8 0 0  o o < ~ o o ¢ , o o o o O o o ¢ o O o ¢ . o O o o o o o o o o o o o o o o o ~ o o o o o o o o o o O o ¢ . o o ~ o ~ 8 ~  ~ 0 0 0 0 5 0 0 8  o°ooooo  

1000 2000 3000 4000 5000 

T i m e  , n r= 3.633 

Fig. 8. The eigenvalues of the Jacobian matrix greater than one are plotted as a function of time, illustrating the sharp distinction 
between the chaotic and laminar phases. Notice that during the laminar bursts there are two eigenvalues greater than one. 

t ing eigenvalues.  Since the laminar  states have a 
typical  per iod  of  8, we compose  the Jacobian  
ma t r ix  8 t imes and  compute  the largest eigenvalue 
at  different times. The  result is shown in fig. 8. 
D ur i ng  the fully laminar  bursts,  i.e., when bo th  
d o m a i n s  l amina r  at once, the largest eigenvalue is 
very  close to one. Dur ing  the chaotic intervals,  the 
largest  e igenvalue undergoes large fluctuations, 
ranging  f rom one  to fifteen in a short  time. 

A f requency  h is togram of the lengths of  the 
l amina r  burs t s  gives an impress ion of  the statisti- 
cal  proper t ies .  We label a given lattice site i 

l a mi na r  at t ime t if I x t _ s ( i ) - x , ( i ) l  < e where 
e -- 0.0004. Otherwise  we assume that  it is chaotic.  
T h e  n u m b e r  8 enters the definition because the 
per iod  in the laminar  regions is typically 8 or  less. 
T h e  resul t ing h is togram is shown in fig. 9. As can 
be seen f r o m  the figure, there is a range in which 
the h i s togram decays roughly as a power  law, 
a l though  there is a p ronounced  peak  for  laminar  
burs t s  of  length approx imate ly  1000. 

The  type  of  behavior  in a given domain  is quite 
fluid. At  any  given time, the lattice can be entirely 
chaotic ,  ent i re ly laminar,  or alternatively, as in fig. 
l (c) ,  one d o m a i n  m a y  be chaotic  while another  is 
laminar .  A feeling for the interact ion between the 

D i s t r i b u t i o n  of L a m i n a r  P h a s e s  
100000 ~ . . . . . . . .  I . . . . . . . .  I . . . . . . . .  r . . . . . . .  

10000  ~ -  

r, 

t0oo ~- 

z lo0 ~- 

t0 :  [ 

t . . . . . .  n. 
1 l0 100 1000 10000 

Length of Laminar Phase r=3.642 noise 

Fig. 9. A frequency histogram of the lengths of the laminar 
phases. 
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Fig. 10. The time evolution of the chaotic and laminar phases. 
Chaotic regions are shaded, and laminar regions are left blank. 
The nodal positions are shown as dark lines. 

chaotic and laminar phases can be obtained by 
plotting them as they evolve in time. Using the 
definition of laminar behavior given above, in fig. 
10 we shade in the chaotic regions of the lattice at 
sequential times. The nodal points separating the 
two domains are shown with dark lines. This plot 
is symmetric due to the symmetry of the initial 
condition. Note that because of the periodic 
boundary conditions the sides of the figure should 
be thought of as connected. 

8. Explanation h la Crutchfield 

The central question is: What causes the transi- 
tions from one type of behavior to another? As a 
starting hypothesis, we conjecture that this is a 
type of Crutchfield intermittency, in which the size 
of a domain acts as a bifurcation parameter con- 
trolling the internal dynamics. Since the motion of 
the domain walls is at least apparently chaotic, 
this generates intermittent bursts. 

To demonstrate that the domain size does in- 
deed act as a bifurcation parameter, we surpress 
the natural motion of the domain walls by ex- 
plicitly pinning them with fixed boundary condi- 
tions. This allows us to position the nodes at will, 
creating one domain at a time. We keep the verti- 

cal position of the nodes constant at roughly the 
value they occur at in the unpinned system. 

As we vary the domain size in the pinned sys- 
tem, we observe two types of behavior: 

1) When the size of the domain is near a half- 
integral number of natural wavelengths, the mo- 
tion asymptotically approaches a stable cycle 
whose spatial oscillations are at the natural wave- 
length. 

2) When the size of the domain is not near a 
half-integral number of natural wavelengths the 
asymptotic motion is chaotic. 

A typical sequence of lattice configurations ob- 
tained by varying the domain size L is shown in 
fig. 11. For L = 30, the lattice settles into a stable 
cycle whose spatial period is roughly one and a 
half natural wavelengths. When L = 35 the solu- 
tion is chaotic, but when increased still further so 
that L = 40, it once again settles into a stable 
periodic state but has now added an extra half 
oscillation, so that it again has roughly the natural 
spatial wavelength. 

Fig. 12 provides a summary of this behavior. To 
determine whether the dynamics at a given time is 
chaotic or periodic, we test for approach to a 
periodic attractor in the same way that we previ- 
ously tested for laminarity. At each value of L we 
plot the number of iterations needed to approach 
a stable periodic cycle. As seen in fig. 12 there is a 
steady alternation between chaotic and laminar 
behavior as L is varied. The system is attracted to 
a stable cycle whenever the domain size is near a 
half-integral number of natural wavelengths*. 

Fig. 12 clearly shows that the domain size acts 
as a bifurcation parameter inducing transitions 
from periodic to laminar behavior. The unpinned 
system is much like the pinned system, except that 
the domain walls are not fixed, and consequently 
there are no stable periodic orbits. As the domain 

*It remains unclear whether the apparently chaotic behavior 
of the pinned system is truly chaotic or just very long lived 
metastable bursts, as illustrated in fig. 13. For the unpinned 
system this is irrelevant, since all that is required is that the 
time scale for metastability is longer than that of the intermit- 
tent bursts, which is clearly the case. 
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Fig. 13. An  illustration of metastable chaos in the pinned 
system, obtained by plotting the time series at a fixed lattice 
site. (A = 2, N = 36, i = 18, r = 3.633). The solution behaves 
chaotically until  it settles onto a stable cycle, after roughly 
4,000 iterations. 

walls move they induce spatially localized bifurca- 
tions from chaotic to nearly periodic behavior. 
The slow time scale of the domain wall motion 
makes these bursts quite long. The transients tend 
to favor chaos, since the domain size must remain 
in the periodic range long enough for the chaotic 
transients to die down. 

9. Explanat ion ii la Po me a u-Ma nne v i l l e  

A question that immediately comes to mind is 
the nature of the connection between the laminar 
states of the unpinned system and the stable peri- 
odic states of the pinned system. Are the laminar 
states associated with unstable periodic cycles? To 
test this, we used a modified Newton's method to 
search for unstable periodic cycles in the un- 
pinned system. When we gave our Newton's 
method arbitrary initial conditions, we found a 
plethora of diverse unstable periodic cycles. To 
restrict ourselves to the relevant solutions, we 
picked our initial conditions for the Newton's 
method by stopping the system at the beginning of 
a laminar burst. Typical solutions obtained in this 
manner are shown in fig. 14. Their spatial and 

temporal properties are similar to those of the 
corresponding laminar phases. Furthermore, the 
largest eigenvalue of these cycles is always slightly 
greater than one, e.g. 1.001. Each laminar burst 
can be associated with a nearly stable cycle whose 
properties are very close to those of the burst. 

This suggests an alternate explanation for inter- 
mittency more along the lines of the Pomeau- 
ManneviUe theory: The chaotic attractors underly- 
ing the behavior of this system contain nearly 
stable cycles. In the course of chaotic motion on 
its attractor, from time to time the system finds 
itself near one of the nearly stable cycles. The 
close proximity of the eigenvalue to one means 
that once near the cycle the orbit stays near it for 
some time, causing long bursts of laminar behav- 
ior. 

To demonstrate the validity of this view, we 
study the divergence during a laminar burst. Using 
our Newton's method we find the nearly stable 
cycle associated with a given laminar burst and 
take the difference from the lattice configuration 
during the burst. We plot the Euclidean norm of 
this difference as a function of time, as shown in 
fig. 15. As expected the divergence is nearly ex- 
ponential during the laminar burst. 

The important difference from Pomeau- 
Manneville intermittency is that the near stability 
of the underlying cycles persists through a wide 
range of parameters. The persistence of the near 
stability property of the unstable cycles can be 
understood in terms of their relation to the stable 
attractors of the pinned system. For example, 
compare fig. 12 to fig. 14. The lattice configuration 
of the unpinned cycle is nearly identical to that of 
the pinned system; similar comparisons can be 
made for other fixed points. This clearly dem- 
onstrates that there is a one-to-one correspon- 
dence between the stable cycles of the pinned 
system and the nearly stable cycles of the laminar 
system. The important difference is that the un- 
pinned domains have additional eigenvalue whose 
moduli are slightly greater than one. These ei- 
genvalues correspond to the possibility for nodal 
motion, and the proximity to one corresponds to 
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the long time scale of the motion. Since the stable 
cycles of the pinned system are stable throughout 
a wide range of parameter values, it is to be 
expected that the slight destabilization caused by 
unpinning them persists throughout roughly the 
same parameter range. This explains why the in- 
termittency that we observe is robust while the 
Pomeau-Manneville type is not. 

At a given set of parameter values there are 
many nearly stable cycles. They share the property 
that the spatial oscillations inside of each domain 
have roughly the natural wavelength, but differ in 
the total number of oscillations in each domain. 
Suppose, for example, that the system has two 
domains and that parameters are picked so the 
total lattice size is roughly 5 natural wavelengths. 
There are then five* nearly stable cycles, which 
can be labeled (1,9}, (2, 8} . . . .  , (5,5}, according 
to the number of half-integer multiples of the 
natural wavelength in each domain. As an exam- 
ple a (5, 5} and a {3, 7} cycle are shown in fig. 14. 

This classifies the fully laminar states, i.e., the 
states in which all the domains are laminar at the 
same time. As we have seen, however, one domain 
can be laminar while the others are chaotic. This 
can be explained by the fact that, except for the 
coupling through the motion of the domain walls, 
different domains behave largely independently of 
each other. As a result the phase space can roughly 
be divided into hyperplanes, one for each domain. 
Each hyperplane contains the projection of the 
nearly periodic states, one for each commensurate 
number of natural wavelengths. If the system 
arrives near one of these points, a laminar burst 
results. Each hyperplane is more or less indepen- 
dent, except for the motion of their mutual do- 
main walls. In general, we hypothesize that the 
number of eigenvalues greater than one is equal to 
the number of domain walls. 

10. Motion of domain walls 

The results we have presented suggest that the 
~pace-time intermittency of this type can be un- 

*Because of symmetry  (1,9} = {9,1}, (1,8)  = {8,1}, etc. 

derstood in terms of a reduced slow scale dynami- 
cal system describing the nodal motion, along the 
lines of eq. lb. Such a system would presumably 
include two types of variables, some in terms of 
statistical properties of the internal degrees of 
freedom in the domains, the others giving the 
positions of the nodes. Unfortunately, we have not 
been able to accomplish this. Even without such 
an explicit description, however, several properties 
of the motion can be immediately deduced. 

A careful study of fig. 10 reveals that the mo- 
tion of the domain walls is qualitatively different, 
according to the nature of the two domains on 
either side of the wall. There are three cases: 

1) Both domains chaotic: The nodes appear to 
make a random walk. 

2) One domain chaotic while the other is laminar: 
The chaotic domain steadily encroaches upon the 
laminar domain. 

3) Both domains laminar: There is a smooth 
invasion of one domain by the other, which be- 
comes increasingly rapid as it proceeds. 

Case 1, in which both domains are chaotic, is 
perhaps the most straightforward: The chaotic 
motion inside each domain causes an effectively 
random vibration of the node; when two systems 
are coupled together the resulting movement of 
the node follows a random walk. This continues 
until one of the domain sizes becomes com- 
mensurate with the natural wavelength long 
enough for chaotic transients to decay, and the 
domain becomes laminar. 

Case 2, in which one domain is chaotic while 
the other is laminar, is more complicated. A par- 
tial explanation is that the lowest wavelengths are 
the most unstable in chaotic domains, as dem- 
onstrated in fig. 16. The most unstable modes are 
associated with the largest Lyapunov numbers. 
Just as in linear problems there is an eigenvector 
associated with each eigenvalue, in nonlinear 
problems there is a Lyapunov vector associated 
with each Lyapunov number. For a chaotic system 
the Lyapunov vectors vary chaotically in time, just 
as the solution does. Nonetheless, the Lyapunov 
vectors can have well defined statistical properties. 



J.D. Keeler and J.D. Farmer~Robust space-time intermittency and 1/ f  noise 431 

. 0 6  

. 0 5  

. 04  

. 0 3  

. 0 2  

.01 

O. 
0 5 I0  15 

Frequency 

. 0 8  ¸ 

. 0 6  

. 0 4  

. 0 2  

O. 
20 25 0 20 

l a |bda=  1.291 Frequency l a l b d a =  ,229 

5 I0  15 25 

. 0 6  

. 0 5  

. 0 4  

. 0 3  

. 0 2  

.01  

O. 

. 0 7  ¸ 

. 0 6  

. 0 5  
Z 

. 0 4  

. 0 3  

_ ~  . 0 2  

. 0 !  

0 .  
5 10 15 20 25 0 5 10 15 20  

rrequeucy  ] s s b d a = - 5 , 1 5 4  Frequency l a l b d a . - l O .  55 

I t e r a t i o n s  F r o m :  5 0 0  To 5 5 0 0  r = 3 . 6 3 4  

25  

Fig. 16. The frequency spectrum of four typical Lyapunov vectors. At parameter values where the behavior is chaotic, the Lyapunov 
vectors (which are themselves chaotic) are sampled at different time steps. For each sample we take the square of the Fourier 
transform of the lattice configuration. The squares of the Fourier transforms are averaged together to produce a spatial power 
spectrum. This gives an indication of the spatial frequencies associated with each Lyapunov mode. Four different examples are given, 
with typical examples of a Lyapunov vector and the corresponding spectral average. The Lyapunov exponents are ordered according 
to their size, and the subscript indicates this ordering. (a) A1 = 1.291; (b) A 3 = 0.299; (c) ~'20 = -5 .164;  (d) ~27 = -10 .55 .  

By averaging the square of the Fourier transform 
at each iteration to obtain the spatial power spec- 
trum we get a good idea of the spatial wavelengths 
associated with each Lyapunov vector. Four typi- 
cal cases are shown in fig. 16. For both of the 
vectors associated with unstable modes the spectra 
show strong low frequency components, even 
though the actual peak occurs near the natural 
spatial frequency. The Lyapunov vectors associ- 
ated with the stable modes, in contrast, are peaked 
at higher frequencies and have less low frequency 
components. Thus higher frequencies are damped 
while lower frequencies grow. The instability of 
the chaotic state is much greater than that of the 
laminar state, so in the competition the size of 
the chaotic domains grows at the expense of the 
laminar domains. 

Case 3 is probably the best understood: When 
both domains are laminar, as we demonstrated in 

fig. 15, there is a smooth exponential escape from 
the nearly stable cycle. Since the motion of the 
domain wall is precisely the mode associated with 
this eigenvalue, the position of the wall exponen- 
tiaUy moves away from its value at the beginning 
of the burst. Which direction it moves is in- 
fluenced by the position of the point in phase 
space upon rejection. Typically the phase space 
point diverges faster in one projection than it does 
in the other, causing a net motion of the domain 
wall. 

An interesting property of this type of intermit- 
tency is the remarkable insensitivity to external 
noise. We experimented by adding random 
fluctuations throughout the lattice, at noise levels 
ranging from 10 -7 to 10 -2 . We observe no per- 
ceptible change in the distribution of the length of 
the laminar regions until the noise level reaches 
10 -3 , except for truncation in the length o f  the 
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longest laminar bursts. This is hard to measure 
because of the weak dependence on the noise 
level, and the difficulty of gathering statistics*. 
The general insensitivity to noise is presumably a 
consequence of the fact that domain wall motion 
is largely unaffected by external noise. 

II. N 1 / [  noise 

main invades the laminar domain in a fairly steady 
way, putting an upper limit on the persistence of a 
laminar burst. 

If a time series is obtained by sampling at a 
single point on the lattice, the laminar bursts are a 
mixture of fully laminar and mixed cases. The 
resulting power spectrum is somewhat com- 
plicated, as shown in fig. 17(a). There is some 
evidence of low frequency power law scaling of 

There are many natural phenomena whose 
power spectra scale asymptotically at low frequen- 
cies like 1/f. There are many theories for this [18], 
and it seems likely that 1/f noise is not a single 
phenomenon but a family of phenomena that may 
have diverse explanations. One such explanation is 
Pomeau-Manneville intermittency, which geneti- 
cally generates a 1If spectrum [19, 20]. The appli- 
cations are severely limited, however, since 
Pomeau-Manneville intermittency is a transition 
phenomenon. In contrast, in many physical set- 
tings 1If noise occurs through a very broad range 
of parameters. Our model potentially solves this 
problem. Since the laminar bursts are governed by 
nearly stable cycles, the spectral properties are like 
those of Pomeau-Manneville, but unlike Pomeau- 
Manneville, our model is robust. 

An interesting aspect of the spectral behavior is 
that the properties of spatial averages are signifi- 
cantly different from those at a single point. This 
comes about because of the intrinsic difference 
between the fully laminar phases and the mixed 
chaotic/laminar phases (case 3 vs. case 2 above). 
When the lattice is fully laminar, the invasion of 
one domain by another is exponential, with an 
arbitrarily long persistence time*. For the mixed 
chaotic-laminar cases, in contrast, the chaotic do- 
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*An estimate of this effect can be made by assuming ex- 
ponential  divergence from the unstable cycle. Assuming that a 
laminar burst persists until the divergence from the cycle is of 
order one, the persistence time • is roughly ~" = log l /oA, 
where o is the noise level and A - log X, where X is the largest 
eigenvalue. At  floating point precision, for example, we expect 
the longest burst  to persist for about 20,000 iterations. 

*Except for the truncation due to external noise, as dis- 
cussed earlier. 

Fig. 17. (a) A temporal power spectrum, obtained by sampling 
a single lattice point ever 8th iteration and computing a 65,536 
point  Fourier transform and frequency averaging. The scaling 
at low frequencies behaves roughly as f - " .  At this parameter 
value a ~- }, but this varies with r. (b) A temporal spectrum 
obtained by taking the Euclidean norm of the difference be- 
tween the lattice configuration and that 8 timesteps later, and 
Fourier transforming the result. As can be seen by comparing 
with the line, the low frequency behavior is roughly 1/f. 
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the form f-~,  but the value of a depends on r. 
For the case shown a --- ~. 

When" a time series is obtained by a bulk mea- 
surement, in contrast, the low frequency diver- 
gence of the power spectrum is roughly l / f ,  as 
shown in fig. 17(b). By "bulk measurement", we 
mean any property that is an average property of 
the whole system, as opposed to a single point. 
For example, we took the norm of the difference 
of two lattice configurations separated by eight 
time steps (to get rid of the intrinsic periodicity of 
the laminar bursts). Doing this at successive times 
gives us a time series, whose power spectrum is 
shown in fig. 17(b). This spectrum has a fairly 
pronounced 1/f divergence over two decades. The 
reason for the difference between figs. 17(a) and 
17(b) is clear: The bulk measurement suppresses 
the mixed laminar bursts. Although the analyses 
of refs. [20] and [21] were made with Pomeau- 
Manneville intermittency in mind, it is clear that 
their arguments also apply to the fully laminar 
bursts in our case, since the only necessary prop- 
erty is that the laminar bursts be dominated by 
approach to an unstable cycle. Thus, we expect 
that the 1/f low frequency behavior of the spec- 
trum is a generic property of the type of intermit- 
tency that we discuss here, providing the spectrum 
is based on a bulk measurement. 

12. Connection to experiments 

Our model can be taken on two different levels 
of generality. What we have described here in- 
eludes several aspects, such as kink conservation 
caused by semiperiodic behavior or the extence of 
a reverse period doubling sequence. These features 
might well be observable in experiments, but we 
would like instead to stress the more general 
aspects of this behavior, which probably have a 
much wider range of applicability. 

Perhaps the two most essential aspects are the 
existence of spatial domains with mobile domain 
walls, and the possibility for spatially localized 
bifurcations between two different types of behav- 

ior as the domain size varies. In the example we 
studied here the bifurcations are associated with 
the natural spatial frequency of the internal oscil- 
lation, but in general the bifurcations might result 
from other effects. The 1/f low frequency behav- 
ior of the bulk spectrum should be present as long 
as there is a laminar phase with nearly periodic 
behavior. Another general feature is the per- 
sistence of the behavior through a range of param- 
eter values, rather than just near a bifurcation 
point. 

At this point we have no definitive experimental 
test for this type of intermittency, except to sug- 
gest searching for the characteristics listed above. 
Because this phenomenon is generic rather than 
transitional, there are not likely to be universal 
scaling laws under variation of parameters, such 
as for Pomeau-Manneville intermittency. 

Perhaps the most likely physical application is 
to solid state devices, which have spatial domains 
and robust 1/f noise over wide parameters ranges. 
For experimental verification, any technique which 
allows spatial visualization of the behavior would 
help make this connection firmer; it should also be 
possible to investigate the relevant theoretical 
models to see whether or not there is any corre- 
spondence. Spectra in these cases usually involve 
bulk measurements; our model suggests that more 
localized measurements might produce different 
spectral behavior. 

Reaction-diffusion systems provide another nat- 
ural place to search for experimental applications. 

In fact, one of the most prominent 1/f noise 
theories is based on reaction-diffusion [18]. A 
likely application is presented by the Kuramoto- 
Shivashinky equation, which is known to have 
space-time intermittency, and as far as we know 

has  not been investigated in any detail [22]. Video 
feedback provides a convenient way to simulate 
reaction-diffusion phenomena; space-time inter- 
mittency is observed there, which may well be of 
this same type [23]. 

There are many other physical phenomena that 
display space-time intermittency, including dou- 
bly rotating Taylor-Couette flow [1], plasma 
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pinches [24], Raleigh-B6nard convection [25], and 
the Ecldaaus instability [26]. At this point we have 
no idea whether any of these phenomena are 
related to the behavior that we have discussed 
here. We hope that others will investigate these 
and other instances of space-time intermittency, 
to explore the possibility of such a relationship. 

We by no means intend to suggest that this is 
the only possible model for space-time intermit- 
tency. As already mentioned, either Pomeau- 
Manneville or crisis intermittency can manifest 
themselves in space as well as time, although with 
properties that are substantially different from 
what we have described. We expect that there are 
also new varieties of space-time interrnittency, as 
yet unexplained. 

13. Conclusions 

There are a few key properties that provide 
clues to expect the type of space-time intermit- 
tency that we have described here: 

1) Well defined spatial domains. 
2) A bifurcation between two different types of 

behavior which can be induced by changing the 
domain size. 

3)Slow time scale chaotic motion of the domain 
walls. 

In the system we studied here the bifurcations 
are naturally understood in terms of the natural 
frequency; if the size of the domain is pinned at 
close to a half-integral multiple of the natural 
wavelength, there is a periodic attractor; if this 
condition is not met it is chaotic. When the do- 
mains are allowed to move the periodic attractors 
are destabilized, but only just barely; the size of 
the domains changes slowly compared to the in- 
ternal motion, creating long lived "laminar" phases 
that are approximately periodic. This behavior has 
elements of Crutchfield intermittency, but a l so  
elements of Pomeau-Manneville intermittency. In 
contrast to Pomeau-Manneville, this typically ex- 
ists through a broad range of parameters. 

Perhaps the principal problem remaining for 
further investigation is an explicit representation 
of the slow scale motion in terms of a low dimen- 
sional dynamical system. This might be stated, for 
example, in terms of the nodal positions and a few 
statistical properties of the system. There may well 
be closure problems, etc., but even an approxi- 
mate scheme would be very nice. 

In conclusion, we have analyzed a variety of 
space-time intermittency observed in lattice maps, 
which is robust under changes in parameters. Al- 
though the number of different systems in which 
the behavior is the same in a detailed way is 
probably small, the broad outlines, i.e., spatially 
localized bifurcations caused by the modulation of 
domain size, are likely to occur in many different 
systems. We hope that our work stimulates further 
investigation of this fascinating phenomenon. 
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Note added in proof 

At time of printing, we became aware of the 
work of S.P. Kuznetsov and A.S. Pikovsky, Physica 
19D (1986) 384. This work shows that the system 
discussed in this paper has universal properties. 
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