PHYSICISTS ATTEMPT TO SCALE THE
IVORY TOWERS OF FINANCE

Physicists have recently begun doing research in finance, and even though this movement is
less than five years old, interesting and useful contributions have already emerged. This article
reviews these developments in four areas, including empirical statistical properties of prices,
random-process models for price dynamics, agent-based modeling, and practical applications.

uring the past decade or so, many
physicists have gone to Wall Street
to work in finance, While the com-
monly heard statement that “Wall
Street is the biggest single recruiter of physics
PhDs” appears to be an urban legend, physicists
working as guants—quantitative analysts—are
now unquestionably common in large invest-
ment banks and other financial businesses.
More recently, a countermovement has
emerged as physicists have begun writing re-
search papers on finance and economics, While
this work has vet to have a major impact on
mainstream economics research, papers on fi-
nance are appearing with some frequency in
physics journals, with a few publications in ma-
jor science journals such as Narure, and occa-
sionally even in economics journals. A new
movement sometimes called econopbysics has
been established. Recently, about 200 people
participated in the Third Annual Applications
of Physics in Financial Analysis Conference
(http://www.nbi. dk/APCA), held at Dublin’s
Trinity College in July 1999, where speakers
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included hath practitioners and academics,

In the last five years, roughly 30 recent physics
PhDs have addressed finance topics with their
doctoral research. To paraphrase Jean-Phillipe
Bouchaud, a pioneer in this area and the advisor of
several such students: “Somebody has to train all
the physics graduates poing into banking and fi-
nance, and we want it te be us, not people from
other disciplines. To do this we need to establish a
scientific presence in the field.” There is a wide-
spread feeling among members of this movement
that finance offers fertile terrain for physicists, It
might be possible, for instance, to describe the ag-
gregate behavior of financial agents using the tools
of statistical physics. Combined with a fresh point
of view, this might lead to some good science.

Not surprisingly, the few economists who have
paid any heed at all view the entry of physicists
into economics with considerable skepticism.
Economics and finance, like physics, depend on a
depth of domain-specific knowledge that takes
years to master. Many physicists working in this
area are poorly versed in the finance and eco-
nomics literature. The point of view and prob-
lem-solving approach are quite different. The
problems presented in modeling the physical and
social worlds are not the same, and it is not ob-
vious that methods that work well in physics will
also work well in economics, With some justifi-
cation, many econotmnists think that the entry of
physicists into their world reflects merely audac-
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ity, hubris, and arrogance. Physicists are not
known for their humility, and some physicists
have presented their work in a manner that plays
into this stereotype. The cultural barrier between
the two groups will be difficult to overcome.

This schism was already evident at a confer-
ence held at the Santa Fe Instinzee in 1988 dtled
“The Economy as an Evolving Complex Sys-
tem.”! Roughly half the participants were econ-
omists and the other half physicists. Although
many of the physicists were largely ignorant of
economics, that did not prevent them from
openly criticizing the economists. At one point,
Nobel laureate Phil Anderson said, “You guys re-
ally believe that?” At another point, Larry Sum-
mers (now Secretary of the Treasury) accused
physicists of having a “Tarzan complex.” This
was not just a turf war, Whether due to nature or
nurture, this conference clearly showed that
there is a deep epistemological divide between
physicists and economists that is difficult to cross.

In this article, I am going to attempt a brief
critical review of some of the work done in the
past four or five years by physicists working on
problems in finance. I'will not discuss work that
might be more broadly called economics, be-
cause I am too ignorant to do so. In the spirit of
full disclosure, I should make my hiases clear at
the outset: My interest in {inance stems from
trading financial instruments at Prediction Com-
pany, where I was one of the founders, using di-
rectional forecasting models based on time-
series analysis of historical data. According to
many mainstream economists, the highly statis-
tically significant profits we made should have
been impossible. My view of finance relies at
least as much on conversations with traders as
with academics. More importantly, my formative
religious training was in physics. I am thus a
highly biased reviewer. My only claim to impar-
tiality is a wide exposure to fields outside of
physics and a lack of involvement in the carly
stages of the econophysics movement; as a new
entrant with many ideas of my own, my hope at
the outset was that none of the juicy problems
had been solved yet.

The topics presented at the Dublin econo-
physics conference included a variety of subjects,
ranging from metaphorical models to empirically
driven practical applications. I will single cut a
few highlights, dividing the presentations into
four categories: empirical statistical regularities

in prices, random-process models, agent-based |

models for price formation and market evolu-
tion, and practical applications, such as option

pricing, risk control, and portfolio formation.

This article was explicitly commissioned to re~
view work by physicists—a theme defined by
cultural history and kinship relations rather than
by the subject of scientific investigation. I write
this review with some reluctance, T believe that
disciplinary boundaries are dangerous and dis-
ciplines should be breken down or wholly elim-
inated. At the risk of spoiling the dramatic thread
of this story, my conclusion in reviewing this
work is that it indeed has value. That does not
mean that I wish to argue that economists should
move over and let physicists rule. Rather, T think
that physicists have something to contribute, and
1 hope to encourage physicists and economists
to work together.

Empirical statistical regularities in
prices

The distribution of price fluctuations is one of
the most basic properties of markets, For some
markets the historical data spans a century at a
daily timescale, and for at least the last decade
every transaction is recorded. Nonetheless, the
price distribution’s functional form is stll a topic
of active debate. Naively, central-limit theorem
arguments suggest a Gaussian {normal) distri-
bution. If p(z) is the price at time ¢, the Jog-return
r{?) is defined as »(z) = log p(t + 1) — log p(z). Di-
viding 7 into N subintervals, the total log-return
#(t) is by definition the sum of the log-returns
in each subinterval. If the price changes in each
subinterval are independent and identically dis-
tributed (IID) with a well-defined second mo-
ment, under the central limit theorem the
cumulative distribution function f{(r;} should
converge to a normal distribution for large =

For real financial data, however, convergence is
very slow. While the normal distribution pro-
vides a good approximation for the center of the
distribution for large <, for smaller values of T—
less than about a month—there are strong devia-
tions from normality. This is surprising, given
that the autocorrelation of log-returns is typically
very close to zero for times longer than about 15
to 30 minutes.>® What is the nature of these de-
viations from normality and what is their cause?

The actual distribution of log-returns has far
tails. That is, there is a higher probability for ex-
treme values than for a normal distribution, As
one symptom of this, the fourth moment is larger
than expected for a Gaussian. We can measure
this deviation in a scale-independent manner by

using the kartosis £ = {(r — {FYWr - {F)YY ( }in-
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Figure 1. Fat tails in price fluctuations: (a) Cumnulative distribution of the positive and negative tails for normalized log-
returns r, of 1,000 of the largest US companies for 1994-1995, with 7= 5 minutes.'” The returns are normalized by divid-
ing by the standard deviation for each company during this period, The solid line is a regression fit in the region 2 <r <
80. (b) The probability density function of the normalized returns. The values in the center of the distribution arise from

the discreteness in stock prices, which are important for small price movements.

dicates a time average). In the early 1960s, Benoit
Mandelbrot* (now famous as the grandfather of
fractals) and Fugene Fama® (now famous as the
high priest of efficient market theory) presented
empirical evidence that fwas a stable Levy distri-
bution. The stable Levy distributions are a nat-
ural choice because they emerge from a gencral-
ization of the central limit theorem. For random
variables that are so fat-tailed that their second
moment doesn’t exist, the normal central limit
theorem no longer applies. Under certain con-
ditions, however, the sum of N such variables
converges to a Levy distribution.” The Levy
distributions are characterized by a parameter 1 <
=2, where y =2 corresponds to the special case
of a normal distribution. For u < 2, however, the
stable Levy distributions are so fat-tailed that
their standard deviation and all higher moments
are infinite—that is, (#7} = @ for ¢ = 2. In prac-
tice, this means that numerical estimates of any
moment g = 2 or higher will not converge. Based
on daily prices in different markets, Mandelbrot
and Fama measured g =~ 1.7, 2 result that sug-
gested that short-term price changes were indeed
ill-behaved: if the variance doesn’ exist, most sta-
tistical propertics are ill defined.

Subsequent studies demonstrated, however,
that the behavior is more complicated than this.*"?
First, for larger values of 7, the distribution be-
comes progressively closer to normal, Second,

investigations of larger data sets (including work
by economists in the late "80s and early "9055-5)
make it clear that large returns asymptotically
follow a power law fi) ~ |r*, with o> 2. This
finding is incompatible with the Levy distribu-
tion. The difference in the value of o is very im-
portant: with & > 2, the second moment (the
variance) is well defined, A value 2 < ¢ < @0 is in-
compatible with the stable Levy distribution and
indicates that simply generalizing the central
limit theorem with long tails is not the correct
explanation,

Physicists have contributed to this problem by
studying really large data sets and looking at the
scalings in close detail. A proup at Olsen and As-
sociates, led by Michel Dacorogna, studied in-
traday price movements in foreign exchange
markets.” Another group at Boston University,
led by Rosario Mantegna and Eugene Stanley,
has studied the intraday movements of the S&P
index.'™!! More recently, they studied the five-
minute returns of 1,000 individual stocks traded
on the AMEX, NASDAQ, and NYSE ex-
changes, over a two-year period involving
roughly 40 million records.!” In this case, they
observed the power-law scaling over about 90
standard deviations (sce Figure 1). For larger val-
ues of ||, these results dramatically illustrate that
fi#) is approximately a power law with o ~ 3.
Thus, the mean and variance are well-defined,
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the kurtosis clearly diverges, and the behavior of
the skewness is not so clear,

Power-law scaling is not new to economics.
The power-law distribution of wealth discovered
by Vilfredo Pareto (1848-1923) in the 19th cen-
tury predates any power laws in physics."* And
indeed, since Pareto, the existence of power laws
has been controversial. One underlying reason
is that power-law probability distributions are
necessarily approximations. An inverse power-
law cumulative distribution A7) ~ [/ with an ex-
ponent ¢ > 0 is not integrable at zero, and simi-
larly, with an exponent ¢ = 0, it is not integrable
at infinity. Thus, a power-law probability distri-
bution cannot be exactly true for a variable with
an unbounded range. When thiey apply at all,
power-law distributions are necessarily only part
of a more complete description, valid within cer-
tain limits. (See the “Power law distribution of
wealth” sidebar for more on this topic.'?)

Another reason for skepticism about power
laws in economics is that sloppy statistical analy-
sis has led to mistakes in the past. In the 1980s,
there was considerable interest in the possibility
that price changes might be described by a low-
dimensional chaotic attractor. Physics and biol-
ogy have many examples where the existence of
low-dimensional chaos is unambiguous. Why
not cconomics? Based on a numerical computa-
tion of fractal dimension, several researchers
claimed to observe low-dimensional chaos in
price series. Such computations are done by
measuring the coarse-grained size of 4 set, in this
case a possible attractor of returns in a state
space whose variables are lagged returns, as a
function of the scale of the coarse-graining. If
this behaves as a power law in the limit where
the scale is small, it implies low-dimensional
chaos. But it is very easy to be fooled when per-
forming such calculations. It is critical to test
against a carefully formulated null hypothesis. ™
More careful statistical analysis by José Scheinlk-
man and Blake LeBaron showed that the claims
of low-dimensional chaos in price series were
not well-justified. " While nonlinearity is clearly
present, there is no convincing evidence of low-
dimensionality. The power-law scaling that peo-
ple thought they saw was apparently just an arti-
fact of the finite size of their data sets.

The power law for large price moves is a very
different story. To detect a chaotic attractor
hased on its fractal dimension in state space re-
quires a test of the distribution’s fine-grained,
microscopic properties. Low-dimensional chaos
is a very strong hypothesis, because it would im-

ply deep structure and short-term predictability
in prices. A power law in the tails of the returns,
in contrast, is just a statement about the fre-
quency of large events and is a much weaker hy-
pothesis. This becomes clear in the context of
extreme value theory. For simplicity, consider
the positive tail # — o, Under very general
conditions, there are only three possible limit-
ing behaviors, which we can classify based on the
tail index o

1. There is a maximum value for the variable.
The distribution vanishes for values greater
than this maximum, and o < 0.

2.’The tails decay exponentially and 1/a = 0
(an example is a normal distribution).

3. There are fat tails that decay as a power law
with a > 0.

Price returns must be in one of these three cate-
gories, and the data clearly points to choice 3
with &> 226" Surprisingly, this implies that the
price-formation process cannot be fully under-
stood in terms of central limit theorem argu-
ments, even in a generalized form. Power-law
tails do obey a sort of partial central limit theo-
rein: For a random variable with tail exponent
«, the sum of Nvariables will also have the same
tail exponent . This does not mean that the
full distribution is stable, however, because the
distribution’s central part, as well as the power
law’s cutoff, will gencrally vary. The fact that the

Power-law distribution of wealth

Sorin Solomon and various collaborators have proposed an in-
teresting idea for understanding the power-law distribution of
wealth, An old approach to such an understanding entails model-
ing an agent’s wealth at ary given time as a muliplicative ran-
dom process. By taking logarithms, it Is clear that in the absence
of any constraints such a process will tend toward log-normal dis-
tribution, When the mean is small compared to the standard de-
viation, an approximate power-law distribution for large wealth
arises. The problem is that the tail exponent a = 1, whereas the
observed exponent varies, but can be above 2 or even 3. Solo-
mon and his colleagues suggest that we can fix this problem by
renormalizing for drifts in total wealth and imposing a constraint
that there is a minimum relative wealth below which no ene is al-
lowed to drop, The exponent of the power law is then a = 1/(1 -
), where ¢ is the minimum wealth expressed as a fraction of the
mean wealth, The Pareto exponent should thus be higher for
countries that have a higher floor of minimum income, meaning
a stronger welfare system.
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distribution’s shape changes with Tmakes iv clear
that the random process underlying prices must
have nontrivial temporal structure, as I'll discuss
next. This complicates statistical analysis of
prices, both for theoretical and practical pur-
poses, and gives an important clue about the be-
havior of economic agents and the price-forma-
tion process. But unlike low-dimensional chaos,
it does not imply that the direction of price
movements is predictable. (Also sce the “Power-
law scaling” sidebar.'®)

The search for a random process
model of prices

Price fluctuations are not identically distrib-
uted. Properties of the distribution, such as the
variance, change in time. This is called dustered
volatility. While the autocorrelation of log-
returns, () ~ {r(f + Dr (D), is generally very
small on timescales longer than a day, this is not
true for the volatility (which can be defined, for
example, as #* or [#]). The volatility on successive
days is positively correlated, and these corre-
lations remain positive for weeks or menths,
Clustered volatility can cause fat tails in f{r). For
example, the sum of normally distributed vari-
ables with different variances has a high kurto-
sis (although it does not have power-law tails).’
To understand the statistical properties of price
changes, we need a more sophisticated model
that accounts for the probability distribution’s
temporal variation.

Clustered volatility is traditionally described
by simple ad hoc time-series models with names
that include the letters ARCH (for AutoRegres-
sive Conditional Heteroscedasticity}.' " Such
models involve linear relationships between the
square or absolute value of current and past log-

Power-law scaling

Stanley 5 group at Boston Unlvemty has’ dlscovered anew
power-law scaling that econamists apparently had not previously
observed. They show that the.fluctuations in the growth rates of

. companies of size S follow a power law $#, with 8~ 0.2 The

growth-rate fluctuation js:measured by the standard devuatmn of

“the dlstnbutlon of a vanety of differént quant!tles including sales, -

number of employees, assets; anid several other measures. Further- :
more, they oliserve a similar. power fawy W|th approximately the
same exponent for the GNPs of. cauntries, This result is particu-",

_ 'lar1y interesting because itlsnot explained by standard theories
: (and ‘they have proposed a new theony) :

returns. Volatility at one time influences volatil-
ity at subsequent tdmes. ARCH-type models ean
be effective for forecasting volatility, and there is
a large body of work devoted to problems of pa-
rameter estimation, variations on the basic
model, and so forth. ARCH models are not com-
patible with all of the empirical propertics of
price fluctuations, however,

A good price-fluctuations model should connect
the behavior on multiple timeseales. A natural test
is the behavior of moments, in this case (/") as a
function of 4 and 7. Several groups report approx-
imate power-law scaling with 7, with different
slopes for each value of g, as Figure 2 shows.21#
In the jargon of dynamical systems theory, this
suggests a fractal random process. A slope thatis a
linear funetion of g implies a simple fractal process,
and a slope that is a nonlinear functon of 4 im-
plies a mudtifractal or multiscaling process, Indeed,
several different calculations seem to show that the
shope varies nonlineatly with g, suggesting that the
price process is multifractal.

These results have suggested 4 possible analogy
to turbulence.! Under this analogy, velocity plays
the role of the logarithm of price and length plays
the role of dme. The hypothesis is that there is an
analogy between the Kolmogorov energy cascade,
through which large vortices break up into
smaller vortices, and an information cascade, in
which financial agents with more money or
longer-term strategies influence financial agents
betting smaller sums aver shorter spans of time,
inducing a cascade of volatility. This view is rein-
forced by Alain Arneodo, Jean-Francois Muzy,
and Didier Sornette, who use a wavelet decom-
position of volatility and an analysis in terms of
mutual information to argue that there isindeed a
cascade of volatility from large to small scales.”®

While this is an exciting and interesting idea,
caution is in order. As Mantegna and Stanley dis-
cussed, turbulence and price fluctuations differ in
many important ways.? There is a possible alter-
native explanation for the complicated scaling be-
havior of price fluctuations.?** Numerous studies
show clearly that the autocorrelation function for
volatility decays as a power law, g(t) ~ 7, with v
somewhere in the range 0.1 < v < 0.3.2%' %% In
this case, Jean-Phillipe Bouchaud, Marc Potters,
and Martin Meyer show that the higher moments
automatically scale as sums of power laws with
different slopes. Asymptotically, the dominant
power law has an exponent proportional to ¢, but
for smaller values of 7, another power law whose
exponent is a nonlinear function of ¢ might dom-
inate. Thus, there is apparent multifraceal behav-
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ior, even though asymptotically the process is just
a simple fractal, with all the moments determined
by the scaling of a single moment. For a short data
set, a simple fractal process might look like a mul-
tifractal process due to slow convergence.

At this point, we can’t say which of these two
explanations is correct. Unlike fluid turbulence,
where multifractal scaling is supported by strong
theoretical evidence and by analysis of very large
data sets, the situation in finance is still not clear.
Resolution of this problem will await analysis of
longer data sets and development of better the-
oretical models.

One thing that does seem clear is that con-
ventional ARCH-type models are incompatible
with the scaling properties of price fluctua-
tions.>* While ARCH-type models can indeed
give risc to fat-tailed probability distributions
with e 2, they cannot explain other properties
of the price fluctuations.?® ARCH-type models
fit at a given timescale T do not appear to do a
good job of explaining the volatility at a different
timescale 7. Furthermore, conventional ARCH
models do not have asymptotic power-law decay
in the volatility autocorrelation function. The
most likely explanation is that ARCH models are
misspecified—their simple linear structure is not
general eriough to fully capture the real tempo-
ral structure of volatility, Given that they are
completely ad hoc models, this is not surprising.

There are still missing pieces and several open
questions to be answered before we will have a
good random-process model linking the behav-
ior of prices across a range of different time
scales. Physicists have contributed to the theory
and data analysis leading to the current under-
standing. They have also contributed an inter-
esting new hypothesis; even if the analogy to tur-
bulence turns out to be wrong, it has already
stimulated interesting alternatives. But to have
a good theory of how prices behave, we will need
to explain the behavior of the agents on whom
they depend. See the “Agent-based models”

sidebar for a discussion of these models.

Practical applications

Lets now look at some of the practical appli-
cations that have come out of the physics com-
munity. Physicists have taken the fat tails of the
price distribution seriously and explored their
implications in several areas, such as risk control,
portfolio formation, and option pricing. In ad-
dition, they have made use of results on random
matrices to provide soine insight into the prob-
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Figure 2. Power-law scalings: (a) The mean moment of the absolute
daily returns (r,|) plotted as a function of t for several different val-
ues of g ranging from 0.5 (top) to 2.5 (bottom).” In a log-log repre-
sentation these appear to be approximately straight lines, suggest-
ing power-law behavior. Furthermore, the variation of this line's
slope with g looks nonlinear, suggesting multifractal behavior. (b) As
a test of this, the ratio{{%/{ 9, which is constant for a simple frac-

tal, but not for a multifractal for g = 1.5-3 (bottom to top).

lem of estimating correlation matrices between
different assets.

Perhaps the most direct consequence of fat tails
is their impact on risk control. With fat tails, the
probability of extreme events can be orders of
magnitude larger than it is with a normal distri-
butien. For a fat-tailed distribution, the variance is
an inadequate and potentially misleading indica-
tor of risk. Failure to take this into account can be
disastrons, This was dramatically illustrated in
October 1998 by the near failure of Long Term
Capital Management, which was apparently at
leastin part due to a lack of respect for fat tails.
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- inefficient regimes.

satisfies everyonemindeed,' no choice that satisfies
the majority of the-participants—there is a limit to
what learning can achieve for the group as a whole.
When s> 1, the sequence of 0s and 15 corres-
ponding to the attendance record is aperiodic. This
s driven by switching between strategies. The set.of -
. active strategiescontinues to change even though i
' the total pool of strategies is fixed: For a given num-" - -
*ber of agents, for smiall m the game is efficient, in
"“that prediction is impossible; butwhen m's large,
this s no longer the case, In the limit ¥ —-os, as m
increases there'is a sharp transition between the effi-
cient and the inefficient regime.
" The standard deviation of the. hlstorlcal attend--
ance record, o, provides an mterestlng measure of
the average utility. Assure thateachragent satisfies e
"~ his ar her utility function- by making the minaority :
choice, The average utiiity is highest when the two i
" ‘choices are almost equally popular. Forexample, _ 5
with 101 agents the-maximum utility is achieved if
¢ 50 agents make one choice and 51 the other. How- -
ever, it is impossible ta achieve this state consis-
tently, There are fluctuations around the optimal
attendance level, lowering the average utility, As m
~ increases, @ exhibits interesting behavior, starting
. out’at a maximuin, décreasing toa minimym, and” © ;
then rising to obtain an asymptoticvalue in the -0

15

16

; ’_Sfaﬁ.dard deviation'

limit as.m — o= (see Figure A). The minimum occurs - . o

at the transition between thé effu:lent and”

: N=101
. =2

R —

—_

2. 14 18

10

—l O R S D
2.4 8 08

#

3 &

The distinction between the efficient. and lnefﬂ-
cient regimes arises from the change in the size of

. the pool of strategies present in the papulation, rel-
- _ativeto the total number.of possible strategies. The.
" size'of the pool of strategles is sN. The number of

strategies.'?

' 'Figure A. For the, minority game, the: standard dewation of the at—
tendance cis plotted as a function of the memory Iength of the
s not zero, reflecting the fact that there. aré irregu~ e
 lar oscillations iry the attendance; with correspondlng varlations in'.’_q :
- the-mean utillty of the playé;s of. the game " g o

* possible strategles is 22 ; which grows extremely
Crapidly.with. m. For example for m= 2 there are; 16 possible
“strategies, for m = 5 there are roughly 4 bllluon, and forim=

10 thefe are more than 10°®-far exceeding the nimber of

- elementary particles in'the Universe. In contrast, with 5= 2

and N'= 100, thers are only'200 strategies actually present .
. Inthe peol. For low. m, when the space of strategies is well-

+ .covered, the- conditional probablhty for a-giyen-transition is
~. the same for.all hlstones—mthere aré no patterns.of length m.

Butwhen s larger; sb-that the strategles are onjy sparsery o
- flling the Space of possibilities, patterns remiain, We can. mter-,-

pret this as meanirig that the market is efflcnent for small m.
"/ and inefficient for |arge m. . :

The El Farol probleny and minerity. game-is a simple: game
“with ho solution that can satisfy everyone: This is analogous te

a market where not everyone profits on any given trade. Stud- -

. 'ies of the minority game suggest that the leng-term behiavior -

s dperiadic: the aggregate behavior continues to flucttate. in

contrast to the standard View, In e@onomlcs, sueh fluctuatlons

occuT even inthe absence of any New: external mformatlon.‘ S

' Connections to f:nancna! markets :

Whtle the results for the mmority game are elegant and in-

models by adding’ success:vely more realisr, There have’ -
been several stepsiin this direction. 1626 These models involve.

a definitién of agents, who' make trading deusmns, and a -
,pnce—formatmn rule that determmss how the pnce changes o
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. teresting in their.own. rnght the connection'te ﬁnancual mar» N .
R *kéts is only metaphorlcai "There aré no. pnces apd no trgdlng -
L the mlnorlty gameg, and by deﬂr} tion asmarket is: a plac%
,where prices: are adlus;;ed as tradmg takeg piace‘ -Profits | in
 arkets. are*not madg by bemg in. the mmonty, but rather by.-'
'_ ‘antlapatmg the majority; Ta'go past the metaphorlcai EeVeI
- wer musbsl;udy models of markets that lnvelve buying and s
selling assets and must be able to incrémentally modify such
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_in respdhse to these decisions. There is a feedback between

these two processes: decisions affect prices, which affect deci-

" sions, and so forth. As a result, the prices and agents can dis-

play intefesting‘dynamics,

Many dynamic trading maodels attempt to use strategies
patterned after strategies actually used in real markets {as op-
posed to arbitrary, abstract strategies that have often been

 used in other game-theoretic models). The decisions are
"based on information.internal to the market, such as prices

and their history, and possibly information external to the
market, and can be public (such as prices) or prlvate {such as
conversations between traders),

Despite the wide variation in financial-trading strategies,
we can classify many of them into broad groups. Strategies
that depend only on the price history are called technical
trading or chortist strategies. The minority game strategies are
technical-trading strategies (although not of a type that is

“widely used). Trend-following strategies are a commoniy used
. spedial case of technical strategies in which the holdings of

the asset positively correlate with past price movements. .
Value or fundamental strategies are strategies based on per-

. celved value--that is, a model for what something ought to

be worth, as opposed to its current price. The perceived
value is inherently subjective, and from the point of view of
the models discussed here is considered external infarmation.
Value'strategies tend to buy when an asset is undervalued

- “and sell when'it is overvalued.

Many authors have studied trend and value strategies,
with a variety of differences in the details of the implementa-
tions, Certain conclusions seem to emerge that are indépen-
dent of the details. For example, trend strategies tend to In-
duce trends and therefore positive autocorrelations in the
price,”! which was alsa evident in earlier work by econo-
mists:” Several new features, however, are apparent with a
simple price formation rule that were not recognized in ear-
lier- studies by ecanomists because of the more cumbersome

framew0rl_< they used to formulate the problem, For example,

‘trend-following strategies also iriduce oscillations because; to-

keep risk bounded, strategies are formulated in terms of posi-

-tions (holdings), wheréas changes in price are caused by.or-

ders, which are changes in positions. Thus, the price dynam.
ics have second-order, oscillatory terms.?? Earlier studies also
showed that trends are self-reinforcing—that trend strategles

tend to induce trends.in the market.** Some have mistaken

this to mean “the more the merrier’—that the profits of

: _trehd strategies are-ehhanced by other identicak trend strate-

gies, A wore careful analysis.disproves this. While trend
. strategies indeed create-profit opportunities, these opportu-

. nities are for other trend strategies, not for the same trend
- strategy.

A study of value-investing strategies also shows some inter-
esting results.2? Not surprisingly, most'sensible value strate-

gies induce negative autocorrelations in the price. Some

value strategies calide pricés and pérceived values to'track "
each other. But surprisingly, many sensible value strategies do
not have this property. Another interesting set of. questions
concerns the case where the percejved values are heteroge-
neous (that Is, people have different opinions about what. . =~
something is worth), If alf the strategies are linear, the market

-behaves just as though there-were a single agent whose per-

ceived value isthe mean of the all the diverse values. If the
strategies are nonlinear, however, the dwersn;y of wews -
results in excess velatility. ™ :

All of the models I've dlscussed show certain generic phe-
nomena, such as fat tails-and clustered ‘volatility, and prelimi-
nary results suggest that it might pe possible to'provide a
quantitative explanation for some of the statistical propérties :
of prices. For example, simulations by Thomas Lux and

- Michele Marchesi®! (an ecanomist and a physicist) use trend-

following and valué-investing strategies. They let agents, :
switch from one group to the other. They observe power-law. -
scaling in the tails of the log-returns,. with a Cail exponent o=

- 3, similar to that observectin real data. Other simulations also

find power-law scalmg in the tails in models that allow diffu-

 sion of private information.?® For all of the models discussed
- in this sidebar, which allow dynamic interactions between

prices and decisions, the problem is not, “How do we get re-
alistic deviations from normality.and HD' behavior?” but
rather, “How do we determinethe necessary and sufficient -
conditions, and how do wé identn‘y which factors actuaHy

. diiive such effectsin real markets?”

Al of these riodels show variations in the price; remlnlscent -
of baom-bust cyclés. One source of these irfegular cyclesis
the interaction between trend and value strategles We can
describe one such scenario roughly as follows: Suppose the
market is strongly undervalued. The value investors buy,
thereby raising the price. Asthe price rises, it ¢reates a trend,
causing trend followers to buy, raising the price even further.’
As the price becomes overvalued, the value investors sell, the
trend is damped, and the trend followers. -everitually sell and
50-on. In practice; there are many-othér effects arid- the- result-
ing.oscillations are highly irregular, Se€ Figure B for am exam-
ple illustrating the qualitative sirviilarity of the resulting oscilla-- E
tions to those seen in real data. This example suggests that it -
would be interesting to try to devalop more quantitative mod-
els of this type to see whether they are useful for prediction.

An economist would criticize the Tesults in the studles l've .
cited for several reasons. A mirior pomt concerns questlons of, .
whether the price»formatmn process some.of these.mddelsiuse

is sufficiently realistic, Use of an eﬁtirel'y ad hoc price-formation

rule might cause mefflcmncres orspurious dynarnical effects.
My results elsewhere have answered this criticismiin part =

-Perhaps more persuasively, all of thése dynamic rading r_nod— :

els have qualitative features such as clustered volatility and fat
talls in common, even though-the strategies and in some cases,
the price formation rules are quite different. So far, no-careful
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Figure B. A comparison of the fluctuations
in price and value of US stocks to an agent-
based simulation:* (a) the logarithm of the
S&P index (solid), adjusted for inflation, com-
pared to the logarithm of the mean dividend
(dashed), which can be used as a.crude mea-
. sure of perceived value; (b) an-agent-based
_simulation, using the same perceived value.:
The agents include a mixture of value and
trend-strategies. The refative population of -
the two groups s adjusted so that the net
autocorrelation of the.returns Is zero, and
the total'population is adjusted to roughly
match volatility. Otherwise there has been
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1980 gy attempt to adjust parameters or match

initial states. The point is purely qualitative:
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For both the real data and the simulition,

. the price and the perceived value undergo -
large oscillations around each other, as the’

_ market becomes alternately underpnced
and overprlced

late capital, which provides a mechanism driving
the market toward efficiency. Starting from an ar- -
bitrary.initial state, the agents with profitable .
strategies accumulate capitai, As this happens,
their market impact increases, driving,their profits
down. The system approaches an attractor thatin
same respects resembles.a classic economic equi-

1840 1960

Years

1900 1920

(2}

studies.have compared different methods of price formation’
or.determined which market propemes depend en the meth-

ad of price forrnation. Perhaps the main contribution-of physt-

-distshere has been'the use of really simple methads for, price

" formation, within which the dynamics ave obwous ar'.d simple N

examples are easily solved analytically.

2 - As-a strongercriticism; many of these: models. contam only
_ limited mechanisms:forindividual agents to learn, or. per-
haps more important, selection mechanisms that allow the
agent population.as a whole to learn. With appropriate selec-
" tion mechanisms under standard dogma, the:market shiould

become-efficient and the price should be’ ranidom (of atJeast - .

- random. enough that it 15 lmpOSSIbIe for any agent to make

_ proflts) : :

- Sharéen joshi and | have pama!ﬁy addressed th15 CTItIClsm

We Use a simplé price-formation.rule and employ the _same

‘representation of strategies discussed ea tlier fo'r,the mingrity
"'game. Fors > 1, the seqjiience of prices is-aperiodic, We also

-add'the ability for agents to reinvest their profits and accumu-
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libtium, Prices fiuctuate irreguiarly.
Although-asymptotically the capital of each

agent ceases to increase, fluctuating around a -

mean value, before this state is reached agents
with superior strategies accumulate capital. Unlike a classic -
equilibrium, the fluctuations are not driven by. external infor-
mation—the fluctuations are generated completely
internally. Furthermore, the efficiency is only-partial: for a
reasonably large valie of the: memory, the entropy of the -

- prices never approaches its maxirum value, There are’

1980

* - always-patterns remaining in-prices, representing profit-mak-

mg opportunities for new strategies.

This study of dynamic agent-based tradmg models is still
in its infancy, and many interesting problems remain to be
addressed, To make these models more convincing. more
work is needed to make them more realistic and better
grounded in economic theory. '
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The growing awarencss of fat tails is changing

the way people characterize risk. Ten yvears ago,
sophisticated quantitative trading firms character-
ized risk in terms of standard deviations. Increas-
ingly, this is changing to Value at Risk (VaR), the
size of the loss that would be experienced with an
unfavorable move of a given probability.” The
probability level chosen is generally rather small—
for example, 1%, where the normal begins to be
a poor approximation. With a good estimarte of the
probability distribution of the returns on all the
assets, we can use Monte Carlo methods to make
a VaR estimate. This can be time-consuming,
however. Jean-Phillipe Bouchaud and Mare Pot-
ters have recently offered an alternative.?”

This method uses the optimal fluctuation
method from physics to simplify VaR calcula-
tons by taking advantage of the fat rails. They
expand the VaR in a Taylor series in terms of the
derivatives of the value of a portfolio with re-
spect to factors (such as principal values) and
show that when the tails decay as a power law,
higher derivatives can be neglected and a few
factors usually dominate. This simplifies the VaR
calculation, but more importantly, gives a better
understanding of what risks depend on and how
different risk factors mteract.

Dealing with fat tails properly can also be im-~
portant for constructing portfolios. "The classic
Markowitz approach is to maximize returns sub-
jeet to a constraint on the variance of the port-
folio. Although portfolio theory is often cited as
one of the great achievements of modern finance
theory, mean-variance portfolios tend to per-
form poorly in practice. Fven if we assume that
the underlying asscts have a normal distribution,
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the portfolio weights and portfolio performance
are so sensitive to estimation errors that the
amount of data required to get good estimates
can be prohibitive. This problem is much worse
in the presence of fat tails.

Didier Sornette, Propsero Simonetti, and Jor-
gen Anderson recently introduced a new ap-
proach to portfolio formation that explicitly
takes fat tails inte account.’® They make a
change of variables into normally distributed
coordinates using a simple numerical procedure
and use the correlation matrix in these coordi-
nates to form the portfolio. The resulting pro-
cedure is stabler and better conditioned than the
usual mean-variance approach. They show that
minimizing variance eften increases large risks,
as measured for example by Vall. With fat tails,
an adequate prediction of the risks relies much
more on a correct deseription of the tail struc-
ure than on the correlations between the assets.

The implications of fat tails are important for
option pricing. An option is a financial instru-
ment that gives the holder the option to buy or
sell ata given price (the strike price) at a later time
{the expiration date). The value of an option de-
pends on the strike price and expiration date, as
well as on the underlying asset’s statistical prop-
ertics, The standard method of pricing options
using the Black-Scholes formula assumes that
the log-returns of the underlying asset are nor-
mally distributed. Under the Black-Scholes for-
mula, we can compute the price of the option for
a given volatility, or alternatively, the formula
can be inverted to compute the implied volatility
based on the option price.

According to the Black-Scholes formula, the

T 1‘Cocpy.aratmn and: Organlzatmn Insatt ﬁvglu-
} twnauy Game' Phy.iica A; 5.

Letters,‘Vol 82 ]999 p 2033
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implied volatility should be independent of the
strike price, In practice, however, the implied
volatility depends strongly on the strike price.
For many assets, such as stocks, options with
strike prices that are in the money (near the cur-
rent price) have lower implied volatilities than
those with strike prices that are out of the
money. The implied volatility plotted against the
strike price looks like a noisy parabola called the
smile. The smile makes it clear thae real option
prices deviate from the Black-Scholes formula.

The Black-Scholes pricing theory has two re-
markable features:

¢ the hedging strategies eliminate risk en-
tirely, and

* the option price does not depend on the av-
erage return of the underlying asset.

There are very special properties that are only
true under the assumption of normality. With a
more realistic distribution for the underlying re-
turns, risk in option trading cannot be elimi-
nated and the correct option price depends on
the full distribution of the underlying asset, in-
cluding irs mean. Physicists have played a lead-
ing role in developing practical and simple rigk-
return methods for pricing options in a more
general context that takes into account devia-
tions from normality, as well as transaction

costs.’!*? These are based on the principle that -

the proper option price minimizes (but does not
eliminate) risk. In fact, in practice the residual
risk is rather large, certainly much larger than
the zero risk predicted by the Black-Scholes pro-
cedure. This results in good predictions of the

" httpisixexlanl gov/éond-mat/agosats, |

. Varlathns in a Stock Market w:th Many‘

smile. The “implied kurtosis” from such proce-
dures also agrees reasonably well with the his-
torical kurtosis, Furthermore, this procedure
does a good job of predicting the dependence of
the option price on the mean return, which is
important to many practitioners, who might
have views about the mean return. Science and
Finance, a company consisting largely of physi-
cists, has developed software employing these
principles, which a major bank known for their
expertise In pricing options is using.

Another interesting application in a somewhat
different direction concerns the computation of
correlation matrices. Correlation matrices are im-
portant for many reasons. Correlations are gener-
ally very important for hedging risks, for example,
to optimize a portfolio using the conventional
Markowitz approach. The correlation matrix for
N assets has (N(N - 1))/2 independent values.
Thus the computation of a correlation matrix is
poorly determined for any large value of N unless
the effective length T of the data sets is enormous.
For examnple, to estimate the daily correlations of
the stocks in the S&P index, just to have the num-
ber of data points equal the number of free para-
meters would require about 500 years of stationary
data. The S&P index has not existed that long, the
composition of companies is constantly changing,
and the nature of companies changes, so that the
relevance of price history in the distant past is
questionable. Five to 10 years is typically the
largest sensible value of T for most practical ap-
plications. Estimation errors are a big problem.

"To understand the structure of correlation ma-
trices in such a highly random setting, physicists
have recently applied the theory of random ma-
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trices, extensively developed in nuclear physics
and elsewhere.’*** The eigenvalues and eigen-
vectors of random matrices approach a well-de-
fined functional form in the limit N — oo, Tt is
then possible to compate the distribution of em-
pirically determined eigenvalues to the distribu-
tion that would be expected if the data werc com-
pletely random, as shown in Figure 3. For the
correlation matrix of 406 companies in the S&P
index, in a computation based on daily data from
1991 to 1996, only seven out of 406 eigenvalucs
are clearly significant with respect to a random
null hypothesis. This suggests that we can im-
prove estimates by setting the insignificant cigen-
values to zero, mimicking a common noise-re-
duction method used in signal processing.

have omitted quite a lot from this short re-

view. Some of this is good work that is ei-

ther out of the few main themes developed

here or that is too complicated to explain
with a small amount of space. Some is work that
is either of poor quality or simply crazy, as is typ-
ical of new ficlds. It also reflects a difference be-
tween the intellectual cultures of physics and
economics, Physics tends to be less restrictive
about publication. In physics, publications ap-
pear more rapidly and peer review is typically
not as strict. There is more emphasis on creativ-
ity and less on rigor. This is perhaps one of the
luxuries of natural science, where theory is easily
tested against data. Since their inception, it
seems that mystics, cabalists, and alchemists have
been attracted to the financial markets, and there

Figure 3. Smoothed density of the eigenvalues 2
of an empirical correlation matrix for the returns
of 406 companies in the S&P index, for the peried
1991-1996." For comparison, this is plotted
against the theoretical density of eigenvalues if
the matrix is completely random except for its
largest eigenvalue (dotted line), A better fit is
obtained by fitting parameters, as shown in the
solid line. The inset shows the same thing when
the largest eigenvalue, which corresponds to
the overall market movement, is included.

are many such people who, knowing some
mathematies, will always hover around any
group that will pay them the courtesy of lis-
tening. In any case, a ficld should be judged by
its best work, rather than its worst work.

At the Dublin conference, I was initially dis-
turbed that almost all the speakers were physi-
cists, This was apparently intentional. The con-
ference’s organizers fele that during the

formative stages it is important not be too criti-
cal. Let new ideas grow and see where they lead;
thinning can take place later, In the early stages,
too much harsh criticism from economists might
be counterproductive. Given the conservatism of
many cconomists, there is some good scnse to
this. But the time is rapidly approaching when
physicists who want to do serious work in finance
need to interact more closely with economists,
There were many bright people in Dublin and
many good ideas. There was also sometimes a
lack of grounding. Many of the physicists knew
very few empirical facts about markets and were
largely ipnorant of the literature in economics
and finance. Some of the work there focused on
problems that might be fun from a mathemati-
cal point of view, but are not very relevant to un-
derstanding financial markets.

There are many fresh ideas in the work of
physicists that have been missing or underrep-
resented in economics. These will lead to new
and interesting work, and I expect rapid progress
in the next few years. This will come as physi-
cists do the hard work to master the domain
knowledge. Physicists like me need to fully un-
derstand what has already been done by econo-
mists and stop reinventing the wheel. There
have alrcady been several good collaborations
hetween physicists and economists, and hope-
fully there will be many more. While there is a
hard core of conservative economists who will
never accept these new ideas, they will eventu-
ally die. The heauty of the scientific method is
that ultimately it is always possible for new ideas
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to gain acceptance if they are right. Prediction
of empirical data based on elegant, concise sci-
entific theories will ultimately triumph over
dogma and myopia. There is no shortage of em-
pirical data to test theories in finance and eco-
nomics. The challenge for physicists is to un-
derstand the real problems, and produce theories
that fit the data. A good start has been made, but
_the real challenges and adventures lie ahead. &
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