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Abstract

In this article we revisit the classic problem of tatonnement, reviewing a recent body
of theoretical and empirical work explaining how fluctuations in supply and demand are
slowly incorporated into prices. For strategic reasons large orders to buy or sell are only
traded incrementally, over periods of time that can be as long as months. Because of this
fluctuations in supply and demand form a long-memory process, manifesting itself as highly
persistent order flow. Liquidity dynamics plays a key role in determining volatility and in
allowing the market to absorb large swings in supply and demand while remaining efficient.
We review a body of theory that makes detailed quantitative predictions about the volume
and time dependence of market impact, the bid ask spread, and order book dynamics, and
show that the predictions of this body of theory compare well with empirical data. This
approach suggests a novel interpretation of financial information, in which all agents are at
best only weakly informed, price formation is extremely noisy, and most information comes
from within rather than from outside the market. We review some preliminary studies of
market ecology and argue that this should play a central role in the future.
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1 INTRODUCTION

1.1 Overview

In this article we discuss the slow process by which markets “digest” fluctuations
in supply and demand, reviewing a body of work that suggests a new approach to
the classic problem of tatonnement, the dynamic process through which markets
seek to reach equilibrium. The foundation of this approach is based on several
empirical observations about financial markets, the most important of which is
long-memory in the fluctuations of supply and demand. This is exhibited in
the placement of trading orders, and corresponds to long term, slowly decaying
positive correlations in the initiation of buying vs. selling. It is observed in all
the stock markets studied so far at very high levels of statistical significance.
It appears that the primary cause of this is the incremental execution of large
hidden trading orders. The fact that the long-memory of order flow must coexist
with market efficiency (at least in a statistical sense) has a profound influence
on price formation, causing dynamic adjustments of liquidity that are strongly
asymmetric between buyers and sellers.

This has important consequences for market impact. (By market impact we
mean the average response of prices to trades; liquidity refers to the scale of
the market impact)1. We discuss theoretical work predicting the average market

1Market impact is closely related to the demand elasticity of price, and is typically measured
as the return associated with a transaction as a function of volume. Liquidity (as we will use
it here) measures the size of the price response to a trade of a fixed size, and is inversely
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impact as a function of both volume and time. The asymmetric liquidity adjust-
ments needed to maintain compatibility between the long-memory of order flow
and market efficiency can equivalently be interpreted in terms of the temporal
response of market impact, leading to a slow decay of market impact with time.

This work also has important consequences about the interpretation and effect
of information in financial markets. In particular, the explanation for market
impact that we develop here from the standard view in the finance literature,
which holds that the shape of the impact function is determined by differences
in the information content of trades. The body of work reviewed here instead
assumes that the impact of trades depends only on their predictability, e.g. that
highly predictable trades have little impact, as originally postulated by Hasbrouck
[1988]. We argue that this is a much simpler explanation, that produces stronger
predictions, is more plausible from a theoretical point of view, and is more in line
with what is observed in the data.

The implications of this work range upward from microstructure, i.e. at the
level of individual price changes, to patterns of price formation on timescales that
can be measured in months. At the microstructure level this work makes several
predictions, such as the relationship between market impact, the bid-ask spread,
and volatility. It also make predictions about the impact of large trades executed
over long times, as well as the effect such trades may have in causing clustered
volatility.

1.2 Organization of the paper

In the remainder of the introduction we discuss the motivation and scope of the
work described here, and discuss our approach to creating a theory for market
microstructure, which is somewhat unusual within economics. In Section 2 we
discuss the institutional aspects of the markets that form the basis of our empirical
studies and define some of the terms that will be used throughout the paper. In
Section 3 we lay out some of the main conceptual issues, discussing the concept of
information in finance and its relationship to market efficiency, and the important
role that liquidity (or more accurately, the lack of liquidity) plays in forming
markets. We critique so-called “noise trader” models and present an alternative
point of view. In Section 4 we present the empirical evidence for long-memory in
order flow, develop a theory for its explanation based on strategic order splitting,
and present evidence that this theory is correct. In Section 5 we describe the
different types of impact and review the empirical evidence. In Section 6 we
develop a theory for market impact for each of the different types of impact.
In Section 7 we discuss the problem of explaining the behavior of the bid-ask
spread, and compare theory and empirical observations. Section 8 discusses the
close relationship between liquidity and volatility. In Section 9 we discuss models

proportional to the scale of the impact. If trading a given quantity produces only a small price
change, the market is liquid, and if it produces a large price change it is illiquid.
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for the order book, which can be regarded as models for liquidity. Section 10
discusses the problem of trading in an optimal manner in order to minimize
execution costs. Section 11 describes recent attempts to characterize trading
ecologies of market behavior at short time scales, and Section 12 presents our
conclusions.

1.3 Motivation and scope

Markets are places where buyers meet sellers and the price of exchanged goods
are fixed. As originally observed by Adam Smith, during the course of this
apparently simple process remarkable things happen. The information of diverse
buyers and sellers, which may be too complex and textured for any of them to
fully articulate, is somehow incorporated into a single number, the price. One
of the powerful achievements of economics has been the formulation of simple
and elegant equilibrium models that attempt to explain the end results of this
process without going into the details of the mechanisms through which prices
are actually set.

There has always been a nagging worry, however, that there are many sit-
uations in which broad-brush equilibrium models that do not delve sufficiently
deeply into the process of trading and the strategic nature of its dynamics, may
not be good enough to tell us what we need to know; to do better we will ul-
timately have to roll up our sleeves and properly understand how prices change
from a more microscopic point of view. Walras himself worried about the process
of tatonnement, the way in which prices settle into equilibrium. While there are
many proofs for the existence of equilibria, it is quite another matter to deter-
mine whether or not a particular equilibrium is stable under perturbations, i.e.
whether prices that are initially out of equilibrium will be attracted to an equilib-
rium. This necessarily requires a more detailed model of how prices are actually
formed. There is a long history of work in economics seeking to create models of
this type (see e.g. Fisher [1983]), but many would argue that this line of work
was ultimately not very productive, and in any case it has had little influence on
modern mainstream economics.

A renewed interest in dynamical models that incorporate market microstruc-
ture is driven by many factors. In finance, one important factor is growing ev-
idence suggesting that there are many situations where equilibrium models, at
least in their current state, do not explain the data very well. Under the stan-
dard model prices should change only when there is news, but there is growing
evidence that news is only one of several determinants of prices, and that prices
can stray far from fundamental values (Campbell and Shiller [1989], Roll [1984],
Cutler et al. [1989], Joulin et al. [2008])2. Doubts are further fueled by a host
of studies in behavioral economics demonstrating the strong boundaries of ra-
tionality. Taken together this body of work calls into question the view that

2See Engle and Rangel [2005] for a dissenting view.
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prices always remain in equilibrium and respond instantly and correctly to new
information.

The work reviewed here argues that trading is inherently an incremental pro-
cess, and that because of this, prices often respond slowly to new information.
The reviewed body of theory springs from the recent empirical discovery that
changes in supply and demand constitute a long-memory process , i.e. that its
autocorrelation function is a slowly decaying power law (Bouchaud et al. [2004],
Lillo and Farmer [2004]). This means that supply and demand flow in and out of
the market only very gradually, with a persistence that is observed on timescales
of weeks or even months. We argue that this is primarily caused by the practice
of order splitting, in which large institutional funds split their trading orders into
many small pieces. Because of the heavy tails in trading size, there are long
periods where buying pressure dominates, and long periods where selling pres-
sure dominates. The market only slowly and with some difficulty “digests” these
swings in supply and demand. In order to keep prices efficient, in the sense that
they are unpredictable and there are not easy profit making opportunities, it has
to make significant adjustments in liquidity. Understanding how this happens
leads to a deeper understanding of many properties of market microstructure,
such as volatility, the bid-ask spread, and the market impact of individual incre-
mental trades. It also leads to an understanding of important economic issues
that go beyond market microstructure, such as how large institutional orders im-
pact the price, and in particular how this depends on both the quantity traded
and on time. It implies that the liquidity of markets is a dynamic process with a
strong historical dependence.

The work reviewed here by no means denies that information plays a role in
forming prices, but it suggests that for many purposes this role is secondary.
In the last half of the twentieth century finance has increasingly emphasized
information and de-emphasized supply and demand. The work we review here
brings forward the role of fluctuations in supply and demand, which may or
may not be exogenous. As we view it, it is useful to begin the story with a
quantitative description of the properties of fluctuations in supply and demand.
Where such fluctuations come from doesn’t really matter; they could be driven by
rational responses to information or they could simply be driven by a demand for
liquidity. In either case, they imply that there are situations when order arrival
can be very predictable. Orders contain a variable amount information about
the hidden background of supply and demand. This affects how much prices
move, and therefore modulates the way in which information is incorporated into
prices. This notion of information is internal to the market. In contrast to the
prevailing view in market microstructure theory, there is no need to distinguish
between “informed” and “uninformed” trading to explain important properties
of markets, such as the shape of market impact functions or the bid-ask spread3.

3Since modern continuous double auction markets are typically anonymous, it is hard to see
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We believe the work here should have repercussions on a wide gamut of ques-
tions:

• At a very fundamental level – how do we understand why prices move, how
information is reflected in prices and what fixes the value of the volatility?;
• At the level of price statistics – what are the mechanisms leading to price jumps

and volatility clustering?;
• At the level of market organisation – what are the optimal trading rules to

insure immediate liquidity and orderly flow to investors?;
• At the level of agent-based models – what are the microstructural ingredients

necessary to build a realistic agent-based model of price changes?
• At the level of trading strategies and execution costs – what are the consequence

of empirical microstructure regularities on transaction costs and implementa-
tion shortfall?

We do not wish to imply that these questions will be answered here, only that
the word described here bears on all of them. We will return to discuss the
implications in the conclusions.

1.4 Approach to model building

Because this work reflects an approach to model building that many economists
will find unfamiliar, we first make a few remarks to help the reader understand the
philosophy behind this approach. Put succinctly, our view is that the enormous
quantities of data that are now available fundamentally change the approach one
should take to building economic theories about financial markets.

In recent years the computer has made it possible to automate markets, has
enabled an explosion in the amount of recorded data, and makes it possible to
analyze unprecedented quantities of information. Financial instruments are now
typically standardized, stable entities that are traded day after day by many
thousands of market participants. Modern electronic markets offer an open and
transparent environment that allows traders across the world to get real time ac-
cess to prices, and most importantly for science, makes it possible to save detailed
records of human decision making. The past decades have seen an explosion in
the volume of stored data. For example, the total volume of data related to US
large caps on, say Oct 2, 2007, was 57 million lines, approximately a gigabyte
of stored data. The complete record of world financial activity is more than a
terabyte per day. Each market has slightly different rules of operation, making it
possible to compare market structures and how they affect price formation, and
most important of all, to look for patterns of behavior that are common across
all market structures. The system of world financial markets can be viewed as
a huge social science experiment in which profit-seekers spend large quantities

how the identity of traders could play an important role in the size of the price response to
trades. See the discussion in Section 3.
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of their own money to collect enormous quantities of data for the pleasure of
scientists.

With so much data it becomes possible to change the style in which economics
is done. When one has only a small amount of noisy data statistical testing must
be done with great care and it is difficult to test and reject competing models
unless the differences in their predictions are very large. Data snooping is a
constant worry. In contrast, with billions of data points if an effect is not strong
enough to leap out of the noise it is unlikely to be of any economic importance.
Even more important is the effect this has on the development and testing of
theories. With a small data set inference requires strong priors. This fosters an
approach in which one begins with pure theory and tests the resulting models
only after they are fully formulated; there is less opportunity to let the data speak
for itself. Without great quantities of data it is difficult to test a theory in a fully
quantitative manner, and so predictions of theories are typically qualitative.

The work reviewed in this article takes advantage of the size of financial data
sets by strongly coupling the processes of model formation and data analysis. This
begins with a search for empirical regularities, i.e. behaviors that under certain
circumstances follow consistent quantitative laws. Even though such effects do
not have the consistency of the laws of physics, one can nonetheless be somewhat
more ambitious than simply trying to establish a set of “stylized facts”. An
attempt is made to describe regularities in terms that are sufficiently quantitative
so that theories have a clear target, and can thus sensibly make strongly falsifiable
predictions. A key goal of such theories is of course to understand the necessary
and sufficient conditioned for regularities.

The approach for building theory described here is phenomenological. That is,
it does not attempt to derive everything from a set of first principles, but rather
simply tries to connect diverse phenomena to each other in order to simplify
our description of the world. Many economists will be uncomfortable with this
approach because it often lacks “economic content”, i.e. the theories that are
developed do not invoke utility maximization. In this sense this body of work
lies somewhere between pure econometrics and what is usually called a theory
in micro-economics. Even though the models infer properties of agent behavior,
and connect them to market properties such as prices, there is no attempt to
derive the results from theories that maximize preferences, contenting ourselves
with weaker assumptions, such as market efficiency. Given all the empirical
problems surrounding the concept of utility, we view this as a strength rather
than a weakness.

The work described here is still in an early stage, and is very much in flux;
many of these results are quite new and indeed our own view is still changing as
new results appear.
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2 MARKET STRUCTURE

All of the work described here is based on results from studying stocks from the
London, Paris, New York (NYSE and NASDAQ) and Spanish stock markets.
These markets differ in their details, but they all do at least half of their trading
(and in some cases all their trading) through a continuous double auction. “Auc-
tion” indicates that participants may place quotes (also called orders) stating the
quantities and prices at which they are willing to trade; “continuous” indicates
that they can update, cancel or place new quotes at any time, and “double”
indicates that the market is symmetric between buyers and sellers4.

There are some important differences in the way these markets are organized.
The NYSE is unusual in that each stock has a designated specialist who maintains
and clears the limit order book. The specialist can see the identity of all the
quotes and can selectively show them to others. The specialist can also trade for
his own account but has regulatory obligations to “maintain an orderly market”.
The London Stock Exchange in contrast, has no specialists. It is completely
transparent in the sense that all orders are visible to everyone, but completely
anonymous in the sense that there is no information about the identity of the
participants, and such information is not disclosed even to the counterparties of
transactions. The Spanish Stock Market is unusual in that membership codes for
quotes are publicly displayed. Thus these exchanges are generically similar but
have their own peculiar characteristics.

Markets also differ in the details of the types of orders that can be placed.
For example, the types of orders in the London Stock Exchange are called “limit
orders”,“market orders with limiting price”, “fill-or-kill”, and “execute & elimi-
nate”. In order to treat these different types simply and in a unified manner we
simply classify them based on whether an order results in an immediate trans-
action, in which case we call it an effective market order, or whether it leaves a
limit order sitting in the book, in which case we call it an effective limit order.
Marketable limit orders (also called crossing limit orders) are limit orders that
cross the opposing best price, and so result in at least a partial transaction. The
portion of the order that results in an immediate transaction is counted as an
effective market order, while the non-transacted part (if any) is counted as an ef-
fective limit order; thus in this case a single action by the participant gets counted
as two separate orders. Note that we typically drop the term “effective”, so that
e.g. “market order” means “effective market order”. Similarly a limit order can
be removed from the book for many reasons, e.g. because the agent changes her
mind, because a time specified when the order was placed has been reached, or
because of the institutionally-mandated 30 day limit on order duration. We will
lump all of these together, and simply refer to them as “cancellations”.

In addition to continuous double auctions the London Stock Exchange has

4There are some small exceptions to symmetry between buying and selling, such as the
uptick rule in the NYSE, but these are relatively small effects.
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what is called the off-book market and the New York Stock Exchange has what is
called the upstairs market. These are both bilateral exchanges, in which members
of the exchange can interact in person or via telephone to arrange transactions.
Such transactions are then reported publicly at a later time. With exceptions
noted in the text all the results obtained are from the continuous markets.

3 INFORMATION, LIQUIDITY & EFFICIENCY

The aim of this section is to motivate the empirical study of microstructure in
a broader economic context, that of the information content of prices and the
mechanisms that can lead to market efficiency. We discuss several fundamental
questions concerning how markets operate. The discussion here sets the stage for
the detailed quantitative investigations that we report in the following sections.
Since one of our main subjects here is market impact, we review and critique the
standard model for market impact, which is based on informed vs. uninformed
trading.

3.1 Information and fundamental values

It is often argued that there is a fundamental value for stocks, correctly known to
at least some informed traders, who buy underpriced stocks and sell overpriced
stocks. By doing so they make a profit and, through the very impact of their
trades, drive back the price toward its fundamental value. This mechanism is the
cornerstone of the theory of efficient markets, and is often used to justify why
prices are unpredictable. In such a framework, the fundamental value of a stock
can only change with unanticipated news. The scenario is then the following: A
piece of news becomes available, market participants work out how this changes
the price of the stock, and trade accordingly. After a (supposedly fast) phase of
‘tatonnement’, the price converges to its new equilibrium value, and the process
repeats itself. To explain deviations from this picture one can add a suitable
fraction of uninformed trades to add some high frequency noise.

Is this picture fundamentally correct to explain why prices move and to account
for the observed value of the volatility? Judging from the literature, it looks as if a
majority of academics still believe that this story is at least a good starting point
(but see, for example Lyons [2001]). Recent empirical microstructure studies open
the way to testing in detail the basic tenets and the overall plausibility of the
standard equilibrium picture. We hope to convince the reader that the story is in
fact significantly different. That is, we argue that an alternative way of looking at
events provides superior explanatory power based on a simpler set of hypotheses.
Before discussing at length the microstructural evidence for a change of paradigm,
we would like at this stage to make several general comments that will be relevant
below; first on the very notion of fundamental value and information, and second
on various orders of magnitude and time scales involved in the problem.
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Is the fundamental value of a stock or a currency a valid concept, in the
sense that it can be computed, at least as a matter of principle, with arbitrary
accuracy with all information known at time t? The number of factors influencing
the fundamental value of a company or of a currency is so large that there should
be, at the very least, an irreducible intrinsic error. All predictive tools used by
traders, either based on economic ratios, earning forecasts, etc., are based on
statistical models detecting trends or mean-reversion, are obviously noisy and
sometimes even biased. For example, financial experts are known to be on the
whole rather bad at forecasting the next earning of a company (see e.g. Guedj and
Bouchaud [2005]). News are often ambiguous and not easy to interpret. But if
we accept the idea of an intrinsically noisy fundamental value with some band of
width ∆ within which the price can almost freely wander, the immediate question
is: how large is the uncertainty ∆? Is it very small, say 10−3 in relative terms,
or quite a bit larger, say 100%, as suggested by Black [1986]? If Black is right
(which we tend to believe) and the uncertainty in the fundamental value is large,
then the information contained in a trade is noisy, and the amount of information
contained in any given trade is necessarily small. Analysis of price impact makes
it clear that the standard deviation of impacts is very large compared to their
mean, suggesting that this is indeed the case.

3.2 Market efficiency

Market efficiency is one of the central ideas in finance and appears in many guises.
A standard definition of market efficiency (in the informational sense) is that the
current price should be the best predictor of future prices, i.e. that prices should
be a martingale. Another closely related notion is arbitrage efficiency, which in its
weakest form states that it should not be possible to make a profit without taking
risks; in a stronger form it says that two strategies with the same risk should make
the same profits, at least once their usefulness for inclusion in a portfolio is taken
into account. Steve Ross, among others, has advocated that market efficiency
(rather than equilibrium) should be the core postulate for financial theory (Ross
[2004]).

We agree with this point of view, at least in so far as it does not imply believing
in allocative efficiency, i.e. that prices correctly reflect the underying value of the
assets. Strictly speaking a market is allocatively efficient if it is Pareto optimal,
in the sense that there is no alternative allocation of prices and holdings that
makes someone better off without making someone worse off. This is related to
whether or not prices are set at their “proper” values. It is entirely possible to
imagine a market in which prices are unpredictable and yet in which there is no
sense in which prices are set correctly. That is, once we depart from neoclassical
equilibrium a market might be informationally efficient yet allocatively inefficient.

A closely related point is that there are two very different possible explana-
tions for market efficiency. (1) The standard view in economics is that perfect
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efficiency reflects perfect information processing. Traders process each new bit
of information as it arrives and prices immediately go to their new equilibrium
values. This is, however, by no mean the only explanation for why prices can be a
martingale. An obvious alternative is the standard one that explains randomness
in many other fields, such as fluid turbulence: (2) Markets are too complicated
to be predictable. Under this explanation prices move randomly because investor
behavior is complicated, based on many hidden factors, so to an external observer
it is “as if” individual investors are just flipping coins. The correct explanation
is likely to be a mixture of both effects. On one hand markets are inherently
complicated, but on the other hand, whatever predictability is left over is sub-
stantially removed by arbitrageurs. Under this synthetic view, which we take
here, one can simply associate an impact with trades, treat all investors as more
or less the same, and adjust the expected impact as needed to preserve efficiency
based on factors that derive from the predictability of trades.

Finally we want to emphasize that while we believe that market efficiency is a
very useful concept and provides an excellent starting point for developing theo-
ries, it is inherently contradictory, and is at best an approximation. Markets can
only be informationally efficient at first order but must necessarily be inefficient
at second order. This was originally pointed out by Milton Friedman, who noted
that without informed traders to push prices in the right direction, there is no
reason that markets should ever be efficient. If markets were truly efficient then
informed traders should make the same profits as anyone else, and there would
be no motivation for them to remain in the market. Thus markets cannot be
fully efficient.

Even if for many purposes it can be a good approximation to assume that they
markets are efficient, there are other situations where deviations from efficiency
can be quite important. Understanding how markets evolve from inefficient to
efficient states, predicting the necessary level of deviations from efficiency that
must persist in steady state, and understanding their role in how markets function
remains an area of investigation that is still largely not understood. This is
relevant for our discussions on incorporating information into prices because when
we speak about information we must have traders to process that information and
trade based on it. It is precisely the market impact of these traders that moves
prices. Thus while on one hand market impact is a friction, it can also be viewed
as the factor that maintains efficiency, and so it is essential to properly understand
it.

3.3 Trading and information

Informational efficiency means that information must be properly incorporated
into prices. Under assumptions of rationality, when all traders have the same in-
formation, prices should move more or less automatically, with very little trading
(Milgrom and Stokey [1982], Sebenius and Geanakoplos [1983]). But of course
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that’s not true – people don’t have the same information, and even if they did,
real people are likely to take different views about what the information means.
The empirical fact that there is so much trading supports this (Shiller [1981]).
Grossman and Stiglitz [1980] developed an equilibrium model in which traders
have different information, that shows that in this situation trading and price
movements are informative (see also Grossman [1989]). If I know that you are
rational, and I know that you have different information than I have, when I see
you trade and the price rises I can infer the importance of your information and
thus I should change my own valuation.

Intuitively the problem with this view is that even small deviations from ratio-
nality and perfect information can lead to incorrect prices and instabilities in the
price process. Suppose, for example, that you and I both overestimate how much
information the other has. Then when I see you trade I change my valuation
too much. When I see you buy, I also buy, but I buy more than I should. To
make this slightly more quantitative, let the initial price be p0 and suppose that
after agent A observes new fundamental information the price rises by f , which
might or might not be the correct fundamental level. After agent A trades the
new price becomes p1 = p0 + f . Agent B sees the price rise by f , and assuming
that agent A has more information than he really does, he buys and causes the
price to rise to p2 = p0 + af . Then B sees the price rise more than f , so he
buys, driving it to p3 = p0 + a2f , and so on. This process is clearly unstable if
a > 1. The agents either need to know the value of a exactly or they need to
be able to adapt a based on information that is not contained in the price. It is
difficult to understand how they can do this since by definition if they are not
rational, not only do they not have full information, they do not know how much
information they have, and they thus cannot know a priori the proper value of a.
Under deviations from rationality, deviations from fundamentals are inevitable.
For a beautiful model where copy-cats lead to such instabilities, see ?.

In its extreme version, this is just the kind of scenario that occurs during a
bubble (see Bouchaud and Cont [1998] for an explicit model of this). Any reason-
able investor who lived through the millennium technology bubble experienced
this problem. Even though high prices seemed difficult to rationalize based on
values, prices kept going up. This led many sanguine investors to lose confidence
in their own valuations, and to hang on to their shares much longer than they
thought was reasonable. If they didn’t do this they experienced losses as mea-
sured relative to their peers. Under this view, bubbles stem from the problem of
not knowing how much information price movements really contain, and the feed-
back effects that occur when most people think they contain more information
than they really do. This point of view differs from that in the standard literature
on rational bubbles. As we argue below, while not entirely different, there are im-
portant contrasts between this view and the standard rational expectations/noise
trader models.
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3.4 Different explanations for market impact

Why is there market impact? We will distinguish three possibilities:

1. Trades convey a signal about private information. This idea, discussed in
the previous section, was developed by Grossman and Stiglitz [1980]. The
arrival of new private information causes trades, which cause other agents
to update their valuations, which changes prices. In this case it is fair to
say that trades cause price changes, since even if there happens to be no
information, unless this is common knowledge the observation of a trade is
still interpreted as information, which causes the price to change.

2. Agents successfully forecast short term price movements and trade accord-
ingly. This can result in measurable market impact even if these agents have
absolutely no effect on prices at all. If an agent correctly forecasts price
movements and trades based on this forecast, when this agent buys there
will be a tendency for the price to subsequently rise. In this case causality
runs backward, i.e. because the price is about to rise, agents are more likely
to trade in anticipation of it, but a trade based on no information will have
no effect.

3. Random fluctuations in supply and demand. Even in the standard mar-
ket clearing framework, if a given agent increases her demand while other
agents keep theirs constant, when the market clears that agent buys and
the price rises. Fluctuations in supply and demand can be completely ran-
dom, unrelated to information, and the net effect regarding market impact
is the same. In this sense impact is a completely mechanical – or better,
statistical, phenomenon. As we will see in Appendix 1, the meaning of this
can be subtle and may depend on the market framework.

All three of these result in identical short term market impact, i.e. a positive
correlation of trading volume and price movement, but are conceptually very
different. If some traders really have an information on the “true” price at some
time in the future (say the end of the day, after the market closes), then the
observation of an excess of buy trades allows the market to guess that the price
will move up and to change the quotes accordingly (see Section 7.2.1 on the
Glosten-Milgrom model). In this sense, information is progressively included into
prices, as a function of the observed order flow. In this picture, as emphasized in
Hasbrouck [2007], “orders do not impact prices. It is more accurate to say that
orders forecast prices.” But if the mechanical interpretation is correct, correlation
between price changes and order flow is a tautology. If prices move only because
of trades, “information revelation” may merely be a self-fulfilling prophecy which
would occur even if the fraction of informed traders is zero. The only possible
differences between these picutres come about in the temporal behavior of impact,
which we will discuss in Section 6.
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3.5 Noise trader models and informed vs. uninformed trading

In behavioral finance the problem of irrational investors is typically coped with
by introducing “noise trader” models, in which some agents (the noise traders)
are stupid while others are completely rational (Kyle [1985], Delong et al. [1990],
Shleifer [2000]). Noise trading could be driven by the need for liquidity (here
meaning the need to raise capital for other reasons), it could be driven by the
desire to reduce risk, or it could be “irrational behavior”, such as trend follow-
ing. The assumption is made that such investors lack the skill or information
processing ability to collect and/or make full use of information. The rational
investors, in contrast, are assumed to correspond to skilled professionals. Their
trading is perfect, in the sense that they know everything. Examples of what
they must know includes the strategies of all the noise traders, and the fraction
of capital traded by noise traders as opposed to rational investors. In such mod-
els prices can deviate from fundamental values due to the action of the noise
traders and the desire of the rational agents to exploit them as much as possi-
ble, but the rational agents always keep them from deviating too much. In such
models the rational traders make “informed” trades while the noise traders make
“uninformed” trades.

There are several conceptual problems with noise trader models that are clear
a priori. No one can seriously dispute that traders must have different levels
of skill, but is the noise trader approach the right way to model this? While it
might be fine to model a continuum of skill levels as “low” and “high”, the idea
of identifying the “high” level with perfect rationality postulates a level of skill
at the top end that is difficult to imagine. The panoply of strategies used by
real traders is large, and financial professionals (and even private investors) are
sufficiently secretive about what they do, that it is difficult to imagine that even
the most skilled traders could fully understand everyone else’s behavior.

Another problematic issue is the operational problem of measuring informa-
tion. For example, under the theory that urgency is a proxy for informativeness,
empirical work on the subject has often defined an informed trade as one that
is executed by a market order, and defined an uninformed trade as one that is
represented by a limit order. This goes against the fact that many of the most
successful hedge funds make extensive use of limit orders5. The only alternative
is to use data that contains information about the identity of the agents making
the trades. Such data does indeed confirm that professionals perform better than
amateurs (Barber et al. [2004]), but as mentioned above, there is no demonstra-
tion that this means they are rational, and other than stating that professionals

5We are basing this on personal conversations with market practitioners and so can only
place a lower bound: We know many people working in many sophisticated trading operations
and all of them at least partially use limit orders. We suspect the correct statement is that
“most”, or even “nearly all” successful hedge funds use limit orders for at least a substantial
part of their trading.
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make larger profits, it is impossible to determine whether or not professionals are
good enough to be considered rational. (On this point, see also Odean [1999]).

3.6 A critique of the noise trader explanation of market impact

One of the most important questions to ask about any theory is what it explains
that is not explained by a simpler alternative. Noise trader models have been
proposed to explain why market impact is a concave function of trading volume.
The empirical evidence for this will be discussed in detail in Sections 5 and 6;
in any case, it is a well established empirical fact that the market impact as
a function of trade size has a decreasing derivative. This can be alternatively
stated as saying that the price impact per share decreases with the total size of
the trade. The standard explanation for this is that it is due to a mixture of
informed and uninformed trading. If more informed traders use small trade sizes
and less informed traders use large trade sizes, then small trades will cause larger
price movement per share than large trades.

There are several problems with this theory:

• A concave market impact function is observed in all markets that have been
studied, including many such as the London and Paris markets where the
identity of orders is kept completely anonymous. This rules out any explanation
that depends on trades made by some agents communicating more information
about prices than others, and leaves only the possibility that some traders are
able to anticipate short term price movements better than others – see the
discussion in Section 3.4.
• The model is unparsimonious in the sense that it requires the specification of

a function that states the information that traders have as a function of the
size of the trades that they use.
• The model is difficult to test because it requires finding a way to specify the

information that different groups of traders have a priori. One proposal is to
do this based of the average profits of different groups of traders. This suffers
from the problem that the time horizon for market impact is typically very
different than the time horizon on which traders attempt to make profits. A
fund manager who intends to a buy a stock and hold it for three years may
make the trade to take up that position in a single day. While this manager
might have great skill in predicting stock price movements on a three year
time horizon she may have no skill at all on a daily horizon. Thus in a large
fraction of cases, even under large variations in trader skill, impact may have
little correlation with profits.
• If it is indeed advantageous to use small trades then since this is a trivial

strategy, one would think that everyone would quickly adopt it and the effect
would disappear. In fact in the last five years or so there has been a huge
increase in algorithmic trading, in which brokers automatically execute large
trades for clients by cutting them up into small pieces. One would therefore
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think that in modern times the concavity should have diminished or even been
eliminated entirely. There is little evidence for this - the impact continues to
be highly concave.

Thus we have argued above that the theory is implausible, but even more
important, that it makes weak and untestable predictions. The prediction of
concavity requires a set of assumptions that are complicated to specify and im-
possible to measure. The predictions are purely qualitative, and it is not obvious
how they might be extended to other properties of impact, such as its temporal
behavior.

3.7 The liquidity paradox – price are not in equilibrium

We will argue here that liquidity is an important intermediary that modulates
the effect of information. We are defining liquidity in terms of the size of the price
response to a trade of a given size. High liquidity implies a small price response.
Since trades carry information, then if the size of trades in response to a given
level of information remains constant, as the liquidity varies the price response
to information varies with it.

Under the assumption that trading is an intermediate step in the response of
prices to information, one can conceptually decompose it into two terms.

∆p = T (I)/λ, (3.1)

where λ is the liquidity and T (I) is the response of trades to information I.
Variations in the liquidity do not tell the full story about the response of prices
to information – to do that one would also need to understand T (I). Nonetheless,
as we argue here, the effects of varying liquidity are substantial, and they have
the huge advantage of being easily measurable6. In contrast, since information
is difficult to measure, T (I) is difficult to measure. Furthermore, the above
equation should be interpreted rather loosely: as we shall see below, impact is in
fact neither linear nor permanent.

A very important empirical fact that is crucial to understand how markets
operate is that even “highly liquid” markets are in fact not that liquid. Take for
example a US large cap stock. Trading is extremely frequent: a few thousand
trades per day, adding up to a daily volume of roughly 0.1 – 1% of total market
capitalization. Trading is even more frantic on futures and Forex markets. How-
ever, the volume of buy or sell limit orders typically available in the order book
at a given instant of time is quite small: only the order of 1% of the traded daily
volume, i.e. 10−4 – 10−5 of the market cap for stocks. Of course, this number has
an intraday pattern and fluctuates in time, and it can reach much smaller values
in liquidity crises.

6Of course liquidity may also depend on information, and indeed in Section 6 we will develop
this connection.
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The fact that the outstanding liquidity is so small has an immediate conse-
quence: trades must be fragmented. The theoretical motivations for this were
originally discussed by Kyle [1985]. It is not uncommon that investment funds
want to buy large fractions of a company, often exceeding several percent. One
possibility is to arrange upstairs block trades but this lacks transparency and can
be costly. If trading occurs through the continuous double auction market, the
numbers above suggest that to buy 1% of a company requires at least the order
of 100 – 1000 individual trades. This is under the unrealistic assumption that
each individual trade completely empties the order book – more realistically each
trade consumes only a fraction of the order book, and the number of trades is
even larger. But since a thousand trades corresponds to roughly the whole daily
liquidity, it is clear that these trades have to be diluted over several days, since
otherwise the market would be completely destabilized. Thus an informed trader
cannot use her information immediately, and has to trade into the market little
by little.

But why is liquidity, as measured by the number of standing limit orders, so
low? Both for similar and for opposite reasons. Too large a buy limit order from
an “informed” trader would give her away and raise the price of the sellers. Too
large a limit order from a liquidity provider would put her at risk of being ‘picked-
off’ by an informed trader. There is a kind of hide and seek liquidity game taking
place in organized markets, where buyers and sellers face a paradoxical situation:
Both want to have their trading done as quickly as possible, but both try not
to show their hands and reveal their intentions. As a result, markets operate in
a regime of vanishing revealed liquidity, but large latent liquidity; this leads to a
series of empirical regularities that we will present below.

From a conceptual point of view, however, the most important conclusion
of this qualitative discussion is that prices are typically not in equilibrium, in
the traditional Marshall sense. That is, the true price is very different than it
would be if it were set so that supply and demand were equal as measured by the
honest intent of the participants, as opposed to what they actually expose. As
emphasized above, the volume of individual trades is much smaller than the total
demand or supply at the origin of the trades. This means that there is no reason
to believe that instantaneous prices are equilibrium, efficient prices that reflect
all known information. Much of the information is necessarily latent, withheld
due to the small liquidity of the market, and only slowly revealing itself (see
Lyons [2001] for similar ideas). At best, the notion of equilibrium prices can only
make sense over a long time scale; high frequency prices are necessarily soiled by
a significant amount of noise.

3.8 Time scales and market ecology

Consider again the case of a typical US large cap stock, say Apple, which (as
of Nov. 2007) had a daily turnover of around 8B$. There are on average 6
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transactions per second, and on the order of 100 events per second affecting
the order book. These are extremely small time scales compared to the typical
time for public news events, in which a hot stock like Apple might be mentioned
by name every few hours during a period of fast information arrival. Perhaps
surprisingly, the number of large jumps in price is much higher. For example,
if we define a jump as a one minute return exceeding three standard deviations,
there are the order of ten such jumps per day, reflecting the very heavy tailed
distribution of high frequency returns (Joulin et al. [2008]). More often than
not such jumps occur in the absence of any identified news. It is obviously a
particularly important question to understand the origin and the mechanisms
leading to these jumps. The difference between the frequency of news and the
frequency of jumps already suggests that something else must be at work, such
as fluctuations in liquidity, that may have little or nothing to do with external
news entering the market.

What is the typical time scale of the round trip trades of investors? This
depends very much on the style of trading – traditional long-only funds have
investment horizons on the scale of years, while more aggressive long-short stat-
arbs have time scales of weeks or days, sometimes even shorter. Some empirical
results support the existence of a broad spectrum of investment horizons (see
Section 4.3 and 11.1). The optimal frequency of a trading strategy is a trade-off
between the expected profit and the friction and transaction costs. Since the
fraction of costs grows with the trading volume large investment funds cannot
trade too quickly. This, again, is directly related to the small prevailing liquidity.
So it is reasonable to think that information based trading decisions have intrinsic
frequencies ranging from a few days to years. As we have already emphasized,
for large investors a single decision may generate many more trades: A decision
to buy or sell may persist for days to months, generating a series of small trades.
Again, the important message is that low frequency, large volume investment
decisions imply high frequency, small volume trades, and that high frequency
prices cannot be equilibrium prices.

There is however a potentially viable high-frequency strategy called market-
making that consists in providing instantaneous liquidity to buyers and sellers
and trying to eke out a profit from the bid-ask spread. As originally shown by
Glosten and Milgrom [1985], the difficulty is to avoid losses due to adverse price
moves. Since market makers are offering either to buy or to sell, they are giving
a free option to others who might have better information. The profitability of
market-making strategies depends both on the spread, which is beneficial, and on
the long-term impact of trades, which is detrimental. This intuition will be made
more precise and discussed in detail in section 7. On some exchanges market-
making is institutionalized, with certain obligations and advantages bestowed to
those who take the burden of providing liquidity. Markets have become, how-
ever, more and more electronic, with an open orderbook allowing each investor
to behave either as a liquidity provider by posting limit orders, or as a liquidity
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taker by issuing market orders. Depending on market conditions (for example,
the instantaneous value of the spread), investors can choose either type of order.
There is both empirical and anecdotal evidence that some players implement high
frequency, market-making like strategies. This contribution to order flow is often
described as “uninformed”. Although this flow differs from longer horizon trades,
which are supposed to be economically informed, these market-making strategies
routinely use sophisticated short-term prediction tools and exploit any profitable
high-frequency signals. The above simplified separation of market participants
into two broad classes, speculators/liquidity hunters that trade at medium to low
frequencies and market-makers/liquidity providers at high frequencies is both
realistic and useful to understand the ecology of financial markets (Handa and
Schwartz [1996], Farmer [2002], Wyart et al. [2006], Lillo et al. [2008b]). The
competition between these two categories of traders allows one to make sense
of a number of empirical facts, we believe much more usefully than noise trader
models. In Section 11 we present some recent empirical results on the character-
ization of a market ecology.

3.9 The volatility puzzle

Given that markets are ecological systems where participants have a broad dis-
tribution of time horizons from seconds to years, it is perhaps not surprising to
see long-memory effects in financial markets, e.g. in trading volume, volatility
and order flow. What is a priori surprising, however, is that despite the fact
that high frequency prices cannot possibly be in equilibrium because of lack of
liquidity, and despite the fact that it should take time for the market to interpret
a piece of news and agree on a new price, the average volatility is remarkably
constant on a wide range of different timescales. As measured by autocorrelation,
prices are remarkably efficient down to the fastest timescales. We have argued
that news arrival happens on much longer timescales. Given that this is true,
how can prices remain so efficient, at least with respect to linear models, even on
very fast time scales?

One possible explanation for this is might be that public information as evi-
denced on news feeds is only a small part of the available information. Instead,
suppose there are many sources of private information, which agents are contin-
ually processing. As they make their decisions they trade. Given that heavily
traded stocks average many trades per second, this would suggest that a truly
staggering amount of information is being processed. We find this explanation
implausible.

The alternative is to that there is an information processing cascade from
fundamental information on slow time scales to technical information on fast
time scales. As we have argued above, fundamental information enters at a rela-
tively slow rate, and then is processed and incorporated into prices. Under this
view high frequency strategies play an important role. Such strategies do not
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process external information directly, but rather serve the role of digesting that
information and keeping the price stream unpredictable. Such strategies are not
processing fundamental information, but rather are acting as technical trading
strategies, processing information contained in the time history of prices, trading
volume and other information that is completely internal to the market. The
ability to substitute information in a time history for state information is well
supported in dynamical systems theory (Packard et al. [1980], Takens [1981], Cas-
dagli et al. [1991]). Thus we argue that in the ecology of financial markets, high
frequency strategies are fed by lower frequency strategies through an information
cascade from longer to shorter timescales, and from fundamental to technical
information, finally resulting in white noise on all scales.

This also suggests that microstructural effects may influence the value of the
volatility, as suggested by Lyons [2001], e.g. “microstructure implications may
be long-lived” and “are relevant to macroeconomics”. We will comment on the
relation between microstructure and volatility in Section 8. This relation is also
relevant for the regulator, who might attempt to alter the microstructural organ-
isation of markets in order to reduce the volatility.

3.10 The Kyle model

A classic model noise trader model for market impact, which is a natural a point
of comparison is due to Kyle [1985]. This model assumes that there are three
types of traders: Noise traders who make random trades, market makers who set
prices in order to guarantee efficiency, and an insider who has access to superior
information. Under the most general version of the model the noise traders and
insider trade continuously from a starting time until a final liquidation time, at
which point everyone is paid the liquidation price for their holdings. The insider
has superior information about the final liquidation price p∞, and an infinite
bank, which she uses to maximize profits at the expense of the noise traders.

The optimal amount that the investor should trade is easily found to be pro-
portional to the difference p∞−pt. With the assumption of a linear and permanent
impact, in Kyle’s notation the price evolution is given by:

pt+1 − pt = λ [Φt + ξt] + ηt; Φt = β[p∞ − pt] (3.2)

where Φt is the signed demand of the investor, λ, β are coefficients, and ξt is the
noise trader demand coming from all other market participants, and ηt a noise
term accounting for possible changes of prices not induced by trading (news, etc.).
The above equation can easily be solved, and leads to an exponential relaxation
of the initial price towards p∞ plus a bounded noise term.

The impact in this model can be regarded as essentially mechanical. There
is an apparently permanent change in price which is linearly proportional to
the total amount that the noise traders and insider trade. We say “apparently
permanent” because, since there is a final liquidation time, what happens past
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this point is undefined. Note that in this model the price will move toward p∞
regardless of whether it is the correct price; all that is necessary is that insider
believe it is the correct price. A random assignment of beliefs about p∞ will result
in a corresponding random set of impacts. Thus, referring to our discussion of
the different explanations for market impact in Section 3.4, while the Kyle model
is built in the spirit of explanation (1), that trades convey a signal about private
information, it is equally consistent with (3), random fluctuations in supply and
demand.

The assumption of a final liquidation price can naively lead to erroneous con-
clusions. For example, this model suggests that one can easily manipulate the
price. However, in the absence of a liquidation price where a transaction with a
counterparty can be realized without impact, things are not so trivial: as soon
as the investor wants to close his position, he will again mechanically revert the
price back to its initial value and take losses. (To see this note that in a single
round trip the investor will buy at a high price and sell at the original price). The
above impact model, Eq. (3.2), although very often used in agent based models of
price fluctuations (two of us have also developed similar ideas, i.e. Bouchaud and
Cont [1998], Farmer [2002])), is far too naive to represent the way real markets
operate, at least at the tick by tick level.

Thus we see that while the Kyle model provides a good starting point for
understanding why there should be market impact, and why it is useful to trade
into a position incrementally, it falls short of making realistic predictions about
impact. We feel that the key elements that need to be extended are: (1) Removing
the final liquidation price, (2) eliminating the infinite bank of the insider and
replacing it with the more realistic assumption of a finite, predetermined trading
size, and (3) eliminating the distinction between the insider and the noise trader.
The aim of the following sections is to explain in detail how to construct a model
generalizing Eq. (3.2), using an approach based on robust facts observed in
empirical data and consistency arguments. We will find that impact is in general
non-linear and transient – or equivalently, as explained in section 6.5, history
dependent. It is only after a properly defined “coarse graining” procedure that
such an impact model can possibly make sense.

4 LARGE FLUCTUATIONS AND LONG-MEMORY OF ORDER FLOW

From a mechanical point of view price formation process is the outcome of (i) the
flow of orders arriving in the market and (ii) the response of prices to individual
orders. Since price dynamics are reasonably well described by a Brownian motion
one might naively assume that this would be true for order flow as well. In fact
this is far from the truth. As we will explain in detail in this section, order flow
is a highly autocorrelated long-memory process. As a consequence, to maintain
market efficiency the price response to orders must strongly depend on the past
history of order flow. This has profound conseqences for the way in which markets



LARGE FLUCTUATIONS AND LONG-MEMORY OF ORDER FLOW 24

Figure 1. Autocorrelation function of the time series of signs of orders that result in

immediate trades (effective market orders) for the stock Vodafone traded on the London

Stock Exchange in the period May 2000 - December 2002, a total of 5.8× 105 events.

incorporate information.

4.1 Empirical evidence for long-memory of order flow

We discuss here the statistical properties of order flow by considering the time
series of signs of orders. Specifically, consider the symbolic time series obtained in
event time by replacing buy orders with +1 and sell orders with −1, irrespective
of the volume of the order. We reduce these series to ±1 rather than analyzing the
signed series of order sizes directly in order to avoid problems created by the large
fluctuations in order size7. This reduction can be done for market orders, limit
orders, or cancellations, all of which show very similar behavior8. We denote with
εi the sign of the ith market order. Figure 1 shows the sample autocorrelation
function of the market order sign time series for Vodafone (VOD) in the period
1999-2002 in double logarithmic scale. The figure shows that the autocorrelation
function for market order signs decays very slowly. The autocorrelation function

7Fluctuations in order size are heavy tailed and have long-memory themselves, so statistical
averages based on them converge only slowly. The essential behavior is captured by the series
of signs.

8Long memory is also observed if the signs of all orders, including both limit and market
orders, are taken together. In contrast, if one assigns a cancellation of a buy order a negative
sign, corresponding to the fact that the only nonzero price movements it can produce are down-
ward, then the combined sequence of signs for market orders, limit orders, and cancellations
does not show long-memory.
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is still above the statistical noise level even after 104 transactions, which for this
stock corresponds to roughly 10 days. This result indicates that if one observes
a buy market order now, based on this information alone there is some non-
vanishing predictability of the market order signs two weeks from now.

We also note that the autocorrelation function shown in Fig. 1 is roughly
linear in a double logarithmic scale over more than 4 decades9. This suggests
that a power-law relation Cτ ∼ τ−γ might be a reasonable description for the
sample autocorrelation function10.

Stochastic processes for which the autocorrelation function decays asymptot-
ically as a power-law with an exponent smaller than one are called long-memory
processes Beran [1994]. A precise definition of long-memory processes can be
given in terms of the autocovariance function Γτ . We define a process as long-
memory if in the limit τ →∞

Γ(τ) ∼ τ−γL(τ), (4.1)

where 0 < γ < 1 and L(τ) is a slowly varying function11 at infinity. The degree of
long-memory is given by the exponent γ; the smaller γ, the longer the memory.
The integral of the autocovariance (or autocorrelation) function of a long memory
process diverges. Long-memory can also be discussed in terms of the Hurst
exponent H, which is simply related to γ. For a long-memory process H = 1−γ/2
or γ = 2− 2H. Short-memory processes have H = 1/2, and the autocorrelation
function decays faster than 1/τ . A positively correlated long-memory process
is characterized by a Hurst exponent in the interval (0.5, 1). The use of the
Hurst exponent is motivated by the relationship to diffusion properties of the
integrated process. For normal diffusion, where by definition the increments
do not display long-memory, the standard deviation asymptotically increases as
t1/2, whereas for diffusion processes with long-memory increments, the standard
deviation asymptotically increases as tHL(t), with 1/2 < H < 1, and L(t) a slow-
varying function. In econometrics of financial time series many variables have the
long-memory property. For example, it is widely accepted that the volatility of
prices (Ding et al. [1993]) and stock market trading volume (Lobato and Velasco
[2000]) are long memory processes. Models of long-memory processes include
fractional Brownian noise (Mandelbrot and van Ness [1968]) and the ARFIMA
process introduced by Granger and Joyeux [1980] and Hosking [1981].

As Figure 1 suggests, and as discovered by Bouchaud et al. [2004] and Lillo
and Farmer [2004], order flow is also described by a long-memory process. The

9The noisy behavior for large τ comes from the fact that for large lags the statistical errors
are remaining roughly constant while the signal decreases, so the relative size of the fluctuations
becomes larger.

10f(y) ∼ g(y) means that there exists a constant K 6= 0 such that limy→∞ f(y)/g(y) = K.
11L(x) is a slowly varying function (see Embrechts et al., 1997) if limx→∞ L(tx)/L(x) = 1 ∀t.

In the definition above, and for the purposes of this paper, we are considering only positively
correlated long-memory processes. Negatively correlated long-memory processes also exist, but
the long-memory processes we will consider in the rest of the paper are all positively correlated.
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long-memory of order flow is very robust, and is consistently observed for every
stock that has so far been examined. Lillo and Farmer tested for long-memory in
a panel of 20 highly capitalized stocks traded at the London Stock Exchange using
Lo’s modified R/S test (Lo [1991]), which is known to be a strict test for long
memory. They found that even on short samples, in most cases the hypothesis
of long-memory could not be rejected. The value of H observed in the London
Stock Exchange was generally about H ≈ 0.7, which corresponds to γ = 0.6.
Bouchaud et al. (2004) measured a larger interval of γ values in the Paris Stock
Exchange, ranging from 0.2 to 0.7. Long-memory has also measured long-memory
for an assortment of stocks in the NYSE (these results are mentioned in Lillo and
Farmer [2004], but have not been published in detail).

4.2 On the origin of long-memory of order flow

What causes long-memory in order flow? The presence of persistent time corre-
lations in the order flow suggests two possible classes of explanations: The first
type of explanation is that this is a property of the order flow of each investor,
independent of the behavior of other investors, as proposed by Lillo et al. [2005].
The second type of explanation is that investors herd in their trading though
an imitation process that involves an interaction between them, as proposed by
LeBaron and Yamamoto [2007]. It is of course possible that both effects operate
at once, but in any case one would like to know their relative magnitude.

We believe that the evidence gathered so far strongly favors the first explana-
tion. More explicitly, we believe the dominant cause is the strategic behavior of
large investors who split their orders into many small pieces and execute them
incrementally. The evidence from this comes from two sources. One is the agree-
ment of the properties of the order flow with theory, and the other is additional
evidence based on data that gives information about the identity of participants.
We summarize both of these here.

4.3 Theory for long-memory in order flow based on strategic order splitting

Lillo et al. [2005] have hypothesized that the cause of the long-memory of order
flow is a delay in market clearing. To make this clearer, imagine that a large
investor decides to buy ten million shares of a company. It is unrealistic for her
to simply state her demand to the world and let the market do its job. There
are unlikely to be sufficient sellers present, and even if there were, revealing the
intention to buy a large quantity of shares will very likely push the price up
substantially. Instead the large investor keeps her intentions as secret as possi-
ble and trades incrementally over an extended period of time, possibly through
intermediaries. As already discussed, the strategic reasons for doing this were
made clear by Kyle [1985], who investigated a model in which an insider with
information about a final liquidation price tries to maximize profits. In simple
terms, the motivation is that by splitting the hidden order into small pieces the
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investor is able to execute much of the hidden order at prices that do not reflect
the full price movement that it will eventually cause.

Our perspective differs from Kyle’s in that we assume that the size of the order,
which we call the hidden order, is given at the outset when the initial trading
decision is made. We believe that the size of such orders is largely determined
by the fund manager a priori, and is influenced by a combination of the funds
under management and the timescale of the strategy, which is typically much
longer than the time scale for completing the trade. The other key differences is
that we do not assume a final liquidation price, and we do not make a distinction
between informed traders and noise traders. When taken together these differing
assumptions create key differences in the predictions of the model in comparison
with Kyle.

In several studies based on data giving the identity of hidden orders, about
a third of the dollar value of such institutional trades took more than a week
to complete (Chan and Lakonishok [1993, 1995], Vaglica et al. [2008]). This
conflicts with the standard model of market clearing presented in textbooks,
which assumes that agents fully state their supply and demand and that prices
are set so that supply and demand are evenly matched. The fact that large orders
are kept secret and executed incrementally implies that at any given time there
may be a substantial imbalance of buyers and sellers. Effective market clearing
is delayed, by variable amounts that depend on fluctuations in the size and signs
of the unrevealed hidden orders.

We now describe a recently proposed simple model of order flow that postulates
the independence of trading activity of investors, and which is able to reproduce
the long-memory properties of order flow (Lillo et al. [2005]). In the simplest
version of the model, assume that at any time there are K hidden orders present
in the market. Initially the size V of these hidden orders are drawn from a
distribution P (V ) and the sign εi is randomly chosen. For simplicity we assume
that V is an integer number. We indicate with Vi(t) the volume of hidden order
i that has not yet been traded at time t. At each timestep t an existing hidden
order i is chosen at random with uniform probability, and a unit volume of that
order is traded, so that Vi(t + 1) = Vi(t)− 1. This generates a revealed order of
unit volume and sign εi. A hidden order i is removed if Vi(t + 1) = 0, i.e. when
the hidden order is completely traded. When this happens a new hidden order is
created with a random sign and a new size.

It is possible to find a closed expression for the autocorrelation function of
the trade sign Cτ as a function of the hidden order size distribution P (V ). The
asymptotic behavior of Cτ can be obtained through a saddle point approximation.
If the hidden order size is asymptotically Pareto distributed, i.e.

P (V ) ∼ α

V α+1
, (4.2)

then the autocorrelation function of order sign behaves asymptotically as (Lillo
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et al. [2005])

Cτ ∼
Kα−2

α

1

τα−1
. (4.3)

Thus the model makes the falsifiable prediction that the exponent γ of the power-
law asymptotic behavior of the autocorrelation of order sign is determined by
the exponent α of the power-law asymptotic behavior of the hidden order size
distribution through

α = γ + 1. (4.4)

Since we observe that γ ' 0.5, this model predicts that α = 1.5.
It is worth noting that Lillo et al. [2005] also introduced a more general model

where the number of hidden orders is not constant in time. Specifically, at each
time t a new hidden order is generated with probability 0 < λ < 1 if K(t) > 0,
or probability one if K(t) = 0. Although this model is not solved analytically,
numerical simulation shows that the relation between the exponent of the auto-
correlation of order sign and the exponent of order size distribution is the same
as in the simpler model where the number of hidden orders is fixed.

This model for the origin of correlation in order flow is in principle empirically
testable. The main difficulty arises from the lack of large and comprehensive
databases of the hidden orders of investors. There are two ways to check the
consistency of the theory. The first one is to compare the distribution of trade
sizes in block markets to the autocorrelation function of order signs in order
book markets. In block markets trades are made bilaterally and the identity
of counterparties is known. Brokers do not like order splitting and strongly
discourage it. Thus block markets can be considered a crude proxy for observing
the distributional properties of hidden orders12. In the next section we discuss
evidence that suggest that block trade volume is indeed asymptotically power law
distributed with an exponent α ' 1.5. For comparison13 the average measured
values of γ for LSE stocks is γ = 0.57, close to γ̂ = 0.59 as predicted by γ̂ =
α− 1. The second supporting evidence comes from a study of the Spanish stock
exchange by Vaglica et al. [2008] who have inferred hidden orders using data with
membership codes. This study will be discussed in Section 11.1.

4.4 Evidence based on exchange membership codes

Empirical testing is difficult due to the fact that it is not easy to collect data on
the behavior of individual investors. Nonetheless, partial information about the
identity of participants can be obtained by making use of data that identifies the

12The exception is that it is possible to split an order and trade with multiple brokers.
13The error bars in computing both γ and α are substantial, as can be seen by computing

them for sub-samples of the data, and the close agreement observed by Lillo et al. [2005] between
γ and α−1 is probably fortuitious. Unfortunately there are still not good statistical methods for
assigning confidence intervals for exponents of power laws, particularly when the observations
have long-memory, but the errors can be roughly assessed by examining sub-samples.
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Figure 2. Autocorrelation of signs vs. transaction lag for transactions with same mem-

bership code, different membership code, and all transactions irrespective of membership

code, plotted on double logarithmic scale. The investigated stock is AstraZeneca (AZN)

traded at LSE in the period 2000-2002.

broker or the member of the exchange who executes the trade, which we will sim-
ply call the membership code. There are many stock markets, such as the LSE, the
Spanish Stock Exchange, the Australian Stock Exchange, and the NYSE, where
it is possible to obtain data containing this information. It is important to stress
that knowing the membership code is not the same as knowing the individual
participant, since the member may either trade on its own account or may act
as a broker for other trades, or may do both at once. Nonetheless, several recent
papers have demonstrated that it is possible to extract useful information about
the identity of individual traders using such information, e.g. showing that there
are consistent behaviors that are persistent in time associated with particular
membership codes, that such behaviors can be organized into a taxonomic tree,
and that it is possible to detect the presence of large institutional trades (Lillo
et al. [2008b], Zovko and Farmer [2007], Vaglica et al. [2008]).

Gerig et al. have used membership codes of the London Stock Exchange to test
the hypothesis of the theory presented in Lillo et al. [2005]. The autocorrelation
function of market order signs is computed by considering realized orders placed
by the same membership code or by different membership codes separately. Fig-
ure 2 shows the autocorrelation function of market order signs with the same
membership code, different membership codes, and all transactions irrespective
of membership code. The red circles are the autocorrelation function irrespective
of the membership code and, as anticipated above, it well fitted by a power law.
When only transactions with the same membership code are considered (green
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triangles) the autocorrelation is still power law with a slightly smaller exponent.
Moreover for a fixed lag τ the autocorrelation function with the same member-
ship code is one order of magnitude larger than the autocorrelation function
irrespective of the membership code. Finally, when only transactions with dif-
ferent membership code are considered the autocorrelation function decays very
rapidly to zero and it is clearly not consistent with power law behavior. Under
the assumption that most investors use only a few brokers to execute a given
hidden order, this plot strongly supports the hypothesis that the long memory
of signs is due to the presence of investors that place many revealed orders of
the same sign and that there is no clear sign of herding behavior among different
investors. It is in principle possible that herding happens between investors using
the same broker, but not between investors with different brokers; however the
reasons why this would occur are unclear and it seems implausible that it could
explain such a dramatic difference.

4.5 Evidence for heavy tails in volume

The theory developed above makes it clear that the distribution of trading vol-
ume play a key role in shaping many properties of the market, including the long-
memory of order flow, which we will show in turn has important consequences for
market impact. In recent years there has been a debate about the statistical prop-
erties of trading volume. This is partly due to the fact that markets have different
structures and one should be careful in specifying which volume is considered in
the analysis. Gopikrishnan et al. [2000] originally observed that volume of trades
at the NYSE are asymptotically power law distributed. Specifically, they claimed
that for large volumes the probability distribution scales as

P (V > x) ∼ x−3/2. (4.5)

This law has been termed the “half cubic” law. The NYSE, as many other
financial markets, employs two parallel markets which provide alternative meth-
ods of trading, called the on-book or ”downstairs” market, and the off-book
or ”upstairs” market. Orders in the on-book market are placed publicly but
anonymously and execution is completely automated. The off-book market, in
contrast, operates through a bilateral exchange mechanism, via telephone calls
or direct contact of the trading parties. The anonymous nature of the on-book
market facilitates order splitting, i.e. large orders are split in smaller pieces and
traded incrementally. On the other hand the off-book market is a block market,
where large orders can be traded in a single transaction. The NYSE data used
by Gopikrishnan et al. [2000] includes a mixture of order book trades and block
trades. Since the typical size of block trades is much larger than the size of orders
traded in the order book, the size of block trades dominates the tail of volume
distribution.
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Figure 3. Volume distributions of off-book trades (circles), on-book trades (diamonds),

and the aggregate of both (squares). We show this for a collection of 20 different stocks,

normalizing the volume of each by the mean volume before combining. The dashed black

lines have the slope found by the Hill estimator and are shown for the largest one percent

of the data. Adapted from Lillo et al. [2005].

This can be seen more clearly in a market (or database) where it is possible
to separate block trades from order book trades. In figure 3 (from Lillo et al.
[2005]) we show the cumulative distribution function of trading volume of off-
book trades, on-book trades, and the aggregate of both for a collection of 20
LSE stocks. The distribution of block trades is consistent with the power-law
hypothesis of Eq. 4.5 with an exponent close to 1.5, whereas the distribution of
order book trades is not consistent with the half-cubic law, and instead has a
much thinner tail (see also Farmer and Lillo [2004] and Plerou et al. [2004]).

5 SUMMARY OF EMPIRICAL RESULTS FOR DIVERSE TYPES OF
MARKET IMPACT

The relation between the transacted volume and the consequent expected price
shift is called the price impact or alternatively the market impact function. Let-
ting R be a price return associated with a trade of size V , the market impact a
time l after the trade occurred is

I(V, l) = E[R|V, l].

For many purposes it is useful to separate the dependence on volume from the
dependence on time. One can make the hypothesis that the impact function can
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be written as a product of two functions, i.e.

I(V, t) = S(V )R(l)

In this section we will primarily discuss the dependence on volume, saving the
discussion of time dependence for Section 6.

We are intentionally being vague at this stage about the definition of the return
R and the volume V ; defining these more precisely is one of the main points of this
chapter. The way in which the market impact behaves depends on the market
structure as well as on what one means by “return” and “volume”. Many studies
have empirically investigated market impact with a range of different results; we
will argue that in many cases these differences stem from differences in what is
being studied. The important distinctions that should be made are:

• First of all, one can consider market impact of an individual transaction vs.
an aggregate of many transactions. Aggregation here means that the market
impact is conditioned on a given number of trades or to a given interval of time.
We will discuss the volume dependence of individual impact in Section 5.1 and
the time dependence in Sections 6.2 - 6.5, and we will study the properties of
aggregate impact in Sections 5.2 and 6.8.
• A second important aspect is the type of market exchange where the transac-

tions take place. As we have said above, most financial markets have upstairs
or block markets as well as downstairs or orderbook markets. In the down-
stairs market trades are made by placing orders in a limit order book, and it is
quite common to aggressively split large trading orders into many small pieces.
The upstairs market trades are arranged bilaterally between individuals. As a
result of the different market structures the impacts can be quite different.
• A third factor that must be kept in mind is that large trading orders, which

we will call hidden orders, are typically split into small pieces and executed
incrementally. This is in contrast to realized orders, which are the actual orders
that are traded, e.g. the pieces into which hidden orders are split. For realized
orders the impacts may be part of a larger process of order splitting that is
invisible with the data that we have here. The impacts of hidden orders may be
quite different than those of realized orders. The impacts of individual orders
behave much like those of individual transactions, see the next bullet. We will
discuss the impact of hidden orders in Section 6.7.
• Finally, even if we have discussed market impact in terms of transacted volume,

other events in the market have an impact on price. Specifically, in double
auction market limit orders and cancellations can have a market impact that
is different from the impact of a market order.

In the following we will discuss the empirical regularities in these different
types of market impact.
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Figure 4. Market impact function of buy market orders for a set of 5 highly capitalized

stocks traded in the LSE, specifically AZN (filled squares), DGE (empty squares), LLOY

(triangles), SHEL (filled circles), and VOD (empty circles). Trades of different sizes are

binned together, and the average size of the logarithmic price change for each bin is shown

on the vertical axis. The dashed line is the best fit of the market impact of VOD with a

functional form described in Eq.5.1. The value of the fitted exponent for VOD is ψ = 0.3.

5.1 Impact of individual transactions

We now discuss the impact of individual transactions in limit order book mar-
kets, whose volume we will denote by v Many studies have examined the market
impact for a single transaction, and all have observed a concave function of the
transaction volume v, i.e. one that increases rapidly for small v and more slowly
for larger v. The detailed functional form, however, varies from market to mar-
ket and even period to period. Early studies by Hasbrouck (Hasbrouck91) and
Hausman, Lo and MacKinlay (Hausman92) found strongly concave functions,
but did not attempt to fit functional forms. Keim and Madhavan [1996] also ob-
served a concave impact function for block trades. Based on Trades and Quotes
(TAQ) data for a set of 1000 NYSE stocks the concavity of the market impact
was interpreted by Lillo et al. [2003] using the functional form

E[r|v] =
εvψ

λ
(5.1)

The exponent ψ(v) is approximately 0.5 for small volumes and 0.2 for large
volumes. Even normalizing the volume v by daily volume, the liquidity parameter
λ varies for different stocks; there is a clear dependence on market capitalization
M that is well-approximated by the functional form λ ∼ M δ, with δ ≈ 0.4.
Potters and Bouchaud (2003) analyzed stocks traded at the Paris Bourse and
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NASDAQ and found that a logarithmic form gave the best fit to the data. For
the London Stock Exchange, Farmer and Lillo [2004] and Farmer et al. [2005]
found that for most stocks Eq. ( 5.1) was a good approximation with ψ = 0.3,
independent of V . Hopman [2006] studied market impact on a thirty minute
timescale in the Paris bourse for individual orders and found ψ ≈ 0.4, depending
on the urgency of the order. Thus all the studies find strongly concave functions,
but report variations in functional form that depend on the market and possibly
other factors as well. Figure 4 shows the price impact of buy market orders for
5 highly capitalized LSE stocks, i.e. AZN, DGE, LLOY, SHEL, and VOD. The
price impact is well fit by the relation E[r|v] ∝ v0.3.

5.2 Impact of aggregate transactions

Studies of aggregated market impact have produced variable results, reaching
different conclusions that we will argue depend substantially on the time scale for
aggregation. The BARRA market impact model, an industry standard, uses the
TAQ data aggregated on a half hour time scale (Torre [1997]). They compare fits
using Equation 5.1 and find ψ ≈ 0.5; they obtain similar results using individual
block data. Kempf and Korn [1999] studied data for futures on the DAX (the
German stock index) on an five minute time scale and found a very concave
functional form. Plerou et al. [2002] studied data from the NYSE during 1994-95
ranging from 5 to 195 minute time scales and fit the market impact function with
a hyperbolic tangent. They noted that at shorter time scales this functional form
did not work well for small v; tanh(v) is linear for small v, but at short time scales
(e.g. 5 or 15 minutes) they observed a nonlinear impact function, becoming more
linear as they went toward longer time scales. Evans and Lyons [2002] studied
foreign exchange rate transactions data for DM and Yen against the dollar at the
daily scale over a four month period. They used the number of buyer initiated
transactions minus the number of seller initiated transactions as a proxy for the
signed order flow volume v, and found a strong positive relationship to concurrent
returns. Chordia and Subrahmanyam [2004] study impact for stocks in the S&P
500 at a daily time scale and perform linear regressions, but do not compare to
other functional forms. For the Paris bourse Hopman [2006] measures aggregate
order flow as

∑
i εiv

ψ
i , where the sum is taken over fixed time intervals. At a daily

scale he finds he gets the best linear regression against contemporary daily returns
with ψ ≈ 0.5. He also documents that the slope of the regression decreases with
increasing time scale. Finally, as discussed in more detail below, Gabaix et al.
[2003, 2006] have made extensive studies of data from the New York, London and
Paris stock markets on a fifteen minute time scale, and find exponents ψ ≈ 0.5.

What is the origin of these differences in the observed functional form of the
aggregate market impact? Part of the difference comes certainly from the fact
that these studies consider different markets, different assets, and different time
periods. However another important difference across studies is the time scale
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Figure 5. Aggregate market impact R(Q,N) for the LSE stock Astrazeneca for 2000-2002.

In (a) we plot the shifted aggregate return R(Q,N) +R0 vs. the aggregate signed volume

Q for three values of N . The arbitrary constant R0 is added to aid visualization; its values

are R0 = {0,−3× 10−3,−6× 10−3} for N = 1, 8 and 64 respectively. In (b) for each N

we rescale both the horizontal and vertical axes by Q∗N = Q
(95)
N −Q(5)

N , where Q
(5)
N is the

5% quantile and Q
(95)
N is the 95% quantile of Q.

of aggregation. There is no reason why the aggregate market impact over a 10
minute time interval should have the same functional form of that over a one
hour time interval or over an interval that is defined by 30 trades.

To have an idea of how the market impact changes its shape with aggregation
scale consider a specific example. Let vt be the volume of transaction happening
at time t (in event time). Let rt = log(pt+1/pt) be the corresponding log-return,
where pt is the price of transaction t. For a sequence of N successive transactions
beginning at time t, let QN =

∑N
i=1 εt+ivt+i be the aggregate volume and RN =∑N

i=1 rt+i be the aggregate return. The average market impact conditioned on
volume is

R(Q,N) = E[RN |QN = Q], (5.2)

i.e. it is the expected return associated with a signed volume fluctuation Q. We
write R(Q,N) to emphasize that this can depend both on the signed trading
volume imbalance V and the number of transactions N . In Figure 5 we show
empirical estimates for the market impact for the stock AZN, which is traded
on the London Stock Exchange, from Lillo et al. [2008a]. In Figure 5 we show
the market impact for different values of N with offsets added to the vertical
axis to aid visualization. As one would expect, the scale increases with N . The
shape of R(Q,N) also changes, becoming more linear with increasing N . This
is illustrated more clearly in Figure 5(b), where we rescale the horizontal and
vertical axes using a rescaling factor based only on QN . The renormalization
makes the increasing linearity clearer. As N increases the market impact near
Q = 0 becomes linear, and the size of the region that can be approximated as
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linear grows with increasing N . It also illustrates a surprising feature: The slope
of the linear region decreases with N . These same basic features (increasing
linearity and decreasing slopes) hold for all the stocks in our sample, in both the
New York and London Stock Exchanges. This result shows that the shape and
the scale of the aggregate market impact change with the aggregation scale. At
short time scales the function is significantly nonlinear, but at large aggregation
scales the market impact becomes close to linear, and the slope of the impact
decays with the aggregation scale. For this reason it is in general misleading to
compare aggregate impact curves with different scales, unless one has a theory for
how the market impact depends on aggregation scale. This also shows why the
studies mentioned above found different forms of the market impact. In Section
6.8 we present some models that help to explain the behavior of aggregate impact
observed in real data.

5.3 Hidden order impact

Because data for hidden orders, which are sometimes also called trading packages,
are difficult to obtain, there are only a few studies (Chan and Lakonishok [1993,
1995], Almgren et al. [2005], Vaglica et al. [2008]). These studies show that hidden
orders can be extremely long, involving thousands of realized trades spread over
periods of many weeks or even months. As reviewed in Section 11.1, the most
recent study by Vaglica et al. confirms that hidden orders obey a power law
distribution of size, which as we argue in Section 6 plays an important role in
determining their impact.

The theoretical considerations for treating hidden orders are quite different
than those for individual orders, and they also very different from those of aggre-
gated anonymous orders. The reason is because such orders come from the same
agent, creating bursts of orders in the order flow which are all of the same sign.
As we argued in Section 4.3, this generates strong correlations in order flow that
have to be compensated for, as discussed in Section 6. The volume dependence of
hidden order impact is intimately connected to the temporal aspects, and so we
save the development of the theory for hidden order impact for the next section.

5.4 Upstairs market impact

Market impact in the upstairs market has been studied by Keim and Madhavan
[1996]. As in other cases they find empirically that market impact is concave.
They explain this based on a model for the difficulty of finding counterparties
for trading. Ultimately, as pointed out by Gabaix et al. [2006], upstairs market
impact should match hidden order impact, for the simple reason that the upstairs
market is competing with the downstairs market, and if costs in the upstairs
market are too high they have the option of splitting their trades up in the
downstairs market. This is convenient because it implies that a theory for either
market automatically gives a theory for the other.
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6 THEORY OF MARKET IMPACT

In this section we develop theoretical explanations for both the volume depen-
dence and the temporal dependence of market impact. As stressed in the previous
section, there are several distinct types of impact that require a different approach
to their analysis. We begin in Section 6.1 by explaining why the impacts asso-
ciated with individual trades are so concave, arguing that the dominant cause
is selective liquidity taking. Then in Sections 6.2 - 6.5 we develop a theoreti-
cal approach to understanding the temporal behavior of impacts associated with
individual trades. We show that the long-memory of order flow and market effi-
ciency play a crucial role, which one can take into account one of two ways. One
can either assume a fixed impact, in which case the future contribution to the
impact of each trade must decay to zero with time, or one can assume a varying
but permanent impact, which implies asymmetry liquidity. We show that these
two approaches are equivalent. In Section 6.6 we present empirical results sup-
porting these ideas. In Section 6.7 we develop a theory for the impact of hidden
orders, i.e. linked sets of trades made by large investors. Finally in Section 6.8
we develop a theory for the aggregate impact of successive trades and show that
it does a good job of explaining the empirical results of Section 5.2.

6.1 Why is individual transaction impact concave?

Let us consider first the impact of individual transactions. Several different the-
ories have been put forth to explain why market impact for single transactions
is concave. These can be grouped into three classes: (1) Size dependent infor-
mativeness of trades (e.g. due to stealth trading, as postulated by (Barclay and
Warner [1993])), (2) average depth vs. price in the limit order book (Daniels
et al. [2003]) and (3) selective liquidity taking (Farmer et al. [2004]).

The standard reason given for the concavity of market impact is that it reflects
the informativeness of trades. If small trades carry almost as much information
as large trades, then the price changes caused by small trades should be nearly as
big as those for large trades. For example, this could be due to “stealth trading”,
i.e. because informed traders keep their orders small to avoid revealing their
superior knowledge (Barclay and Warner [1993]). Hypothesis (2), due to Daniels
et al. [2003]), is that it reflects the accumulation of liquidity in the limit order
book. I.e., the depth in the order book as a function of the price will determine
the market impact for a market order as a function of its size. Hypothesis (3)
is that this is due to selective liquidity taking, i.e. that liquidity takers submit
large orders when liquidity is high and small orders when it is low (see Farmer
et al. [2004]), Weber and Rosenow [2006], and Hopman [2006]).

Theory (2) is easily ruled out by computing the average virtual market impact
as a function of volume. This is defined as the average price change that would
instantaneously occur for an effective market order of size v (Weber and Rosenow
[2006]), Farmer and Zamani [2007]). In Figure 6 we show the virtual impact for
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Figure 6. Comparison of virtual to true market impact. True impact is shown in blue

circles, virtual impact in red triangles. The fitted curve for true impact (solid black) is of

the form f(v) = Avψ, with ψ = 0.3.

AZN, computed by hypothetically submitting orders for a range of different values
of v and measuring the immediate price response. This is done for each time
when real effective market orders were submitted. The resulting price response is
a direct probe of the depth of the limit order book. The fact that the mechanical
impact is linear to very good degree of approximation makes it clear that this is
not the cause of the concavity of the real market impact function.

The selective liquidity taking (hypothesis (3)) means that agents condition the
size of their transactions on liquidity, making large transactions when liquidity
is high and small transactions when it is low. As shown by Farmer et al. [2004],
for LSE stocks it is rare that a trade penetrates more than one price level14. For
example, for Astrazeneca approximately 87% of the market orders creating an
immediate price change have a volume equal to the volume at the opposite best.
Moreover, approximately 97% of the market orders creating an immediate price
change have a volume that is either equal to the opposite best or larger than this
value but smaller than the sum of volume at the second best opposite price. This
means that to a good approximation the market impact can be written in the
very simple form

E[r|v] = P (+|v)E[r], (6.1)

where P (+|v) is the probability that a trade of size v generates a nonzero return,
i.e. the probability that v ≥ Φb, where Φb is the volume offered or bid at the
opposite best price. E[r] is the expected return given that there is a nonzero

14See Table 2 of Farmer et al.
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return, which is of the order of the bid-ask spread (see Section 7 for more precise
statements). This demonstrates that trading orders that penetrate the opposite
best are rare. This is because agents do not like to suffer price degradation more
than the opposite best, and so condition the size of their orders on what is being
offered there.

We have now to explain why P (+|v) is a concave function. An explanation
in terms of selective liquidity taking is the following. Suppose that the volume
at the best is drawn from a distribution Pb(Φb) and suppose that the liquidity
taker draws the volume v she would like to trade from another distribution and
independently from Φb. If v < Φb she places a market order of size v, whereas
if v > Φb she places a market order of size Φb. What is the probability P (+|v)
under this simple model? A straightforward calculation shows that P (+|v) =∫ v

0
Pb(Φb)dΦb, i.e. it is equal to the cumulative distribution of the volume at

the best. This is an increasing and concave function of v that could be used to
fit the empirical P (+|v). Under this model the shape of the market impact is
explained by P (+|v), i.e. by the conditioning of trading orders on the liquidity
that is offered. In other words, theory (3) does a good job of explaining, at least
qualitatively, the data.

It is a matter of interpretation, however, whether this is also consistent with
theory (1), i.e. that smaller trades are proportionately more informative than
larger trades. From one point of view, one can simply say that the market
impact defines the informativeness of trades. If so, then it is obviously consistent.
However, if it means that price changes are a response to the new information
contained in trades, then the evidence presented above is inconsistent with theory
(1). In the LSE the quoted volume is visible to all, and so except for occasional
latency problems, in which the quote changes just before a trade is placed, the
trader is aware of the quote when she places the trade. The fact that the size of
the trade is strongly correlated with the size of the best quote implies that the
size of the trade carries little new information. This does not mean that the trade
is based on inferior information – it just means that other market participants
do not learn much from its size when it occurs. It is the conditioning of trade
size on best quotes that drives concavity, and not because the smaller trades are
nearly as “informed” as the larger trades.

6.2 A fixed permanent impact model

In the previous section we described how midquote prices react on average to
market orders of a given volume v. The above discussion was restricted to the
immediate impact, i.e. the impact that is felt immediately after a trade is com-
pleted. In general this can have both temporary and permanent components.
In this section we will discuss the impact of individual transactions, i.e. the av-
erage midquote price change between just before the nth trade and just before
the n + 1th trade. It is an empirical fact that this immediate impact, defined
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as E[rn|εnvn], is non zero and can be written as E[r|εv] = εf(v), where f is a
function that grows with v. Clearly, it is important to understand if and how
this immediate impact evolves with time (which we will measure in terms of the
sequence number of the trades). Is the impact of a trade permanent or transient?
Is it fixed or is it variable? How does it depend on the past order flow history?

The simplest situation is that of a usual random walker, where position at any
time is the sum over all past steps – however far in the past they might be. In
financial language, this corresponds to the case where the impact of a transaction
is permanent, which translates into the following equation for the midquote price
mn at time n:

rn = mn+1 −mn = εnf(vn; Ωn) + ηn, (6.2)

where ηn is an additional random term describing price changes not directly at-
tributed to trading itself, for example the impact of news where quotes could
instantaneously jump without any trade. We will assume here that ηn is inde-
pendent on the order flow and we set E[η] = 0 and E[η2] = Σ2. We have included
a possible dependence of the impact on the instantaneous state Ωn of the order
book. We expect such a dependence on general grounds: a market order of vol-
ume vn, hitting a large queue of limit orders, will in general impact the price very
little. On the other hand, one expects a very strong correlation between the state
of the book Ωn and the the size of the incoming market order: large limit order
volumes attract larger market orders.

The above equation can be written as:

mn =
∑
k<n

εkf(vk; Ωk) +
∑
k<n

ηk, (6.3)

which makes explicit the non-decaying nature of the impact in this model: εk∂mn/∂vk
(for k < n) does not decay as n−k grows. This simple model makes the following
predictions for the lagged impact function R` and the lagged return variance V`:

R` ≡ E[εn · (mn+`−mn)] = E[f ]; V` ≡ E[(mn+`−mn)2] =
(
E[f 2] + Σ2

)
`, (6.4)

i.e. constant price impact and pure price diffusion, close to what is indeed ob-
served empirically on small tick, liquid contracts. However if we consider the
autocovariance of price returns we find that

E[rnrn+τ ] ∝ E[εnεn+τ ] ∼ τ−γ (6.5)

which means that price returns are strongly autocorrelated in time. This fact
would violate market efficiency because price returns would be easily predictable
even with linear methods. We therefore come to the conclusion that the empiri-
cally observed long memory of order flow is incompatible with the random walk
model above if prices are efficient (Bouchaud et al. [2004], Lillo and Farmer [2004],
Challet [2007]). In other words one of the assumptions of the random walk model
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above must be relaxed. Among the various possibilities we will relax either the
assumption that price impact is permanent or the assumption that price impact
is independent of the order flow. As we will see these two possibilities are related
one to each other, but for the sake of clarity we will present them in two different
subsections.

6.3 The MRR model

In order to illustrate the above concepts, let us discuss a slight variant of a
model due to Madhavan, Richardson and Roomans (Madhavan et al. [1997]),
which helps define various quantities and hone in on relevant questions. The
assumptions of the model are (i) that all trades have the same volume vn = v
and (ii) the εn’s are generated by a Markov process with correlation ρ, which
means that the expected value of εn conditioned on the past only depends on
εn−1 and is given by:

E [εn|εn−1] = ρεn−1, (6.6)

The case ρ = 0 corresponds to independent trade signs, whereas ρ > 0 describes
positive autocorrelations of trade signs. Note that in this model, correlations
decay exponentially fast, i.e.

C` = E[εiεi+`] = ρ`. (6.7)

which, as we discussed in Section 4, does not conform to reality.
The mrr model postulates that the mid-point mn evolves only because of

unpredictable external shocks (or news) and because of the surprise component in
the order flow. This postulate of course automatically removes any predictability
in the price returns and ensures efficiency. Under the assumption that the surprise
component of the order flow at the nth trade is given by εn − ρεn−1, one writes
the following evolution equation for the price15.

mn+1 −mn = ηn + θ[εn − ρεn−1], (6.8)

where η is the shock component, and the constant θ measures the size of trade
impact.

These equations make it possible to compute several important quantities such
as the lagged impact function defined above (Eq. (6.4)). One may write:

mn+` −mn =
n+`−1∑
j=n

ηj + θ

n+`−1∑
j=n

[εj − ρεj−1], (6.9)

The full impact function is found to be constant, equal to:

R` = θ(1− ρ2), ∀` (6.10)

15The assumption that prices respond linearly to the order flow is a very strong assumption.
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We can also define the ‘bare’ impact of a single trade G0(`), which measures the
influence of a single trade at time n− ` on the the mid-point at time n. In terms
of G0(`), the mid-point is therefore written as:

mn =
n−1∑
j=−∞

ηj +
n−1∑
j=−∞

G0(n− j − 1) εj, (6.11)

is here found to given by G0(` = 0) = θ and G0(` ≥ 1) = θ(1 − ρ): a part θρ
of the impact instantaneously decays to zero after the first trade, whereas the
rest of the impact is permanent. The instantaneous drop of part of the impact
compensates the sign correlation of the trades. Finally, the volatility, within this
simplified version of the mrr model, reads:

V` = θ2(1− ρ2)`. (6.12)

6.4 A transient impact framework

Compared to the above simplifying assumptions of the MRR model, the data
shows that (i) the volumes v of the incoming market orders are very broadly
distributed, with a power-law tail (see section 4.5); (ii) the sign time series εn
has long range correlations C` that decays again as a power-law ∼ c0`

−γ with
γ < 1, defining a long memory process. The smallness of γ makes the correlation
function C` non-summable: the average relaxation time is infinite, whereas the
correlation time of the Markovian sign process in the above mrr model is finite,
equal to (1− ρ)−1.

In this section we relax the assumption that impact of a single trade is per-
manent in time. Rather, we find that long range correlations in trades imply
that the impact itself has to decay slowly with time. In the next section, we will
discuss an alternative but equivalent model, where the impact is permanent but
asymmetric and history dependent.

6.4.1 Transient impact and mean reversion
What would happen if the impact of each trade was purely transient, for example
an exponential decay in time? Eq. (6.2) would now read:

mn =
∑
k<n

αn−k−1εkf(vk; Ωk) +
∑
k<n

ηk, (0 ≤ α < 1). (6.13)

The lagged impact and the return variance would then be given by:

R` = α`−1E[f ]; V` = 2E[f 2]
1− α`

1− α2
+ Σ2`, (6.14)

i.e. a short-time volatility ≈ E[f 2] + Σ2 larger than its long-time value Σ2, in
which only the ‘news’ component survives. The price would exhibit significant
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high frequency mean reversion: impact kicks it temporarily up and down, but the
long term wandering of the price is unrelated to trading. Of course, one could be
in a mixed situation where the impact decays exponentially but towards a positive
value, in which case the long term volatility still involves an impact component.
This conforms with conventional wisdom about efficient markets: an increased
value of high frequency volatility driven by the “tatonnement” process, and a
long term volatility made up both of unexpected news and long-term impact of
market orders, which translates private information into prices. However, recall
that this does not conform to observations, which show volatility very nearly
constant across all time scales (see Section 3.9).

What is the relation between the average R` and the impact of a single trade,
that we call G0(`) henceforth? If trades were uncorrelated, the two quantities
would be identical, but trade correlations, as we shall see below, change the
picture in a rather interesting way.

6.4.2 Mathematical theory of long term resilience
The long term memory of trades is a priori paradoxical and hints towards a non
trivial property of financial markets, which can be called long-term resilience.
Take again Eq. (6.11) with the assumption that single trade impact is lag inde-
pendent: G0(`) = G0 and that volume fluctuations can still be neglected. The
mid-price variance is easily computed to be:

V` ≡ 〈(mn+` −mn)2〉 = [Σ2 +G2
0]`+ 2G0

∑̀
j=1

(`− j)Cj. (6.15)

When γ < 1, the second term of the rhs can be approximated, when ` � 1,
by 2c0G0`

2−γ/(1 − γ)(2 − γ), which grows faster than the first term. In other
words, the price would super-diffuse, or trend, at long times, with a volatility
diverging with the lag `. This of course does not occur: The market reacts to
trade correlations so as to prevent the occurence of such trends. In fact, within the
present linear model, the impact to single trades must be transient, rather than
permanent. Before explaining why and how this occurs in practice, let us first
express mathematically how the efficiency of prices imposes strong constraints on
the shape of the single trade impact function. For an arbitrary function G0(`),
the lagged price variance can be computed explicitly and reads:

V` =
∑

0≤j<`

G2
0(`− j) +

∑
j>0

[G0(`+ j)−G0(j)]2 + 2∆(`) + Σ2`, (6.16)

where ∆(`) is the correlation induced contribution:

∆(`) =
∑

0≤j<k<`

G0(`− j)G0(`− k)Ck−j

+
∑

0<j<k

[G0(`+ j)−G0(j)] [G0(`+ k)−G0(k)]Ck−j
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+
∑

0≤j<`

∑
k>0

G0(`− j) [G0(`+ k)−G0(k)]Ck+j. (6.17)

Assume that G0(`) itself decays at large ` as a power-law, Γ0`
−β. When β, γ < 1,

the asymptotic analysis of ∆(`) yields:

∆(`) ≈ Γ2
0c0I(γ, β)`2−2β−γ, (6.18)

where I > 0 is a certain numerical integral. If the single trade impact does not
decay (β = 0), we recover the above superdiffusive result. But as the impact
decays faster, superdiffusion is reduced, until β = βc = (1 − γ)/2, for which
∆(`) grows exactly linearly with ` and contributes to the long term value of the
volatility. However, as soon as β exceeds βc, ∆(`) grows sublinearly with `, and
impact only enhances the high frequency value of the volatility compared to its
long term value Σ2, dominated by ‘news’. We therefore reach the conclusion that
the long range correlation in order flow does not induce long term correlations nor
anticorrelations in the price returns if and only if the impact of single trades is
transient (β > 0) but itself non-summable (β < 1). This is a rather odd situation
where the impact is not permanent (since the long time limit of G0 is zero) but
is not transient either, because the decay is extremely slow. The convolution of
this semi-permanent impact with the slow decay of trade correlations gives only
a finite contribution to the long term volatility. The mathematical constraint
β = βc will be given more financial flesh below.

Within the above framework, one can also compute the average impact func-
tion R`. From Eq. (6.4) one readily obtains:

R` = G0(`) +
∑

0<j<`

G0(`− j)Cj +
∑
j>0

[G0(`+ j)−G0(j)]Cj. (6.19)

This equation can be understood as a way to extract the impact of single trades
G0 from directly measurable quantities, such as R` and Cn – see section 6.6 and
Appendix 2. From a mathematical point of view, the asymptotic analysis can
again be done when G0(`) decays as Γ0`

−β. When β + γ < 1, one finds:

R` ≈`�1 Γ0c0
Γ(1− γ)

Γ(β)Γ(2− β − γ)

[
π

sin πβ
− π

sin π(1− β − γ)

]
`1−β−γ, (6.20)

where we have explicitly given the numerical prefactor to show that it exactly
vanishes when β = βc, which means that in this particular case one cannot
satisfy oneself with the leading term. When β < βc, one finds that R` diverges
to +∞ for large `, whereas for β > βc, R` diverges to −∞, which is perhaps
counter-intuitive, but means that when the decay of single trade impact is too
fast, the accumulation of mean reverting effects leads to a negative long term
average impact – see Fig. (7). When β is precisely equal to βc, R` tends to a
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Figure 7. Theoretical impact function R`, from Eq. (6.19), and for values of β close to

βc. When β = βc, R` tends to a constant value as ` becomes large. When β < βc (slow

decay of G0), R`→∞ diverges to +∞, whereas for β > βc, R`→∞ diverges to −∞.

finite positive value R∞: the decay of single trade impact precisely offsets the
positive correlation of the trades.

In the above framework, volume fluctuations have been neglected. An ex-
tended version of the model, which is directly related to the discussion of the
next section, is presented in Appendix 2 (see also Bouchaud et al. [2004]).

6.5 History dependent, permanent impact

6.5.1 Predictable order flow and statistical efficiency
An alternative interpretation of the above formalism is to assume that price
impact is permanent, but history dependent as to ensure statistical efficiency
of prices (Lillo and Farmer [2004], Farmer et al. [2006], Gerig [2007]). Let us
consider a generalized MRR model:

rn = mn+1 −mn = ηn + θ(εn − ε̂n), ε̂n = En[εn+1|I] (6.21)

where I is the information set available at time n. In line with our discussion in
Section 3.8, we assume that in the market there are three types of traders. First
of all there are directional traders (liquidity takers) which have large hidden
orders to unload and, by placing many consecutive orders with the same sign,
create a correlated order flow. The second group of agents are the liquidity
providers, who post bid and offer and attempt to earn the bid-ask spread. The
third group is made by noise traders, i.e. traders placing uncorrelated order flow.
Anticipating the discussion in Section7.3, it is indeed reasonable to assume that
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the strategies of the first two type of agents will adjust in such a way to remove
any predictability of the midpoint change, or in other words that En−1[rn|I] = 0
as implied by Eq. (6.21) above. This is a plausible first approximation, although
one can expect (and indeed observes) deviations from strict unpredictability at
high frequencies.

Within the above simplified model, in which we have neglected volume fluc-
tuations (see Appendix 2 for an attempt to include them), there are only two
possible outcomes. Either the sign of the nth transaction matches the sign of the
predictor En[εn+1|I], or they are opposite. Let us call r+

n and r−n the expected
ex-post absolute value of the return of the nth transaction given that εn either
matches or does not match the predictor. If we indicate with ϕ+

n and (ϕ−n ) the
ex ante probability that the sign of the n-th transaction matches (or disagrees)
with the predictor εn, we can rewrite En−1[rn|I] = 0 as:

ϕ+
n r

+
n − ϕ−n r−n = 0. (6.22)

Within the MRR model as above, this means

r+
n = θ(1− ε̂n) (6.23)

r−n = θ(1 + ε̂n). (6.24)

This result shows that the most likely outcome has the smallest impact. We call
this mechanism asymmetric liquidity: each transaction has a permanent impact,
but the impact depends on the past order flow and on its predictability. The
price dynamics and the impact of orders therefore depend on (i) the order flow
process (ii) the information set I available to the liquidity provider, and (iii) the
predictor used by the liquidity provider to forecast the order flow.

6.5.2 Equivalence with the transient impact model
In the following we will consider the case where the information set available to
liquidity providers is restricted to the past order flow. We call this information set
anonymous because liquidity providers do not know the identity of the liquidity
takers and are unable to establish whether or not two different orders come from
the same trader. We assume also that the predictor used by liquidity takers to
forecast future order flow comes from a linear model. In some cases, such as for
an order flow generated according to the model presented in Section 4.3, this
may not be an optimal predictor. However linear time series models are probably
the most widely used forecasting tools. Here we analyze a linear time series
model based on the signs of executed transactions, and will assume a Kth order
autoregressive AR model of the form

ε̂n =
K∑
i=1

aiεn−i, (6.25)
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where ai are real numbers that can be estimated on historical data using standard
methods (see Lillo and Farmer [2004], Bouchaud et al. [2004] and Appendix 2).
The MRR model corresponds to an AR(1) order flow, with a1 = ρ and ak = 0
for k > 1, with an exponential decay of the correlation.

The resulting impact model, Eq. (6.21) with a general linear forcast of the
order flow is in fact equivalent, when K →∞, to the temporary impact model of
the previous section (see Appendix of Bouchaud et al. [2004]). It is easy to show
that one can rewrite the generalized MRR model in terms of a propagator as

mn = mn−1 + θεn +
∞∑
i=1

[G(i+ 1)−G(i)]εn−i + ηn, θ = G(1). (6.26)

The equivalence is obtained with the relation:

θai = G(i+ 1)−G(i) or G(i) = θ[1−
i−1∑
j=1

aj]. (6.27)

6.5.3 More general information models
In the previous section we have seen that the fixed/temporary impact model is
equivalent to the variable/permanent impact model under the additional assump-
tions that (i) the information set available to the liquidity provider is the set of
the past order flow and (ii) that liquidity providers use a linear forecast model to
predict the future order flow from the past and to adjust price response. These
two assumptions of the variable/permanent impact model are far from general. In
the following we discuss the more general situations where a different information
set and forecast model can arise.

In most financial markets order flow is available in real time to all market
participants and thus it is clear that any liquidity provider could use the past
order flow time series to trade efficiently. However in some cases participants can
make use of information other than the time series of order flow signs. There
are often indirect clues about the identity of orders such as the consistent use of
particular round lots for orders that arrive at regular intervals. Activity in block
markets can also provide clues about the activity of large orders. Another case
is when a trader is trying to execute her large order by a so-called “slicing and
dicing” algorithm. The liquidity provider could be able to detect the presence of
this trader and therefore the liquidity provider has additional information to add
to her information set.

The algorithm used by the liquidity provider to forecast the future order flow
depends on the information set and on the degree of sophistication of the liquid-
ity provider. Even if linear forecasting methods are widespread, they can lead
to suboptimal predictions if the time series one is trying to forecast is strongly
nonlinear. For example, in Section 4.3 we have discussed a microscopically based
order flow model which reproduces the correlation properties observed in the real
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order flow. This model (Lillo, Mike, and Farmer 2005) is clearly non-linear. De-
spite the fact that an optimal forecast method for this order flow model is not
easily available, one can find suboptimal non-linear forecast models that out-
perform the linear forecast method. When one incorporates non-linear forecast
models in the variable/permanent impact model the price dynamics will not be
equivalent to the fixed/temporary model.

In conclusion, the variable/permanent model sets a general framework for
describing the interaction between order flow and price dynamics. In a paper in
progress Gerig et al. (2008) show how different assumptions on the information
set and on the forecast method lead to different functional forms of the impact
of hidden orders and on the dynamical properties of prices.

6.5.4 Mechanisms for Asymmetric Liquidity
Let us rephrase in more intuitive terms the results established above. Due to
the small outstanding liquidity, order flow must develop temporal correlations.
This is such an obvious empirical fact that high frequency traders/market makers
quickly come to learn about it, and adapt to it. In the simple mrr model where
signs are exponentially correlated, the probability that a buy follows a buy is
p+ = (1 + ρ)/2. The unconditional impact of a buy is θ (see Eq. 7.9); however, a
second buy immediately following the first has a reduced impact equal to R+

1 =
θ(1 − ρ). The second buy is not as surprising as the first, and therefore should
impact the price less. A sell immediately following a buy, on the other hand, has
an enhanced impact equal to R−1 = θ(1 + ρ), in such a way that the conditional
average impact of the next trade is zero: p+R+

1 + (1− p+)R−1 ≡ 0 Gerig [2007].
This is the “asymmetric liquidity” effect explained above (Lillo and Farmer [2004],
Farmer et al. [2006], Gerig [2007], see also Bouchaud et al. [2006] where it is
called “liquidity molasses”). This mechanism is expected to be present in general:
because of the positive correlation in order flow, the impact of a buy following a
buy should be less than the impact of a sell following a sell – otherwise trends
would appear.

But what are the mechanisms responsible for asymmetric liquidity, and how
can they fail (in which case markets cease to be efficient)? This is still an open
empirical question which started to be investigated only recently. For example,
Lillo and Farmer [2004] showed that when the order flow becomes more pre-
dictable the probability that a market order triggers a price change is larger for
market orders with the unexpected sign than for those with the expected one.
Moreover the same authors showed that the ratio between the volume of the
market order and the volume at the opposite best is lower (higher) for market
orders with expected (unexpected) sign.

Another related basic mechanism is “stimulated refill”: buy market orders
trigger an opposing flow of sell limit orders, and vice-versa (Bouchaud et al.
[2006]). This rising wall of limit orders decreases the probability of further upward
moves of the price, which is equivalent to saying that R+

1 < R−1 , or else that the
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initial impact of the first trade reverts at the second trade. This dynamical
feedback between market orders and limit orders is therefore fundamental for
the stability of markets and for enforcing efficiency. It can be tested directly
on empirical data. For example, Weber and Rosenow [2005] have found strong
evidence for an increased limit order flow compensating market orders.

Since such a dynamical feedback is so important to reconcile correlation in
order flow with the diffusive nature of price changes, it is worth detailing its
intimate mechanism a little further, and insisting on cases where this feedback
may break down. Recall our discussion of the market ecology in section 3.8 –
market participants can be, in a first approximation, classified as a function
of their trading frequencies. Large latent demand arises from low frequency
participants; the decision to buy or to sell can be considered as fixed over a
time scale of a few hours or a few days, much longer than the average time
between trades. These participants create long term correlations in the sign of
the trades. Higher frequency traders try to make profit from microstructural
effects and short time predictability. Even if institutionally designated market
makers are no longer present in most electronic markets, these high frequency
strategies are in fact akin to market making – they make money from providing
liquidity to lower frequency traders. This is why we often (incorrectly) call this
category of participants “market makers”.16 So one should think of two rather
large latent supply and offer quantities that await for favorable conditions, both
in terms of price and quantity, to be executed on the market. Then begins a kind
of hide and seek game, where each side attempts to guess the available liquidity
on the other side. A “tit-for-tat” process then starts, whereby market orders
trigger limit orders and limit orders attracts market orders. A buy trade at the
ask (say) is a signal that an investor is indeed willing to trade at that particular
price. But the seller who placed a limit order at the ask is also, by definition,
willing to trade at that price. The natural consequence is that a flow of refill
orders is expected to occur at the ask immediately after a buy trade (and at the
bid after a sell).

In other words, optimized execution strategies that look for micro-opportunities
impose strong correlations between market order flow of one sign and limit order
flow of the opposite sign. Imagine a case where buy market orders eat up sell
limit orders at the ask, with no refill. The ask then moves up one tick. By making
the price more expensive the flow of buy market orders slows down and the prob-
ability that a sell limit order reappears at the previous ask increases. Imagine
now that the refill process is too intense; sell limit orders at the ask now pile up.
This has two effects: (i) the probability of a large market order that executes a
large volume in one shot increases; (ii) the large volume at the ask decreases the

16Of course, the above distinction between participants must be taken with a grain of salt:
low frequency decisions may be executed using smart high frequency algorithmic trading. In
this case, the same participant is at the same time a low frequency trader and a market maker.
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probability of further sell limit orders joining the queue because the priority of
these new orders is low. Both cases (no refill or intense refill) therefore induce a
clear feedback mechanism ensuring local stability of the order book.

The above mechanism can be thought of as a dynamical version of the supply-
demand equilibrium, in the following sense: incipient up trends quickly dwindle
because as the ask moves up the buy pressure goes down while the sell pressure
increases. Conversely, liquidity induced mean-reversion – that keeps the price
low – attracts more buyers and soon gives way. Such a balance between liquidity
taking and liquidity providing is at the origin of the subtle compensation be-
tween correlation and impact explained above. It is interesting to notice that
several other dynamical systems operate similarly, with a competition between
two antagonist systems – heartbeats is an interesting example: the sympathetic
and parasympathetic system act in opposition to speed up/slow down the cardiac
rythm.

One easily envisions that such a subtle dynamical equilibrium can quickly
break down: for example, an upward fluctuation in buy order flow might trig-
ger a momentary panic, with the opposing side failing to respond immediately.
These liquidity micro-crisis are probably responsible for the large number of price
jumps; if the feedback mechanism changes sign, this can even lead to crashes.
The tug-of-war is a vivid illustration of this phenomenon. A major challenge of
microstructure theory is to turn the above qualitative story into a quantitative
model for heavy tailed return distributions and volatility clustering, with inter-
esting potential ideas on how to limit the occurence of these liquidity micro-crises.
We are convinced that a consistent theory of hidden liquidity and stimulated refill
is well within reach at this stage.

6.6 Empirical results

The section reviews how the above ideas can be directly tested and measured on
high frequency data.

We start with the full impact function, defined by Eq. (6.4), which is easily
measured – at least when the lag ` is not too large. When ` becomes of the
order of the number of daily trades or more, the error bar on R` quickly becomes
large. The main features of R` are however quite robust from stock to stock
and also across different markets. For example, R` for France Telecom in 2002 is
shown in Fig. (8). One sees a mild increase by a factor λ ∼ 2 between ` = 1 and
` = 1000, before a saturation or maybe a decline for larger lags. This behaviour is
quite typical, in particular the roughly two-fold increase between small lags and
large lags. So R` reveals some non trivial temporal structure – recall that R` is
constant within models where the midpoint reacts to surprise in order flow. In
an mrr setting, the amplification factor λ should be 1/(1− C1), which in found
to be in the range 1.2−−1.4, still too small to explain λ ∼ 2.

As noted above, one can in fact extract the theoretical impact of single trades
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Figure 8. Average empirical response function R` for FT, during three different periods

(first and second semester of 2001 and 2002). We have given error bars for the 2002 data.

For the 2001 data, the y−axis has been rescaled such that R1) coincide with the 2002

result. R` is seen to increase by a factor ∼ 2 between ` = 1 and ` = 100.
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Figure 9. Comparison betwen the empirically determined G0(`), extracted from R and C
using Eq.(6.19), and the power-law fit Gf0(`) = Γ0/(`20 + `2)β/2, for a selection of four

stocks: ACA, CA, EX, FP.

G0(`) from the empirically measured impact R` and the correlation between the
sign of the trades C`, using Eq. (6.19). This was done in Bouchaud et al. [2006],
and indeed produces nice, power-law decaying G0(`)’s – see Fig. (9) for a few
examples. Within the above restrictive theoretical framework, this provides a
direct proof of the transient nature of the impact of single market orders and
the long term resilience of markets. This is quite important as far as execution
strategies are concerned – see section 10.

We should however list a number of caveats. One is the assumption that the
impact is time translation invariant, i.e. only the lag ` is relevant. This is clearly
questionable, since strong intraday seasonality effects are expected. For example,
there are indications that the trade sign correlation function C` for a given lag
` is quite different intraday and from one day to the next (Eisler et al. [2008]).
Similarly, we expect that the single trade impact should decay differently intra-
day and overnight. Second, we have to a large extent discarded the interesting
correlations between the state of the order book Ωn, the incoming volume vn
and the resulting impact (see Eq. (6.2). All this complexity was replaced by
an average description: εnf(vn; Ωn) −→ εn ln vn. Certainly, a refined version is
needed, in particular because the fluctuations of f(vn; Ωn) will contribute to the
diffusion properties (see Eq. (6.16)). Finally, we have chosen from the start to
give a special role to market orders, as if only those impact the price. But this is
not true: obviously limit orders also impact the price. In fact, it is precisely the
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Figure 10. The expected return as a function of the sign predictor ε̂. The quantity r+

(r−) refer to trades with a sign that is equal (opposite) to the one of the predictor. The

data are binned in such a way that each point contains an equal number of observations.

Error bars are standard errors. Adapted from Gerig [2007].

impact of limit orders that offsets that of market orders and leads to a decay of
the single trade impact G0(`). In other words, we have studied an effective model
in terms of market orders only, dumping into G0(`) the counter-acting effect of
limit orders. A more symmetric version of the model, that treats market and
limit orders on an equal footing, would be quite enticing (Eisler et al. [2008]).

We now consider some empirical evidence for asymmetric liquidity. Figure 10
shows the behavior of the conditional returns r+ and r− defined in Eq. 6.24 as a
function of the sign predictor ε̂. The data we show in Fig. (10) is for Astrazeneca,
a stock traded at the LSE. The sign predictor is the linear predictor defined in
Eq. 6.24. The larger the absolute value of ε̂, the stronger the predictability of
the next market order sign. We have plotted the average value of the return
conditioned to be in the direction of the predictor, r+, and the average return
when the sign of the predictor is wrong, r−. We see that r− is indeed larger than
r+ and this difference increases with the predictability of the order flow. This
is a clear evidence for asymmetric liquidity. Note also that both r+ and r− are
approximately described by a linear function of the predictor ε̂. This is expected
under the model described in Section 6.5.1 (see Eq. 6.24). However the slopes
of r+ and r− vs. ε̂ are different, challenging the implicit symmetric assumption
(Eq. 6.24) in the MRR model. Other evidence for the build up of the “liquidity
molasses” accompanying the flow of market order can be found in Bouchaud et al.
[2006] and Weber and Rosenow [2005].
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6.7 Impact of a large hidden order

We now want to calculate, within the above theoretical framework, the impact
of an hidden order of size N . For simplicity, let us first assume that the hidden
order is made of N consecutive trades made by the same institution, though
this remains “hidden” if trades are anonymous. Let us call m0 the price at the
beginning of the hidden order and compute the average price mN+t observed
t transactions after the completion of the hidden order. Within the generalized
MRR model with a linear predictor of the order flow, a straightforward calculation
shows that

E[mN+t]−m0 = εθ
t+N∑
i=t+1

[1−
i−1∑
j=1

aj] (6.28)

For t = 0 this expression gives the (temporary) total impact of the hidden order,
while for t > 0 we can calculate the price reversion after the completion of the
hidden order, and the permanent impact (if any) for t→∞.

The above result can be generalized to the case where there is only one hidden
order active at a given time, which mixes with a flow of uncorrelated orders with
a constant participation rate π. The total time needed to execute the hidden
order is then T = N/π. It is possible to show in this case that (Farmer, Gerig,
Lillo, and Waelbroeck 2008):

E[mN ]−m0 = εθ
N∑
i=1

1−
i/π∑
k=1

ak

 . (6.29)

Let us estimate the above formula in the case where the autocorrelation Cτ
of order flow asymptotically decays as a power law Cτ ∼ τ−γ for large τ . There
are several different ways of generating and forecasting long-memory processes.
Here we assume that the participants observing public information model the
time series with a FARIMA process. It is known (Beran [1994]) that for large
k the best linear predictor coefficients of a FARIMA process satisfy ak ≈ k−β−1

where β = (1− γ)/2. For large k we can pass into the continuum limit and from
Eq. 6.29 the impact is

E[mN ]−m0 = εθ

[
1 +

N−1∑
i=1

(
1−

(
1− (n/π)−β

))]
. (6.30)

Converting the sum to an integral gives

E[mN ]−m0 ≈ εθ

(
1 +

2β−1πβ

1− β
[(2N − 1)1−β − 1]

)
∼ πβN1−β. (6.31)

Thus, for a fixed participation rate, the market impact asymptotically increases
with the length of the hidden order as N1−β. A typical decay exponent for the
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autocorrelation of order signs is γ ≈ 0.5 (Lillo and Farmer [2004], Bouchaud et al.
[2004]), which means that β ≈ 0.25. This means that according to the linear time
series model the impact should increase as roughly the 3/4 power of the order
size. An interesting property of this solution is that it depends on the speed of
execution. The size of the impact varies as πβ. This means that the slower an
order is executed, the less impact it has, and in the limit as the order is executed
infinitely slowly the impact goes to zero. Note however that if the execution time
T = N/π is fixed, the impact become linear with N but decays as T−β.

To investigate the reversion dynamics we make use again of the Eq. (6.28).
We assume that the liquidity provider uses a FARIMA model to forecast order
signs and for the sake of simplicity in the following we will assume that π = 1, i.e.
that there are no noise traders. Realistically the regression made by the liquidity
provider on past signs will use a finite lag K, leading to:

ε̂n =
K∑
i=1

a
(K)
i εn−i (6.32)

where (Beran [1994]):

a
(K)
i = −

(
K

i

)
Γ(i−H + 1/2)Γ(K −H − i+ 3/2)

Γ(1/2−H)Γ(K −H + 3/2)
(6.33)

and H = 1/2 − β is the Hurst exponent of the FARIMA process. It is possible
to derive an analytical exact result for the permanent impact. In fact, from
Eq.(6.28), one can obtain

E[m∞]−m0 = εθN(1−
K∑
j=1

a
(K)
j ) = (6.34)

εθN
4H−1

√
πΓ[H] sec[(K −H)π]

Γ(3/2 +K −H]Γ[2H − 1−K]

By using the Stirling’s formula and the reflection formula for the Gamma function
one can show that for large K the permanent impact scales as

E[m∞]−m0 ∼ εθ
N

Kβ
. (6.35)

If K is infinite, then E[m∞] −m0 = 0, i.e. the impact is completely temporary.
This can be shown in the mathematically equivalent propagator model Bouchaud
et al. [2004, 2006]. For a FARIMA forecast model with finite K (or equivalently if
the sign autocorrelation function decays fast beyond time scaleK), the permanent
impact is non zero and is linear in N . Even if for large K the permanent impact
is small, the convergence to zero with the memory K is very slow.
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Another interesting issue that can be discussed within the model is the decay
of the impact immediately after the end of the hidden order (defined by Eq.
(6.28)). One finds that the initial drop for t� N is in fact very sharp for β < 1:
mN+t −mN ∝ −t1−β, such that the slope of the decay is infinite when t→ 0 (in
the continuous limit).

6.8 Aggregated impact

Impact is often measured not on a trade by trade level but rather on a coarse
grained time scale, say five minutes or a day. One then speaks of positive corre-
lations between signed order flow and price returns. At the level of single trades,
impact is strongly concave in volume and decays in time. How does this translate
at a coarse-grained level? In Section 5.2 we have discussed this from an empirical
point of view. Here we show how the impact theories we have developed so far
make predictions about the impact function, following the approach of Lillo et al.
[2008a].

Suppose one aggregates the returns and volumes of N consecutive trades (not
necessarily from the same hidden order). Using the same notation as in Section
5.2, the total volume imbalance is QN =

∑N−1
n=0 εnvn. Conditioned to a particular

value QN = Q, what is the average price return R(Q) ? The answer to this
question depends on the order flow and on the properties of the impact function.
In the following we will consider two extreme cases. In the first case we consider an
unrealistic model where the order flow is described by an independent identically
distributed random process, and the impact is fixed and permanent. In the second
case we will consider a correlated order flow and a fixed/temporary impact model.

6.8.1 Independent identically distributed order flow
If the unconditional distribution of market order volume and the functional form
of the impact function are known, it is possible to find a closed expression for
the impact R(Q). Consider a series of N transactions with signed17 volumes vi
corresponding to total return R =

∑N
i=1 ri and total signed volume Q =

∑N
i=1 vi.

The expected return given Q can be written

R(Q,N) ≡ E[R|Q] =

∫
RP (R|Q,N) dR =

1

PN(Q)

∫
RP (R,Q,N) dR, (6.36)

where PN(Q) is the probability density for Q. We assume that the N individual
price impacts ri due to the IID signed volumes vi are given by a deterministic
function18 ri = f(vi). Let the distribution of individual vi be p(vi). Then the joint
distribution of vi is P (v1, . . . , vN) = p(v1) . . . p(vN). The integral above becomes∫

RP (R,Q,N) dR =

∫
dv1 . . . dvNp(v1) . . . p(vN)

N∑
i=1

f(vi)δ(Q−
N∑
i=1

vi), (6.37)

17Only in this subsection we indicate with vi the signed and not the absolute value of volume.
18The results remain the same if a noise term is added to the impact function.
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where we introduced the Dirac delta function. By making use of the integral
representation of the Dirac delta function, after some manipulations it is possible
to rewrite R(Q,N) as

R(Q,N) =
N

2π

1

PN(Q)

∫
dλe(N−1)h(λ)g(λ)e−iλQ (6.38)

where h(λ) is the logarithm of the Fourier transform of the volume distribution
and g(λ) is the Fourier transform of the product of the volume distribution and
the impact function. Moreover PN(Q) is the probability density that the total
signed volume in the N trades is Q.

The functional form of the aggregate impact R(Q,N) can be calculated by
integrating this expression. It is possible to show that many of the properties of
the solution are robust, independent of the details of the model. For small values
of Q the aggregate impact R(Q) is always linear with a slope which depends on
N and on the details of the volume distribution and of the impact function. For
example if the impact function is a power law function ε|v|ψ and the volume dis-
tribution decays asymptotically as P (V ) ∼ V −α−1, then for large N the aggregate
impact behaves for small Q as

R(Q,N) ∼ Q

Nκ
(6.39)

where κ depends in a non trivial way on α and ψ (see Lillo et al. [2008a]). For
example, if volumes have a finite second moment and the impact function is
concave then κ = 0; in constrast, if the second moment doesn’t exist, and the
impact function is sufficiently concave then κ > 0. The latter case agrees with
what is seen in Fig. 5, where the slope of the aggregate impact decreases with N .
Thus theories for the aggregate impact make falsifiable predictions connecting
volumes, order flow and impact.

6.8.2 Transient impact model
Within the model of section 6.4 above, the aggregate impact reads:

R(Q,N) =
N−1∑
n=0

G0(N−n)E[qn|Q]+
∑
m<0

[G0(N −m)−G0(−m)]E[qm|Q]. (6.40)

where qn = εn ln vn and we assume that volumes are lognormally distributed (see
Appendix 2). Because trades are long ranged correlated, the second term is non-
zero. But one can show it is subdominant when N � 1, so we discard it in a
first approximation. In the first term, one can compute E[qn|Q] = x using the
fact that the qns are, within the model, Gaussian with rms = s. Noting also that
typical values of Q are of order N1−γ/2 � N , one finally finds:

x ≈ sQ

IN
, I = 2

∫ ∞
0

duu eus−u
2/2. (6.41)
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With R(Q,N) ≈ Γ0N
1−βx/(1−β) and the above relation between β = (1−γ)/2,

we finally find the following result, written in a suggestive scaling form:

R(Q,N) =
√
N

sΓ0

I(1− β)

(
Q

N1−γ/2

)
. (6.42)

This means that by rescaling the return and the signed volume by their respective
root mean square value, one obtains at large N a limiting curve which is a straight
line. Whereas for small N impact is strongly concave, impact becomes linear
when N � 1. One can go one step further and compute the leading non-linear
correction in Q when N is large. One finds that it is negative, as a remnant of
the small N concavity, and becomes noticeable at increasingly larger values of
Q ∼ N , as seen on empirical data – see Fig (5) below.

The important conclusion of this model is that although the impact of indi-
vidual trades is concave and decays in time, the compensating effect of correlated
trades leads to a well defined linear relation between order imbalance and re-
turns at an aggregated level. This is important because such a relation is often
interpreted as a manifestation of the permanent component of the impact.

Is this linear relation telling us that part of the trades have indeed predicted
correctly the aggregated return (in Hasbrouck’s words) – see Hasbrouck [2007]?
In light of the all the above results, it looks much more plausible to us that
anonymous trades in fact statistically induce price changes, although in a quite
non trivial and perhaps unexpected fashion.

7 THE DETERMINANTS OF THE BID-ASK SPREAD

In modern electronic markets, liquidity is self-organized, in the sense that any
agent can choose, at any instant of time, to either provide liquidity or consume
liquidity. The liquidity of the market is partially characterized by the bid-ask
spread S, which sets the cost of an instantaneous round-trip of one share (a buy
instantaneously followed by a sell, or vice versa).19 A liquid market is such that
this cost is small. A question of both theoretical and practical crucial importance
is to know what fixes the magnitude of the spread in the self-organized set-up
of electronic markets, and the relative merit of limit vs. market orders. In the
economics literature (O’Hara [1995], Biais et al. [1997], Madhavan [2000], Glosten
and Milgrom [1985]), the existence of the bid-ask spread is often attributed to
three types of liquidity providing costs, Stoll [1978]:

• (i) order processing costs (this includes the profit of the market maker);
• (ii) adverse selection costs: liquidity takers may have superior information on

the future price of the stock, in which case the market maker loses money;

19Other determinants of liquidity discussed in the literature are the depth of the order book
and market resiliency, see Black [1971], Kyle [1985].
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• (iii) inventory risk: market makers may temporarily accumulate large long or
short positions which are risky. If agents are risk-sensitive and have to limit
their exposure, this may add extra-costs.

A somewhat surprising conclusion of early econometric studies is that order pro-
cessing costs account for a large fraction of the spread. This may make sense in
illiquid markets where market makers exploit a monopolistic situation to open
up large spreads, but cannot be the correct picture in highly liquid, electronic
markets in which market making is highly competitive. What we argue below is
that the main determinant of the spread is in fact impact.

7.1 The basic economics of spread and impact

7.1.1 The average gain of market makers
What is the basic economics behind a trade, i.e. the encounter between a liquidity
taker and one (or several) liquidity provider(s)? Consider the sequence of all
trades (not necessarily coming from the same hidden order). Let the nth trade
have volume vn and sign εn. The profit collectively made by liquidity providers
on that given trade, marked to market at time n+ ` is given by

GL(n, n+ `) = vnεn

[
(mn + εn

Sn
2

)−mn+`

]
, (7.1)

where Sn is the value of the spread at that moment in time. Think of a buy
trade εn = +1. The above equation compares the money received by the liquidity
provider when the trade occurs (vn(mn+ Sn

2
)) to its marked to market (midpoint)

price at time n + `. Symmetrically, the profit made by the liquidity taker using
market orders is GL(n, n+ `) = −GM(n, n+ `). The above equation clearly shows
that the profitability of market making comes from the spread (+Sn/2), while
the losses are induced by market impact (−εn(mn+` −mn)), which may or may
not come from more informed traders (see below).

Neglecting for simplicity volume fluctuations at this stage (vn ≡ v), and using
Eq. (6.4), we see that the average gain of the market maker in the absence of
extra costs is given by:

E[GL](`) = v

(
E[
S

2
]−R`

)
, (7.2)

which shows explicitly that for a given total market impact R`, the spread S
should be larger than a minimum value for market making strategies to be at all
profitable on a time scale ` – or else, for a given value of S, the impact function
R` should be as small as possible. We recover here the idea that it is in the
interest of liquidity providers to control the growth of R` by tuning the liquidity
asymmetry.

In fact, the above reasoning neglects the cost of unwinding the market maker
position, and a better estimate will be provided below. But the main message
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of the simple computation above is that the spread compensates for the impact
of market orders. In the microstructure literature, this is refered to as ‘adverse
selection’; as alluded to above, this implies that market orders originate from
better informed traders, with an information on the future price on average worth
R`. But the same result would hold if impact was purely statistical, with no
information content whatsoever. In fact, one could even revert the logic and claim
that it is the spread that determines the impact: if some trader accepted to pay
mn + Sn/2 for the stock, it is natural that the market as a whole revises its fair
price estimate from mn to mn +αSn/2, where α ≥ 0 is a number measuring how
trades influence the participants beliefs, leading to R∞ = αS/2. The mrr model
with spread (see Section 7.2.2), in this context, assumes that market participants
believe that the last traded price is indeed the correct price (α = 1). Clearly, in
that model, the cost of a market order or the gain of a limit order are exactly
zero. This leaves us, by the way, in the familiar but uncomfortable situation of
the “no trade theorem”: if the spread is such that the information content of a
market order is compensated, why would the informed trader trade at all?

7.1.2 How informed are the trades?
So are some market orders informed? Can one finds convincing ex-post sig-
natures of informed trades? A minimal definition of an informed trade is a
trade that earns a profit significantly larger than the transaction costs (includ-
ing both brokerage fees and market slippage). Introducing the signed return
r(n, n + `) ≡ εn(mn+` −mn), the profit of the nth market order on time scale `
is:

GM(n, n+ `) = vn

[
r(n, n+ `)− Sn

2

]
. (7.3)

Note that by definition the average of r(n, n + `) is equal to the total impact
R`, which is positive. If one averages the above equation over all trades, one in
fact finds that E[GM ] is close to zero, which means that the spread compensates
for the average impact, at least measured on short time scales ` (between a few
seconds to a few days). More precisely, on liquid NYSE stocks in 2005 (when
market makers were still present), one finds that E[GM ] is zero within error bars,
which means that, after transaction costs, market orders lose money on average.
The situation is slightly better on liquid PSE stocks in 2002, where one finds
E[GM ] = gE(S)/2 with g ≈ 0.3 (see Fig. 14 below). This amounts to 3 − 5 bp
per trade, close to the transaction costs. So, on average, and although market
orders do impact prices, there does not seem to be much short term information
in these orders – at least judging from their ex-post profitability. The question of
longer term information is of course left open here, simply because the statistics
is not sufficient to judge the average profitability of trades on long time scales,
and also because long term drift effects cannot be neglected (on average, buy
trades are profitable in the long run!).

We can look in more detail at the full distribution of r`, P (r`), which contains
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Figure 11. Two extreme cases for the distribution P (r`) of signed returns r`. (a) Black

curve: nearly all trades are uninformed but impact prices, leading to a symmetric P (r`)
around a non zero average impact. (b) Red curve: most trades are uninformed and do

not impact prices, while some trades are informed and predict correctly the future return,

leading to a thick tail in the r` > 0 region.

much more information. Note that its second moment E[r2|`] is very close to the
volatility on scale `, which soon becomes much larger than R2 when ` increases.
Concerning the shape of P (r`), two extreme scenarios could occur (see Fig. 11
for a cartoon):

• A small proportion of well informed trades predict the future price while a
majority of trades are uninformed and do not impact the price at all. The
distribution of r` should then be composed of a broad blob, symmetric around
r` = 0, corresponding to uninformed trades, plus a hump (or more plausibly
a broad shoulder) on the positive side, corresponding to well informed trades.
The non zero value of E[r`] comes from these informed trades. This is the
scenario behind, for example, the Kyle model, or the Glosten-Milgrom model.
• All trades are equally weakly informed or even not informed, but all statistically

impact prices. In this case one expects a symmetric broad blob, but around
the average impact E[r`].

Empirically, the distribution of r` is found to be very close to the second picture
for ` corresponding to intra-day time scales. In particular, no noticeable asym-
metry (beyond the existence of a non zero value of E[r`]) is observed on liquid
stocks – see Fig. (12) for an example. This suggests that trades, on average, im-
pact prices, but do not seem to ‘predict’ future prices – at least not on short time
scales. The strong relation between order imbalance and price returns would then
be tautological consequence of this impact (see section 6), and not a signature of
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Figure 12. Probability distribution P (r`) of the quantity r = (mn+`−mn).εn (in Euros),

for ` = 128. The data is again France Telecom during 2002. The negative part of the

distribution has been folded back to positive r in order to highlight the small positive

assymetry of the distribution. The average value R` = E[r] ≈ 0.01 is shown as the vertical

dashed line. The dashed-dotted line corresponds to the distribution of r − 0.01, for which

no asymmetry of the type shown in Fig. (11) can be detected. This curve has been shifted

upwards for clarity.

‘true’ information revelation.

7.2 Models for the bid-ask spread

7.2.1 The Glosten-Milgrom model
One of the earliest theories of the spread that makes the above discussion is the
sequential trade model of Glosten and Milgrom (Glosten and Milgrom [1985]).
One assumes that market orders are either due (with some probability q) to
informed traders, who know the end of day price pf , or (with probability 1− q)
to noise traders. The value of q is assumed to be known by the market maker,
which is not necessarily very realistic (a similar assumption is made within the
Kyle model). The end of day price pf can either be above (p>) or below (p<)
the open price. The probabilities for either outcome at the start of the day are
δ+ = δ− = 1/2 for simplicity. But as trading occurs, either at the bid or at
the ask, the market maker updates in a Bayesian way the value of δ+ = 1− δ−:
trades at the ask increase the value of δ+, while trades at the bid increase δ−.
This leads to a certain update rule for δ+ as a function of the sign of the next
trade, which we do not write here explicitly. Anticipating the value of δ± after
the next trade allows the market maker to position his quotes in such a way as
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not to have ex-post regrets. More precisely:

a = δ+(+)p> + δ−(+)p<; b = δ+(−)p> + δ−(−)p<, (7.4)

where (±) refers to the sign of the next trade. This leads to the following pre-
diction for the bid-ask Sn after the nth trade:

Sn = 4qδ
(n)
+ δ

(n)
− (p> − p<) (7.5)

where δ
(n)
± is the updated value of δ± after n trades (with δ

(0)
± = 1/2), and we

have neglected terms of order q2 which must be small if this model is to be
realistic. This model is by construction compatible with a random walk for the
midpoint, with a volatility per trade σ1 proportional to the bid-ask spread, as will
be reported below. It also predicts that the bid-ask spread declines on average
thoughout the day, since the update rule drives δ+ either to zero or to one: as
trading occurs, the market maker discovers more accurately which outcome is
more likely. A detailed comparison of this model with empirical data is given in
Wiesinger et al. [2008]. Here we simply note that as far as order of magnitude
goes, the spread at the beginning of the day (when δ± = 1/2) is typically 0.1%
whereas the daily volatility fixes the order of magnitude of p> − p< to typically
2%, leading to q ∼ 0.05. Within this framework, one finds again that the fraction
of short time ‘informed trades’ must be small. One also finds that in this model
the spread decays exponentially fast with time, at variance with the slow, power
law relaxation that has been observed (see Section 7.4).

7.2.2 The MRR model with a bid-ask spread
The original mrr model is in fact slightly different from the model described in
Section 6.3. mrr model rather assumes that it is the ‘true’ fundamental price
pn, rather than the midpoint mn, which is impacted by the surprise in order flow,
and hence

pn+1 − pn = ηn + θ[εn − ρεn−1]. (7.6)

mrr then specify a rule for the bid and ask price, which in turn allows one to
compute the midpoint mn. Since market makers cannot guess the surprise of the
next trade, they post a bid price bn and an ask price an given by:

an = pn + θ[1− ρεn−1] + φ; bn = pn + θ[−1− ρεn−1]− φ, (7.7)

where φ is the extra compensation claimed the market maker, covering processing
costs and the shock component risk. The above rule ensures no ex-post regrets
for the market maker: whatever the sign of the trade, the traded price is always
the ‘right’ one. The midpoint m ≡ (a+ b)/2 immediately before the nth trade is
now given by:

mn = pn − θρεn−1, (7.8)

whereas the spread is given by S = a− b = 2(θ + φ).
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More generally, assuming that only the sign surprise matters, one can write,
for arbitrary correlations between signs:

mn+` −mn =
n+`−1∑
j=n

ηn + θ

n+`−1∑
j=n

{εj − Ej[εj+1]} , (7.9)

where the last term is the conditional expectation of the next sign. In the Marko-
vian case, Ej[εj+1] = ρεj, and we recover the above result. The impact function,
in the general case, reads

R` = θ [1− C`] . (7.10)

Using Eq. (7.2), one sees that the long term profit of market makers is zero.
However, due to correlations between trades, the long time impact is enhanced
compared to the short term impact by a factor

λ =
1

1− C1

> 1. (7.11)

As discussed very generally above, spread and impact are two sides of the same
coin. This is particularly clear within the mrr model, where the half-spread S/2
is set to be equal to the long term impact R∞ = θ. This means that the profit
of market makers is exactly zero (provided φ = 0), but also, as noted above, that
the profit of putatively informed market orders is zero. The spread in the MRR
model is

S = 2(θ + φ) = 2(R∞ + φ) = 2λR1 + 2φ (7.12)

where λ = (1 − ρ)−1. An alternative, enlightening derivation is provided in
Appendix 3.

One computes the mid-point volatility on scale `, defined as

σ2
` =

1

`
〈(m`+i −mi)

2〉. (7.13)

One finds a sum of a trade induced volatility θ2(1 − ρ)2 and a ‘news’ induced
volatility Σ2:

σ2
1 = 〈(mn+1 −mn)2〉 = Σ2 + θ2(1− ρ)2 (7.14)

and

σ2
∞ = Σ2 + θ2(1− ρ)2(1 + 2

ρ

1− ρ
) = Σ2 + θ2(1− ρ2) ≥ σ2

1. (7.15)

The mrr model therefore leads to two simple relations between spread, impact
and volatility per trade

S = 2λR1 + 2φ; σ2
1 = R2

1 + Σ2, (7.16)

where λ = (1 − ρ)−1 and φ is any extra compensation claimed by market mak-
ers. These relations will be generalized to more realistic assumptions and tested
empirically in the next two sections.
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7.3 Limit vs. market orders: the microstructure phase diagram

7.3.1 Market order strategies
As we have mentioned above, the gain (or cost) of a given market order can be
defined as vn[r(n, n+ `)− Sn

2
]. This definition in fact marks the trade to market

after ` trades and is often referred to as the realized spread (Bessembinder [2003],
Stoll [2000]). The volume weighted averaged gain (over a large number of trades)
of market orders over a long horizon `� 1 is therefore:20

E[GM ] ≈ λ
E[vR1(v)]

E[v]
− E[vS]

2E[v]
. (7.17)

In this expression we have introduced the volume dependent lagged impact func-
tion

R`(v) = E[εn(mn+` −mn)|vn = v] (7.18)

and we have used the above definition of the amplification factor λ: R`�1 = λR1.
In the plane x = E[vR1(v)]/E[v], y = E[vS]/E[v] (which will repeatedly be used
below), the condition E[GM ] = 0 defines a straight line of slope 2λ separating
an upper region where market orders are on average costly from a region where
single market orders are favored: see the red line in Fig. (13). For large spreads,
the positive average cost of market order would deter their use; limit orders would
then pile up and reduce the spread.

Below the red line of slope 2λ market orders have a negative cost, and one
might be able to devise profitable strategies based solely on market orders. The
idea would be to try to benefit from the impact term R∞ in the above bal-
ance equation. The growth of R` ultimately comes from the correlation between
trades, i.e. the succession of buy (sell) trades that typically follow a given buy
(sell) market order. The simplest ‘copy-cat’ strategy which one can rigorously
test on empirical data is to imagine placing a market order with vanishing volume
fraction (so as not to affect the subsequent history of quotes and trades), imme-
diately following another market order. This strategy suffers on average from the
impact of the initial trade, used as a guide to guess the direction of the market.
Therefore, the profit GCC of such a copy-cat strategy, marked to market after a
long time and neglecting further unwinding costs, is reduced to:

GCC = [λ− 1]
E[vR1(v)]

E[v]
− E[vS]

2E[v]
. (7.19)

By requiring that this gain is non-positive, one obtains a lower line in the plane
x, y, of slope 2(λ − 1). Only below this green line can the above infinitesimal

20Note that this definition neglects the fact that one single large market order may trigger
transactions at several different prices, up the order book ladder, and pay more than the nominal
spread. Nevertheless this situation is empirically quite rare on the markets we are concerned
with, and corresponds to only a few percents of all cases Farmer et al. [2004].



THE DETERMINANTS OF THE BID-ASK SPREAD 66

Figure 13. General “phase diagram” in the plane x = E[vR1(v)]/E[v], y = E[vS]/E[v],
showing several regions: (i) above the red line of slope 2λ, market orders are costly (on

average) and market making is profitable; (ii) below the blue line of slope ≈ 2/(1 − C1),

limit orders are costly and no market-making strategy is profitable; (iii) above the black

line of slope 2λβ, market making on time scale β−1 (or faster) is profitable (PMM); (iv)

below the green line of slope 2(λ− 1), copy-cat strategies can be profitable (PCC). Since

neither market orders nor liquidity providing should be systematically penalized for markets

to ensure steady trading, we expect that markets should operate in the ‘neutral wedge’ in

between the blue and the red line. Competition between liquidity providers should push the

market towards the blue line. Since copy-cat strategies should not be profitable either, the

PCC green line cannot lie above this blue line. Note that the blue, red and black lines all

coincide within the mrr model.

copy-cat strategy be profitable. We therefore expect markets to operate above
this line and below the red line of slope 2λ.

Note also that the long-time impact of an isolated market order, uncorrelated
with the order flow, is given by G0(`� 1) which is small (see section 6.2). These
isolated market orders thus also have a positive cost equal to half the spread.
The only way to benefit from the average impact R` is to free-ride on a wave of
orders launched by others, as in the above copy-cat strategy. Let us now take
the complementary point of view of limit orders and determine the region of
profitable market making strategies.

7.3.2 An infinitesimal market making strategy
We now compute the gain of a simple market making strategy which amounts
to participating in a vanishing fraction of all trades through limit orders. The
simplest strategy is to consider a market maker with a certain time horizon who
provides an infinitesimal fraction ϕ of the total available liquidity. As illustrated
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by Eq. (7.17), the cost incurred by the market maker comes from market impact:
the price move is anti-correlated with the accumulated position. When the crowd
buys, the price goes up while the market making strategy accumulates a short
position which would be costly to buy back later, and vice-versa.

We consider a steady-state market making strategy that avoids explicit un-
winding costs. The strategy is such that tendered volume dynamically depends
on the accumulated position, which insures that the inventory is always bounded.
We choose the tendered fraction ϕ to be given by ϕi = ϕ0(1 + αViε), where Vi is
the (signed) position accumulated up to time i−, and ε = +1 for orders placed
at the ask and ε = −1 for orders placed at the bid. This mean-reverting strat-
egy ensures that the typical position is always bounded. One can now use this
strategy for an arbitrary long time T ; its profit & loss is simply given by

GL =
T−1∑
i=0

ϕiεivi(mi + εi
Si
2

). (7.20)

For large T one can replace this expression by its average,

GL = TE[ϕiεivi(mi + εi
Si
2

)], (7.21)

with O(T 0) corrections due to the residual position at T . This quantity has been
computed in Wyart et al. [2006], and depends on the value of β = 1 − αϕ0E[v]
that fixes the typical time scale `∗ = (1 − β)−1 of the market making strategy.
When β → 0 (fast market making), the gain per unit time and unit volume
reduces to

GL(β → 0)

Tϕ0E[v]
≈ E[vS]

2E[v]
[1− C1]− E[vR1(v)]

E[v]
, (7.22)

whereas β → 1, corresponding to slow market making, yields:

GL(β → 1)

Tϕ0E[v]
=
E[vS]

2E[v]
− E[vR1(v)]

E[v]
. (7.23)

The competition between impact and spread is more favorable to limit orders
when the strategy is fast (β = 0) than when it is slow (β = 1). Imposing that
there is a certain frequency β such that the gain of market making strategies is
zero leads to a linear relation between spread and impact, generalizing the above
mrr relation Eq. (7.16)

E[vS]

E[v]
= 2λβ

E[vR1(v)]

E[v]
. (7.24)

Using the empirical shape ofR` and C`, the slope 2λβ is found to increase between
≈ 2/(1−C1) and 2λ when β increases from zero to one. When β → 1, λβ → λ and
the lower limit of profitability of very slow market making is precisely the red line
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of Fig. (13) where market orders become profitable. Faster strategies correspond
to smaller values of λβ, closer to 1/(1 − C1), leading to an extended region of
profitability for market making. From the assumption that the above market
making strategy for any value of β should be at best marginally profitable (since
one might find more sophisticated strategies, which take full advantage of the
correlations between signs and volumes), we finally obtain the following bound
between spread and impact:

E[vS]

E[v]
≤ 2

1− C1

E[vR1(v)]

E[v]
, (7.25)

defining the blue line of slope 2/(1−C1) in the x, y plane of Fig. (13). Consistently
with the mrr model, when λ = 1/(1 − C1), the blue and red line of Fig. (13)

exactly coincide. Using that fact that Rn+
1 ≤ R(n−1)+

1 , a simple generalisation of
the argument presented in Appendix 3 allows one to show directly that the cost
of limit orders is indeed negative above the blue line.

Eqs. (7.17,7.25) and the resulting microstructural “phase diagram” of Fig. (13)
are the central results of this section. The above analysis delineates, in the
impact-spread plane, a central wedge bounded from above by a slope 2λ and
from below by a slope ≈ 2/(1− C1), within which both market orders and limit
orders are viable. In the upper wedge, market orders would always be costly
and would be substituted by limit orders. In the lower wedge, market making
strategies, even at high frequencies, would never eke out any profit. Such a market
would not be sustainable in the absence of any incentive to provide liquidity. But
if the spread happened to fall in this region, the enhanced flow of market orders
would soon reopen the gap between bid and ask. In the mrr model, this wedge
reduces to a single line.

7.3.3 Comparison with empirical data
In conclusion of the above theoretical section, one expects electronic markets to
operate in the vicinity of the blue line of Fig. (13), i.e. there should be a linear
relation between spread and market impact with a slope close to 2/(1 − C1).
This prediction has been tested on empirical data in Wyart et al. [2006], where
different markets were considered. The prediction can be tested in two different
ways – for a given stock across time, and across all different stocks. In both cases,
a rather convincing agreement with the theory is obtained. We show for example
in Fig. (14) the cross-sectional test of Eq.(7.25) over 68 different stocks of the
pse in 2002. The relative values of the spread and the average impact varies by
a factor 5 between the different stocks, which makes it possible to test the linear
relations (7.19,7.25). A linear fit with zero intercept gives a slope of 2.86,21 while
the average of 2/(1− C1) over all stocks is found to be ≈ 2.64.

However, the situation appears to be different on the nyse, where specialists
are present. Plotting the data corresponding to the 155 most actively traded

21The intercept of a two-parameter regression is in fact found to be slightly negative.
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Figure 14. 68 stocks of the Paris Stock Exchange in 2002. Each point corresponds to a

pair (y = 〈vS〉/〈v〉, x = 〈vR1〉/〈v〉), computed by averaging over the year. Both quantities

are expressed in basis points. We also show the different bounds, Eqs. (7.17,7.19,7.25),

and a linear fit that gives a slope of 2.86, while 〈2/(1 − C1)〉 ≈ 2.64. The correlation is

R2 = 0.90.

stocks on the nyse in 2005 in the spread-impact plane, one now finds that the
empirical results cluster around the upper red line limit where market orders
become costly – see Fig. (15). The regression has a significantly larger slope of
3.3, larger than 2/(1−C1) ≈ 2.78, and a positive intercept 2φ ≈ 1.3 basis points.22

This suggests the existence of monopoly rents on nyse: even if there is some
competition to provide liquidity with other market participants. Market makers
post spreads that are systematically over-estimated compared to the situation
in electronic markets, with a non-zero extrapolated spread 2φ for zero market
impact. This result is in agreement with older studies on the nyse: Harris and
Hasbrouck [1996] used data from the early 90’s to show that limit orders were
more favorable than market orders; and Handa and Schwartz [1996] showed that
pure limit order strategies were indeed profitable. We refer to Wyart et al. [2006]
for more discussion.

The empirical analysis therefore shows that on liquid markets, an approximate
symmetry between limit and market orders holds, in the sense that neither market
orders nor limit orders are systematically unfavorable. Markets operate in the
‘neutral wedge’ of Fig. (13). In fully electronic markets, competition for providing
liquidity is efficient in keeping the spread close to its lowest value. On markets

22This is five times smaller than the average spread, leading to φ/θ ∼ 0.25, much smaller
than the result φ/θ ∼ 1 − 2 found within mrr model in 1990, or a similar value reported in
Stoll [2000].
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Figure 15. 155 stocks of the nyse 2005. Each point corresponds to a pair (y = 〈vS〉/〈v〉,
x = 〈vR1〉/〈v〉), computed by averaging over the year. Both quantities are expressed in

basis points. We also show our bounds, Eqs. (7.17,7.19,7.25). The data shows clearly that

market orders are less favorable than in the electronic Paris Bourse. The regression now

has a positive intercept of 1.3 bp with an R2 = 0.87.

with specialists, such as the nyse, spreads appears to be significantly larger
market orders are now marginally costly on average.

Note that the above analysis does not require any model specific assumptions
such as the nature of order flow correlations or the fraction of informed trades,
etc. In fact, the above results hold even if trades are all uninformed but still
mechanically impact the price.

7.4 Spread dynamics after a temporary liquidity crisis

The above analysis has shown the existence of relations between market impact
and the unconditional value of the spread. The spread, however, is a variable
with interesting temporal dynamics. Several studies have characterized the sta-
tistical properties of spread. Generally these studies have found that the spread
distribution is fat tailed and the time correlation properties are consistent with
a long memory process (Plerou et al. [2005], Mike and Farmer [2008], ?).

It is also interesting to ask how the spread responds after a temporary liquidity
crisis. As we will describe in more detail in Section 8.1, even at the scale of
individual transactions, price returns are heavy tailed, i.e it is not unfrequent to
observe individual transactions triggering large price changes. This often happens
because a market order removes all the volume at the best, and the next to best
occupied price level has a price very different from the price at the best (Farmer



LIQUIDITY AND VOLATILITY 71

et al. [2004]). As a consequence even a small order can create a large price
change creating a very large spread. A large spread is what we mean here by a
“temporary liquidity crisis”.

We will now describe the average dynamics followed by the spread as it con-
verges to its ”typical” value. First of all a large spread is a strong incentive for
limit orders inside the spread and a strong disincentive for market orders. Direct
measurements of the order flow conditional on the spread value confirm this in-
tuition (Mike and Farmer [2008], Ponzi et al. [2008]). The limit order flow inside
the spread has a limit price distribution which is roughly independent of spread
size and monotonically decreasing when one moves from the same best toward
the opposite best. This suggests that the typical spread dynamics is not a fast
reversion to its typical value, but rather it is a slow process where each liquidity
provider competes with the others to close the spread. Each player tries to do
this as slowly as possible in order to get a more favorable price from the incoming
market orders, but at the same time competition prevents this from being too
slow. Empirically this slow decay has been measured in Zawadowski et al. [2006],
Ponzi et al. [2008]. One way of quantifying the average dynamics is by computing
the quantity, Ponzi et al. [2008],

G(τ |∆) = E(St+τ |St − St−1 = ∆)− E(St) (7.26)

where St is the spread at time t (in seconds). This quantity is the expected value
of the spread at time t + τ conditional to the fact that at time zero there is a
spread change of size ∆. Figure 16 shows this quantity for the stock AZN traded
at the LSE as a function of τ for different positive and negative values of ∆.
The decay of G(τ |∆) as a function of τ is very slow and for large values of τ is
compatible with a power law decay with a fitted exponent in the range 0.4− 0.5.
A similar slow decay of the volatility after a shock has been reported in Lillo and
Mantegna [2003], Zawadowski et al. [2006], Joulin et al. [2008].

8 LIQUIDITY AND VOLATILITY

8.1 Liquidity and large price changes

One of the best known statistical regularities of financial time series is the fact
that the empirical distribution of asset price changes is heavy tailed, i.e. there is a
higher probability of extreme events than in a Gaussian distribution. This prop-
erty has been verified by many authors on many different financial time series (for
example, Mandelbrot [1963], Lux [1996], Gopikrishnan et al. [1998]). Extensive
empirical analyses have shown that the distribution of price change over time
intervals ranging from few minutes to one or few trading days is asymptotically
distributed in a way that is approximately independent of the time interval size.
Many estimates indicate that the part of the distribution describing large price
changes is a power-law. For larger time intervals the asymptotic behavior of the
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Figure 16. Conditional spread decay G(τ |∆) defined in Eq. 7.26 for the stock AZN. The

figure shows G(τ |∆) for different positive values of ∆ (in ticks) corresponding to an opening

of the spread at time lag τ = 0. Adapted from Ref. Ponzi et al. [2008].

return distribution becomes slowly consistent with a Gaussian tail in accordance
with Central Limit Theorem. The heavy tailed property of large price change is
important for financial risk, since it means that large price fluctuations are much
more common than one might expect under a Gaussian hypothesis.

There have been several conjectures about the origin of heavy tails in prices.
Two theories that make testable hypotheses about the detailed underlying mech-
anism are the subordinated random process theory of Clark [1973] and the recent
theory of Gabaix et al. [2003]. The first model has its origins in a proposal of
Mandelbrot and Taylor [1967] that was developed by Clark. Mandelbrot and
Taylor proposed that prices could be modeled as a subordinated random process
Y (t) = X(τ(t)), where Y is the random process generating returns, X is Brown-
ian motion and τ(t) is a stochastic time clock whose increments are independent
and identically distributed and uncorrelated with X. Clark hypothesized that
the time clock τ(t) is the cumulative trading volume in time t. In simple terms,
the subordination hypothesis states that price changes would be Gaussian if one
measured them in equal intervals of volume (or number of trades) rather than in
real time intervals.

Gabaix et al.’s proposal, in contrast, is that high volume orders cause large
price movements. They argue that the distribution of large trade size scales as
P (V > x) ∼ x−α, where v is the volume of the trade and α ≈ 1.5. Based the
assumption that agents maximize a first order utility function, with a risk penalty
term that is proportional to standard deviation rather than variance, they claim
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that the average market impact function has the form ∆p ∝ V ψ, where ψ ≈ 0.5.
From this follows that large price changes have a power law distribution with
exponent α/ψ ≈ 3. For a critique of the empirical results and a rebuttal see
Farmer and Lillo [2004], Plerou et al. [2004]

Both the Clark and the Gabaix theories emphasize the role of trading volume
as the determinant of large price changes. Even if it is clear that volume has
some role in determining price changes, recent studies show that trading volume
could not be the key factor. In a recent paper Farmer et al. [2004] considered the
distribution of returns generated by individual market orders. They showed that
at even at this microscopic time scale price returns are heavily tailed, and more
importantly, the size of price moves is essentially independent of the volume of
the orders. Both these facts seriously challenge the explanation of fat tails based
on volume fluctuations. In this paper Farmer et al. showed that price returns
associated with individual transactions are driven by liquidity fluctuations. The
authors proposed and tested a mechanism for explaining how liquidity fluctu-
ations determine large price changes. Even for the most liquid stocks in the
London Stock Exchange, the limit order book often contains large gaps, corre-
sponding to a block of adjacent price levels containing no quotes. When such a
gap exists next to the best price, a new market order can remove the best quote
and generate a large price change. At this time scale the distribution of large
price changes merely reflects the distribution of gap sizes in the order book. The
LSE data indicate that approximately 85% of the trades having a non zero price
impact have a volume equal to the volume at the best. Moreover 97% of the
trades having a non zero price impact generate a price change equal to the first
gap. In summary the fluctuations of the gap sizes in the book are a key determi-
nant of large price changes. The gap size is a measure of the liquidity available
in the market as limit orders. Thus fluctuations of liquidity, i.e. in the market’s
ability to absorb new market orders, are the origin of large price changes, while
the trading volume plays a minor role.

The above proposed mechanism raises the question of the importance of tem-
porary liquidity crises, evidenced by large gaps in the book, for price changes
over long time intervals. Although a definite answer is not available, there are
three indications that short time scale and long time scale price fluctuations may
be related. First, the gap size displays long memory properties in time, Lillo and
Farmer [2005]. This means that the gap size, i.e. the liquidity availability, is
strongly correlated in time. Periods when the typical gap size is large are likely
to be followed by periods of large gaps, i.e. liquidity availability is a persistent
quantity. Second, it has been recently shown that the permanent component of
the price impact is roughly proportional to the immediate impact caused by the
trade (Ponzi et al. [2008]). Thus the distribution of permanent price impacts,
which is closely related to the distribution of price changes over relatively long
time intervals, is approximately the same as the distribution of temporary price
impacts, i.e. of gaps in the order book. The third indication concerns the relative
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Figure 17. Cumulative distribution of absolute (log)returns P (|r| > x) for the NYSE stock

Procter & Gamble under different time clocks, plotted on double logarithmic scale. The

black circles refer to 15 min returns, the red squares refer to returns aggregated with a fixed

number of transactions, and the blue square shows the cumulative distribution obtained

by randomly shuffling individual transaction returns and then aggregating them in a way

that matches the number of transactions in each real time interval. The dashed black line

corresponds to a normal distribution.

importance of volume and liquidity in explaining aggregate price changes, which
is discussed in more detail in the next section.

8.2 Volume vs. liquidity fluctuations as proximate causes of volatility

The existence of a relation between volume and volatility has been known for
a long time. This relation has been often interpreted as a causal relation, sug-
gesting that volume (or number of transactions) is the driving factor determining
volatility (Ane and Geman [2000]). In the previous section we discussed the sub-
ordination hypothesis, which states that returns would be Gaussian if measured
in equal intervals of volume rather than in equal intervals of real time. The re-
cent theory by Gabaix et al. (2003,2006) reaches the same conclusion. Here we
present some evidence challenging this view and indicating that liquidity fluctu-
ations may be more important than volume in explaining volatility fluctuations.
The question can be posed in terms of Equation 3.1, i.e. ∆p = T (I)/λ: Which
is more important in determining the size of price movements, T (I) or λ?

In a recent paper, Gillemot et al. [2006] have presented evidence based on
several different tests, involving comparisons of long-memory and regressions of
the volatility in specific time intervals, showing that liquidity is a more important
determinant of volume. Even when one aggregates returns over a fixed number of
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transactions (or volume) the return probability density function remains heavy
tailed with properties very similar to those in fixed intervals of time. A simple
way to see this effect is given in Figure 17, which shows the empirical probability
P (|r| > x) as a function of x for the NYSE stock Procter & Gamble. Here r is
the price return over a 15 minute time interval. Suppose returns are measured in
transaction time, i.e. every 87 transactions rather than every 15 minutes, where
87 is chosen because it is the average number of transactions in 15 minutes (during
the period from Jan 29, 2001 to December 31, 2003). The empirical distribution
of transaction time returns matches that of real time returns very well. Since in
this case the number of transaction is held constant, the shows that the heavy tail
of the return distribution is not due to variations in the number of transactions.
The same effect is seen by aggregating transactions with volume rather than the
number of transactions fixed (see Gillemot et al. [2006] for details).

This result shows that the fluctuation in number of trades or volume associated
with a fluctuating trading activity is not the main determinant of the heavy
tails of the return distribution. To highlight this effect, Figure 17 also shows
the distribution of returns obtained from a surrogate distribution, constructed
by randomly shuffling the returns of individual transactions and by aggregating
them in a way that matches the number of transactions in each real time interval.
In doing so the unconditional distribution of returns of individual transactions
is preserved, as well as the fluctuation properties of trading frequency, but any
temporal correlations of individual trade returns are destroyed. The figure shows
that the tail of the surrogate distribution is less heavy than the real one, indicating
that fluctuations and the time correlation properties of the reaction of prices to
trades, i.e. liquidity, are more important than fluctuations in trading frequency.

More supporting evidence for the importance of liquidity in determining volatil-
ity comes from a recent paper testing the microscopic random walk hypothesis
against real data (Laspada et al. [2008]). The price dynamics can be described as
a random walk in which the increments are due to individual transactions. Under
the assumption that the sign and the size of the price increments are mutually
independent stochastic processes, it is possible to derive an exact expression for
the volatility expected in a time interval with a given number of transactions.
When one tests this expression on real data, it is found that for one hour inter-
vals the model consistently over-predicts the volatility of real price by about 70%
and that this effect becomes stronger as the length of the time interval increases.
This fact suggests that the assumption of independence of size and sign of price
changes is wrong. However data show that the contemporaneous correlation be-
tween size and sign of returns is non statistically significant. By performing a
series of shuffling experiments, Laspada et al. [2008] show that the discrepancy
between the volatility of the model and of the data is caused by a subtle but
long-memory non-contemporaneous correlation between the signs and sizes of in-
dividual returns. Therefore, even after controlling for the number of transactions
and the order imbalance in a given time interval, the random walk model has a
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strong bias in predicting the volatility, which is caused by the long-memory of
liquidity. This once against indicats that volume is not the key factor in explain-
ing volatility. The neglected subtle relation between return signs and sizes shows
that fluctuating liquidity is an important factor in explaining volatility23.

Finally, the correlation between large volumes and large returns was directly
studied in Joulin et al. [2008], both for trade by trade data and for one-minute
bins, with the conclusion that such a correlation is totally absent from the data.

8.3 Spread vs. volatility

It is worth investigating the relation between spread and volatility in the frame-
work of the mrr model discussed above. In fact this model predicts a simple
relation between volatility and impact, as can be seen from Eq. (7.16). Together
with the relation between spread and impact discussed at length above, this sug-
gests a direct link between volatility per trade and spread, which we motivate
and test in this section.

By definition of the volatility per trade σ2
1 = E[(m`+1 − m`)

2] and of the
instantaneous impact ri,i+1 ≡ (mi+1 −mi).εi, one has as an identity:24

σ2
1 ≡ E[r2

i,i+1]. (8.1)

The instantaneous impact ri,i+1 is expected to fluctuate over time for several
reasons. First, the volume of the trade, the volume in the book and the spread
strongly fluctuate with time (Mike and Farmer [2008], Wyart et al. [2006]). Large
impact fluctuations may also arise from quote revisions due to addition or can-
cellation of limit orders. Second, there might also be important news affecting
the ‘fundamental price’ of the stock. These may result in large, instantaneous
jumps of the mid-point with virtually no trade at all. In order to account for both
effects, one may generalize the above mrr relation (Eq. 7.16) as in Bouchaud
et al. [2004], Rosenow [2002], Wyart et al. [2006]:

σ2
1 = AR2

1 + Σ2, (8.2)

where R1 ≡ E[R1(v)] is the average impact after one trade, A is a coefficient
accounting for the variance of impact fluctuations and Σ2 is the news component
of the volatility (see Section 6.2). This relation holds quite precisely across dif-
ferent stocks of the pse, with a correlation of R2 = 0.96 (see Fig. (18)). Perhaps
surprisingly, the exogenous ‘news volatility’ contribution Σ2 is found to be small.
(The intercept of the best affine regression is even found to be slightly negative).

23In Section 6 we discuss how such a correlation is a consequence of the long memory of order
flow and of market efficiency. The asymmetric liquidity models described in Section 6 predict
a reduction of volatility relative to what one would expect under an unconditional permanent
impact model.

24Neglecting the extremely small drift contribution.
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Figure 18. Plot of σ2
1 vs. R2

1, showing that the linear relation Eq. (8.2) holds quite

precisely with Σ2 = 0 and a ≈ 10.9. (The intercept of the best affine regression is even

found to be slightly negative). Data here corresponds to the 68 stocks of the pse in 2002.

The correlation is very high: R2 = 0.96.

This could be related to the observation made in Farmer et al. [2004] that for
most price jumps, some limit orders are cancelled too slowly and get ‘grabbed’
by fast market orders. This means that most of these events also contribute to
the impact component R1.25 We can neglect Σ2 in the above equation; in this
sense the volatility of the stocks can be mostly attributed to market activity and
trade impact. This is in agreement with the conclusions of Evans and Lyons on
currency markets (Evans and Lyons [2002]); see also the discussion in Bouchaud
et al. [2004], Hopman [2006]).

A final important assumption is that of universality. When the tick size is
small enough and the typical number of shares traded is large enough, all stocks
within the same market should behave identically up to a rescaling of the average
spread and the average volume. In particular we assume that the statistics of (i)
the volume of market orders (ii) the spread S and (iii) the impact R1, and the
various correlations between these quantities are independent of the stock when
these quantities are normalized by their average value. Empirical evidence for (at
least approximate) universality can be found in Lillo et al. [2003] and Bouchaud
et al. [2002]. However, one expects that universality holds only for large cap,
small tick stocks – large tick stocks are not covered by the analysis below.

25One could argue that our results simply show that the news volatility Σ itself is proportional
to R1 and thus to the spread S. However, there is no reason why this should a priori be the
case. For example, a model where rare jumps of typical amplitude J and probability per trade
p� 1 leads to Σ =

√
pJ , whereas the cost of such jumps, contributing to S, is pJ � Σ.
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Universality then implies that:

E[vS] = BE[v]E[S], E[vR1(v)] = B′E[v]R1, (8.3)

where B,B′ are stock independent numbers. Eq. (8.3) accounts well for the
Paris Stock Exchange data studied in Wyart et al. [2006], where it was found
that: B ≈ 1.02 and B′ ≈ 1.80: the incoming volume and the spread are nearly
uncorrelated, whereas the volume traded and the impact are correlated (B′ > 1),
as expected.

Therefore, using Eq. (7.25) as an equality and Eqs. (8.2,8.3) with Σ2 = 0, we
obtain the main result of this section:

E[S] = C σ1, (8.4)

where C is a stock independent numerical constant, which can be expressed
using the constants introduced above as C = 2λB′/

√
AB. This very simple

relation between volatility per trade and average spread was noted in Bouchaud
et al. [2004], Zumbach [2004], Wyart et al. [2006], and we present further data
to support this conjecture. Therefore, the fact that the cost of limit and market
orders should be nearly equal on average [Eqs.(7.17,7.25)] and the absence of a
specific contribution of news to the volatility lead to a particularly simple relation
between liquidity and volatility. As an important remark, we note that the above
relation is not expected to hold for the volatility per unit time σ, since it involves
an extra stock-dependent and time-dependent quantity, namely the the trading
frequency f , through:

σ = σ1

√
f. (8.5)

The above predicted linear relation between spread and volatility per trade was
tested empirically in Wyart et al. [2006] on small tick stocks. For example, the
results for Paris Stock Exchange are shown in Fig. 19. One finds that Eq. (8.4)
describes the data very well, with R2 values over 0.9. One can also check that
there is an average intra-day pattern which is followed in close correspondence
both by E[S] and σ1: spreads are larger at the opening of the market and decline
throughout the day. Note that the trading frequency f increases as time elapses,
which, using Eq. (8.5), explains the familiar U-shaped pattern of the volatility
per unit time.

Note that there are two complementary economic interpretations of the rela-
tion σ1 ∼ S in small tick markets:

• (i) Since the typical available liquidity in the order book is quite small, market
orders tend to grab a significant fraction of the volume at the best price; fur-
thermore, the size of the ‘gap’ above the ask or below the bid is observed to be
on the same order of magnitude as the bid-ask spread itself which therefore sets
a natural scale for price variations. Hence both the impact and the volatility
per trade are expected to be of the order of S, as observed.
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Figure 19. Test of Eq. (8.4) for 68 stocks from the Paris Stock Exchange in 2002, averaged

over the entire year. The value of the linear regression slope is c ≈ 1.58, with R2 = 0.96

• (ii) The relation can also be read backward as S ∼ σ1: when the volatility per
trade is large, the risk of placing limit orders is large and therefore the spread
widens until limit orders become favorable.

Therefore, there is a clear two-way feedback that imposes the relation σ1 ∼ S,
and that can in fact lead to liquidity instabilities: large spreads create large
volatilities, which in turn may open the spread more. A detailed study of such
effects would be highly valuable. On average, however, any deviation from the
balance between spread and volatility tends to be corrected by the resulting
relative flow of limit and market orders. The result σ1 ∼ S therefore appears
as a fundamental property of the market organization, which should be satisfied
within any theoretical description of the micro-structure. This is an important
constraint on models of order flow; however, none of the simple models studied
in the past (zero intelligence models Daniels et al. [2003], bounded-range models
Foucault et al. [2005], Luckock [2003], Rosu [2005], or diffusion-reaction models
Slanina [2001]) are able to predict the above structural relation between S and
σ1 (see however Mike and Farmer [2008] for recent developments using a “low
intelligence” model, as discussed in Section 9.3.3).

8.4 Market cap effects

It is interesting to study the systematic dependence of the volatility and spread
as a function of market capitalisation M . Across stocks, the volatility per unit
time shows a systematic slow decrease with M , σ ∝ M−ϕ, where ϕ is small.
The trading frequency f , on the other hand, increases with M as f ∝ M ζ . For
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stocks belonging to the ftse-100, Zumbach finds ζ ≈ 0.44 (Zumbach [2004]),
while for US stocks the scaling for f is less clear (Eisler and Kertecz [2006]), with
apparently two regimes, one for M > 10 B$, where ζ ≈ 0.44 and the other for
M < 10 B$, for which ζ ≈ 0.86. The average amount per trade vm, on the other
hand, also increases with M , in such a way that f × vm is directly proportional
to M . This last scaling holds with rather good accuracy and merely states that
the total volume of transactions is proportional to market capitalisation, which is
somewhat expected a priori. What is interesting is that this is insured by having
both the frequency of trades and the volume per trade increase with M , and not,
for example, the transaction frequency at fixed amount per trade. The constant
of proportionality is such that ∼ 10−3 of the total market cap is exchanged per
day, on average, both in London and in New-York (Zumbach [2004], Eisler and
Kertecz [2006]).

Combining the above two relations for the volatility per trade σ1 = σ/
√
f

results in the following scaling law for the spread S,

S ∼ σ1 ∝M−ω, ω = ϕ− ζ

2
≈ 0.22. (8.6)

The average spread therefore decreases with market capitalisation. This result is
in good agreement with data from the lse, Zumbach [2004], and from the pse,
Wyart et al. [2006]. It can also be directly be compared with the impact data of
Lillo et al. [2003] in the nyse, where it was established that:

R1(v) ≈M−0.3F
(
M0.3v

v

)
, (8.7)

where v is the average volume per trade for a given stock, and F a master curve
that behaves approximately as a power-law with exponent b. Since spread and
impact are proportional, this last result is directly comparable to Eq. (8.6). The
average over v of the above result then leads to E[R1] ∼M−ω with ω ≈ 0.3(1−b),
which is in the range 0.15 − 0.25 (see section 5.1 above for a discussion of the
value of b).

9 ORDER BOOK DYNAMICS

The previous section stresses the key role that liquidity plays in price formation.
In double auction markets prices are formed in the limit order book. Thus one
obvious approach to understanding liquidity is to investigate the causes of liquid-
ity fluctuations in the limit order book. Although the dynamics of liquidity is still
very much an open question, several studies have identified statistical regularities
in the behavior of limit order books and give some insight into the relationship
between order flow and liquidity.



ORDER BOOK DYNAMICS 81

9.1 Heavy tails in order placement and the shape of the order book

There are several statistical regularities of limit orders placement. First of all,
as mentioned above, limit order signs are also well described by a long memory
process with an Hurst exponent very close to the one for market order signs.
Lillo and Farmer [2004] reported a value of H = 0.69 for market orders and of
H = 0.71 for limit orders.

Limit orders are characterized also by the limit price. The absolute value of
the difference between the limit price and the best available price is a measure
of the patience of the trader. Patient (impatient) traders submit limit orders
very far from (close to) the spread. One of the statistical regularities recently
observed in the microstructure of financial markets is the power law distribution
of limit order price in continuous double auction financial markets (Bouchaud
et al. [2002], Zovko and Farmer [2002]). Let b(t) −∆ denote the price of a new
buy limit order and a(t) + ∆ the price of a new sell limit order. Here a(t) is the
best ask price and b(t) is the best sell price. The ∆ is measured at the time when
the limit order is placed. It is found that ρ(∆) is very similar for buy and sell
orders. Moreover for large values of ∆ the probability density function is well
fitted by a single power-law

ρ(∆) ∼ 1

∆1+µ
(9.1)

There is no consensus on the value of the exponent µ. Zovko and Farmer [2002]
estimated the value µ = 1.5 for stocks traded at the London Stock Exchange,
whereas Bouchaud et al. [2002] estimated the value µ = 0.6 for stocks traded
at the Paris Stock Exchange. More recently Mike and Farmer [2008] fitted the
limit order distribution for LSE stocks with a Student’s distribution with 1.3
degrees corresponding to a value µ = 1.3. This power-law extends from 1 tick
to over 100 ticks (sometimes even 1000 ticks), corresponding to a relative change
of price of 5% to 50%. Such a broad distribution of limit order prices tells us
that the opinion of market participants about the price of the stock in a near
future could be anything from its present value to 50% above or below this value,
with all intermediate possibilities. This means that market participants, quite
oddly, anticipate the existence of large price jumps that would lead to trading
opportunities.

A heavy tail in the distribution of relative limit price ∆ indicates that there is
a large heterogeneity in the limit price, i.e. in the patience associated with each
limit order. Patience is in turn related to the time scale the investor is willing to
wait before her order is filled. The typical time to fill26 of a limit order grows with
∆. In a recent study Lillo [2007] suggested that the origin of the heavy tails in
the distribution of the relative limit price ∆ can be attributed to a heterogeneity
of time scales characterizing the trading behavior of individual utility maximizers

26The mean time to fill of a limit order is infinite if the price process can be approximated
by a random walk. ”Typical” above means some other measure such as the median time to fill.
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Figure 20. Left. Average shape of the order book. Right. Instantaneous shape of the

order book.

investors, and tested this theory by using brokerage data from the LSE.
The order flow and the interaction of orders determine the instantaneous state

of the book Ωt. By averaging over time empirical studies consistently show that
the average shape of the order book is roughly symmetric between the bid and
offer side of the book and is consistent across different stocks (Bouchaud et al.
[2002], Zovko and Farmer [2002], Mike and Farmer [2008]). They show that the
maximum of the averaged book is not the best price, as shown in the left panel
of Fig. 20, even though this is the most likely place for an order to be placed. In
Section 9.3 we will present statistical models explaining this fact.

It is important to stress that the average shape of the book is very different
from the“typical” shape of the book. As Farmer et al. [2004] showed, for most
LSE stocks the typical shape of the book is extremely sparse (see the right panel of
Fig. 20). This occurs when the ratio between tick size and price is small, so that
there are often many unoccupied price levels. As we discussed in Section 8.1, this
fact has important consequences for the price impact of individual transactions
and on the origin of large price fluctuations.

9.2 Volume at best prices: the Glosten-Sandas model

The distribution of available volumes at the best can be fitted by a gamma
distribution with an exponent less than unity, meaning that the most probable
value of the volume is much smaller than the average value. Both the value
of the spread S and the quantity available at the bid and the ask, Φb,Φa, give
information on the willingness of liquidity providers to enter a trade. One would
like to understand the relation between these quantities – intuitively, large spreads
are more favorable to liquidity providers and should attract larger volumes. More
generally, it would be extremely interesting to have a theory for the shape of the
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whole order book, i.e. the relation between the available volume and the distance
from the best price.

The approach of Glosten and Sandas attempts to answer the above questions,
within a framework where market orders are informed trades (Glosten [1994],
Sandas [2001]). The idea is now that information is time dependent and modelled
as a random variable that gives the predicted future variation of the midpoint,
which we call (in conformity with the above notation) εnr(n, n+ `). Just before
the nth trade, a liquidity provider considers the volume of the queue at the ask,
Φa,n and decides to add an extra (infinitesimal) limit order if its expected gain,
conditional on execution, is greater than some minimum value Gmin ≥ 0. This
reads:

E[mn+` −mn|εn = 1, vn ≥ Φa,n] ≤ Sn
2
− Gmin. (9.2)

At this stage, Glosten and Sandas add several questionable assumptions. A cru-
cial one is that the volume that the informed trader chooses to trade is propor-
tional to the information he has: vn = αr(n, n+ `), independently of the shape of
the book at that moment, and in particular of the available volume at the ask. He
is prepared to walk up the book if necessary, which occurs with only a very small
probability in practice: as discussed in Section 6.1, trading is, in fact, discre-
tionary. Introducing the probability of information content P`(r), and dropping
the index n for convenience, the above conditional expectation inequality reads:∫ +∞

Φa/α

rP`(r)dr ≤
[
S

2
− Gmin

] ∫ +∞

Φa/α

P`(r)dr, (9.3)

where we have used the fact that information is assumed to be reliable, i.e. the
expected mid-point change is indeed given by the informed trader prediction. In
order to achieve a quantitative prediction, Sandas further assumes that P`(r) has
an exponential shape:27

P`(r) = βe−βr −→ Φa

α
+

1

β
≤ S

2
+ Gmin. (9.4)

In fact, this calculation can be reinterpreted to give the total volume of orders
available Φ< at a price less or equal to p = m + S/2, and therefore makes a
prediction for the shape of the order book:

Φ<(p) = α(p−m)− αGmin −
α

β
, (9.5)

i.e. a linear order book with slope α and, in principle, a negative intercept. (The
prediction for the buy side of the book is obvious by symmetry). Note that within

27This exponential assumption is in fact not so important. For example, a pure power-law
distribution P`(r) ∝ r−1−µ when r > r0 would lead to the following result instead: Φa/α ≤
(1− µ−1)[S/2 + Gmin] (µ > 1).
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this framework, the volume dependent impact of market orders is by assumption
linear: R`(v) = v/α, which we already know is quite a bad representation of real
data, where impact is always strongly sublinear (see Section 5.1). Altogether,
this model fares quite badly when compared with empirical data:

• The order book intercept, which should be negative according to the model,
is found to be positive when the model is fitted to empirical data. suggesting
negative costs for placing limit orders;
• The slope α, when obtained from the slope of the order book, is found to be

ten times larger than when obtained from direct impact estimates.
• As mentioned above, the empirical shape of order books is non-monotonic,

exhibiting a maximum away from the best price. This is not accounted for by
the model.

The reason for such a failure is essentially that, as discussed in Section 6.1, as
shown by Farmer et al. [2004], the volume of the incoming market order is in fact
strongly correlated with the available volume at the best price. This is in fact
why impact is sublinear in volume, and is at the heart of the liquidity game we
have been detailing in the previous pages. One cannot consider that the market
order flow is an exogenous process to which the limit order flow must adapt –
rather, the two coevolve in a strongly intertwined manner.

One can however directly test Eq. (9.2) on empirical data, without any further
theoretical assumptions, much as we did in the previous section. We choose
` = 1, 10, 100 and identify a “neutral line” in the S,Φ plane separating the region
(above that line) where executed limit orders are profitable from a region where
they are costly (see Fig. (21), and Eisler et al. [2008]). One sees that after
the ` = 1 trade the separation line is flat and is located around the value of
the average spread. This means that the value of the spread is such that limit
orders and markets order break even on average at high frequencies, as discussed
in section 7.3. However, judged on longer time scales, the profitability of a
limit order behind a large preexisting order only becomes positive for spreads
significantly larger than the average. In other words, correlations between spread
and volume, of the type predicted by the Glosten-Sandas model (Eq.9.2) indeed
appear on longer time scales.

9.3 Statistical models of order flow and order books

9.3.1 Zero intelligence models
An alternative point of view is to model the order flow directly as a stochas-
tic process, decomposed into three components: market orders, addition of limit
orders, and cancellation of limit orders. There is a long literature developing
models of this type28. We will describe the approach of Daniels et al. [2003]

28Examples of stochastic process models of limit order books include (Mendelson [1982],
Cohen et al. [1985], Domowitz and Wang [1994], Bak et al. [1997], Bollerslev et al. [1997], Eliezer
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Figure 21. Neutral line for the profitability of adding a new limit order at the best price,

for three different values of the horizon `. The profit is positive above and negative below

the curves. The indicated time horizons are given in number of transactions. The curves

were gained by averaging for the 10 most liquid stocks traded in the Paris Stock Exchange

during the year 2002. Both volume and spread were normalized by their means for each

stock before averaging. From Eisler et al. [2008]

(see also Smith et al. [2003]), which has the advantage that it make predictions
that can be tested against real data. They assume that each elementary event
is independent and concerns a fixed ‘quantum’ of volume v. Buy and sell mar-
ket orders are described by two Poisson processes of rate µ. Limit orders have
a constant probability per unit time ρ to land anywhere they will not generate
an immediate transaction, and existing limit orders have a probability ν to be
cancelled. This model is of course highly schematic, since it neglects all correla-
tions between market and limit orders, in particular, the “stimulated refill” effect
that we argued to be so important. Another important effect that is neglected is
the dependence of the cancelling rate on the size of the queue: one can actually
observe that the probability of cancellation decreases as the number of orders at
that price increases.

A simple self-consistent argument makes it possible to estimate the size of the
spread S in this model. The total flux of limit orders between the mid-point

and S/2 is by definition
∫ S/2

0
d∆ρ(∆), where ∆ is the distance from the midpoint

and we are allowing here for the possibility that ρ might depend on ∆. If we
assume that S is sufficiently small so that ρ is approximately constant, one finds

and Kogan [1998], Maslov [2000], Slanina [2001], Challet and Stinchcombe [2001], Daniels et al.
[2003], Chiarella and Iori [2002], Bouchaud et al. [2002], Smith et al. [2003], Farmer et al. [2005],
Mike and Farmer [2008]). See Smith et al. [2003] for a more detailed survey.
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that this incoming flux is ≈ ρ(0)S/2. Whenever µ > ρ(0)S/2, the rate of market
order eats up the limit orders that appear within the spread completely, and
the average volume present is close to zero. The cancellation term can be safely
neglected if removal by market orders is more efficient, i.e. when µ� ν(0). But
the argument breaks down when S ∼ 2µ/ρ(0), which sets the typical position
of the best price, provided the tick size is small compared to S. The spread is
therefore larger for larger market order rates, and smaller when the flow of limit
orders is larger, as expected intuitively. The above “scaling” result for the spread
has been derived more quantitatively when ρ and ν are independent of ∆. One
finds for the average spread:

E[S] =
µ

ρ
F (
ν

µ
), (9.6)

where F (u) is a monotonically increasing function that can be approximated
as F (u) ≈ 0.28 + 1.86u3/4. Therefore, in the limit where cancellation can be
neglected, one recovers the above result S ≈ 0.28µ/ρ(0). This prediction can be
compared with empirical data by independently measuring the spread and the
rates of the various processes (Farmer et al. [2005]). In view of the simplicity
of the model, the agreement with data is quite good, but systematic deviations
remain. In view of the importance of feedback mechanism that are neglected,
this is hardly surprising.

The results above are interesting because they demonstrate that some prop-
erties of the limit order book are dictated more or less automatically by the
structure of the continuous double auction itself. In particular, Equation 9.6 is
an “equation of state” relating statistical properties of price formation to those
of order flow. This equation of state is clearly inaccurate due to the extreme
assumptions that must be made to derive it. However, it has some reasonable
level of empirical validity suggesting that such a relationship indeed exists for real
markets. See the discussion concerning attempts to find a more realistic equation
of state in Section 9.3.3.

9.3.2 Statistical model of order book
The above model can also explain the hump shape of the average order book.
From a theoretical point of view, however, the problem is difficult to handle: if
one chooses a fixed reference frame, the rates of incoming orders and cancellations
change with the mid-point, while if one chooses the reference frame where the mid-
point is fixed, limit orders that are already present get shifted around. The main
difficulty comes from the fact that the motion of the mid-point is dictated by the
order flow. In order to make progress, one can artificially decouple the motion
of the mid-point and impose that it follows a random walk. An approximate
quantitative theory of the volume in the book Φ(∆) can then be written as
follows. Sell orders at distance ∆ from the current midpoint at time t are those
which were placed there at a time t′ < t, and have survived until time t. These
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orders (i) have not been cancelled; (ii) have not been crossed by the ask at any
intermediate time t′′ between t′ and t.

An order at distance ∆ at time t in the reference frame of the midpoint m(t)
appeared in the order book at time t′ at a distance ∆+m(t)−m(t′). The average
order book can thus be written, in the long time limit t→∞, as

Φst(∆) = lim
t→∞

Φ(∆, t) =

∫ t

−∞
dt′
∫
duρ (∆ + u)P (u|C(t, t′)) e−ν(t−t′), (9.7)

where P (u|C(t, t′)) is the conditional probability that the time evolution of the
price produces a given value of the mid-point difference u = m(t)−m(t′), given the
condition that the path always satisfies ∆ +m(t)−m(t′′) ≥ 0 at all intermediate
times t′′ ∈ [t′, t].29 The evaluation of P requires the knowledge of the statistics
of the price process, which we assume to be purely diffusive. In this case, P can
be calculated using the method of images. One finds:

P (u|C(t, t′)) =
1√

2πDτ

[
exp

(
− u2

2Dτ

)
− exp

(
−(2∆ + u)2

2Dτ

)]
, (9.8)

where τ = t− t′ and D is the diffusion constant of the price process.
After a simple computation, one finally finds, up to a multiplicative constant

which only affects the overall normalisation,

Φst(∆) = Φ(∆, t→∞) = e−α∆

∫ ∆

0

duρ(u) sinh(αu) + sinh(α∆)

∫ ∞
∆

duρ(u)e−αu,

(9.9)
where α−1 =

√
D/2ν measures the typical variation of price during the lifetime

of an order ν−1.
The above formula depends on the statistics of the incoming limit order flow,

modeled by ρ(u). When ρ(u) = e−βu, all integrals can be perfomed explicitly and
one finds:

Φst(∆) = Φ0
αβ

α− β
[
e−β∆ − e−α∆

]
, (9.10)

which can easily be seen to be zero for ∆ = 0, reach a maximum and decay back
to zero exponentially at large ∆. Here Φ0 is the total volume in the sell side of
the book.

We have seen above that the limit order price distribution is characterized by
a power law with exponent µ (see Eq. 9.1). When µ < 1, the parameter α in the
above formula can be rescaled away in the limit where α−1 is much larger than
the tick size (this is relevant for small tick stocks, where α−1 ∼ 10 ticks). In this

29We neglect here the fluctuations of the spread. The condition should in fact read ∆+a(t)−
a(t′′) = ∆ +m(t)−m(t”) + (S(t)− S(t”))/2 ≥ 0.
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Figure 22. The average order book for a Poisson rate model with various choices of

parameters (see Bouchaud et al. [2002]) and µ = .6. After rescaling the axes, the various

results roughly fall on the same curve, which is well reproduced by the simple analytic

approximation leading to Eq. (9.11), shown as the full line.

case, the shape of the average order book only depends on µ. In rescaled units
δ = α∆, it is given by the following convergent integral:

Φst(∆) = e−δ
∫ δ

0

duu−1−µ sinh(u) + sinh(δ)

∫ ∞
δ

duu−1−µe−u. (9.11)

For ∆→ 0, the average available volume vanishes in a singular way, as Φst(∆) ∝
∆1−µ, whereas for ∆→∞, the average volume simply reflects the incoming flow
of orders: Φst(∆) ∝ ∆−1−µ. We have shown in Fig. 22 the average order book
obtained numerically from the above Poisson model with a power-law order flow,
and compared it with Eq. (9.11), for various choices of parameters and µ = 0.6,
as found for various stocks of the Paris Stock Exchange. After rescaling the two
axes, the numerical models lead to very similar average order books, and the
analytic approximation, although crude, appears rather effective. The average
shape of the order book therefore reflects the competition between a power-law
flow of limit orders with a finite lifetime, and the price dynamics that removes
the orders close to the current price.

9.3.3 A simple empirical agent based model for liquidity fluctuations
We now return to discuss the problem of the relationship between order flow and
liquidity. The pure zero intelligence model of Daniels et al. [2003] was limited by
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its extreme assumptions of Poisson processes and the use of a highly stylized sim-
plified model for order placement. A model based on more realistic assumptions
was made by Mike and Farmer [2008]. They made simple econometric models
for order placement and cancellation, and showed that by simulating this model
it was possible to reproduce many of the empirical features of prices, including
a quantitative match for the distribution of returns and the distribution of the
spread.

In Section 9.1 we discussed the remarkable heavy tails in order placement.
This result applied only to orders placed inside the same best30. Mike and Farmer
also studied the distribution of order prices for orders placed inside the spread
or crossing the opposite best (i.e. those generating immediate transactions).
Remarkably they found, in a certain sense described below, that the same power
law behavior applied there as well. The frequency of order placement peaks at
the same best and dies out on either side, and can be reasonably well fit by a
Student distribution (which has a power law tail). Under the rule that orders
that cross the opposite best price are executed, this simple rule does a reasonably
good job of explaining execution frequency. One of the predictions that emerges
automatically is that when the spread is small it is more likely for an order to
cross the opposite best, i.e. market orders become more likely. This at least
partially explains the ‘stimulated refill’ process mentioned earlier, since when the
spread is large, orders chosen at random are more likely to fall inside the spread
(and therefore accumulate in the limit order book), whereas when the spread is
small executions are more likely. In fact, the model based on this relied on this
effect to preserve stability in the number of orders accumulating in the order
book.

In this model the rate of cancellation was empirically found to depend on
factors such as the number of orders in the order book, the imbalance in the
order book, and the position of a given order relative to the opposite best price.
Finally, it takes as an exogenous input the long-memory of order signs discussed in
Section 4. When these three elements are put together (order placement, order
sign and cancellation) it is possible to simulate this model, generating a time
series of order books with the corresponding prices. Note that it is critical that
there is feedback between price formation and the order placement process. The
resulting series of prices are not efficient, which is not surprising given that no
effort was made to make them so and there are no agents who can take advantage
of inefficiencies.

Nonetheless, for a subset of stocks whose properties are similar to those that
were used to build the model, which were called “type I” stocks, it does a good job
of reproducing many of the properties of real prices31. In particular it provides

30E.g. for buy orders the same best is the best bid; the power law applies to orders placed
at prices less than the best bid. The “opposite best” for buy orders is the best ask.

31Type I stocks are those with reasonably low volatility and small tick size. Type II stocks
are those with high volatility, and Type III were stocks with large tick sizes. At this stage the
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a good quantitative match with the distribution of returns and the distribution
of the spread. This match includes not just the shape of the distributions, but
their scale, including the absolute level of volatility. That is, for type I stocks
a simulation of prices based on the measured parameters of the order flow pro-
duces forecasts of volatility that make a good match in absolute terms, i.e. the
predictions and measured values lie along the identity line. This provides further
evidence for the existence of an equation of state relating order flow and prices.
(It remains to extend this model so that it also works well for types II and III).

To summarize, the interesting point about this model is that it suggests that
volatility is directly related to fairly simple properties of the order flow.

10 IMPACT AND OPTIMIZED EXECUTION STRATEGIES

The fact that trades impact prices is obviously detrimental to trading strategies:
since, again, liquidity is so small, trades must typically be divided in small chunks
and spread throughout the day. But because of impact, the price paid for the last
lot is on average higher than the price for the first lot. This poses a well defined
problem: what is the optimal trading profile as a function of time of day, such
that the average execution price is as low as possible compared to the decision
price (a quantity often called ‘implementation shortfall’).

Assume that a trader has a total volume V to execute; he decides to cut his
order in N trades, each of size v, with nv = V . His trading profile φ(t) is such
that the number of trades between t and t+ dt is φ(t)dt. His own impact on the
price of the stock at time t′ ≥ t is modeled as:

p(t′)− p0(t′) = P (0)

∫ t′

0

dtφ(t)G0(t′ − t) ln v, (10.1)

where G0 is the continuous time version of the single trade impact discussed in
section 6.4. Using all the results obtained above, one has:

G0(t− t′) =
g0S

fβ|t′ − t|β
, (10.2)

where g0 is a number of order unity (since impact and spread are proportional)
and f the number of trades per unit time. We neglect here the possible depen-
dence of the spread S and of f on time of day.

The total extra cost due to impact for a given profile φ(t) is therefore given
by:∫ T

0

dt

∫ t

0

dt′φ(t)G0(t− t′)φ(t′) ≡ 1

2

∫ T

0

dt

∫ T

0

dt′φ(t)G0(|t− t′|)φ(t′), (10.3)

model only performs well for type I stocks.



IMPACT AND OPTIMIZED EXECUTION STRATEGIES 91

where T is the trading period (say one day). The above quantity should be
minimized with the constraint that the total trading volume is fixed, i.e.:∫ T

0

dtφ(t)v = V. (10.4)

This problem can easily solved using the method of functional derivatives with a
Lagrange multiplier z to enforce the constraint. This leads to the following linear
equation for the profile: ∫ T

0

dt′G0(|t− t′|)φ(t′) = z, (10.5)

where z is such that Eq. (10.4) is satisfied.
As a pedagogical example, let us assume that the impact decays exponentially

as:
G0(τ) = G0 exp(−ατ) +G∞ (10.6)

Thanks to the constraint Eq. (10.4), the value of G∞ can be reabsorbed in z
and drops out of the computation: the permanent part of the impact is irrelevant
to the optimisation of execution costs (although the resulting implementation
shortfall, of course, depends on G∞). The solution of the optimisation problem
then reads:

G0φ
∗(t) = zδ(t) + zδ(T − t) +

zα

2
, (10.7)

and the constraint is:32

1

G0

[
2
z

2
+
zαT

2

]
= V −→ z =

G0V

1 + αT/2
, (10.8)

so finally :

φ∗(t) =
V

1 + αT/2

[
δ(t) + δ(T − t) +

α

2

]
: (10.9)

the optimal profile is composed of two peaks at the open and at the close of the
day, and a flat profile in between. The ratio of the volume traded within the day
to the volume traded at the open and at the close is αT/2: for a fast decaying
impact (αT large), most of the volume should be spread out evenly intraday,
whereas for a slowly decaying impact, trading should mostly concentrate at the
open and at the close.

More generally, it can be shown that the solution to Eq. (10.5) is symmetric
around T/2 and U-shaped (this is also mentioned in Hasbrouck [2007], ch. 15).
In particular, when G0(τ) is given by Eq. (10.2), one finds that the optimal

32Note that the two delta functions only contribute to half of their “area” to the total volume,
since they are at the edge of the integration range.
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profile diverges both at t = 0 and t = T , respectively as tβ−1 and (T − t)β−1. An
approximate solution to Eq. (10.5) in that case reads:

φ∗(t) ≈ V
Γ[2β]

T 2β−1Γ2[β]
tβ−1(T − t)β−1. (10.10)

It is interesting to note that none of the parameters g0, S, f entering in the nu-
merical evaluation of G0 appear in the shape of the profile, since again these can
be reabsorbed in the definition of z at an early stage of the computation.

A generic U-shape solution for the optimized execution profile suggests an
interesting interpretation of the observed U-shaped total traded volume as a
function of the time of day.

11 TOWARD AN EMPIRICAL CHARACTERIZATION OF A MARKET
ECOLOGY

The description of financial markets we have depicted above is based on the
assumption of the existence of different degrees of heterogeneity among market
participants. The first level of heterogeneity is due to the existence of a broad
distribution of scales among market participants. Here scale refers to any quantity
that measures the typical size of the trades of an investor. Moreover the size of
the hidden order determines the time horizon over which the order is worked and
the number of transactions needed to complete the order.

As described in Section 3.8, the second degree of heterogeneity is due to the
existence of (at least) two classes of agents acting systematically on opposite
sides of the market. One group corresponds to liquidity providers and the other
to liquidity takers. It would be extremely valuable to have a comprehensive
empirical study that connects the heterogeneity of market participants with their
strategy and with the properties of price dynamics. Unfortunately it is not easy
to obtain databases containing this level of information. Some data providers are
starting to release datasets containing information about the financial institutions
involved in the transaction and/or submission or cancellation of orders from the
book. It is important to stress that such financial institutions are not individual
traders or agents, but rather are usually credit entities and investment firms which
are members of the stock exchange and are entitled to trade at the exchange.
Very often these institutions are both acting as brokers for other clients and
trading for their own account. Although an institution may act on behalf of many
individuals and institutions having different strategies, recent findings show that
in most cases it is possible to characterize an institution with an overall strategy,
corresponding to that of the bulk of their trades. In the following two sections we
present the results of two recent papers investigating the behavior of institutions
in the Spanish Stock Exchange.
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11.1 Identifying hidden orders

In a recent paper Vaglica et al. [2008] used brokerage data on transactions in
the Spanish Stock Exchange to identify hidden orders and to characterize their
statistical properties. The identification of hidden orders is done by using an
algorithm designed to identify segments of the inventory time series of an institu-
tion characterized by an approximately constant and statistically significant drift
term. The working hypothesis is that these segments are associated with hidden
orders. A hidden order is characterized by the traded volume V , the number of
transactions N , and the (real) time period T needed to complete the order33. It
is found that the distribution of these quantities scale asymptotically for large
values as

P (V > x) ∼ 1

x2
P (N > x) ∼ 1

x1.8
P (T > x) ∼ 1

x1.3
. (11.1)

These relations show that the size of the hidden orders is asymptotically Pareto
distributed in accordance with the hidden order model described in Section 4.3.
It should be noted that the value of the exponent for V and for N is slightly larger
than the value 1.5 expected by the theory described in Section 4.3 and a more
careful testing of the theory is needed. The low value of the exponents indicates
that the size of hidden orders is a very heterogeneous quantity, probably reflecting
the heterogeneity of market participants. To test this hypothesis, Vaglica et al.
[2008], have considered the distributional properties of hidden orders of individual
brokerage codes. It is found that for the distribution of hidden order size of
individual brokers is consistent with a lognormal distribution, whereas the pool of
the hidden orders of all brokers is not consistent with a lognormal. This indicates
that investor size heterogeneity is at the origin of the power law distribution of
hidden order size.

The size variables of an hidden orders are clearly related to each other. If the
volume V is large we expect that the number of transactions N and the time
needed to complete the orders will also be large. The relation between the size
variables reflects the strategic behavior chosen by the trader to work the order.
By performing a principal component analysis to the hidden orders Vaglia et al.
find that

N ∼ V 1.1, T ∼ V 1.9, N ∼ T 0.66. (11.2)

The fraction of variance explained by the first eigenvalue is of the order of 88%,
so these characterizations are reasonably sharp. The first relation indicates that
the number of transactions of a hidden order is roughly proportional to it size.
This means that even if a trader needs to trade a large hidden order, she will not
split the order in larger chunks. This observation is consistent with the empirical

33In Vaglica et al. [2008] the investigated variables are the volume and the number of trades
associated with those transactions characterizing the hidden order as a buy or a a sell hidden
order.
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Figure 23. Contour plot of the correlation matrix of daily inventory variation of institutions

trading the stock BBVA in 2003. This is plotted by sorting the firms in the rows and

columns according to the strength of the correlation of their inventory variation with the

return of the price of BBVA during the same period. Colors are chosen to highlight positive

or negative firm daily inventory cross correlation values above a given significance level.

Specifically, yellow (blue) indicates positive (negative) cross correlation with a significance

of 2σ, whereas green (cyan) indicates positive (negative) cross correlation below 2σ. The

thick black lines in the matrix are obtained from the bottom panel by partitioning the firms

in three groups according to the value of the correlation between returns and inventory

variation (smaller than −2σ, between −2σ and 2σ and larger than 2σ). Adapted from Lillo

et al. [2008b].

finding that it is rare that the size of market orders is larger than the volume
available at the opposite best (see Section 8.1 and Farmer et al. [2004]). The other
two relations indicate that the larger the volume of the hidden order, the slower
the trading rate. This result has also been verified by using other statistical
hidden order detection algorithms and still needs to be properly understood.
Finally it is worth noting that the relations of Eq 11.2 also hold approximately
true when one considers hidden orders belonging to a single brokerage code. In
other words the scaling relations of Eq. 11.2 are not the effect of heterogeneity
among traders.

11.2 Specialization of strategies

The presence of distinct classes of institutions and their mutual interaction has
been investigated in a recent work by Lillo et al. [2008b]. This study clearly
identifies classes of institutions that are characterized by having a similar trading
behavior. Specifically the study has focused on the cross correlation between the
inventory variation of different institutions. In general it is found that the cross
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correlation of the inventory variation of different institutions is often statistically
significant, for both positive and negative values. Principal component analysis
reveals that the first eigenvalue of the correlation matrix is associated with a
factor that is strongly correlated with price return. To give an idea of the level of
correlation of the activity between different institutions, in Fig. 23 we show the
contour plot of the correlation matrix of daily inventory variation of the institu-
tions trading the stock BBVA in the Spanish Stock Exchange in 2003. Different
colors refer to different levels of correlation (see caption). The institutions are
sorted according to the value of the correlation of their inventory variation with
the price return of BBVA. Two groups of firms are seen, one on the top left corner
and the other on the bottom right corner.

The figure shows a clear block structure that makes it possible to identify com-
munities of institutions characterized by a similar trading behavior. Specifically,
the trading institutions can be partitioned in three subsets. The first (see the
bottom right corner in Fig. 23) is composed by institutions with an inventory
variation positively correlated with price return, i.e. these institutions buy when
the price goes up and sell when the price goes down. Moreover they are typically
large institutions and have strongly autocorrelated order flow, probably because
of order splitting. The second subset (see the top left corner in Fig. 23) is com-
posed of institutions whose inventory variation is negatively correlated with price
return; these institutions buy when the price goes down and sell when the price
goes up. The size of these institutions is very heterogeneous, as is the autocor-
relation of their order flow. Finally the third group is made up of uncategorized
firms. As Figure 23 shows, the cross correlation between the inventory variation
of an institution belonging to the first group and an institution belonging to the
second group is typically negative (blue areas in the top right and bottom left cor-
ners). This and other more direct evidence suggests that institutions belonging
to these two groups are often trading counterparties.

12 CONCLUSIONS

In this review paper we discussed market impact on two different, but overarching,
levels. The first level deals with ultra-high frequency scales: that of elementary
transactions (a level that in physics is called “microscopic”). It is concerned with
the phenomenological description and mathematical modelling of empirical ob-
servations on order flow, impact, order book, bid-ask spread, etc., which are of
direct interest for high frequency trading, execution and slippage control. Results
on that front are surprisingly rich and to some extent unexpected. Among the
most salient points, one finds that impact of individual trades is nonlinear (con-
cave) in volume and has a nontrivial lag dependence, that can alternatively be
thought of as a history-dependent impact. This is at variance with many simple
models, including the famous Kyle model, where impact is assumed to be linear
and permanent. The subtle temporal structure of impact can be traced back to
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the long-memory in the fluctuations of supply and demand. The compatibility of
the long-memory in order flow and the absence of predictability of asset returns
has profound consequences on price formation,

The second level deals with phenomena on a longer “coarse-grained” time
scale, and is more in line with the questions economists like to ask about markets
and prices, such as: “Are prices in equilibrium?”, “What is the information
content of these prices?”, or “Why is the volatility so high?”. Much as in physics,
where the detailed understanding of the microscopic world provides invaluable
insight on macroscopic phenomena, we believe that a consistent picture of the
microstructure mechanisms will help put in perspective some of these traditional
questions about markets and prices. From the set of results presented above, two
concepts seem to emerge with possible far-reaching theoretical consequences:

• (a) Because the outstanding liquidity of markets is always very small, trading
is inherently an incremental process, and prices cannot be instantaneously in
equilibrium, and cannot instantaneouly reflect all available information. There
is nearly always a substantial offset between latent offer and latent demand,
that only slowly gets incorporated in prices. Only on an aggregated level does
one recover an approximately linear impact with a permanent component.
• (b) On anonymous, electronic markets, there cannot be any distinction between

“informed” trades and “uninformed” trades. The average impact of all trades
must be the same, which means that impact must have a mechanical origin: if
everything is otherwise held constant, the appearance of an extra buyer (seller)
must on average move the price up (down).

The theory of rational expectations and efficient markets has increasingly empha-
sized information and belittled the role of supply and demand, in contradiction
with the intuition of traders and of the layman.34 The work we reviewed above
underlines the role of fluctuations in supply and demand, which may or may not
be exogenous, and may or may not be informed in a traditional sense – it does
not really matter. Attempts to estimate ex-post the fraction of truly informed
trades leads to very small numbers, at least judged on a short time basis, mean-
ing that the concept of informed trades is not very useful to understand what is
going on in markets at high frequencies. But still, prices manage to be almost
perfectly unpredictable, even on very short time scales. The conclusion is that
any useful notion of information must be internal to the market: trades, order
flow, cancellations are information, whatever the final cause of these events may
be.

34On this point, see the lucid discussion in Lyons [2001], from which we reproduce the follow-
ing excerpt: Consider an example, one that clarifies how economist and practitioner worldviews
differ. The example is the timeworn reasoning used by practitioners to account for price move-
ments. In the case of a price increase, practitioners will assert, “there were more buyers than
sellers”. Like other economists, I smile when I hear this. I smile because in my mind the
expression is tantamount to “price had to rise to balance demand and supply”.
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We are aware that some of these ideas go strongly against the prevailing view
in market microstructure theory, and entail a rather abrupt change of paradigm.
We hope that this work will help clarify the issues and motivate further work to
reconstruct a fully rigourous modelling framework, deeply rooted in the empirical
data. Such data is now widely available and so abundant that it should be
possible to raise the achievements of microstructure theory to the level of precision
achieved in the physical sciences.
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APPENDIX 1: MECHANICAL VS. NON-MECHANICAL IMPACT

As we summarized in Section 3.4, there are two very different views of what
causes impact. The standard view is that it is essentially driven by information:
the arrival of a trade signals new information, which causes market participants
to update their valuations. But suppose a trade arrives that is really not based
on any information? Does such a trade have a purely mechanical effect on prices?
If so, what is the nature of that effect?

In Section 3.4 we already introduced one such notion of mechanical impact,
imagining a standard market clearing framework in which agents randomly alter
their excess demand functions asynchronously. As each agent alters her demand
function she makes trades that generate market impact. Whether or not these
are permanent depends on whether the alternations are permanent. Insofar as
such alternations are permanent, the effect on prices will also be permanent.

In this Appendix we examine another notion of mechanical impact for continu-
ous double auctions. We define a mechanical impact as what happens if someone
places an order in the order book if this order has no effect on any future orders.
We are essentially asking the question of what happens to the price if an order is
injected into the order book at random, but no one pays any attention to it. We
describe a method for analyzing order book data to answer this question (Farmer
and Zamani [2007]). The essential result is that while there is a significant in-
stantaneous mechanical impact, due to the simple fact that such an order can
consume the best quotes and move the midprice, but this impact decays to zero.
This decay seems to follow a power law, decaying very fast initially and very
slowly later on. The reason for this decay is that orders are continually being
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removed from the order book, and as this happens the mechanical impact decays
away. The the mechanical impact as defined in this sense largely reflects the rate
at which orders are flushed out of the order book.

12.1 Definition of mechanical impact for order books

The following definition of mechanical impact makes the convenient simplifying
assumption that the market framework is a continuous double auction. Consider
the order flow Ω = (ω1, ω2, . . . , ωt, . . .) consisting of individual orders ωt, which
can be either new trading orders or cancellations of existing trading orders. Each
individual order could be originated because of information relating to the value
of the asset, or it could be originated “at random”, e.g. due a demand for liquidity
driven by events having no bearing on the asset being traded.

Under the rules of the continuous double auction any initial limit order book
and subsequent order flow generates a unique sequence of limit order books, which
correspond to a unique sequence of midprices. The auction A can be regarded as
a deterministic function

bt+1 = A(bt, ωt+1)

that maps an order ωt and a limit order book bt onto a new limit order book
bt+1. For a given order flow Ωt+τ

t = {ωt, ωt+1, . . . , ωt+τ} the auction A is applied
to each successive order to generate the limit order book bt+τ at time t+ τ ,

bt+τ = Aτ (bt,Ω
t+τ
t ).

The continuous double auction can thus be thought of as a deterministic dynam-
ical system with initial condition b0 and exogenous input Ω.

Each limit order book bt defines a unique logarithmic midprice pt = p(bt). The
midpoint price at time t + 1 can be written in term of the composition of the
price operator p and the auction operator A as pt+1 = p ◦ A(bt, ωt+1). Thus, any
initial limit order book bt and subsequent order flow Ωt+τ

t will generate a series
of future prices pt+1, pt+2, . . . , pt+τ , where for example the last price pt+τ is

pt+τ = p ◦ Aτ (bt,Ωt+τ
t ). (12.1)

To give a precise meaning to mechanical impact, suppose we modify a par-
ticular order ωt and replace it by a new order ω′t, while leaving the rest of the
order flow unaltered. Since by assumption this modification does not affect the
rest of the order flow, we can freely assume that it occurred for purely mechan-
ical reasons. We can then compare the future stream of prices generated by the
order flow Ωt+τ

t = {ωt, ωt+1, . . . , ωt+τ} to that generated by the altered order flow
Ω′t+τt = {ωt, ωt+1, . . . , ωt+τ}. E.g. for time t+ τ , p′t+τ = p ◦ Aτ (bt,Ω′t+τt ).

This can be used to measure the mechanical impact of any existing order ωt
by comparing the prices that are generated when ωt is present to those that
would have been generated if were were absent. We thus replace Ωt+τ

t by Ω′t+τt =
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{0, ωt+1, . . . , ωt+τ}, where 0 in this case represents a null order, i.e. one that does
not change the order book. We can then define the mechanical impact ∆pMτ (t) of
the order ωt as

∆pMτ (t) = p ◦ Aτ (bt,Ωt+τ
t )− p ◦ Aτ (bt,Ω′t+τt+1). (12.2)

The real price p contains both the informational and mechanical impact of order
ω, while in the hypothetical price p′ the mechanical impact is missing, i.e. it
contains only the informational impact. Under subtraction only the mechani-
cal impact remains. This isolates the part of the price impact that is “purely
mechanical”, in the sense that it is generated solely by the effect of placing an
order in the book and observing its effect under the deterministic operation of
the continuous double auction. The information impact can be defined as the
portion of total impact that cannot be explained by mechanical impact, i.e.

∆pIτ = ∆pTτ −∆pMτ ,

where ∆pTτ is the total impact. Whatever components of the total impact not
explained by mechanical impact must be due to correlations between the order
ωt and other events. With the data we have it is impossible to say whether the
placement of the order ωt causes changes in future events Ωt+1, or whether the
properties of Ωt+1 are correlated with those of ωt due to a common cause. In
either case, changes in price that are not caused mechanically must be due to
information – either the information contained in ωt affecting Ωt+1, or external
information affecting both ωt and Ωt+1. These ideas can be extended to apply
to arbitrary modifications of the order stream, e.g. infinitesimal modification
of order ωt, and to define mechanical generalization of elasticity (Zamani and
Farmer [2008]).

12.2 Empirical results

This definition has been applied to several stocks in the London Stock Exchange
and studied as a function of the order sequence number t (which as above sim-
ply labels the temporal sequence in which the orders are received). It is clear
that the mechanical impact is highly variable. In some cases there is an initial
burst of mechanical impact, which dies to zero and then remains there. In some
cases there are long gaps in which the impact remains at zero and then takes on
nonzero values after more than a thousand transactions. In other cases there is
no mechanical impact at all.

Despite the extreme variability, when an average is taken over time a consistent
pattern emerges. By definition for τ = 1 the impact is entirely mechanical, since
the only order that can affect the price is the reference event ωt. After τ = 1,
however, the mechanical impact decays, so that on average by the time of the
next transaction it is roughly half of its initial value, i.e. it is half of the total
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Figure 24. Average mechanical impact Et[εt∆pMτ (t)] (red squares) and total impact

Et[εt∆pTτ (t)] (blue stars), in units of the average spread, plotted as a function of number

of the order sequence for the LSE stock AZN.

impact. In the limit as τ →∞, for the stocks investigated in the LSE, to a good
approximation for large τ the mechanical impact decays to zero as a power law
∆pMτ (t) ∼ ταM , with exponent αM ≈ 1.6. See the example given in Figure 24. For
event time the total impact and mechanical impact are by definition the same at
τ = 1. This is because in moving from τ = 0 to τ = 1 the only event that affects
the price is the reference event ωt – alterations in Ωt+1 cannot effect ∆pT1 . For
larger values of τ the mechanical impact decreases and the informational impact
increases. As the example shows, over the timescale shown here (100 orders),
when measured in units of the average spread, the mechanical impact is initially
about 0.17, and then decays monotonically toward zero. In contrast the total
impact increases toward what appears to be an asymptotically constant value
slightly greater than 0.3. This the source of our statement that the initial value
of mechanical impact is about half the asymptotic value of the total impact.

In thinking about this we should stress a few points. By requiring that any
associated alterations of orders be considered information, we have taken a very
strict definition of mechanical impact. Within our definition of informational
there are two fundamentally different ways in which placing or removing an order
can be correlated with the placement or removal of other orders. One is that
placing or removal of an order causes a change in the placement or removal of
another order. The alternative, however, is that the placement or removal of the
two orders are caused by the same external event, and are therefore correlated.
From this point of view it can appear as if one order causes the other, simply
because it happens to occur a bit earlier.

While it might be surprising that the mechanical effect of order placement
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is completely temporary, in fact this has a trivial explanation: Once all the
orders that were originally in the book when the reference order was placed, by
definition all trace of the original order’s presence is gone, and so the mechanical
impact is zero. Thus the power law decay of market impact that is a observed
for mechanical impact is just a reflection of the rate at which orders turn over in
the order book, and is not related to the decay of the total impact discussed in
section 6.

APPENDIX 2: VOLUME FLUCTUATIONS

How should one take into account volume fluctuations in the formalism developed
in Section 6.4? Since the volume of trades v is rather broadly distributed, the
impact of trades could itself be highly fluctuating as well. This is not so, because
large trade volumes mostly occur when a comparable volume is available at the
opposite best price, in such a way that the impact of large trades is in fact
quite similar to that of small trades. Mathematically, we have seen that the
average impact is a slow power law function vψ, or even a logarithm log v. As
a simplifying limit, we postulate an logarithmic impact and a broad, log-normal
distribution of v. The resulting impact of the nth trade qn = εn ln vn is then
a (zero mean) Gaussian random variable, which inherits long range correlations
from the sign process. Suppose, as in the mrr model, that only the surprise
in qn moves the price – this insures by construction that the price returns are
uncorrelated. An elegant way to write this down mathematically is to express
the (correlated) Gaussian variables qn in terms of a set of auxiliary uncorrelated
Gaussian variables ηm, through:

qn =
∑
m≤n

K(n−m)ηm, E[ηmηm+`] = δ`,0 (12.3)

where K(.) a certain kernel such that the qn have the required correlations:35

C` = E[qnqn+`] ≡
∑
m≥0

K(m+ n)K(m). (12.4)

In the case where C decays as c0`
−γ with 0 < γ < 1, it is easy to show that the

asymptotic decay of K(n) should also be a power-law k0n
−δ with 2δ− 1 = γ and

k2
0 = c0Γ(δ)/Γ(γ)Γ(1− δ). Note that 1/2 < δ < 1. Inverting Eq. (12.3) leads to:

ηn =
∑
m≤n

Q(n−m)qm, (12.5)

where Q is the matrix inverse of K, such that
∑`

m=0K(`−m)Q(m) = δ`,0. For a
power-law kernel K(n) ∼ k0n

−δ, one obtains Q(n) ∼ (δ−1) sinπδ/(πk0)nδ−2 < 0
for large n. Note that whenever δ < 1, one can show that

∑∞
m=0Q(m) ≡ 0.

35The following equation can be uniquely solved to extract K(`) from C`, using the so-called
Levinson-Durbin algorithm for solving Toepliz systems (see e.g. Percival [1992]).
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When all qm,m ≤ n − 1 are known, the corresponding ξm,m ≤ n − 1 can be
computed; the predicted value of the yet unobserved qn is then given by:

En−1[qn] =
∑
m<n

K(n−m)ηm, (12.6)

and the surprise in qn is simply:

qn − En−1[qn] = K(0)ηn. (12.7)

The generalization of the price equation of motion [Eq. (7.9)] is therefore:

mn+1 −mn = ξn + θK(0)ηn, (12.8)

which, again by construction, removes any predictability in the price returns.
From this equation of motion one can derive G0(`) andR`.

36 From the expression
of the ηs in terms of the qs, one finds:

G0(`) ≡ θK(0)
`−1∑
m=0

Q(m) = −θK(0)
∞∑
m=`

Q(m). (12.9)

Using the above asymptotic estimate of Q(.),we finally obtain

G0(`) ∼`�1 θ
sin(πδ)K(0)

πk0

`δ−1 ≡ Γ0`
−β. (12.10)

Identifying the exponents leads to β = 1 − δ = 1− γ/2, recovering the above
equality. The quantity θ, relating surprise in order flow to price changes, mea-
sures the so-called “information content” of the trades. It can be measured from
empirical data using the above relation between prefactors.

Finally, from Eq.(12.8), one finds the full impact function:

R` = E[(mn+` −mn)qn] = θK(0)2, ∀` (12.11)

i.e. a completely flat impact function, independent of `, as in the simplified mrr
model decribed above. However, if we assume with mrr that the fundamental
price, rather than the midpoint, is impacted by the surprise in qn, we find that
the full impact function is again given by Eq. (7.10): R` = θ[1 − C`], which
increases with `.

APPENDIX 3: THE BID-ASK SPREAD IN THE MRR MODEL

A complementary point of view to that given in the main text is to analyze the
cost of limit orders within the mrr model. The following argument is interesting

36We now define G0 as the impact of the q’s on the price.
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because it can be, in essence, generalized to more complex cases as well. Suppose
one wants to trade at a random instant in time. Compared to the initial mid-
point value, the average execution cost of an infinitesimal buy limit order is given
by:

CL =
1

2

(
−S

2

)
+

1

2

(
R1 + C+

L

)
: (12.12)

with probability 1/2, the order is executed right away, S/2 below the mid-point;
otherwise, the mid-point moves on average by a quantity R1, to which must be
added the cost of a limit order conditioned to the last trade being a buy, C+

L , for
which a similar equation can be obtained:

C+
L =

1− ρ
2

(
−S

2

)
+

1 + ρ

2

(
R+

1 + C++
L

)
, (12.13)

with obvious notations. Since the mrr model is Markovian, one has R+
1 = R1

and C++
L = C+

L , so that:

C+
L = −S

2
+

1 + ρ

1− ρ
R1. (12.14)

Plugging this last relation in Eq. (12.12), we finally find:

CL = −S
2

+
1

1− ρ
R1. (12.15)

Imposing that CL ≡ 0, one recovers the mrr relation between the spread and the
asymptotic impact (see Eq. 7.16).
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