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We study the correlation structure of firm growth rates. We show that most firms are correlated because
of their exposure to a common factor but that firms linked through the supply chain exhibit a stronger cor-
relation on average than firms that are not. Removing this common factor significantly reduces the average
correlation between two firms with no relationship in the supply chain while maintaining a significant cor-
relation between two firms that are linked. We then investigate if this observation can be used to reconstruct
the topology of a supply chain network using Gaussian Markov Models.

INTRODUCTION

Fifty years ago, Wassily Leontief was awarded the Nobel prize in Economics for his development of the input-
output method and its application to important economic problems.1. His input-output framework [2] views
industries as nodes in a network of physical and monetary flows. Conservation laws for these flows lead,
at economic equilibrium, to linear systems of equations linking the production of different industries, whose
solutions show how differences in the output of an industry impact the output of any other economic sector.

These equations were used to determine, for example, how much one should invest in each sector of an
economy to increase the production of a given sector.2. It was in particular an important tool for central
planners in the decades following the Second World War [3].

Later on, input-output analysis was used to understand the origins of macroeconomic fluctuations, with the
seminal paper of Long and Plosser [4], where the input-output network amplifies small shocks that can lead
to system-wide crises. However, most of these analyses are conducted at a very coarse-grained level, in the
sense that they attempt to model the different sectors of the economy rather than modeling more granular
constituents: there are 405 industries in U.S. Bureau of Economic Analysis’ most disaggregated input-output
tables, while there are approximately 200 million firms worldwide. This is an unsettling remark, as recent
literature [5–7] shows that fine-grained production networks play an important role in the propagation of
shocks and that aggregating firms into sectors can lead to a misestimation of risk and distress propagation.
Detailed firm-level data will also be crucial to the coming of age of agent-based modeling, a promising approach
to studying out-of-equilibrium macro-economic phenomena [8], that recently matched the forecasting accuracy
of more traditional methods [9–11].

Firm-level production data is thus very useful, but is also scarce [12]: the few datasets that are available
only cover certain countries or certain categories of companies, leaving most of the global production network
inaccessible. To tackle this problem, recent efforts have attempted to reconstruct the production network,
inferring the topology of the network using only partial, aggregate or related data. For instance, [13] uses
mobile phone data to reconstruct the supply chain network of an undisclosed European country, while [14]
and [15] pioneered machine learning for link prediction in supply chains, leveraging topological features
computed by hand or distilled automatically through Graph Neural Networks. A similar approach was used
in [16] to predict links between firms using their financial, industrial, and geographical features. Additional
efforts have been carried out to adapt maximum-entropy models [17–23], already popular for models of
international trade [21, 24–27], to the reconstruction of firm-level networks. The motivation of this research
effort is that economic models conceived to represent the economy at the firm level require a good knowledge

⇤ luca.mungo@maths.ox.ac.uk
1 See e.g. https://www.nobelprize.org/prizes/economic-sciences/1973/summary/. Interestingly, Leontief took inspiration from the

tableau économique [1] of the physician-turned-economist Quesnay, a member of the physiocratic school of economic thought, which
saw the economy much like a human body. To Quesnay, mapping the relationships within the economy was equivalent to studying
human anatomy.

2 This was indeed not an easy problem: to increase the production of steel, it is necessary to increase the production of coal, but coal
extraction requires having steel. Input-output analysis provided tools to solve this conundrum.
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of the production network and should lead to a better understanding of economic dynamics and forecasts. But
the converse should also be true: supply chains are vital in a firm’s production, and they should leave a trace
on the dynamics of a firm, something that has been observed when considering natural disasters [6] or the
dynamics of companies’ market capitalisation [28]. Is it possible to work backward from this, and infer the
network topology from firm dynamics?

The study of firm dynamics, through the statistical analysis of their growth rates, has a long history dating
back to the work of Gibrat [29]. Gibrat’s model is a multiplicative growth model initially proposed to explain
the distribution of firm sizes (proxied, e.g., by sales or their number of employees). The model assumes that
a firm grows by a random percentage of its current size from one period to the next. This random variable is
thought of as being independent across firms and was initially also modeled as having the same distribution
for all companies. Although this last hypothesis has been weakened in past work, showing for example that
the volatility of firm growth decreases with their size in a non-trivial way [30], and even that it is necessary to
think of the volatility of growth as being firm-dependent [31], the hypothesis of independence has not been
explicitly questioned thus far. We propose to go beyond this, making the dependencies between firm growth
explicit by studying the correlations between them and leveraging this information to reconstruct the firm
network.

This paper is organized as follows. Section I gives an overview of the data we use for our paper, which we
use in conjunction with the methods we outline in Section II. Section III presents clear empirical evidence of
the link between the supply chain and firm growth. Section IV makes use of these observations and attempts
to reconstruct the production network from firm growth time series. We detail both the optimization algorithm
used to carry out this reconstruction as well as the results we obtain. Finally, Section V concludes.

I. DATA

The primary data sources used in this article are the FactSet Fundamentals and FactSet Supply Chain Rela-
tionships datasets. Together, they provide a coherent environment from which companies’ financial information
(such as their quarterly sales or market capitalization), legal information (e.g., their industrial classification or
headquarters location) and supply chain connections can be retrieved. Although it is very large, it should be
noted that this dataset has a strong bias in covering mainly US firms.

The first dataset contained in this environment, FactSet Fundamentals, contains firms’ financial, balance
sheet, and legal information. The dataset spans a time range going from the early 1980s to the present day
and covers developed and emerging markets worldwide for a total of around 100, 000 active and inactive
companies. From 1995 onwards, data on firms’ sales, capitalization and investments is available for each
quarter.

The second dataset, FactSet Supply Chain Relationships, is assembled by FactSet using multiple sources.
The most prominent of these are filings required by the US Federal Accounting Standards, whereby each firm
must report its most important suppliers and clients, and import-export declarations from bills of lading. These
sources are complemented with insight mined by FactSet from news, press releases, company websites, and
other sources of business intelligence, which permit the inference of a link between two companies. Each record
of a link between two companies can be represented by a temporal network, using directed links connecting a
supplier to its customers. The temporal dimension of this data is also provided by FactSet: each link is assigned
specific timestamps indicating the first time the connection was reliably attested and when the connection is
known to have ended, when this is the case.3

To simplify our analysis, we have discarded the temporal dimension by aggregating all the links into a single
network that only considers whether a link between two companies was ever present in the time period we
consider. Another simplification we perform is to aggregate firms that may be part of large conglomerates at
the ultimate parent level using ownership structure data. Thus, the total sales, market capitalization and any
other balance sheet data of these aggregated entities are the sum of these quantities for each of the constituting
entities. At the network level, this procedure has the effect of deleting possible self-loops, as, for example, two

3 Note that this procedure implies that persistent links appear multiple times, as they are reported over many years.
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branches of the same conglomerate that are present in separate countries can trivially be reported to have
supply chain linkages between them. These aggregated entities constitute what we understand by “firms” or
“companies” in the remainder of this paper.

Finally, we have only retained firms in the global supply chain’s weakly largest connected component4, whose
financial information was available for at least eight years.5 Our final sample is composed of 16, 401 firms
connected by 178, 911 links. Appendix B details how to transform FactSet’s original tables into our working
dataset.

Number of firms 16, 401
Number of links 178,911

Density 6.7⇥ 10�4

Median degree 7
Max. degree 1664

TABLE I. Network summary statistics

II. GROWTH TIME SERIES

We label firms with an index i = 1, . . . , N , calling si(t) and mi(t) the sales and market capitalization (the
stock price multiplied by the number of shares outstanding) of firm i at time t (counted in quarters). With
this, we define the annual growth rate of the sales of the firm as

gi(t) := log
Å

si(t + 4)
si(t)

ã
. (1)

This quantity describes sales variations over the scale of a year, sampled with a quarterly frequency. We follow
Ref. [31] in describing sales growth rates with a random variable with a Gaussian central region, although
with fatter tails than a normal distribution, along with firm-dependent mean and variance (volatility). This
therefore leads us to define the rescaled growth rates,

g 0i(t) :=
gi(t)�Et 0 [gi(t 0)]∆
Vt 0 6=t [gi(t 0)]

(2)

where the average is computed over all times t 0, but the variance is computed from the time series where the
observation corresponding to t 0 = t has been removed. This corresponds to the leave-one-out rescaling defined
in [32], where the denominator on the right-hand side of Eqs.(2) allows one to rescale with respect to the
volatility when considering a variable with a fat-tailed distribution.6 We drop the apostrophe below for clarity,
as we will not use the “bare” growth rates in the remainder of this article.

Our goal in the rest of this article is to infer the supply chain structure from the correlation structure of
the growth rates. Nonetheless, it is likely that the growth rates of two companies are correlated because of
reasons other than their connection through the supply chain. This can be the case, for instance, if two firms
are in a given country that endures an exogenous economic shock, as in the case of the Covid-19 pandemic.
Our strategy therefore will be to attempt to remove these common factors, assuming that what remains in the
correlations must be the more subtle effects due to the supply chain. To illustrate the technique used for this,
we shall resort to a very simple model that is described below.

4 A weakly connected component is a set of nodes such that for any two nodes A and B, there exists a directed path starting at A and
arriving at B or from B to A, but not necessarily the other way around. When both a path A! . . .! B and B ! . . .! A exist for any
two nodes A and B in the component, a much more restrictive condition, then it is said to be strongly connected.

5 The reason for this is to remove time series that are too short for our analysis, as the reader will appreciate later.
6 Indeed when the distribution is fat-tailed then the naive estimator for the variance, related to

P
t gi(t)2, may be dominated by a single

observation (the largest one in the sample) and therefore introduce an artificial cut-off when dividing by the variance because in this
case

P
i gi(t)2 ⇡maxt gi(t)2. When rescaling the largest value in the sample, it is clear that it may be clipped because of this.
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A. Removing common shocks

Let us propose first a very simple example, where one has N time series xi(t), with 1 i  N and 1 t  T .
Each time series xi (t) is composed of an idiosyncratic term, driving time series i only and given by i.i.d.
Gaussian terms, and a common term that affects all the time series and that is also random. The model reads

xi(t) = ⇠i(t) +�v(t), (3)

where ⇠i(t) is a Gaussian random variable with E[⇠i(t)] = 0 and E[⇠i(t)⇠ j(t 0)] = �i j�t t 0 , with �i j the Kro-
necker delta (i.e., �i j = 1 if i = j and 0 otherwise). Similarly, v(t) is a Gaussian random variable satisfying
E[v(t)v(t 0)] = �t t 0 and E[v(t)⇠i(t 0)] = 0.

In this case, where we know precisely the nature of the common shock, we can estimate v(t) when N is
large by writing:

1
N

NX

i=1

xi(t) =
1
N

NX

i=1

⇠i(t) +�v(t) ⇡
N�1
�v(t). (4)

The correlation matrix for the model’s time series reads

Ci j := E[xi(t)x j(t)] = �i j +�2, (5)

which we can rewrite as C= I+N�2uu¸, with u= 1p
N

1, and where u¸ indicates vector transposition.7 Because
C is the sum of the identity matrix and a rank-one matrix, it is easy to see that it has an eigenvalue 1 + �2,
corresponding to the eigenvector u as Cu= (1+N�2)u, with all the other N�1 remaining eigenvalues equal to
1, with eigenvectors corresponding to the canonical basis of the vector space that is orthogonal to u. We can in
fact go further in this geometric interpretation and bring meaning to the vector u by focusing on the projection
of the time series onto it. What we mean by this is that for every time step in the multi-dimensional time series,
we may consider the vector x(t) = (x1(t), . . . , x2(t)), and consider the projected time series v̂(t) = u · x(t).

In this case, we notice that for large N we should have v̂(t) = 1
N

PN
i=1 xi(t) ⇡ �v(t). We can actually

generalize this: if we replace Eq.(3) by

xi(t) = ⇠i(t) +�ui v(t), (6)

that is a model where each time series has a different exposure (or loading, in factor-models’ jargon) to the
common mode v(t), then the correlation matrix is the same and we still have an eigenvector u= (u1, . . . , uN ).8
Doing the projection x(t) · u(t) still leads to v̂(t)⇡ v(t).

In fact, we can also consider the orthogonal projector to u, given by P= I�uu¸, or equivalently Pi j = �i j�ui j .
We can now apply this projector to our time series, as y(t) = Px(t), or equivalently by defining Y = PX. It is
straightforward to check that yi(t) = xi(t)� v̂(t)⇡ ⇠i(t).

To address our general problem of removing common fluctuations from time series, we can adopt the fol-
lowing procedure to remove the common mode and be left only with the idiosyncratic fluctuations. Assuming
that the common mode v(t) is the primary driver of time series variations (�� 1), we can:

1. Take the time series and compute the empirical correlation matrix,

2. Diagonalise the correlation matrix and rank the eigenvalues and eigenvectors according to the magnitude
of the eigenvalue,

3. Project the time series onto the eigenvector corresponding to the largest eigenvalue to get the dynamics
of the common mode,

7 This vector u is chosen to be normalised.
8 This vector can be assumed to be normalised, if not we can always replace � by

p
u2� in the model.
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FIG. 1. (A) The time series xi (t) are created by adding a sine wave and an idiosyncratic random noise. (B) The spectrum
of the empirical correlation matrix bCi j =

1
T

PT
t=1 xi (t) x j (t), along with the random benchmark given by the Marčenko-

Pastur distribution. Note the presence of an eigenvector at � ⇡ 16, beyond the random benchmark (C). The eigenmode
v̂(t), obtained by projecting the time series onto the vector bu corresponding to the largest eigenvalue, tracks the collective
oscillations of the system.

4. Remove the dynamics of the common mode from the time series by using the orthogonal projector to the
corresponding eigenvector.

Naturally, we can repeat this procedure and remove also the mode corresponding to the second largest
eigenvalue and so on, so that it is easily generalizable to other, more complex situations than the one of Eq.(3)
(see Fig. 1 for an example where the common mode v(t) is a sinusoidal wave).

The issue, however, is that this relies on the assumption that the empirical correlation matrix is a reliable esti-
mator of the “true” underlying correlation matrix from which the data is generated.9 Naturally, this is not true,
and one expects some estimation error when the length of the time series T is finite. In our toy model above, it is
in fact possible to separate the contribution of the idiosyncratic noise, as cC0 := 1

T

�
⇠⇠¸

�
i j =

1
T

PT
t=1 ⇠i(t)⇠ j(t).

Because the elements of ⇠ are i.i.d. Gaussian random variables, this empirical correlation matrix is known
as a Wishart matrix [34], and the statistical properties of its spectrum are known to be determined by the
Marčenko-Pastur distribution [35]. For a more in-depth understanding of this and other links with random
matrix theory, we invite the reader to consult [36], but we will explain the main results we need below.

Because cC0 �!T!1
I, we expect naturally that for large time series the spectrum of cC0 should be concentrated

around 1. In practice, however, because of measurement error, we don’t expect all of its eigenvalues to be
equal to 1. Thus, we intuitively expect the full spectrum of bC to be constituted of N � 1 eigenvalues close to
1, which constitute the contribution coming from C0, and a single-peaked eigenvalue close to �2, which is the
contribution coming from the dynamics of v(t) that couples all of the N time series. For the full empirical
correlation matrix bC, we also expect that the eigenvector corresponding to its largest eigenvalue will satisfy,
bu ⇡ u. However, the result of Marčenko-Pastur is that in the limit where both N , T !1, but with the ratio
q = N

T fixed, the spectrum of C0 is concentrated in the interval (1�pq, 1+pq), called the “bulk”, and may

9 At least in this model. In reality, when analyzing time series with this point of view we are making the more stringent assumption
that the correlation structure of data is time-invariant. Although there has been some work to relax this assumption in e.g. financial
data [33], these approaches are difficult, if not impossible, to adapt to the time series we analyze because of their relatively small length
and sampling frequency.
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also have a delta-peak at 0 if q < 1. For finite N , T we also expect some eigenvalues to be slightly out of this
interval. This sheds light on why in practice finding the common mode may be difficult: if, say, � is of the order
of q, then the eigenvalue “spike” at 1+�2 will in fact be inside the Marčenko-Pastur interval. This is linked to
the so-called Baik-Ben Arous-Péché (BBP) transition [37], and in this case, it is not possible to reconstruct the
common mode.

We can indeed imagine that we run the model and execute the procedure described above first for a value of
�� q, and then reduce � progressively until we reach � ⇡ q. When diagonalizing the empirical correlation
matrix bC and considering the eigenvector corresponding to its largest eigenvalue, bu, this eigenvector will match
the “true” eigenvector u when � � q, so that for example bu · u ⇡ 1. However, as � ! q this overlap will
decrease, and the intuition then is that when the outlier eigenvalue reaches the Marčenko-Pastur bulk, then its
associated eigenvector bu cannot now reliably be thought of as an estimator of u, and will instead point in any
random direction. In this case u ·bu will be of order 1/

p
N (see [36, Section 14.2.2], and also [38] for intuition

for this phenomenon using Dyson Brownian motion). In this case, the usage of the projectors, or steps 3 and
4 of our procedure, will not lead to the identification of common modes.

The conclusion from this is that we are indeed capable of identifying common factors in time series using this
approach, but we must first make sure that these modes correspond to eigenvalues of the correlation matrix
that are not compatible with a random benchmark. Indeed, the example above corresponds to time series of
equal length, where each entry of the time series is drawn at random from a Gaussian distribution. In this case,
the random benchmark for the spectrum is determined by the Marčenko-Pastur distribution, as said above. The
case of our time series is, however, different since sales data is not available for every company at any time.
Growth time series can have different starting points and lengths, and the period over which one can compute
their correlation is different for any pair of firms. Our data therefore has a lot of missing values, and two firms
present in non-overlapping times for example will be set two have a correlation of 0. Another issue is that the
growth-rate distribution is not Gaussian, and has slightly heavier tails. Understanding the correlation spectrum
of heavy-tailed processes is feasible (see for example [39]), but very difficult to do for any distribution.

We can nonetheless establish a random benchmark for the correlation spectrum computationally and use it
to identify eigenvalues indicating correlated modes. We achieve this by creating a surrogate of the growth-rate
time series where the missing data structure is preserved and where the individual growth rates are drawn
at random from their empirical distribution. This is similar to the procedure used in [40], where the authors
randomly shuffle a time series to benchmark the eigenvalues of correlation matrices that can be distinguished
from noise.

Figure 2 shows that the real correlation spectrum has several eigenvalues that are beyond the bulk corre-
sponding to the random benchmark, both on the left and on the right side of the bulk. Note that the presence of
negative eigenvalues is a consequence of missing data, and is something that one does not obtain for standard
Wishart matrices. The largest eigenvalue corresponds to the market mode, a collective trend shared by all the
firms in the supply chain. This collective mode concerns all firms, as shown by the fact that the entries of the
corresponding eigenvector have (roughly) all the same sign and magnitude10. Thus, this mode corresponds
to a common factor in the economy, and all the firms move coherently with it. Interpreting the modes corre-
sponding to eigenvalues outside the bulk is more challenging: contrary to what is observed in the correlation
structure of financial returns, we have not been able to identify them with specific industrial sectors or geogra-
phies. Because we are unable to give these eigenvectors a clear interpretation, and since they could potentially
carry information about the production network, we have decided to remove only the first eigenmode from
the time series. In the rest of our paper, we will refer to the growth time series cleaned of the system’s first
eigenmode as “cleaned” time series g̃i (t), and to their correlation as the “cleaned” correlation.11

III. NETWORK CORRELATION AND RANDOM BENCHMARKS

We have introduced the main object of our analysis, firms’ growth time series gi(t). We will now show
that the supply chain induces specific correlations between firms, a necessary step to later justify our usage of

10 This is similar to the toy model presented in Section II A.
11 We attract the reader’s attention to the fact that we mean “cleaning” in a sense that is the opposite of what is done for returns’ correlation

matrices in finance: there, usually one discards the modes corresponding to the smaller eigenvalues (see e.g. [41]). We, however, discard
the largest mode because we want to remove reasons for firm co-movement that are distinct from supply chain-induced co-movement.
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FIG. 2. (A) The distribution ⇢ (g) of the growth rates for every firm i and time t. A normal distribution is provided as a
reference. (B) Growth time series correlation spectrum. The two random benchmarks are obtained by sampling random
time series from the empirical distribution ⇢ (g) (Empirical benchmark) and the normal distribution (Gaussian benchmark).
The starting points and duration of the random time series match those of the real ones. The spectrum shown is the average
of 10 sets of random time series.

correlations in supply-chain reconstruction. We define the following correlation matrices12,

Ci j(⌧) = Et

⇥
gi(t)g j(t +⌧)

⇤
,

C̃i j(⌧) = Et

⇥
egi(t) g̃ j(t +⌧)

⇤
.

(7)

We can compute the average value of the elements of the matrix C and eC across the pairs of firms (i, j) linked in
the production network, defining averaged client/supplier correlation functions. Given any (binary) adjacency
matrix A we define

CA (⌧) = Ei j

⇥
Ci j (⌧) |Ai j = 1

⇤
, (8)

and

eCA (⌧) = Ei j

⇥
C̃i j (⌧) |Ai j = 1

⇤
, (9)

where the average runs over all pairs 1  i  j  N . In other words, CA and eCA are the average correlation
between two neighbors in a graph with an adjacency matrix A. This average can be computed using the true
adjacency matrix of the production network, S, or over the adjacency matrix of any other network.

A. Random benchmarks

We first compute the correlations averaged over the adjacency matrix S of FactSet’s production network,
where Si j = 1 if j either supplies or is a client of i, and compare their value to those obtained with several
random network models: the Erdős-Rényi model [42], the Stochastic Block Model [43], and the Configuration
Model [44]. We describe all three models and their parameters in detail below.

We randomly sample n = 50 networks of each model, with adjacency matrices R1, . . . ,Rn and compute the
mean and standard deviation of the sets

�
CR1

, . . . , CRn

 
and

�
C̃R1

, . . . , C̃Rn

 
. All of the models are parametrized

to match the empirical properties of the supply-chain network.

12 Note that here we use the notation Et [·] = 1
T
PT

t=1 ·(t) to indicate the empirical average across the time variable. The notation E used
in the previous section corresponds instead to the “true” average value of our stochastic model, computed over the distribution of the
noise ⇠i and v. Similarly, Ei j indicates an empirical average taken by summing over the variables i and j.
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FIG. 3. (A): Average correlation on the production network C (⌧)S and several random network benchmarks. (B): Average
"cleaned" correlation on the production network C̃ (⌧)S and several random network benchmarks. (C): Correlations along
the supply chain decay with distance. At distance d = 4 (d = 3 for the cleaned correlation), firms’ average correlation is
the same as the Erdos-Renyi benchmark. Results for the cleaned time series are flagged with a (C)

For the Erdős-Rényi network, we fix its density p to match that of the production network, namely

p =
1

N (N � 1)

NX

i=1

NX

j>i

Si j .

The Erdős-Rényi network has no real structure, and in particular no clear community structure is appar-
ent in it. We therefore also used stochastic block models, which we initialised with several different block
schemes. Specifically, we divided firms into blocks {B1, . . . , Bm} depending on their industrial sector (at their
SIC code’s third-digit level of aggregation), their country, or their network community as identified by the Lou-
vain community-detection algorithm [45]. The network densities within- and across- blocks are chosen to be
equal to their empirical counterparts,

⇢i j =
1

|Bi |
���Bj

����i j

�
X

u2Bi ,v2Bj

Auv . (10)

Finally, we use the configuration model to produce networks with a degree distribution that matches exactly
the empirical one.

Figure 3 compares the average correlation measured on the true production network S and on the random
network benchmarks. The value of CS (0) is twice as high as the average correlation measured on the Erdős-
Rényi graph, and ⇡ 50% higher than the correlation measured for the configuration model. The result for
C̃S (0) are even more striking, with the residual correlation on the supply chain being still ⇡ 0.1 and most of
the random benchmarks dropping close to zero. This highlights the usefulness of our cleaning procedure, as it
significantly increases our signal-to-noise ratio.

B. Relationship with network distance

A second way to show that the supply chain induces correlations in the dynamics of firm sales is to study
how the correlation behaves with respect to network distance. Intuitively, we expect that two firms that are
close to each other on the supply chain will be more correlated than two firms that are far apart.
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FIG. 4. An illustration of network distance. Nodes 2, 3 and 4 are at a distance k = 1 from node 10. Even though the path
1! 3! 4 exists, we do not consider 4 to be at distance k = 2 from 1

To see this, we start again from the binary adjacency matrix S of the production network and define recur-
sively

S(k)i j =
X

l1,...,lk�1

1
�
Sil1Sl1 l2 . . . Slk�1 j > 0

� k�1Y

m=1

Ä
1� S(m)i j

ä
, (11)

where S(1)i j = Si j . The first factor in the right-hand side is equal to 1 if and only if there exists a path
i ! l1 ! . . .! j of length k linking i to j. The second factor is 0 if it exists a shorter path from i to j in the
network. Thus defined, S(k)i j is equal to one only if the shortest path between i and j is of length k.

We can see how these correlations decay with distance, by computing the values

DS(k) = Ei j

î
Ci j(0)|S(k)i j = 1

ó
, (12)

and

eDS(k) = Ei j

î
C̃i j(0)|S(k)i j = 1

ó
, (13)

namely the average of the non-lagged growth correlation between any two firms that are k-steps apart in
the supply chain. We show this in Figure 3, C. The correlation between firms decays as their distance in
the production networks increases, revealing again that the production network mediates growth correlations
between firms.

IV. SUPPLY CHAIN RECONSTRUCTION

In the previous Sections, we have established that the supply chain induces correlations between firms, and
we have also established that our cleaning procedure increases the signal-to-noise ratio of these correlations
with respect to the real supply chain. We next propose a procedure to reconstruct the supply chain using the
cleaned correlation matrix.

Inferring networks from observations or graph learning [46], is a problem that encompasses several branches
of natural and social sciences. Following [46], we define the problem of graph learning as follows: given T
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observations on N entities, represented by a data matrix X 2 RN⇥T , and taking some prior knowledge as given,
we seek to infer relationships between our N entities and represent these relationships as a graph G .

A possible approach to solve this problem is to assume that G encodes some statistical relationship between
the entities. Specifically, probabilistic graphical models assume that the structure of G determines the joint
probability distribution of the observations on the data entities: the presence or absence of edges in the graphs
encodes the conditional independence among the random variables represented by the vertices. In particular,
Markov Random Fields consider a graph G = {V ,E} and a set of random variables x = {xi : vi 2 V } satisfying
the pairwise Markov property,

�
vi , vj

�
/2 E , p

�
xi |x j ,x\

�
xi , x j

 �
= p

�
xi ,x\

�
xi , x j

 �
, (14)

which simply states that two variables xi and x j are conditionally independent if there is no edge between the
corresponding vertices vi and vj . In Markov Random Fields, the joint probability distribution of the variables
x1, . . . , xN may also be represented as

p (x) =
1
Z

KY

i=1

�i (Di) , (15)

where Di , . . . ,DK are a set of graph’s cliques (i.e., groups of nodes), Z is a normalization factor known as
the partition function, and �is are generic functions known as factors. It is straightforward to see that the
exponential family of distributions with a parameter matrix ⇥ 2 R,

p (x|⇥) = 1
Z (⇥)

exp

 X

vi2V
✓ii x

2
i +

X

(vi ,vj)2E
✓i j xi x j

!
, (16)

is compatible with this formalism; the multivariate Gaussian distribution with precision matrix ⇥,

p (x|⇥) = |⇥|
1/2

(2⇡)N/2
exp

Å
�1

2
xT⇥x

ã
, (17)

belongs to this family. The subclass of Markov random fields that adopt Eq.(17) as the parametrization for the
joint probability distribution p are called Gaussian Markov Random Fields or Gaussian Graphical Models. In
Gaussian Graphical models, the problem of finding the graph G is reduced to that of estimating a precision
matrix ⇥ that encodes the conditional relationship between the nodes. In the previous section, we saw that
the production network influences the correlation of firms’ growth gi . If we consider each vector g (t) as a
drawn from a joint probability distribution where the correlations are driven by the supply chain, Gaussian
graphical models seem well equipped to reconstruct the production network if one ignores the fact that the
growth rates do not have a Gaussian distribution.13 We think nonetheless that, because the growth rates show
a Gaussian-like central region, as shown by [31], it is reasonable to use this model to attempt a reconstruction.

We therefore use the Graphical Lasso method to construct an estimator “⇥ of ⇥ by solving the following
optimisation problem:14

“⇥ = argmax⇥ log det⇥� tr
�bC⇥

�
�↵k⇥k1, (18)

with bC = 1
T GGT the sample covariance matrix, det (·) the determinant and tr (·) the trace. The first two

terms can be thought of as the log-likelihood of ⇥ in the Gaussian Graphical Model, while ↵ |⇥| is an L1

regularisation term with parameter ↵. This approach will, in general, recover a matrix ⇥ with both positive
and negative entries. In this setting, a positive off-diagonal entry ✓i j of the precision matrix implies a negative
partial correlation between xi and x j , whose interpretation is problematic since we would like ⇥ to proxy the
adjacency matrix of the network.

13 Indeed, the marginal distribution of xi in Eq.(17) is clearly a Gaussian distribution.
14 This is the result of applying Bayes theorem assuming a constant prior for ⇥.
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References [47–49] suggest instead searching for the precision matrix among the set S⇥ of possible Graph
Laplacian matrices,

S⇥ =
(
⇥|✓i j = ✓ ji < 0 for i 6= j,✓ii = �

X

j 6=i

✓i j

)
. (19)

Conditioning “⇥ to be in the set of possible graph Laplacians has two interesting consequences. First, the
graph Laplacian L uniquely determines the adjacency matrix W of the graph; thus, the problem in (18) with
the assumption⇥ 2 S⇥ creates a direct connection between the data and the topology of the network. Second,
since the time series gi has zero mean, we can write the trace

�bC⇥
�

as

tr
�bC⇥

�
=

1
T

tr
�
GGT⇥

�
=

1
T

X

i, j

TX

t=1

✓i j

�
gi(t)� g j(t)

�2
. (20)

The term on the right hand of the equation measures the (squared) difference between the observation on
firms i and j (gi and g j), computed over couples of connected firms (✓i j > 0); it is generally known as the
quadratic energy function and quantifies the smoothness of G over the graph with Laplacian L. For an economic
interpretation, the second term in (18), tr

�bC⇥
�
, can be interpreted as a penalty term affecting networks over

which G is not smooth, i.e., a production network that exhibits large differences between the growth rates of
connected firms.

In [50] (see Appendix A), the authors propose an efficient algorithm to solve the problem in Eq.(18) while
also enforcing some (soft) constraints on the spectrum Sp(⇥) of the Laplacian matrix. The problem becomes

“⇥ =argmax⇥ log det⇥� tr
�bC⇥

�
�↵k⇥k1,

subject to ⇥ 2 S⇥, Sp(⇥) ⇢ S�
(21)

where S� is the set of admissible spectra that we choose. Because the spectrum of the Laplacian encodes
information about the underlying network’s topology, choosing S� appropriately allows us to enforce high-
level topological features on the reconstructed network.

We, therefore, attempt to use the algorithm provided in [50] to reconstruct the production network. In the
following, we assume that we know the network’s density in advance and that we also have a reliable estimate
for the number of links within and across different sectors. This information would not be available directly
in a real-world situation, but the literature on production networks and other available data sources as input-
output tables allow informed guesses (see, e.g., [12]). This means that our results should be placed halfway
between a proof of concept and a realistic use case.

We must however slightly modify this algorithm to apply it to our specific situation. Indeed, a problem
with the algorithm described in [50] is that, while it is possible to encode a given community structure by
constraining the Laplacian, we are not able to specify which firms should go into which community (see Fig.
5).

To solve this, we have devised the following procedure. First, we split bC into diagonal and off-diagonal
blocks based on firm industries. Next, we use the procedure defined in (21) to reconstruct each diagonal block
independently. Thirdly, we go through all the possible pairs of diagonal blocks and – keeping the diagonal
blocks equal to those that were reconstructed in the previous step – we reconstruct the off-diagonal blocks.
Finally, we assemble all the blocks together to obtain the entire adjacency matrix; this procedure is shown
graphically in Fig. 6.

Every time we reconstruct a network, we choose the parameter ↵ to match the empirical network density.
To reconstruct the diagonal blocks, we use the spectrum obtained by averaging over the spectra 1000 Erdős-
Rényi random networks’ Laplacians, with probability p equal to the desired density. Similarly, to reconstruct
the off-diagonal blocks, we use the spectrum obtained by averaging over the spectra of 1000 block models’
Laplacians, where the probabilities of links within and across each block are chosen to match the desired
density. We provide details on the reconstruction algorithm in Appendix A.

We ran our procedure over several different subparts of the real production network, each composed of a
minimum of 300 to a maximum of 500 firms. We compared our results to those of two random benchmarks:
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FIG. 5. (A) A stylised representation of an adjacency matrix with two sectors. The density of links between the nA firms in
sector A is ⇢A, the density of links between the nB firms in sector B is ⇢B , and the density of links across the two sectors
is ⇢AB . (B) Another adjacency matrix. There are two group of firms of size nA (right bottom corner of the matrix) and nB
(top left corner of the matrix). The density within firms in the first group is ⇢B , the density between firms in the second
group is ⇢A, and the density across the groups is ⇢AB . The graph Laplacian of the matrix in (A) and that of the matrix in
(B) will have the same spectrum. However, the density within and across sectors in (B) is different from that in (A).

FIG. 6. Reconstruction of the supply chain networks. The original correlation matrix (A) is split into different industry
sectors. First, we reconstruct the diagonal blocks (B). Then, we reconstruct the off-diagonal blocks (C). Finally, we re-
assemble the blocks together (D).

an Erdos-Renyi graph and an industrial sector block model, built as in III. While our approach seems to have
the highest accuracy, it fails to consistently beat the block model benchmark on the other metrics we tested
(Fig. 7).
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FIG. 7. True Positive rate (left), Accuracy (middle), and F1 Score (right)of the reconstructed networks, plotted against the
same metrics for the two different random benchmarks.

V. CONCLUSIONS

In this paper, we studied if the correlation between firms’ growth time series could be useful in reconstructing
production networks. Using FactSet’s supply chain network as a use case and several random network models
as benchmarks, we have first shown that the growths of firms connected in the production networks are on
average more correlated than those of randomly selected firms’ pairs. We have shown that this effect fades
gradually as one looks at the average correlation between pair of firms at an increasing network distance
along the supply chain. Finally, we have framed the production network reconstruction in the context of
graph learning and tested some recent techniques developed in the field to identify trade connections between
firms. Our approach did not seem to significantly improve the benchmark, but we believe that it could still
be improved to deliver good results. First, it relies on a mechanism that can be easily accepted as universal:
the growth of business partners is correlated. Improvements in the estimation of these correlations, using
techniques developed for financial data [41] and multiple time series (e.g., stock returns) will automatically
improve our returns. Second, it is a fully "unsupervised" approach, which does not require the training of a
model and is not prone to over-fitting. Third, it requires data that is easily accessible (firms’ sales) and, to
a certain extent, substitutable (e.g., we obtained similar results when we looked at the correlation of firms’
stock returns). Finally, it generates a network that matches a set of desired topological features. This last
point also highlights interesting avenues of research: as more "universal" production networks’ features will
be documented, and better generative models for these networks will be developed, the more effective our
approach will be.
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Appendix A: Network Reconstruction Algorithm

The algorithm used to solve the problem in Eq.(21) has first been proposed by [50, 51] in the context of
structured Graph Learning. The authors formulate the problem as the following. Let x =

⇥
x1, x2, . . . , xp

⇤T
be

a p-dimensional, zero-mean, random vector (in the practical case, this would be the collection of the "cleaned"
time series g̃1, . . . , g̃N ) associated with an undirected graph G = (V ,E ), where V = {1, 2, . . . , p} is a set of
nodes corresponding to the elements of x , and E 2 V ⇥V is the set of edges connecting nodes. In the Gaussian
Graphical modeling framework, learning a graph corresponds to solving the optimization problem

max
⇥2S p

++

log det (⇥)� tr (⇥S)�↵h (⇥) , (A1)

where ⇥ 2 Rp⇥p denotes the desired graph matrix, S p
++ denotes the set of p ⇥ p positive definite matrices,

S 2 Rp⇥p is the covariance matrix obtained from the data, S = 1
n x T x , h (·) is a generic regularisation term,

and ↵ is a coefficient tuning the strength of the regularisation. As we saw in IV, a matrix ⇥ 2 Rp⇥p is called a
combinatorial graph Laplacian matrix if it belongs to the set

S⇥ =
(
⇥|✓i j = ✓ ji < 0 for i 6= j,✓ii = �

X

j 6=i

✓i j

)
. (A2)

The Laplacian Matrix ⇥ is a symmetric, positive semidefinite matrix with zero row sums. In the framework of
network theory, a Laplacian matrix ⇥ is computed from a graph’s adjacency matrix A as ⇥ = D � A, where D
is a diagonal matrix and Dii is the degree of node i. It is straightforward to see that the adjacency matrix of
a graph can be recovered from the Laplacian matrix simply as A= ⇥ � (I � 1), where I is the identity matrix,
1i j = 1, and � is the element-wise product. The structural properties of a graph are encoded in the eigenvalues
of its Laplacian so that being able to constraint the spectrum of the matrix ⇥ in the optimization problem in
Eq.(A1) allows to enforce some structural constraints on the reconstructed network. The goal hence becomes
that of solving the problem

max
⇥

log gdet⇥� tr (S⇥)�↵h (⇥) ,

subject to ⇥ 2 S⇥, � (⇥) 2 S�,
(A3)

where gdet (⇥) denotes the generalised determinant15 of the matrix ⇥, defined as the product of its non-zero
eigenvalues, � (⇥) denotes the set of eigenvalues of ⇥, and S� is the set containing the spectral constraints
on the eigenvalues. As the authors in [50] point out, from the probabilistic perspective, if the data is gener-
ated from a multivariate Gaussian distribution N

�
0,⇥†

�
, then Eq.(A3) can be viewed as a penalized maxi-

mum likelihood estimation of the structured precision matrix of an attractive Gaussian Markov Random Field
model, while, if x is arbitrarily distributed, the problem in Eq.(A3) corresponds to minimizing a penalized log-
determinant Bregman divergence (a common measure of distance for probability distributions), and hence its
solution should anyway result in a meaningful graph. In the main body of the paper, we saw how we assume
to know the spectrum �̄ of the target matrix is known, so we can define S� as

S� =
�
�i = �̄i , 8i 2 [1, p]

 
. (A4)

To solve the optimisation problem in Eq.(A3), the authors in [50] first introduce a Graph Laplacian linear
operator L to transform a generic, non-negative vector w 2 Rp(p�1)/2

+ to a Laplacian matrix Lw 2 Rp⇥p. The
linear operator L : w 2 Rp(p�1)/2

+ !Lw 2 Rp⇥p is formally defined as

(Lw )i j =

8
<
:

�wi+dj
i > j,

(Lw ) ji i < j,P
i 6= j (Lw )i j i = j,

(A5)

15 Note that in the main text, we have not made explicit the difference between gdet (⇥) and det (⇥) to improve readability.



17

w1, w2, w3, w4, w5, w6

⇣ ⌘

L

L�1

P
i2{1,2,3} wi �w1 �w2 �w3

. . .
P

i2{1,4,5} wi �w4 �w5

. . . . . .
P

i2{2,4,6} wi �w6

. . . . . . . . .
P

i2{3,5,6} wi

0
BBBBBB@

1
CCCCCCA
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FIG. 9. The adjoint operator L⇤ transforms a symmetric matrix in a vector. Above, an example for a 4⇥ 4 matrix.

where dj = � j + j�1
2 (2p� 1). The adjoint operator L⇤ : Y 2 R(p⇥p) ! L⇤T 2 R p(p�1)

2 is derived to satisfy
hLw , Y i= hw ,L⇤Y i. While the definition of the two operators might seem cumbersome at first glance, their
interpretation is fairly straightforward (see Fig, 8).

The Laplacian operator L allows reformulating the optimization problem in a simpler way. First, by the
definition of L , the set of constraints in Eq.(A2) can be expressed as S⇥ = {⇥ =Lw|w� 0}. Second, if we
choose h (⇥) to be the L1-regularisation function, since (Lw )i j < 0 for i 6= j and (Lw )i j > 0 for i = j, the
regularisation term ↵h (Lw ) = ↵kLwk1 can be written as tr (Lw H), where H = ↵ (2I � 1), which implies

tr (LwS) +↵h (Lw ) = tr (Lw K) , (A6)

where K = S + H. We can now reformulate Eq.(A3) as

min
w ,U

� loggdet
�
UDiag

�
�̄
�

U T
�
+ tr (Lw K) +

�

2
kLw � UDiag

�
�̄
�

U Tk2F ,

subject to w > 0, U T U = I .
(A7)

where Lw is the Laplacian matrix that we would like to decompose as Lw = UDiag
�
�̄
�

U T , Diag
�
�̄
�
2 Rp⇥p

is a diagonal matrix containing
�
�̄i

 
on its diagonal, and U 2 Rp⇥p is an orthogonal matrix. The constraints

on the spectrum of the reconstructed matrix are enforced (softly) thanks to the spectral penalty term �
2 kLw �

UDiag
�
�̄
�

U Tk2F . It is well known that every Laplacian matrix ⇥ will have at least one eigenvalue equal to zero,
since ⇥ · 1 = 0 by definition. Consequently, when solving (A7), the first eigenvalue and the corresponding
eigenvector can be dropped from the optimization formulation. Now �̄ only contains q = p � 1 non zero
eigenvalues in increasing order,

�
� j

 p
j=2; we can replace the generalized determinant in (A7) with the standard

determinant on Diag
�
�̄
�
, and redefine U as U 2 R p⇥q, containing the eigenvectors corresponding to non-zero

eigenvalues in the same order. The orthogonality constraint becomes U T U = Iq. In [50], the authors show
how the problem in (A7) can be solved with an iterative approach. If we define the vector c,

c =
ï
L⇤

Å
UDiag

�
�̄
�

U T � 1
�

K
ãò

, (A8)

and the function f (w ),

f (w ) =
1
2
kLwk2F � cT w , (A9)
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at each step t, we can update w and U , as

w t+1 =
ï
w t � 1

2p
r f

�
w t
�ò+

, (A10)

U t+1 = ⇤ (Lw ) [2 : p], (A11)

where⇤ (Lw ) is the matrix of the eigenvectors ofLw , sorted by the corresponding eigenvalue. The algorithm
can be run until convergence, w t+1 = w t = w ⇤, and the vector w ⇤ can be used to reconstruct the Laplacian
⇥ = L⇤w ⇤, and the corresponding adjacency matrix. To reconstruct off-diagonal blocks of our Laplacian
matrix, we have, at each iteration step, only updated the components of w corresponding to off-diagonal blocks,
and again run the algorithm until convergence. While there is no theoretical guarantee that the algorithm will
converge to the optimal solution of the optimization problem, our results suggest that this approach is still
effective in reconstructing the network.

Appendix B: Dataset construction

For the purposes of this paper, we accessed three different FactSet products: Standard Datafeed - Fundamen-
tals V3 - Advanced - Global, Standard Datafeed - Supply Chain relationship, and APB - Standard Datafeed - Supply
Chain Shipping Transaction. We parsed information on companies’ fundamentals (sales, market capitalization,
capital expenditures, industrial sector, and geography) from the first dataset and used the other two to identify
supply chain relationships.

a. Fundamentals The fundamentals dataset is built from the following FactSet files:

1. Fundamentals

• ff_basic_eu_v3_full_5315/ff_basic_af_eu.txt

• ff_advanced_eu_v3_full_4524/ff_advanced_af_eu.txt

• ff_basic_ap_v3_full_5276/ff_basic_af_ap.txt

• ff_advanced_der_ap_v3_full_4460/ff_advanced_der_af_ap.txt

• ff_basic_am_v3_full_5258/ff_basic_af_am.txt

• ff_advanced_der_am_v3_full_4484/ff_advanced_der_af_am.txt

2. FX Rates

• fx_rates_usd.txt

3. Symbology

• sym_hub_v1_full_9915/sym_coverage.txt

• sym_hub_v1_full_9915/sym_entity_sector.txt

• f_sec_hub_v3_full_5299/ff_sec_entity_hist.txt

The Fundamentals files contain the (yearly) information regarding companies’ sales, number of employees,
and r&d expenses, and a currency column that states the features’ currency. We can convert all of these features
into USD using the FX Rates table provided by FactSet. The original fundamentals files are not at the security
level, not at the company’s one. To create a dataset at the company level, FactSet provided us with the following
example query,

Select a.factset_entity_id, c.fsym_id,c.date,c.ff_sales

from [sym_v1].[sym_sec_entity] a

join [sym_v1].[sym_coverage] b on a.fsym_id = b.fsym_id

join [ff_v3].[ff_basic_qf] c on c.fsym_id = b.fsym_regional_id

where a.factset_entity_id =’05HK0W-E’and a.fsym_id = b.fsym_primary_equity_id

,
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that we "translated" to Python. We used sym_hub_v1_full_9915/sym_entity_sector.txt to assign the
correct SIC code to each of the firms.

b. Supply Chain edgelist The Supply Chain’s edge list is built from the following FactSet files:

1. Supply Chain

• ent_supply_chain_v1_full_2354/ent_scr_supply_chain.txt

2. Shipments

• sc_ship_trans_current_v1_full_1146/sc_ship_trans_curr_1.txt

• sc_ship_trans_current_v1_full_1146/sc_ship_trans_curr_2.txt

• sc_ship_trans_current_v1_full_1146/sc_ship_trans_curr_3.txt

• sc_ship_trans_current_v1_full_1146/sc_ship_trans_curr_4.txt

3. Mappings

• ent_entity_advanced_v1_full_6896/factset_entity_structure.csv

• sc_ship_trans_hub_v1_full_1120/sc_ship_parent.txt

The Supply Chain and Shipment files both contain an edge list (supplier-to-customer and shipper-to-
consignee respectively). The mapping files have two columns “FACTSET_ENTITY_ID” and “FACTSET_ULT_PARENT_ENTITY_ID”.
We assume that every FACTSET_ENTITY_ID that is not present in the mapping is an ultimate parent company.

c. Coordinates The firms’ geographical position was fetched from the following files:

1. FactSet’s Addresses

• ent_supply_chain_hub_v1_full_2355/ent_scr_address.txt

• sc_ship_trans_hub_v1_full_1120/sc_ship_address_coord.txt

• sym_hub_v1_full_9915/sym_address.txt’

Appendix C: Other cleaning strategies

While working on the paper, we tested two other methods to process the correlation matrix in a way to
maximize the gap between the average correlation along the supply chain and those of the random benchmarks
(see III). After cleaning the market mode, we tried to see whether we could remove some sector-specific trends
from the time series. For each industrial sector ↵ we defined the quantity

s↵ (t) =
X

i,i2↵
xi (t) ,

where xi (t) is the growth time series of firm i, and the sum runs on all the firms in sector alpha. We assumed
that we could write the time series xi (t)as

xi (t) = ⇠i (t) + kis↵ (t) ,

We estimated the coefficient ki as the correlation between xi and s↵, and cleaned the time series by computing
the difference

⇠i(t) = xi (t)� k̂is↵(t),

where k̂i is the estimated value for ki .
We also investigated if more signals could be extracted by considering lags between firms’ time series. We

defined the lagged correlation matrix C (⌧), defined as

C (⌧) = Et

⇥
xi(t)x j(t +⌧)

⇤
,
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and its symmetrised version C 0 (⌧) as

C 0(1) =
1
2
[C(1) + C(�1)] .

We then computed a linear combination [C 0(0) + C 0(1)], and computed the average value of this matrix over
the supply chain and the random benchmarks.

None of the two approaches improved significantly the outcomes we discussed. However, we can’t exclude
that a more thorough investigation of these techniques, their combination, and the analysis of other time series
(e.g., firms’ market returns) could improve the results of this paper.


