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We demonstrate that complex sequences of periodic states such as those observed in the Belousov Zhabotinsky reaction can 
be generated by simple one-dimensional maps. Motivated by the experimental data, we construct a map which reproduces most 
of the complicated devil's staircase observed by Maselko and Swinney as well as chaos and other experimentally observed 
periodic sequences. An interesting property of the devil's staircase observed here is that it remains complete through a wide 
range of parameters, in contrast to the devil's staircases observed in critical circle maps. We also comment on a new class of 
mode-locking sequences. 

One of the most fascinating phenomena in nature 
is the spontaneous oscillation seen in the Belousov- 
Zhabotinsky (BZ) reaction. In a typical experiment 
reactants are pumped into a stirred tank at a constant 
rate. In spite of the fact that none of the external con- 
ditions vary in time, the concentrations of the reac- 
tants oscillate with temporal patterns ranging from 
simple periodic motion to aperiodic chaotic behavior. 
An interesting aspect recently observed by Maselko 
and Swinney [1] is that by changing the catalyst from 
the normally used cerous ion to the manganese ion, 
there is a regime in which variations of  the flow rate 
cause the pattern of  the oscillation to go through a 
complicated sequence of different periodic states. In 
particular, the amplitude of the peaks of the oscilla- 
tions are quantized into high and low values, as de- 
picted in fig. 1 d. An overall property characterizing 
this pattern is what we will call the firing rate, defined 
as the ratio of the number of  small peaks to the total 
number of peaks per oscillation. Maselko and Swinney 
demonstrate that a plot of the firing rate versus the 
flow rate consists of a sequence of flat steps, corre- 
sponding to different types of periodic behavior, 
joined together by jumps of infinite slope, correspond- 
ing to bifurcations. If the jumps in this curve form a 
Cantor set it is called a devil's staircase, and if it has 
zero measure the devil's staircase is said to be com- 
plete. 

0.3750601/86/$ 03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

Behavior of this type has also been observed in 
many other systems. In a periodically driven analog 
neuron model, for example, Harmon [2] found that 
as the driving frequency was varied a plot of the firing 
rate versus the frequency formed a complete devil's 
staircase. Building on this work, Sato and others [3] 
simplified Harmon's model to a piece-wise linear one- 
dimensional map and showed that it generated the 
same kind of devil's staircase. Tomita and Tsuda [4] 
argued that a similar map might apply to the BZ reac- 
tion. Further study of the map led Tsuda to predict 
self-similarity in the bifurcation structure of the BZ 
reaction in some parameter regimes as the flow rate is 
varied [5]. 

A close examination of the Tomita and Tsuda mod- 
el reveals, however, that the class of maps they studied 
is only capable of producing a small number of possi- 
ble periodic states. Combinations of consecutive large 
peaks and small peaks are not possible, for example, 
three large peaks followed two small peaks. Further- 
more, the map they devised does not look like maps 
previously constructed from experimental data. As de- 
scribed below, we study a map whose shape is moti- 
vated by experiments performed in the chaotic regime 
of the BZ reaction, and show that it is capable of gen- 
erating behavior qualitatively like that of the Maselko 
-Swinney experiments. 

In certain parameter regimes the chaotic behavior 
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Fig. l(a) The piecewise linear hump map.//is def'med in regions I, II, III, IV, and V as follows: fI = m l ( x  - zo) + zo + Cl ,flI 
= m2(x  - Zo) + z3 + c2 , f l l I=  m3(zl ± z0) + z3 +~c2 ;flV = m4(z3 - x) + z 3 + c:2 , fv  = ms(z3 - x )  + z 0 + c 3. (b, c) Magnification 
of regions II and IV near the identity line to show the action of the orbit. (d) An example of a time series for the orbit L2SSL2S  4 

of  the BZ reaction can be described quite well in terms 
o f  a simple one-dimensional map.  This map consists of  
a single hump that  is tapered off  on one side, roughly 
similar to f ( x )  = x e -  x .  Motivated by  this, and in an 
a t tempt  to explain the devil's staircase phenomena we 
have constructed the piecewise linear map as shown in 
fig. 1 a. By construction the iterates of  this map are 
quantized into large values, denoted L,  and small val- 
ues, denoted S. A given periodic state can be charac- 
terized by its sequence o f  S and L values. To generate 
a sequence of  periodic orbits,  we pick a f unc t i on f (x )  
and introduce a bifurcation parameter  r which scales 
the height of  the function in the form: 

f r ( X )  = r f ( x ) .  (1) 

It is convenient to describe a symbolic sequence 62 
which represents a particular periodic orbit  in the fol- 
lowing form: 

k 
[2 = I-I L m i S  n i ,  

i=1 

where L (S)  denotes large (small) amplitude peaks and 
rn (n) denotes the number  of  consecutive large (small) 
peaks which occur in k groups, the period being 

k 

p =  ~ ( m  i + n i ) .  
i=1 

With a choice of  parameters which determine the 
shape of  the map,  we generate a progression o f  period- 
ic states as we increment r as shown in fig. 2. As a 
measure o f  the mapping's  success in reproducing the 
behavior of  the Maselko-Swinney experiments,  we 
compare in table 1 a subset o f  the periodic states 
shown in fig. 2 with the complete sequence o f  pat- 
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Fig. 2. Plot of "f'tring rate" versus r generated from the map in 
fag. lb. For this sequence, m I = m s = 0.4, m s = m3 = m4 
= 1.5,c 1 = 0.001,c 2 = -0.01,c 3 = -0.003,z o = 0.20, z 1 
= 0.23,z 2 = 0.77, and23 = 0.80. 

terns generated from the chemical experiment. Clear- 
ly, we can obtain much higher resolution with a nu- 
merical experiment and thus can identify intervening 
periodicities which span smaller intervals in r. By 
slightly varying these parameters, we have reproduced 
most of the experimental periods which are missing in 
this table as well. To get from any given periodic state 
to another there are many different paths through pa- 
rameter space, with many different sequences along 
each path. Some of these sequences of patterns gener- 
ate devil's staircases which are more complicated than 
the one shown in fig. 2. Thus, there is a considerable 
amount of arbitrariness i n  the particular sequences 
that we have shown here, since by varying parameters 
it is clear that we can sweep out an infinite sequence 
of different periodic orbits of arbitrarily large periods. 

Several of the,transitions in Maselko and Swinney's 
experimental results involve simple period adding 
(L4S 1 from L3S1). Other examples of period adding 
are more complex (L2S 6 to L2S6L2S 5 to L2S 5) be- 

Table 1 
Comparison of two sequences of periodic orbits (S2) generated from the chemical experiment (A) and the mapping (B) with the on 
set (r) and the f'uing rate (3')' The parameter settings for the mapping are the same as for fig. 2. 

rBZ 12(3,) rma p 

A B 

0.1360 $1L4(1/5) 
0.1294 $1L3(1/4) 
0.1254 $2L4(2/6) 
0.1230 $1L2(1/3) 
0.1148 S2L 3 (2/5) 
0.1114 S2L2S1L 2 (3]7) 
0.1100 (S2L2S1L2):~(S3L3)(9[20) 
0.1094 (S2L2S1L~)2(S3L3)2(12/26) 

(S2L2S1LZ)(S3L3)(6/13) 
0.1092 $3L3(3/6) 
0.1040 $1L1(1/2) 
0.0998 S2L2S3L 2 (5/9) 
0.0980 SaL 2 (3/5) 
0.0974 S3 L 2S4L 2 (7/11) 
0.0968 $4L2(4/6) 
0.0948 S4L 2S 5L2 (9/13) 
0.0940 $SL2(5/7) 
0.0928 Ss LZS6L 2 (11/15) 
0.0924 S6L 2 (6/8) 
0.0896 S6L2STL2(13/17) 
0.0876 $7L2(7/9) 
0.0872 SnL2(n > 7)(n/(n + 2)) 
0.0816 SnLl(n > 7)(n/(n + 1)) S 

period > 200 r > 

S2L2S2L4(4/lO) 
(S2L2)2S2L4(6/14) 

(S2 L 2) S S2 L4 (12/26) 

S2L 2 (2/4) 

1.00641 

1.00641 

1.00587 
1.0057 

1.00536 

1.00534 

1.00252 
1.00155 
0.99818 
0.99796 
0.99629 
0.99625 
0.99553 
0.99532 
0.99523 
0.99522 
0.99510 
O.99502 
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cause the route from one periodic state to another in- 
volves an intermediate state which is a mixture of  both 
states. In another set of  data from the BZ reaction [6] ,  
the following period adding sequence is reported: L2S 1 
to L 2S 1 (L 1S 1)n to L 1S 1, where n = 1, ..., 7. We have 
generated many examples of  the above transitions with 
our mapping. Examination of  the fn(x)  versus x map- 
pings, where n was the period of  the orbit, revealed 
that in analogy to smooth, continuous mappings, these 
transitions proceeded via the route of  a "saddle node"  
bifurcation. Such processes in smooth mappings usual- 
ly give rise to type 1 intermittency [7] ; in our case the 
"saddle point" can be thought of  as being infinitely un- 
stable. The stability of  a fixed point is given by the 
modulus of  the slope of  the mapping at that fixed 
point. At the discontinuity our mapping can be ap- 
proximated by a smooth function with int'mite slope 
Maselko and Swinney also report that an interval in bi- 
furcation space is found where either the L 1S1 state 
or the L2S 2 state may exist, but that a finite perturba- 
tion can result in transition from one state to the other. 
Study of  a similar situation produced by our mapping 
indicates that there are coexisting basins of  attraction 
over a f'mite interval of  bifurcation space. 

As we consider smaller and smaller intervals in the 
bifurcation path, we t-md states of  larger and larger pe- 
riodicities, sometimes consisting of  100 peaks or more. 
Usually these large period states are composed of  com- 
binations of  bordering states. Also, chaotic states are 
found within the sequence in other parameter regimes 
both in our simulations and in the experiment [6].  
(For the mapping, this occurs whenever the average 
slope of  the orbit is greater than one.) In these cases 
the staircase is not complete, since the chaotic regions 
smooth out the behavior of  the firing rate. We can 
constrain our parameters in order to prevent this if we 
like, but generically we expect that there will be some 
parameter regions in which choas is mixed in. 

The mode locking phenomena and devil's staircase 
here bear some similarities to that observed in circle 
maps near the transition to chaos [8].  The suggestive 
nature of  this connection led Maselko and Swinney to 
call what we have labeled the firing rate the "winding 
number",  in analogy to the number of  times an orbit 
winds around a torus one way as compared to the oth- 
er way. It is not clear a priori, though, that the devil's 
staircase seen in critical circle maps has anything to do 
with that observed here. In fact, there is a very marked 

difference in the phenomenology, since the complete 
devil's staircase observed in circle maps is only com- 
plete along a critical surface, which is of  measure zero 
in the space of  parameters. Picking a curve through pa- 
rameter space at random will never yield a complete 
devil's staircase, unless a great deal of  luck or premedi- 
tation is involved. The devil's staircase seen here, in 
contrast, is complete over a wide range of  parameters. 
We should note that there are classes of  highly nonlin- 
ear circle maps, not associated with the transition to 
chaos, that generate generic complete devil's staircases 
[9].  Although the connection is not clear, we think it 
is much more likely that this behavior is related to 
what we describe here and to the BZ reaction. In par- 
ticular, we can alter our map somewhat to make it into 
a circle map. This map continues to have a well de- 
fined firing rate, def'med as before, but at the same 
time it is also possible to defme a winding number. 
However, the experimental data from the BZ reaction 
does not show a relationship between the winding 
number and the firing rate [10].  

We have constructed variations of  our mapping 
which do not have a fixed point and have generated 
sequences of  periodic orbits which produce a new 
class of  mode-locking sequences, which we term "mul- 
tiple" staircases. These staircases are complete but not 
monotonically increasing over the bifurcation range. 
Fig. 3a shows a staircase where a string of  firing rates 
overlaps another; each string of  firing rates is charac- 
terized by an integer in the numerator. Fig. 3b shows 
a multiple staircase where there is no overlap between 
strings, but instead the staircase will monotonically in- 
crease for a while, fall to a lower firing rate, and begin 
to increase again, etc. We note that in both these se- 
quences as well as those from the original mapping, 
simple ratios produce the longest plateaus in the stair- 
cases, which appears to be generic for mode-locking 
phenomena [ 11 ] .  Also, the firing rate increases with r 
converse to the behavior of  the mapping represented in 
figs. 1 a and 2. This behavior is analogous to that of  the 
circle map which also lacks an unstable fixed point on 
the periodic orbit. For the mapping represented in fig. 
3b, the Farey relation is always satisfied within an in- 
terval of  monotonically increasing firing rates [12].  It 
would be interesting to see if this second type of  
mode-locking behavior will be experimentally observed 

In summary, if maps of  this type do indeed repro- 
duce the dynamics which underly mode locking phe- 
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Fig. 3. Two examples of  staircases generated from 2 variations of  the map in fig. t b  which do not have a fixed point. For (a) the 
parameter values are: m z = m s = 0.7, mz = m3 = - m 4  = 0.9, c 1 = 0.001, c 2 = 0.001, c 3 = -0 .003,  z 0 = 0.20, z I = 0.23, z 2 = 0.77, 
and z 3 = 0.80. For (b) the parameter values axe: rn 1 = - m  5 = 0.42, m z = m 3 = - m 4  = 1.5, c 1 = 0.001, c 2 = 0.01, c 3 = -0 .173,  z 0 
= 0.20, z 1 = 0.23,z 2 = 0.77, andz  3 = 0.80. In (b) the complete sequence of  periodic orbits is: 18/44, 6/14, 6/13, 6/12, 6/11, 12/21 
6/10, 6/9, 5/9, 15/26, 10/17, 15/25, 5]8, 10/15, 5/7, 10/13, 5/6, 4/6, 12/17, 8/11, 12/16, and 4/5. 

nomena, then we would expect that some of the prop- 
erties that we observe here should also occur in experi- 
ments. In particular, if parameters other than the flow 
of rate o f x  are varied, then it is likely that more com- 
plicated behavior will be observed. The possibilities in- 
clude: 

(i) For two given patterns of  oscillation, the se- 
quence of patterns linking the two should in general 
depend on the exact path taken through the parameter 
space. 

(ii) There are likely to be regions where the devil's 
staircase is smoothed out due to chaos. 

(iii) Alternative patterns of mode-locking are likely 
to occur. 

Simple variations of  our map can also produce 
chaos, period-doubling, the U-sequence [13], and the 
alternation of periodic and chaotic behavior, all of 
which are observed in other parameter regimes. We 
emphasize, though, that we by no means consider that 
the work reported here constitutes a proper physical 
explanation of the phenomena seen in the BZ reaction. 
We only intend to give one possible geometry that is 
capable of qualitatively reproducing the experimental 
results. Presumably the correct answer can be gotten 
directly from a system of equations describing the BZ 
system. By working with equations directly motivated 
by the chemistry, we are attempting to derive a map 

similar to that studied here from first principles. 
It is our feeling that the mode-locking phenomena 

described here are the natural result of the interaction 
between an oscillator and an excitable system with 
several steady states. As suggested by Koppel and 
Ermentrout [14], the BZ reaction can also be viewed 
as an excitable system. In the future we hope to make 
the connection between our family of mappings and 
continuous systems of this type. 
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