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Abstract

We introduce a microscopic model of double-auction markets based on random order place-
ment. Traders post market or limit orders which are stored in the book of the exchange and
executed via a central order matching mechanism. We use dimensional analysis, simulations and
analytical approximations to make testable predictions of the price impact function. We 4nd that
the price impact function is always concave, in agreement with empirical measurements. We
provide an explanation for its concavity based on the properties of order 5ows.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Electronic trading employing a public limit order book is continuing to gain a greater
share of worldwide security trading and many of the major exchanges in the world
rely, at least in part, upon limit orders for the provision of liquidity. In order-driven
markets investors can submit either market or limit orders. Impatient traders typically
submit market orders which are immediately executed against the quoted bid or ask.
To guarantee that orders are executed only when the market price is below or above
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a certain threshold, patient traders may prefer to submit limit orders. Limit orders are
stored in the book of the exchange and executed using time priority at a given price and
price priority across prices. If the market is rising, the upward price movements trigger
limit orders to sell; if the market is falling, the downward movements trigger limit
orders to buy. Limit orders thus provide liquidity and immediacy to market orders. By
delaying transacting, patient traders may be able to trade at a more favorable price. On
the other side, limit orders face uncertainty over when and if they will be executed.
Also, a trader’s perception of what is the fair price of an asset may have changed
since the time the order was placed and the order may be canceled. Understanding
how the placement of orders contributes to market liquidity is important for practical
reasons, such as minimizing transaction costs. Furthermore, it provides a proxy for the
demand function. A market is considered liquid if an attempt to buy or sell results in
a small change in price. The price impact function, Fp= �(!; �; t), where Fp is the
logarithmic price shift at time t+ � caused by a market order of size ! placed at time
t, provides a measure of the liquidity for executing market orders. Empirical studies
on the NYSE [1] have shown that the immediate response of prices to a single trade is
remarkably regular. After appropriate rescaling the data for the 1000 highest capitalized
stocks traded in the NYSE collapse onto the same curve. The curve is always concave,
with a slope varying from ∼ 0:5 to ∼ 0:2 depending on stock capitalization.

2. The model

The model described here has been introduced in Ref. [2] and further investigated
in Ref. [3]. Related work can be found in Refs. [4–7]. We propose the simple random
order placement model shown in Fig. 1. All the order 5ows are modeled as Poisson
processes. We assume that market orders in chunks of � shares arrive at a rate of
	 shares per unit time, with an equal probability for buy and sell orders. Similarly,
limit orders in chunks of � shares arrive at a rate of 
 shares per unit price and
per unit time. We express prices as logarithms and use the logarithmic price a(t) to
denote the position of the best ask and b(t) for the position of the best bid. The gap
between them, s(t) = a(t) − b(t), is called the spread and m(t) = (a(t) + b(t))=2 the
midpoint. ONers are placed with uniform probability at integer multiples of a tick size
p0 (also de4ned on a logarithmic scale; note this is not true for real markets) in the
range b(t)¡p¡∞, and similarly for bids on −∞¡p¡a(t). When a market order
arrives it causes a transaction; under the assumption of constant order size, a buy market
order removes an oNer at price a(t), and a sell market order removes a bid at price
b(t). Alternatively, limit orders can be removed spontaneously by being canceled or by
expiring. We model this by letting them be removed randomly with constant probability
� per unit time. The model considerably simpli4es the complexity of the trading process
in order to remain analytically tractable. Nonetheless, the coupling between the bid
and ask processes (one determines the boundary condition for the other) makes its
time evolution non-trivial. Furthermore, the model can be easily enhanced, in future
research, to include a non-Poisson order cancellation process and feedback between
orders and prices in the attempt to reproduce some of the features observed in real
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Fig. 1. Schematic of the order-placement process. Stored limit orders are shown stacked along the price axis,
with bids (buy limit orders) negative and oNers (sell limit orders) positive. New limit orders are visualized
as falling randomly onto the price axis. New oNers can be placed at any price greater than the best bid,
and new bids can be placed at any price less than the best oNer. Market orders remove limit orders of the
opposite sign, based on best price and earliest time.

data, such as power-law placement frequency [7], and a power-law or log-normal order
size distribution.

3. Results

The depth pro4le n(p; t) gives the number of shares in the order book at price p and
time t. We investigate how the depth pro4le depends on the parameters of the model
(see Refs. [2,3] for further results predicted by the model regarding the behavior of
prices and spreads).
The simple technique of dimensional analysis allows us to derive several powerful

results and simplify the simulation analysis by reducing the number of free parameters
from 4ve to two. There are three fundamental dimensions in the model: shares, price,
and time. There are also three rate constants: 
, with dimensions of shares=(price ×
time), 	, with dimensions of shares=time, and �, with dimensions of 1=time. There
are two discreteness parameters: the order size � and the price tick p0. The average
spread has dimensions of price and is proportional to 	=
; this comes from a balance
between the total order placement rate inside the spread and the order removal rate. The
asymptotic depth is the density of shares far away from the midpoint, where market
orders are unimportant. It has dimensions of shares=price, and is Poisson distributed
with mean 
=�. The slope of the depth pro4le near the midpoint has dimensions of
shares=price2. It is proportional to the ratio of the asymptotic depth to the spread,
which implies that it scales as 
2=	�. This is summarized in Table 1. There is a unique
way to combine the parameters to create nondimensional units for shares and prices
as described in Table 2. When plotting the average depth pro4les, obtained by Monte
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Table 1
Predictions of scaling of market properties as a function of properties of order 5ow. 
 is the limit-order rate,
	 is the market-order rate and � is the spontaneous limit-order removal rate

Quantity Dimensions Scaling relation

Asymptotic depth shares=price d ∼ 
=�
Spread price s ∼ 	=

Slope of depth pro4le shares=price2 � ∼ 
2=	� = d=s

Table 2
Nondimensional quantities and their de4nitions from observables with dimensions

Description Notation De4nition

Depth n̂ �n=

Price p̂ 
p=	
granularity � 2��=	

600

400

200

0

1

1

0

3 2 1 0 1 2 3

-200

-400

-600

p
3 2 1 0 1 2 3 44

n

1.5

0.5

0.5

1.5

nδ
/α

(a) (b) p/pC

Fig. 2. We plot the average depth pro4le for three diNerent parameter sets both in (a) dimensional and
(b) nondimensional units. The mean order size � and the tick size p0 set to one, and 
=0:5. pc is de4ned
as 	=2
. Three simulation results are shown, with � = 0:001 and 	 = 0:2, � = 0:002 and 	 = 0:4, � = 0:004
and 	 = 0:8.

Carlo simulations for diNerent values of � and 	 at 4x �, in terms of nondimensional
units, the curves collapse on each other (see Fig. 2). The functional form of the
book depth-pro4le is primarily determined by the granularity parameter � (Fig. 3a).
In the high � regime the market order removal rate is low and there is a signi4cant
accumulation of orders at the ask (bid), so that the average depth 〈n(p; t)〉 is much
greater than zero (note that price increments are calculated from the midprice). In this
regime the depth is a concave function of prices. In the intermediate � regime the
market order rate increases, and 〈n(p; t)〉 decreases, almost linearly, toward zero at the
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Fig. 3. (a)The mean depth pro4le, in nondimensional units, for three values of the granularity parameters,
�=0:2 (solid), �=0:02 (dash) and �=0:002 (dot). (b) A comparison of simulation results (thin solid line for
depth pro4le and thin dashed line for cumulative distribution of the spread) with the self-consistent solution
of the master equation approach (thick solid line for depth pro4le and thick dashed line for cumulative
distribution of the spread) at � = 0:02.

ask. In the small � regime the market order rate increases further, and the depth pro4le
becomes a convex function close to the ask.
We have studied the model analytically using a master equation approach and mean

4eld approximations to obtain the solution [2,3]. Analytical results in good qualitative
agreement with the simulation both for the depth pro4le and the cumulative distribution
of spreads can be obtained from one or another of these methods over a wide range
of parameters (Fig. 3b).
When the 5uctuations of the depth pro4le are small, a good approximation of the

instantaneous price impact function is given by inverting the obvious relationship,

!=
∫ Fp

0
〈n(p; t)〉 dp : (1)

As long as the depth pro4le is monotonically increasing, ! is concave. Expanding
〈n(p; t)〉 in a Taylor series, one obtains terms Fp= �(!; t; t) ∼ !� from each order,
with �6 1, which approximate the impact function over the ranges of price dominated
at that order. This result is in agreement with the best available empirical evidence. The
exponent 1

2 appears as a special case, when the depth pro4le satis4es the condition of
vanishing at the midpoint and having a derivative that exists so that the depth increases
linearly through a suQciently wide range of prices.
Even if our random 5ows model contains several unrealistic assumptions, it is

because of its simplicity that we can relate its prediction to measurable properties of
real markets. We 4nd that the price impact function is always concave, in agreement
with the best available empirical measurements, and suggest that concavity emerges
from the trading mechanism and market structure rather than rationally optimized trad-
ing strategies.
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