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Abstract

Analysis of properties of the global trade network has generated new
insights into the patterns of economic development across countries. The
Economic Complexity Index (ECI), in particular, has been successful at
explaining cross-country di↵erences in GDP/capita and economic growth.
The ECI aims to infer information about countries productive capabilities
by making relative comparisons across countries’ export baskets. However,
there has been some confusion about how the ECI works: previous stud-
ies compared the ECI to the number of exports that a country has revealed
comparative advantage in (‘diversity’) and to eigenvector centrality. We show
that the ECI is, in fact, equivalent to a spectral clustering algorithm, which
partitions a similarity graph into two parts. When applied to country-export
data, the ECI represents a ranking of countries that places countries with
similar exports close together in the ordering. More generally, the ECI is a
dimension reduction tool, which gives the optimal one-dimensional ordering
that minimizes the distance between nodes in a similarity graph. We discuss
this new interpretation of the ECI with reference to the economic develop-
ment literature. Finally, we illustrate stark di↵erences between the ECI and
diversity with two empirical examples based on regional data.
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Introduction

Structural properties of the global trade network can explain di↵erences in
economic development across countries [8, 22, 3, 4, 18, 20]. One network
measure, known as the Economic Complexity Index (ECI), aims to infer
information about countries productive capabilities by making relative com-
parisons across their export baskets [8, 4]. The ECI has been successful in
explaining cross-country di↵erences in GDP/capita and in predicting eco-
nomic growth. However, there has been some confusion about what the ECI
is and why it explains variation in economic development.

First, the ECI has been cast in terms of a ‘corrected diversity measure (where
diversity is the number of exports a country has a revealed comparative
advantage in; see definition in (Eq. 1) [8, 4]. Second, the ECI has been
compared to an eigenvector centrality measure [14]. This paper stresses that
neither of these descriptions is accurate. The ECI is actually orthogonal to
diversity [10] (i.e. the dot product between ECI and diversity vectors is 0),
which means that the ECI captures a feature of the global trade network that
is distinct from diversity. Moreover, we highlight that eigenvector centrality
is much more closely related to diversity than to the ECI.

We show that the ECI is equivalent to a classic spectral clustering algorithm
[19], which partitions a similarity graph into two parts. Hence, when applied
to country-export data, the ECI represents a ranking of countries that places
countries with similar exports close together in the ordering and countries
with dissimilar exports far apart. More generally, the ECI can be seen as a
dimension reduction tool, which gives the optimal one-dimensional ordering
that minimizes the distance between nodes in a similarity graph.

Our results reveal several interesting insights for economic development and
motivate potential new research avenues. First, in distinguishing the ECI
from diversity, we highlight that both variables play important but di↵erent
roles in the development process. Put simply, diversity captures how many
products countries are competitive in. Country diversification patterns have
been found to exhibit an inverted-U shape: countries diversify early in their
developmental phase, and begin specializing at higher levels of per capita
income [9]. In contrast, the ECI captures what type of products countries
are competitive in. By grouping together countries with similar exports and
separating countries with dissimilar exports, the ECI sheds light on the type
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of production capabilities that separate high- and low-income countries and
provides empirical validation of the long-standing theory of technological
capabilities in development economics [11, 12, 21].

Second, by making the link between the ECI and spectral clustering precise,
we open the door for further applications of these dimension reduction tools
in economic development. While partitioning the country-export similarity
graph into two clusters has proven to reveal a great deal about countries
productive capabilities at di↵erent developmental stages, future work could
readily exploit the family of clustering approaches to glean further insights
from data on economic networks.

Finally, we show that our new interpretation of the ECI helps explain its
potential for applications in contexts other than international trade data. We
briefly present two empirical examples from forthcoming work that illustrate
the di↵erence between the ECI and diversity in regional settings. In these
two settings, ECI can explain di↵erences in economic outcomes that cannot
be captured by diversity.

The Economic Complexity Index

The ECI (and its related Product Complexity Index (PCI) measure for ex-
ported products) was originally defined using an algorithm that operates on
a binary country-product matrix M with elements Mcp, indexed by country
c and product p [8]. We say that a country c has revealed comparative ad-
vantage or is competitive in product p if Mcp = 1. The revealed comparative
advantage (RCA) of country c in product p is calculated using the Balassa
index [2], given by

RCAcp =
xcp/

P
p xcpP

c xcp/
P

c

P
p xcp

, (1)

where xcp is country c’s exports of product p. Here Mcp = 1 if RCAcp > 1
and Mcp = 0 otherwise.

Summing across the rows and columns of M gives a country’s diversity (de-

noted k

(0)
c ) and product ubiquity (denoted k

(0)
p ), defined as
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k

(0)
c =

X

p

Mcp (2)

and
k

(0)
p =

X

c

Mcp. (3)

The ECI and PCI were originally defined through an iterative, self-referential
Method of Reflections algorithm which first calculates diversity and ubiquity
and then recursively uses the information in one to ‘correct’ the other [8] (see
Methods).

However, it can be shown [3] that the Method of Reflections is equivalent to

finding the eigenvalues of a matrix f
M , whose rows and columns correspond

to countries and whose entries are given by

f
Mcc0 ⌘

X

p

McpMc0p

k

(0)
c k

(0)
p

=
1

k

(0)
c

X

p

McpMc0p

k

(0)
p

. (4)

Equivalently, we can write f
M in matrix notation

f
M = D

�1
MU

�1
M

0
, (5)

where D = I ⇥ M ⇥ 1(p) (the diagonal matrix formed from the diversity
vector), U = I ⇥ M

0 ⇥ 1(c) (the diagonal matrix formed from the ubiquity
vector), 1(i) is a vector of ones of length i, and I is the identity matrix of the

appropriate dimension. Since f
M is a row-stochastic matrix (which means

its rows sum to 1), the leading eigenvalue is 1, and the associated leading
eigenvector is constant.

The ECI is defined as the eigenvector associated with the second-largest
eigenvalue of fM . The precise equivalence between the Method of Reflec-
tions and the eigenvector approach is discussed in the Methods section. In
the SI, we present the analogous derivation of the PCI.
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Interpreting the f
M matrix

Given the central role f
M plays in calculating the ECI, we briefly discuss

what it represents. When applied to country trade data one can think of fM
as a weighted similarity matrix, reflecting how similar two countries’ export
baskets are.

Further, from Eq. (5), we can see that

f
M = D

�1
S, (6)

where S = MU

�1
M

0 is a symmetric similarity matrix in which each element
Scc0 represents the products that country c has in common with country c

0,
weighted by each the inverse of each product’s ubiquity. This formulation
also makes it clear that the entries of the row-stochastic fM matrix can also be
interpreted as conditional probabilities in a Markov transition matrix [8, 10].

Results

In this paper, we denote the ECI vector by ey[2] and the ECI of country
c is denoted ey[2]c . We also denote the diversity by d where dc = k

(0)
c is

the diversity of country c. Additionally, we note that the ECI is commonly
standardised by subtracting the mean and dividing by the standard deviation
to allow for comparisons across years [8, 4]. However, for clarity, we use the
unstandardised ECI vector throughout this paper.

ECI and Diversity

The ECI measure is conceptually cast in terms of measuring country diversity
and product ubiquity, and then iteratively ‘correcting’ a country’s diversity
by the ubiquity of its products. This follows from the hypothesis that pros-
perous countries have capabilities that allow them to competitively export a
diverse range of products which few other countries are competitive in [8, 4].
However, the ECI is orthogonal to diversity [10] i.e. the dot product of the
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diversity and the ECI vectors is zero,

d · ey[2] = 0. (7)

That said, when applied to the export data, the ECI and diversity are nev-
ertheless positively correlated, as shown in Fig. 1 (Pearson ⇢ = 0.64, p-value
= 1.1⇥ 10�15). Recall that unless the mean of one of the variables is zero, a
zero dot product does not imply zero correlation. Neither diversity nor the
(unstandardised) ECI have zero means in the data.

Figure 1: Country Diversity vs. ECI compared to GDP per capita. Analysis
is based on HS6 COMTRADE data for the year 2013 and GDP per capita
data from the World Bank.

Despite being correlated, the orthogonality of ECI and diversity suggests
that they are capturing di↵erent aspects of the similarity of countries based
on their export baskets. Intuitively, diversity captures how many exports a
country is competitive in whereas the ECI captures what type of exports a
country is competitive in.

We note that an alternative measure based on global trade data called Fitness
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[22] is much more strongly correlated with diversity [14]. Spearman rank
correlations for Fitness and diversity tend to be between 0.94 and 0.97 [13].
However, making comparisons between these the ECI and Fitness measures
is beyond the scope of this paper.

ECI and eigenvector centrality

The ECI has recently been described as ‘standard eigenvalue centrality algo-
rithm’ [14]. Eigenvector centrality is defined as the eigenvector corresponding
to the largest eigenvalue of an adjacency matrix and this definition is stan-
dard for symmetric matrices that represent undirected networks. In the case
of directed networks, the natural definition is to take the left eigenvector
corresponding to the leading eigenvalue of the adjacency matrix [15, p. 178].

Therefore, the eigenvector centrality vector of fM is the left (row) eigenvector
x corresponding to the largest eigenvalue of the following eigenvalue equation

x

f
M = �x. (8)

Since f
M is row-stochastic, its largest eigenvalue is 1. Hence we are in inter-

ested in solutions to
x

f
M = x. (9)

As the rows fM have been normalized by diversity, it is easy to check that any
vector proportional to d is a solution to Eq. (9). Since eigenvector centrality

of fM is proportional to diversity, it does not add anything to what we already
know about fM .

From Eq. (6), we can also consider the symmetric similarity matrix S = D

f
M

which, when applied to country trade data, represents the similarity in coun-
tries’ exports. Since S is a symmetric matrix, it represents an undirected
network and is a more natural candidate for eigenvector centrality. In Fig. 2
we show that the eigenvector centrality of S is highly correlated with diver-
sity. This is unsurprising. Diversity is the degree centrality of S and degree
centrality is correlated with eigenvector centrality in many networks.

The fact that the ECI is defined as the eigenvector associated with the second-
largest eigenvalue, whereas eigenvalue centrality is associated with the lead-
ing eigenvalue, makes it clear that ECI is not eigenvector centrality. In fact,
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in the export data, eigenvector centrality is much more closely correlated to
diversity than to the ECI (see Fig. 2).

a) b)

Figure 2: Panel (a) shows the eigenvector centrality of the export similarity
matrix S vs country diversity (d) and Panel (b) shows the eigenvector cen-
trality of S vs the ECI. Analysis is based on H6 COMTRADE data for the
year 2013.

ECI and Spectral Clustering

We now show that the ECI is equivalent to a spectral clustering method for
the problem of partitioning an undirected weighted graph, represented by
an adjacency matrix S, into two components [19]. Spectral clustering is a
widely used technique for community detection and dimensionality reduction
and has a range of diverse applications including image recognition, web page
ranking, information retrieval and RNA motif classification.

The goal of the spectral clustering approach is to minimize the sum of edge
weights cutting across the graph partition, while making the size (number
of nodes) of the two components relatively similar. As we discuss below,
finding the exact solution to this problem is NP-hard. However, it is possible
to obtain an approximate solution by minimizing the normalized cut (Ncut)
criterion [19]. We demonstrate that the ECI is equivalent to this approximate
solution.
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The Ncut criterion

Consider an undirected graph G = (V,E) with vertices V and edges E. We
allow the graph G to be weighted, with non-negative weights so the adjacency
matrix entries are Sij � 0 where Sij = Sji. While the export matrix is one
possible example, we can consider S to be any matrix with these properties.
The degree of vertex i is defined as

di =
X

j2V

Sij, (10)

and the size or “volume” of a set of vertices A ✓ V can be measured as

vol(A) =
X

i2A

di. (11)

One way to partition a graph into two disjoint sets is by solving the cut
problem. The objective is to find a partition of V into complementary sets
A and Ā that minimize the number of links between the two sets. The cut

problem is to find the minimum of

cut(A, Ā) =
X

i2A,j2Ā

Sij. (12)

This objective function has the undesirable property that its solution often
partitions a single node from the rest of the graph. To avoid this problem, the
normalized cut (Ncut) criterion [19] penalizes solutions that are not properly
balanced. The objective is to partition the graph in such a way that each
cluster contains a reasonable number of vertices. This can be achieved by
minimizing the objective function

Ncut(A,A) = (
1

vol(A)
+

1

vol(A)
)

X

i2A,j2Ā

Sij. (13)

Let D be the diagonal degree matrix with Dii = di and Di 6=j = 0. Then
finding the minimum value of Ncut is equivalent to solving the optimization
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problem

min
A

Ncut(A, Ā) = min
y

y

T (D � S)y

y

T
Dy

, (14)

subject to yi 2
�
1,�vol(A)/vol(Ā)

 
and y

T
D1 = 0.

Due to the fact that yi is restricted to one of two possible values, this is
not a simple linear algebra problem, and finding the true minimum of the
Ncut criterion has been shown to be NP-hard [19]. However, by letting yi

take on any real value, an approximate solution can be obtained by finding
the eigenvector y

[2] corresponding to the second-smallest eigenvalue of the
generalized eigenvalue equation

(D � S)y = �Dy. (15)

Recall that LS = D � S is called the Laplacian matrix of S. By making the
substitution

y = D

�1/2
z, (16)

this can be rewritten as a standard eigenvalue equation

D

� 1
2 (D � S)D� 1

2
z = LSz = �z, (17)

where LS = D

� 1
2 (D� S)D� 1

2 is the normalized Laplacian of S. Because the
normalized Laplacian is a stochastic matrix its smallest eigenvalue is zero.
The eigenvector z

[2] associated with the second-smallest eigenvalue of LS,
which is called the normalized Fiedler vector, which yields an approximate
minimum to the Ncut criterion [19]. Transforming back to y using Eq. (16)
to solve the original problem gives the solution

y

[2] = D

�1/2
z

[2]
. (18)

The solution y

[2] provides a useful approximate solution that minimizes the
normalized cut criterion and is equal to a simple transformation of the nor-
malized Fiedler vector.
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Relationship between ECI and the Ncut criterion

Recall that fM is the matrix whose eigenvector corresponding to the second-
largest eigenvalue is the ECI. To see the relationship between spectral clus-
tering and the ECI, note that the similarity matrix S = D

f
M characterising

country export similarity is in the same form used to minimise the normalised
cut criterion. Multiplying both sides of Eq. (17) by D

� 1
2 and re-arranging

terms gives
D

�1
SD

� 1
2
z = (1� �)D� 1

2
z. (19)

Substituting f
M = D

�1
S gives

f
MD

� 1
2
z = (1� �)D� 1

2
z. (20)

The eigenvalue equation for fM is

f
Mey = e

�ey. (21)

Now, comparing Eqs. (20) and (21), we can see that the eigenvalues and

eigenvectors of fM are related to those of LS by

e
� = 1� �, and (22)

ey = D

� 1
2
z. (23)

Thus the second-smallest eigenvalue of LS corresponds to the second-largest
eigenvalue of fM , and comparison to Eq. (18) makes it clear that the ECI is
equivalent to the spectral clustering solution of the normalized cut criterion,
i.e.

ey[2] = y

[2] = D

� 1
2
z

[2]
. (24)

To summarize, the ECI is related to the normalized Fiedler vector by a simple
transformation, in precisely the same way that the solution to the normalized
cut criterion problem is related to the normalized Fiedler vector. In the SI,
we also show how this interpretation can be applied to the PCI, and describe
the precise relationship between the ECI and PCI.
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The ECI partitions the country-export similarity graph

When interpreted as a clustering algorithm the ECI sorts countries into two
clusters. It does this by assigning each country a real number on an interval
with both positive and negative values, such that countries with similar ECI
have similar exports. Countries with positive ECI are in one cluster and
countries with negative ECI are in the other cluster, and the absolute value of
a country’s ECI measures the distance of any given country to the boundary
between the clusters.

A visual representation can be seen in Fig. 3. Drawing on country trade data
for 2013, we show the graph based on the similarity matrix S on the right
hand side, where countries are represented as nodes and weighted links are
given by Scc0 (for visualisation purposes, we are only showing links with a
weight larger than a given threshold. In this case we plot all links with a
weight > 3). Here countries are coloured by their ECI, with darker shades of
green representing higher complexity and darker shades of pink representing
lower complexity. On the left hand side of the plot we show ECI values for
each country plotted in ascending order. Countries with an ECI value greater
than zero are in the green cluster and countries with a negative ECI are in
the pink cluster. The ECI value (above or below zero) provides an indication
of the distance from the cut.
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Figure 3: Visual representation of how the ECI vector partitions the graph based
on similarity matrix S. The graph in Panel (b) shows country nodes coloured by
their ECI value, with shades of green representing more positive ECI and shades
of pink representing more negative ECI. The ECI rank ordering of countries in
Panel (a) shows how countries having positive ECI fall on one side of the partition
and countries having negative ECI fall on the other side of the partition.

The ECI as a dimension reduction tool

For the economic applications presented here ECI does not yield a clear sep-
aration into disjoint clusters. It nonetheless provides a useful rank ordering
that places countries with similar exports near each other. To illustrate why
this ordering is useful, suppose we hypothesize that there exists a relation-
ship between the exports of a country and some quantity of interest, such
as GDP per capita. To reduce the dimensionality of the problem it would
be useful to find a rank ordering that places countries with similar exports
close to each other. However, there are potentially C! ways to order a set of
C countries. For C ⇡ 100 this number is intractably large, and searching for
all possible rank orderings would be impossible.
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It turns out that the ECI is the unique way of assigning a real number to
each country in order to minimize the sum of the squared distances between
countries, where the distances are weighted according to the similarity matrix
S [19]. While the second-smallest eigenvector y

[2] only approximates the
normalized cut criterion, it exactly minimizes

P
ij (yi � yj)

2
SijP

i y
2
i di

, (25)

subject to the constraint X

i

yidi = 0. (26)

Note how the orthogonality between ECI and diversity (Eq. 7) is hard-wired
into in this minimization problem as a constraint (Eq. 26). In contrast to
its application to graph partitioning, the ECI is an exact solution to this
problem. The ECI thus provides a reduction of the high-dimensional space
of countries and their exports onto a single dimension that proves to be very
useful for problems such as understanding the relationship between exports
and per capita GDP. In the SI, we discuss this result further and contrast
it to more commonly used dimension reduction approaches such as principal
components analysis and ordinary least squares.

The ECI can be more useful than diversity in regional
settings

While the ECI has traditionally been applied to country trade data, we also
provide a preview to forthcoming work which applies the ECI to data on
regional employment in industries and occupations. In the context of trade
data, the orthogonality between diversity and the ECI is often masked be-
cause these variables are empirically positively correlated (see Fig. 1). How-
ever, in the regional examples we present here, regional diversity and the ECI
are no longer positively correlated.

Fig. 4 shows the relationship between diversity and ECI measures calculated
on the basis of UK regional employment concentrations in industries and US
employment concentrations in occupations. In Panel a), the ECI of UK local
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authorities is negatively correlated with its industry diversity. In Panel d),
there is no correlation between the state ECI and occupational diversity.

UK	Local	Authorities’	 employment	 concentration	in	industries

US	States’	employment	concentration	in	occupations

a) b) c)

d) e) f)

Figure 4: Panels (a), (b), and (c) show relationships between UK local author-
ity industrial diversity, industrial-based ECI and log earnings per capita. Industrial
employment data is sourced from the Business Register and Employment Survey
for the year 2017 and 2011 work place earnings data is from the UK O�ce of Na-
tional Statistics. Panels (d), (e) and (f) show relationships between US state
occupational diversity, occupational-based ECI and log State GDP/cap. Occupa-
tional employment data is based on IPUMS data for the year 2010. State GDP
per capita (2010) data is from the Bureau of Economic Analysis

Interestingly, in these two examples, we find that the ECI continues to be sig-
nificantly positively correlated with regional per capita earnings and income
(for UK local authorities, Pearson ⇢ between ECI and log earnings per capita
= 0.76, p-value = 3.9⇥10�61, and for US States, Pearson ⇢ between ECI and
GDP per capita = 0.63, p-value = 7.46⇥10�7). To the extent that a region’s
employment concentrations in industries or occupations capture information
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about its productive capabilities, our results suggest that the ECI is also able
to shed light on the type of capabilities that separate rich and poor regions.
Diversity, on the other hand, fails to meaningfully distinguish between high-
and low-income regions in these two examples.

Discussion

In this paper we have shown that, rather than being linked to export diversity
or eigenvector centrality, the ECI is equivalent to the spectral clustering
solution of a normalized cut criterion [19]. Our results have some important
implications for the application of these measures to the development context.
In particular, by making the di↵erence between ECI and diversity explicit,
we can distinguish between the roles these measures play in the development
process.

The relationship between diversification and development is well established
in the economics literature. The general finding is that countries tend to
follow a U-shaped pattern, where they first diversify and then begin special-
ising relatively late in the development process [9]. This pattern aligns with
other empirical studies that have described a positive association between
export diversification and economic growth, which tends to be stronger for
less developed countries [1, 6, 7].

In contrast to diversity, the ECI provides additional information relevant for
economic development. As we illustrate in Fig. 3, the ECI provides a rank
ordering of countries in terms of how similar their exports are to each other.
The fact that this ordering is useful in explaining variation in per capita
GDP and predicting growth suggests that di↵erent types of exports (and by
extension, productive capabilities) are associated with di↵erent growth and
development outcomes. There is, indeed, empirical evidence that specializ-
ing in some products can lead to higher economic growth than specializing in
others [5]. Manufacturing products in particular show strong unconditional
convergence in labour productivity [16]. Within developing countries, tech-
nologically sophisticated products are more strongly associated with export
and income growth [12].

We have also shown that the ECI can be thought of as a dimension reduc-
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tion tool. It is the unique way to assign distances to countries such that
the sum of their squared distances from each other is minimized, where the
distance is measured using a weighted similarity matrix S. The ECI thus
takes the complicated high dimensional space of countries and their exports
and reduces it to a linear ordering, analogous to the Dewey-Decimal System
for classifying books. The proven empirical success of applying this partic-
ular clustering algorithm to the country-export similarity matrix opens the
door for future work to examine potential applications to the wider family of
clustering and dimension reduction tools to learn further insights from the
global trade network—or other data, such as country input-output tables.

Finally, we have shown two empirical examples to illustrate how in some
settings, the ECI can be more useful than diversity in explaining variation in
regional earnings and income per capita. Moreover, our new interpretation of
the ECI suggests that, at least for these particular cases, the type rather than
the number of industries and occupations concentrated in a region matters
more for its economic prosperity.

Methods

The Method of Reflections and its equivalence to the f
M

eigenvalue problem

Following original Method of Reflections, we can take the measures of country
diversity and product ubiquity (Eqs. 2 and 3) as a starting point and then
recursively calculate the average values associated with country and product
nodes’ neighbors from the previous iteration step as shown in Eqs. (27) and
(28), yielding

k

(N)
c =

1

k

(0)
c

X

p

Mcpk
(N�1)
p , (27)

and

k

(N)
p =

1

k

(0)
p

X

c

Mcpk
(N�1)
c . (28)

As N ! 1 these variables converge to constant vectors, i.e. k

(1)
c = k in-

dependent of c. Originally, values associated with a moderately large value
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of N (N = 18) were considered [8]. These measures produced useful devi-
ations from the constant vector, and were shown to have a strong positive
correlation between k

(N)
c and log GDP per capita [8].

The Method of Reflections was later reframed as an eigenvalue problem [3, 4],
where it is shown that inserting Eq. (28) into Eq. (27) and rewriting gives

k

(N)
c =

1

k

(0)
c

X

p

Mcp
1

k

(0)
p

X

c0

Mc0pk
(N�2)
c0 (29)

=
X

c0

k

(N�2)
c0

X

p

McpMc0p

k

(0)
c k

(0)
p

=
X

c0

f
Mcc0k

(N�2)
c0 ,

where

f
Mcc0 ⌘

X

p

McpMc0p

k

(0)
c k

(0)
p

=
1

k

(0)
c

X

p

McpMc0p

k

(0)
p

. (30)

The Economic Complexity Index (ECI) can then be defined as the eigen-

vector ey[2] associated with the second-largest eigenvalue of fM . Since f
M is

row-stochastic, the leading eigenvalue is one and the leading eigenvector is
constant. The iterative method gives essentially equivalent results due to
the fact that the eigenvector for the second-largest eigenvalue corresponds
to the direction in which the system converges most slowly onto the leading
eigenvector.

Note that with the earlier recursive definition, while diversity and ubiquity
are given as initial conditions, they become irrelevant in the limit as N ! 1.
Eqs. (27) and (28) define a linear dynamical system with a stable fixed
point attractor, in which the solution is independent of the initial condition.
Diversity and ubiquity are relevant only because they are incorporated into
the definition of the dynamical system itself.
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Calculating the ECI for UK and US regional employ-
ment data

UK Local Authorities and Industries

Using data from the UK Business Register and Employment Survey (BRES),
we construct a binary region-industry matrix W on the basis of a region rs
Location Quotient (LQ) in industry i

LQri =
eri/

P
p eriP

r eri/
P

r

P
i eri

, (31)

where eri is the number of people employed in industry i in region r and
Wri = 1 if LQri > 1 and LQri = 0 otherwise. Note that Eq. (31) is analogous

to Eq. (1). We then constructed f
W matrix from W is the same way as fM is

constructed from M (Eq. 5). Finally, we calculate the industry-based ECI for
UK Local Authorities by finding the eigenvector associated with the second-
largest eigenvalue of fW .

US States and Occupations

We apply the same methodology to calculate the occupation-based ECI for
US states. (We also find consistent results using data on US states and
industries.) Drawing on census data for the US, which is available from the
Integrated Public Use Microdata Series (IPUMS) [17], we construct a state-
occupation matrix using state’s location quotient in occupation i. We then
compute the occupation-based ECI for US states analogously to the industry-
based ECI for UK Local Authorities.
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