
Q UANTITATIVE F I N A N C E V O L U M E 2 (2002) 387–392 RE S E A R C H PA P E R
I N S T I T U T E O F P H Y S I C S P U B L I S H I N G quant.iop.org

The power of patience: a behavioural
regularity in limit-order placement

Ilija Zovko1,2 and J Doyne Farmer1

1 Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
2 CeNDEF, University of Amsterdam, Roetersstraat 11,
Amsterdam, The Netherlands

E-mail: zovko@santafe.edu and jdf@santafe.edu

Received 19 June 2002, in final form 11 September 2002
Published 27 September 2002
Online at stacks.iop.org/Quant/2/387

Abstract
In this paper we demonstrate a striking regularity in the way people place
limit orders in financial markets, using a data set consisting of roughly two
million orders from the London Stock Exchange. We define the relative limit
price as the difference between the limit price and the best price available.
Merging the data from 50 stocks, we demonstrate that for both buy and sell
orders, the unconditional cumulative distribution of relative limit prices
decays roughly as a power law with exponent approximately −1.5. This
behaviour spans more than two decades, ranging from a few ticks to about
2000 ticks. Time series of relative limit prices show interesting temporal
structure, characterized by an autocorrelation function that asymptotically
decays as C(τ) ∼ τ−0.4. Furthermore, relative limit price levels are positively
correlated with and are led by price volatility. This feedback may potentially
contribute to clustered volatility.

1. Introduction
Most modern financial markets are designed as a complex
hybrid composed of a continuous double auction and an
‘upstairs’ trading mechanism serving the purpose of block
trades. The double auction is believed to be the primary price
discovery mechanism3. Limit orders, which specify both a
quantity and a limit price (the worst acceptable price), are
the liquidity-providing mechanism for double auctions and the
proper understanding of their submission process is important
in the study of price formation.

We study the relative limit price δ(t), the limit price in
relation to the current best price. For buy orders δ(t) = b(t)−
p(t), where p is the limit price, b is the best bid (highest buy

3 According to the London Stock Exchange information bulletins (‘SETS four
years on—October 2001’, published by the London Stock Exchange), since
the introduction of the SETS in 1997 to October 2001, the average percentage
of trades in order book securities that have been executed at the price shown
on the order book is 70–75%. Therefore SETS seems to serve as the primary
price discovery mechanism in London.

limit price) and t is the time when the order is placed. For sell
orders δ(t) = p(t) − a(t), where a is the best ask (lowest sell
limit price)4. We find a striking regularity in the distribution
of relative limit prices and we document clustering of order
prices as seen by a slowly decaying autocorrelation function.

Biais et al (1995) studied the limit-order submission
process on the Paris Bourse. They note that the number of
orders placed up to five quotes away from the market decays
monotonically but do not attempt to estimate the distribution
or examine orders placed further than five best quotes. Our
analysis looks at the price placement of limit orders across a
much wider range of prices. Since placing orders out of the

4 We have made a somewhat arbitrary choice in defining the reference price.
An obvious alternative would have been to choose the best ask as the reference
price for buy orders and the best bid as the reference price for sell orders. This
would have the advantage that it would have automatically included orders
placed inside the interval between the bid and ask (the spread), which are
discarded in the present analysis. However, the choice of reference price does
not seem to make a large difference in the tail; for large δ it leads to results
that are essentially the same.
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market carries execution and adverse selection risk, our work
is relevant in understanding the fundamental dilemma of limit-
order placement: execution certainty versus transaction costs
(see, e.g., Cohen et al 1981, Harris 1997, Harris and Hasbrouck
1996, Holden and Chakravarty 1995, Kumar and Seppi 1992,
Lo et al 2002).

In addition to the above, our work relates to the literature
on clustered volatility. It is well known that both asset
prices and quotes display ARCH/GARCH effects (Engle 1982,
Bollerslev 1986), but the origins of these phenomena are not
well understood. Explanations range from news clustering
(Engle et al 1990), macroeconomic origins (Campbell 1987,
Glosten et al 1993) to microstructure effects (Lamoureux and
Lastrapes 1990, Bollerslev and Domowitz 1991, Kavajecz
and Odders-White 2001). We provide empirical evidence
that volatility feedback may in part be caused by limit-order
placement that in turn depends on past volatility levels.

This paper is organized as follows. Section 2 introduces
the mechanics of limit-order trading and describes the London
Stock Exchange data we use. Section 3 presents our results
on the distribution and time series properties of relative limit-
order prices. In section 4 we examine the possible relationship
of limit-order prices and volatility which may lead to volatility
clustering. Section 5 discusses and summarizes the result.

2. Description of the London Stock
Exchange data
The limit-order trading mechanism works as follows: as each
new limit order arrives, it is matched against the queue of pre-
existing limit orders, called the limit-order book, to determine
whether or not it results in any immediate transactions. At any
given time there is a best buy price b(t) and a best ask price
a(t). A sell order that crosses b(t), or a buy order that crosses
a(t), results in at least one transaction. The matching for
transactions is performed based on price and order of arrival.
Thus matching begins with the order of the opposite sign that
has the best price and arrived first, then proceeds to the order
(if any) with the same price that arrived second, and so on,
repeating for the next best price, etc. The matching process
continues until the arriving order has either been entirely
transacted, or until there are no orders of the opposite sign with
prices that satisfy the arriving order’s limit price. Anything that
is left over is stored in the limit-order book.

A crossing limit order is defined as a limit order that results
in at least a partial immediate transaction. Traders submit such
orders to limit their market impact. Crossing limit orders make
up about 30% (in the example of Vodafone) of all limit orders
and are more like market orders. In this paper we discard
them and analyse only limit orders that enter the book. Of the
analysed orders 74% are submitted at the best quotes. Only
1% are submitted inside the spread (with δ < 0), while the
remaining 25% are submitted out of the market (δ > 0). We
investigate only limit orders with positive relative price δ > 0
and refer to them in the text simply as limit orders5.

5 Even though limit orders placed in the spread are not numerous, they are
very important in price formation. The data set we use does not include

The time period of the analysis is from 1 August 1998
to 31 April 2000. This data set contains many errors; we
chose the names we analyse here from the several hundred
that are traded on the exchange based on the ease of cleaning
the data, trying to keep a reasonable balance between high
and low volume stocks6. This left 50 different names, with a
total of roughly seven million limit orders, of which about two
million are submitted out of the market (δ > 0).

3. Properties of relative limit-order
prices
Choosing a relative limit price is a strategic decision that
involves a trade-off between patience and profit (see, e.g.,
Holden and Chakravarty 1995, Harris and Hasbrouck 1996,
Sirri and Peterson 2002). Consider a sell order; the story for
buy orders is the same, interchanging ‘high’ and ‘low’. An
impatient seller will submit a limit order with a limit price well
below b(t), which will immediately result in a transaction. A
seller of intermediate patience will submit an order with p(t) a
little greater than b(t); this will not result in an immediate
transaction, but will have high priority as new buy orders
arrive. A very patient seller will submit an order with p(t)

much greater than b(t). This order is unlikely to be executed
soon, but it will trade at a good price if it does. A higher
price is clearly desirable, but it comes at the cost of lowering
the probability of trading—the higher the price, the lower the
probability there will be a trade. The choice of limit price is
a complex decision that depends on the goals of each agent.
There are many factors that could affect the choice of limit
price, such as the time horizon of the trading strategy. A priori
it is not obvious that the unconditional distribution of limit
prices should have any particular simple functional form.

3.1. Unconditional distribution

Figure 1 shows examples of the cumulative distribution for
stocks with the largest and smallest numbers of limit orders.
Each order is given the same weighting, regardless of the
number of shares, and the distribution for each stock is
normalized so that it sums to one. There is considerable
variation in the sample distribution from stock to stock, but
these plots nonetheless suggest that power-law behaviour for
large δ is a reasonable hypothesis. This is somewhat clearer
for the stocks with high order arrival rates. The low volume
stocks show larger fluctuations, presumably because of their
smaller sample sizes. Although there is a large number of
events in each of these distributions, as we will show later, the
samples are highly correlated, so that the effective number of
independent samples is not nearly as large as it seems.

enough events to provide statistically significant results for such orders.
Our preliminary results indicate that orders placed in the spread behave
qualitatively similar to orders placed out of the market, i.e. there are some
indications of power-law behaviour in their limit price density towards the
other side of the market.
6 The ticker symbols for the stocks in our sample are AIR, AL., ANL, AZN,
BAA, BARC, BAY, BLT, BOC, BOOT, BPB, BSCT, BSY, BT.A, CCH, CCM,
CS., CW., GLXO, HAS, HG., ICI, III, ISYS, LAND, LLOY, LMI, MKS, MNI,
NPR, NU., PO., PRU, PSON, RB., RBOS, REED, RIO, RR., RTK, RTO, SB.,
SBRY, SHEL, SLP, TSCO, UNWS, UU., VOD, and WWH.
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Figure 1. (a) Cumulative distribution functions
P(δ) = prob{x � δ} of relative limit price δ for both buy and sell
orders for the 15 stocks with the largest number of limit orders
during the period of the sample (those that have between 150 000
and 400 000 orders). (b) The same for 15 stocks with the lowest
number of limit orders, in the range 2000–100 000. (To avoid
overcrowding, we have averaged together nearby bins, which is why
the plots appear to violate the normalization condition.)

To reduce the sampling errors we merge the data for all
stocks, and estimate the sample distribution for the merged set
using the method of ranks, as shown in figure 2. We fit the
resulting distribution to the functional form7

P(δ) = A

(x0 + δ)β
. (1)

7 The functional form we use to fit the distribution has to satisfy two
requirements: it has to be a power law for large δ and finite for δ = 0. A
pure power law is either not integrable at 0 or at ∞. If the functional form is
to be interpreted as a probability density then it necessarily has to be truncated
at one end. In our case the natural truncation point is 0. Clearly there is some
arbitrariness in the choice of the exact form, but since we are mainly interested
in the behaviour for large δ, this functional form seems satisfactory.
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Figure 2. An estimate of the cumulative probability distribution
based on a merged data set, containing the relative limit-order sizes
δ(t) for all 50 stocks across the entire sample. The solid curve is a
nonlinear least squares fit to the logarithmic form of equation (1).

A is set by the normalization and is a simple function of x0

and β. Fitting this to the entire sample (both buys and sells)
gives x0 = 7.01 ± 0.05 and β = 1.491 ± 0.001. When treated
separately, buys and sells gave similar values for the exponent,
i.e. β = 1.49 in both cases. Since these error bars based on
goodness of fit are certainly overly optimistic, we also tested
the stability of the results by fitting buys and sells separately on
the first and last halves of the sample, which gave values in the
range 1.47 < β < 1.52. Furthermore, we checked whether
there are significant differences in the estimated parameters
for stocks with high versus low order arrival rates. The results
ranged from β = 1.5 for high to β = 1.7 for low arrival
rates, but for the low arrival rate group we do not have high
confidence in the estimate.

As one can see from the figure, the fit is reasonably good.
The power law is a good approximation across more than two
decades, for relative limit prices ranging from about 10–2000
ticks. For British stocks, ticks are measured either in pence,
half pence or quarter pence; in the former case, 2000 ticks
corresponds to about 20 pounds. Given the low probability of
execution for orders with such high relative limit prices this
is quite surprising. (For Vodafone, for example, the highest
relative limit price that eventually resulted in a transaction was
240 ticks.) The value of the exponent β ≈ 1.5 implies that
the mean of the distribution exists, but its variance is formally
infinite. Note that because normalized power-law distributions
are scale free, the asymptotic behaviour does not depend on
units, e.g. ticks versus pounds. There appears to be a break in
the power law at about 2000 ticks, with sell orders deviating
above and buy orders deviating below. A break at roughly this
point is expected for buy orders due to the fact that p = 0
places a lower bound on the limit price. For a stock trading
at 10 pounds, for example, with a tick size of half a pence,
2000 ticks is the lowest possible relative limit price for a buy
order. The reason for a corresponding break for sell orders is
not so obvious, but in view of the extremely low probability
of execution, is not surprising. It should also be kept in mind
that the number of events in the extreme tail is very low, so this
could also be a statistical fluctuation.
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Figure 3. (a) Time series of randomly shuffled values of δ(t) for
stock Barclays Bank. (b) True time series δ(t). (c) The absolute
value of the change in the best price between each event in the δ(t)
series.

3.2. Time series properties

The time series of relative limit prices also has interesting
temporal structure. This is apparent to the eye, as seen in
figure 3(b), which shows the average relative limit price δ̄ in
intervals of approximately 60 events for Barclays Bank. For
reference, in figure 3(a) we show the same series with the order
of the events randomized. Comparing the two suggests that the
large and small events are more clustered in the real series than
in the shuffled series.

This temporal structure appears to be described by a
slowly decaying autocorrelation function, as shown in figure 4.
Since the second moment of the unconditional distribution
does not exist, there are potential problems in computing
the autocorrelation function. The standard deviations in the
denominator formally do not exist, and the terms in the
numerator can be slow to converge. To cope with this we
have imposed a cut-off at 1000 ticks, averaged across all
50 stocks in our sample, and smoothed the autocorrelation
function for large lags (where the statistical significance
drops). The resulting average autocorrelation function decays
asymptotically as a power law of the form C(τ) ∼ τ−γ , with
γ ≈ 0.4, indicating that relative limit price placement is quite
persistent with no characteristic timescale. In the figure, we
have computed the autocorrelation function in tick time, i.e. the
lags correspond to the event order. This means that low order
arrival volume stocks have longer real time intervals than high
order arrival volume stocks. We have also obtained a similar
result using real time, by computing the mean limit price δ̄ in
13 min intervals (merging daily boundaries). In this case the
behaviour is not quite as regular but is still qualitatively similar.
We still see a slowly decaying power-law tail, though with a
somewhat lower exponent (roughly 0.3). The autocorrelations
are quite significant even for lags of 1000, corresponding to
about eight days. Roughly the same behaviour is seen for buy
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Figure 4. The autocorrelation of the time series of relative limit
prices δ, averaged across all 50 stocks in the sample and smoothed
across different lags. This is computed in tick time, i.e. the x axis
indicates the number of events, rather than a fixed time.

and sell orders, and for the first ten months and the last ten
months of the sample. We computed error bars for this result
by randomly shuffling the time series 100 times, and computing
the 2.5 and 97.5% quantiles of the sample autocorrelation for
each lag. This gives error bars at roughly ±10−3.

One consequence of such a slowly decaying autocorrela-
tion is the slow convergence of sample distributions to their
limiting distribution. If we generate artificial IID data with
equation (1) as the unconditional distribution, the sample dis-
tributions converge very quickly with only a few thousand
points. In contrast, for the real data, even for a stock with
200 000 points, the sample distributions display large fluctua-
tions. When we examine subsamples of the real data, the cor-
relations in the deviations across subsamples are obvious and
persist for long periods of time, even when there is no overlap
in the subsamples. We believe that the slow convergence of the
sample distributions is mainly due to the long-range temporal
dependence in the data.

4. Volatility clustering
To get some insight into the possible cause of the temporal
correlations, we compare the time series of relative limit prices
to the corresponding price volatility. The price volatility is
measured as v(t) = | log(b(t)/b(t − 1))|, where b(t) is the
best bid for buy orders or the best ask for sell limit orders. We
show a typical volatility series in figure 3(c). One can see by
eye that epochs of high limit price tend to coincide with epochs
of high volatility.

To help understand the possible relation between volatility
and relative limit price we calculate their cross-autocorrelation.
This is defined as

XCF(τ) = 〈v(t − τ)δ(t)〉 − 〈v(t)〉〈δ(t)〉
σvσδ

, (2)

where 〈·〉 denotes a sample average and σ denotes the standard
deviation. We first create a series of the average relative limit
price and average volatility over 10 min intervals. We then
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Figure 5. The cross autocorrelation of the time series of relative
limit prices δ(t) and volatilities v(t − τ), averaged across all 50
stocks in the sample.

compute the cross-autocorrelation function and average over
all stocks. The result is shown in figure 5.

We test the statistical significance of this result by testing
against the null hypothesis that the volatility and relative limit
price are uncorrelated. To do this we have to cope with the
problem that the individual series are highly autocorrelated, as
demonstrated in figure 4, and the 50 series for each stock also
tend to be correlated to each other. To solve these problems,
we construct samples of the null hypothesis using a technique
introduced in Theiler et al (1992). We compute the discrete
Fourier transform of the relative limit price time series. We
then randomly permute the phases of the series and perform
the inverse Fourier transform. This creates a realization of
the null hypothesis, drawn from a distribution with the same
unconditional distribution and the same autocorrelation func-
tion. Because we use the same random permutation of phases
for each of the 50 series, we also preserve their correlation
with each other. We then compute the cross-autocorrelation
function between each of the 50 surrogate limit price series
and its corresponding true volatility series, and then average
the results. We then repeat this experiment 300 times, which
gives us a distribution of realizations of averaged sample cross-
autocorrelation functions under the null hypothesis. This pro-
cedure is more appropriate in this case than the standard mov-
ing block bootstrap, which requires choice of a timescale and
will not work for a series such as this that does not have a char-
acteristic timescale. The 2.5 and 97.5% quantile error bars at
each lag are denoted by the two solid lines near zero in figure 5.

From this figure it is clear that there is indeed a
strong contemporaneous correlation between volatility and
relative limit price, and that the result is highly significant.
Furthermore, there is some asymmetry in the cross-
autocorrelation function; the peak occurs at a lag of one rather
than zero and there is more mass on the right than on the left.
This suggests that there is some tendency for volatility to lead
the relative limit price. This implies one of three things:

(1) volatility and limit price have a common cause, but this
cause is for some reason felt later for the relative limit
price;

(2) the agents placing orders key off volatility and correctly
anticipate it; or, more plausibly,

(3) volatility at least partially causes the relative limit price.
Angel (1994) has suggested that volatility might affect
limit-order placement in this way.

Note that this suggests an interesting feedback loop:
holding other aspects of the order placement process constant,
an increase in the average relative limit price will lower the
depth in the limit-order book at any particular price level and
therefore increase volatility. Since such a feedback loop is
unstable, there are presumably nonlinear feedbacks of the
opposite sign that eventually damp it. Nonetheless, such a
feedback loop may potentially contribute to creating clustered
volatility.

5. Conclusion
One of the most surprising aspects of the power-law behaviour
of relative limit price is that traders place their orders so far
away from the current price. As is evident in figure 2, orders
occur with relative limit prices as large as 10 000 ticks (or 25
pounds for a stock with ticks in quarter pence). While we have
taken some precautions to screen for errors, such as plotting the
data and looking for unreasonable events, despite our best ef-
forts, it is likely that there are still data errors remaining in this
series. There appears to be a break in the merged unconditional
distribution at about 2000 ticks; if this is statistically signifi-
cant, it suggests that the very largest events may follow a differ-
ent distribution from the rest of the sample, and might be dom-
inated by data errors. Nonetheless, since we know that most
of the smaller events are real, and since we see no break in the
behaviour until roughly δ ≈ 2000, errors are highly unlikely
to be the cause of the power-law behaviour seen for δ < 2000.

The conundrum of very large limit orders is compounded
by consideration of the average waiting time for execution as a
function of relative limit price. We intend to investigate the de-
pendence of the waiting time on the limit price in the future, but
since this requires tracking each limit order, the data analysis is
more difficult. We have checked this for one stock, Vodafone,
in which the largest relative limit price that resulted in an even-
tual trade was δ = 240 ticks. Assuming other stocks behave
similarly, this suggests that either traders are strongly over-
optimistic about the probability of execution or that the orders
with large relative limit prices are placed for other reasons.

Since obtaining our results, we have seen a recent preprint
by Bouchaud et al (2002) analysing three stocks on the Paris
Bourse over a period of a month. They also obtain a power law
for P(δ), but they observe an exponent β ≈ 0.6, in contrast
to our value β ≈ 1.5. We do not understand why there should
be such a discrepancy in results. While they analyse only
three stock-months of data, whereas we have analysed roughly
1050 stock-months, their order arrival rates are roughly 20
times higher than ours, and their sample distributions appear
to follow the power-law scaling fairly well.

One possible explanation is the long-range correlation.
Assuming the Paris data show the same behaviour we have
observed, the decay in the autocorrelation is so slow that
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there may not be good convergence in a month, even with
a large number of samples. The sample exponent β̂ based on
one month samples may vary with time, even if the sample
distributions appear to be well-converged. It is of course also
possible that the French behave differently from the British,
and that for some reason the French prefer to place orders
much further from the midpoint.

Our original motivation for this work was to model price
formation in the limit-order book, as part of the research
programme for understanding the volatility and liquidity of
markets outlined in Daniels et al (2001). P(δ) is important for
price formation, since where limit orders are placed affects the
depth of the limit-order book and hence the diffusion rate of
prices. The power-law behaviour observed here has important
consequences for volatility and liquidity that will be described
in a future paper.

Our results here are interesting for their own sake in terms
of human psychology. They show how a striking regularity can
emerge when human beings are confronted with a complicated
decision problem. Why should the distribution of relative limit
prices be a power law, and why should it decay with this partic-
ular exponent? Our results suggest that the volatility leads the
relative limit price, indicating that traders probably use volatil-
ity as a signal when placing orders. This supports the obvious
hypothesis that traders are reasonably aware of the volatility
distribution when placing orders, an effect that may contribute
to the phenomenon of clustered volatility. Plerou et al (1999)
have observed a power law for the unconditional distribution
of price fluctuations. It seems that the power law for price
fluctuations should be related to that of relative limit prices,
but the precise nature and the cause of this relationship is not
clear. The exponent for price fluctuations of individual compa-
nies reported by Plerou et al is roughly 3, but the exponent we
have measured here is roughly 1.5. Why these particular expo-
nents? Makoto Nirei has suggested that if traders have power-
law utility functions, under the assumption that they optimize
this utility, it is possible to derive an expression for β in terms
of the exponent of price fluctuations and the coefficient of risk
aversion. However, this explanation is not fully satisfying, and
more work is needed. At this point the underlying cause of the
power-law behaviour of relative limit prices remains a mystery.
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