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We generalize the notion of Lyapunov exponents to higher order derivatives. For fixed points and periodic orbits we 
derive a relationship for the higher order Lyapunov spectrum in terms of the usual first order Lyapunov spectrum. Based 
on numerical experiments as well as general arguments, we conjecture that this relationship also holds for chaotic orbits. 
This work is relevant to a priori error estimates for time series forecasting. 

1. Introduction 

The Lyapunov characteristic exponents [6] are 
one of the most useful tools for characterizing 
dynamical systems. They characterize the aver- 
age local stability properties of a dynamical sys- 
tem, and to first order describe the rate at which 
small volumes expand or contract in different 
directions. They can be defined intuitively by 
considering an n-dimension dynamical system 
x, = f ' ( x ) ,  and an infinitesimally small ball of 
radius r(0), centered at position x. Since the ball 
is infinitesimal, under the action of the dynami- 
cal system its shape is affected only by the linear 
part of f ' .  At time t it evolves into an ellipsoid. 
Calling the principal axes of the ellipsoid ri(t), 
the spectrum of Lyapunov exponents is 

ri( t )  
Ai(x ) = lim lim 1 log . (1) 

' ~  r (O)~O t r(O) 
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The "small ball" discussed above can be thought 
of as a convenient model of measurement error. 
In any real experiment, however, measurement 
errors are finite. This means that the geometric 
form that the initial ball evolves into is only an 
ellipsoid to first order; in general it is distorted 
by higher order nonlinearities. When the 
dynamics is locally unstable the nonlinearities 
become more severe as the ellipsoid expands. By 
expanding in a Taylor series the nonlinear distor- 
tions can be grouped according to their quad- 
ratic, cubic, etc. parts. The higher order 
Lyapunov exponents that we develop here 
characterize the average rate of growth of these 
nonlinear distortions at each order. Just as the 
first order Lyapunov exponents describe the av- 
erage rate of growth (or decrease) of the first 
derivative, the higher order Lyapunov exponents 
describe the average rate of growth (or decrease) 
of higher derivatives. 

Farmer and Sidorowich [3,4] originally intro- 
duced higher order Lyapunov exponents in one 
dimension, and conjectured an approximate rela- 
tionship for the higher order exponents in terms 
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of the first order exponents.  In this paper  we 
prove  that  for periodic orbits their conjecture is 
actually an equality. Fur thermore ,  we give a 
precise definition of the higher order  exponents  
in more  than one dimension, and prove that for 
fixed points and limit cycles the higher order  
exponents  can be expressed exactly in terms of 
the first order  exponents.  We present numerical 
evidence supporting our conjecture that this rela- 
tionships hold for chaotic orbits as well. 

Our  interest in higher order  Lyapunov expo- 
nents is mot ivated by practical problems in t ime 
series modeling. The problem is to form non- 
l inear models  directly from time series data, and 
use these models  to make predictions about  the 
future behavior  of the data. For chaotic systems 
the prediction errors generally increase as we 
extrapolate  further into the future. At what rate? 
For  a given approximat ion method,  what does 

this rate depend on? 
Suppose that the " t rue"  dynamics i f ( x )  is ap- 

proximated  by )~'(x). The approximation error  at 

x is just I l f t ( x ) - ~ ' ( x ) l l  . An approximation 
me thod  is defined to be of order q if the error  

depends on the qth derivative d q f (  For exam- 
ple, consider approximat ion in terms of piece- 
wise linear e lements  (linear interpolation). Ex- 

panding f '  in a Taylor  series shows that II f'(x) - 
 '(x)ll is proport ional  to the second derivative 

2 t d x f .  This means that the average rate of growth 
of the error  is proport ional  to the average rate of 
growth of d 2 f  '. This is described by the second 

order  Lyapunov  exponents.  
This paper  is organized as follows: In section 2 

we derive our  basic results for fixed points and 
limit cycles in one dimension, where the mathe-  
matics is simpler. In section 3, we extend these 
results to the multidimensional case. In section 4 
we argue that these results should generically 
hold for chaotic orbits as well, and in section 5 
we present  supporting numerical evidence. 

For  convenience all of our formal results con- 
cern the second order  Lyapunov exponents.  
Higher  order  exponents  are a straightforward 

(but  tedious) extension. 

The reader  who only wishes to see a precise 
s ta tement  of the definition of higher order expo- 
nents should see section 3.2. For a precise state- 
ment  of our mains results see eqs. (49)-(51) .  

2. One dimensional  dynamics 

To illustrate the basic ideas with a minimum of 
mathemat ica l  formalism, we begin by consider- 
ing one dimensional dynamical systems. The ex- 
tension to higher dimensional systems (which 
brings in some complications) is t reated in the 

following section. 
To  define the qth order Lyapunov exponent  in 

one dimension, consider a one dimensional map,  
x,+ l = f(x,) .  Assume that f is q times differenti- 
able. For  convenience we define x = x 0, and use 
the notat ion "~t"(q) :dx(q) f t  = dqft /dxq(x)  for the 
qth derivative of the tth iterate of f ,  or alterna- 

, .(1) . . . .  (z) etc. The qth tively for brevity x, = z, , x, - zt , 
order  Lyapunov exponent  is 

} [ ( q ) ( x 0 )  = lim -1 loglxlq)l . (2) 
/ ~  t 

For  most  of the paper  we will restrict our atten- 
tion to the second order  Lyapunov exponent  A (2). 

2.1. Decomposit ion o f  the second derivative o f  

f '  

We begin by recursively differentiating: 

Xt÷l : f ( x t ) ,  

x't+ 1 = f ' ( x t ) x ' t ,  

t t r  x';+ 1 = f (x , )x ,  + f"(x,)(x ' , )  2 (3) 

If we assume that f is ergodic with a natural 
measure ,  because the recursion relation for x', 
gives x; as a simple product,  the first order 
Lyapunov  exponent  can be written as an ensem- 
ble average A (1)= (loglf'(x)l)x. This does not 
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hold for general A (q) because the higher deriva- 
tives involve sums as well as products. 

The recursion relation for x'~ can be explicitly 
resolved as 

t -1  t-1 ) )  m-1 ) ) 2  

Xttt~_. E ( __~Im+ ft(xn " ftt(Xm)" (n~I=o ft(Xn • 
m=0 n -  1 

(4) 

2.2. Fixed points 

For a fixed point x (x = x,, Vt) it is straight- 
forward to relate the second order Lyapunov 
exponent to the first. Eq. (4) is easily rewritten: 

x'~+, = f" (x )"  ~ f ' ( x )  t + m  • (5) 
m=0 

The leading behavior of this expression depends 
on the stability of the fixed point. We restrict 
ourselves to the case f"(x) # O. (When i f (x)  = O, 
x(~(x)  = - ~ . )  

2.2.1. Stable fixed point ( [ f ' (x) [  < 1) 

tt 
Xt+l = f '(x) '"  f"(x)" ~_, f ' ( x )  m 

m=0 

1 - f ' ( x )  t + l  

= f ' ( x f "  f"(x) " 
1 - f ' ( x )  

= f ' ( x ) "  C(x, t ) ,  (6) 

where 

C(x, t) = f"(x)" 
1 - f ' ( x )  t + l  

1 - f ' ( x )  

xt+ , = f"(x) • f ' ( x )  zt-m 
m=0 

= f ' ( x )  z'" f"(x) ~ f ' ( x )  -m 
m=0 

= f ' ( x ) 2 t . D ( x , t ) ,  (8) 

with 

1 - f ' ( x )  -~'+1~ 
D(x, t) = f"(x) .  

1 - f ' (x )  -1 

again bounded and nonzero. 
Therefore A(2)(x) for an unstable fixed point is 

A(2)(x) = 2 log[ f ' (x ) l  = 2A(a)(x) • (9) 

2.2.3. Nonhyperbolic fixed point ([ f ' (x ) l  - 1) 

t! 
Xt+l = f ' (x )  t" f"(x)" ~ f ' (x )  m 

m=0 

= f ' (x )  t" G(x, t ) .  (10) 

This time G(x, t) is not bounded, but grows at 
most linearly, i.e. ]G(x, t)]-< If"(x)l" (t + 1). 
This growth is small enough that 

ACE)(x) = loglf ' (x)[  = A( ' )(x) .  (11) 

All three cases can be summarized by 

A(2)(x) = max{2A(1)(x), h(1)(x)} . (12) 

Placing the result in this form is particularly 
appropriate for the extension to the multidimen- 
sional case. 

2.3. Periodic orbits 

is bounded and C(x, t ) #  0 for all t. Combining 
eqs. (2) and (6), 

A(2)(x) = log[ f ' (x ) l  -- A ( ' ( x )  • (7) 

2.2.2. Unstable fixed point ( I f ' (x) l  > 1) 
Reordering the sum in (5) we obtain 

Since a periodic orbit is just a fixed point of 
the p th  iterate, we expect our results to extend 
to periodic orbits in the natural way, i.e., letting 
A(2~(f p, x) be the 2nd order Lyapunov exponent 
of the map fP, 

, ( 2 ) ( f , ,  x) = pz(2)(f, x). (13) 
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As we demonstrate in the appendix, for an orbit 
of period p 

k 

x(~+Up = c(x)" ~. (X'p) k+* (14) 
j=o  

where 

p - 1  p - - 1  r - 1  

c(x) = E f"(x~) H if(x,)  H f ' ( x , )  2 , (15) 
r = 0  l=r+ 1 n = 0  

c(x) is independent  of k for fixed p. It is there- 
fore bounded for fixed p. Comparing (14) with 
(5), we see that this is the same form as for the 
fixed point, with f"(x) replaced by c(x). Since for 
a fixed point loglx;I = ph(1)(x), we can follow the 
same chain of reasoning used to get from (5) to 
(12). Thus, letting x~ represent the points on the 
periodic orbit, providing 

c ( x , ) ¢ 0 ,  i = 0 ,  p - 1 ,  (16) 

we get the same result that 

= 1 ,, 
loglx  l 

= max{2~(1)(x), A(l)(x)} (17) 

for any point x- -x~,  independent of i. 

3. n-dimensional dynamics 

3.1. Review 

3.1.1. Basic notation 
In this section we review a few very basic facts 

of differential calculus that will be necessary in 
what follows, in order  to establish notation. We 
have a dynamical system on a n-dimensional 
manifold M: 

x , + , = f ( x , ) ,  x t E M .  (18) 

The derivative dx f  at a point x E M is a linear 

mapping from TxM to Tf(x)M, 

d , f :  TxM---> T~(x)M . (19) 

T , M  denotes the tangent space at x, which is 
isomorphic to IR" for every x. If v E TxM, then 
d~f(v) E Ts(x)M. In a specific coordinate system 
the kth component  of d~f(v),  (d , f (v) )  k, is given 
by 

ok 
(dxf(v))k = i=, ~ ~ vi" (20) 

2 The second derivative d~f  at a point x E M can 
be thought as a symmetric bilinear form 

d2f :  TxM x T,M--+TI(x)M. (21) 

Symmetric means that d2 f(v,  w) = d2 f(w,  v) for 
v, w E TxM, and bilinear refers to the fact that 
d 2 f  is linear in both arguments separately. 

In a given coordinate system d 2 f(v,  w) has the 
form 

2 0k  
(dxf(V, w)) k = viwj,  (22) 

i.j=10xi Oxi 

2 where (dxf(v , w)) k is the kth component  of 
dZf (v ,w)~Tf (x )M.  The extension to higher 
order  derivatives d q f  proceeds similarly. 

In the following section it will be convenient to 
use the tensor product d x f ' ® d x f ' ,  defined as 

dx f '  ®dx f ' :  TxM x TxM--+ TxM x TxM , 

(23) 

where d , f ' ® d ~ f t ( v , w ) = ( d x f ' ( v  ), dxf ' (w))  
with v, w E TxM. Note that on the direct product 
TxM x T , M  with elements (v, w) d x f t ® d x f  t is 
a bilinear form while on the tensor product 
T , M ® T ~ M  with corresponding elements v ® w 
d x f ' ® d ~ f '  can be considered as a linear 
mapping. 

3.1.2. First order Lyapunov exponents 
For a variation in a given direction described 
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by U E T x M ,  the associated (first order) 
Lyapunov exponent  is 

3.2. Definit ion o f  higher order L y a p u n o v  
exponents  

A(1)(x, u) = lim 1 t - - ~  7 l o g l l d x f ' ( u ) l l  • (24) 

Oseledec's theorem [6] allows us to group the 
Lyapunov exponents asociated with different 
tangent vectors, so that rather than associating 
an exponent  with each u, we can associate a 
spectrum of exponents with each point x, and 
summarize in this way the behavior of all u. 
According to Oseledec's theorem, the matrix 

A x = lim ( ( d x f ' )  `r d x f ' )  u2' (25) 
l.--~oo 

exists and has positive eigenvalues e x]l)(x) > - . . .  

-> e a~"l~(x), where A~l)(x) are the Lyapunov expo- 
nents of x, ordered according to size, i.e. 
A~l)(x) >- . . -  -> A~l)(x). Suppose we identify de- 
generate Lyapunov exponents,  and let m i be the 
multiplicity of All)(x). Furthermore,  let V~ C R n 
the eigenspaces of All)(x), i.e. dim vi~ = m i and 

(1) A _ A i (x ) .  i i xv i - e ui, Vvi  E V x. The V~ are orthogon- 
al to each other  and span R n, i.e. R ~ = V~ • . . .  

Vx ~'. (E) denotes the direct sum of vector 
spaces). Letting n '  denote the number of differ- 
ent Lyapunov exponents,  the filtration E / associ- 
ated by the dynamics is given by 

We will define the second order  Lyapunov 
exponent  associated with a given point x and a 
pair of tangent vectors u and o as 

A(2)(x, u, v) = lim 1 2 , , -=  t l o g l l d ~ f  (u ,  o)ll (28) 

Note that since d 2 f  ' is a symmetric bilinear form 
on T~M × T x M  to Tx,M it can be considered a 
linear mapping from T x M  ®, T x M  , where ®s is 
the symmetric tensor product. Note that because 
the dimension of T ~ M ® ~ T x M  is ½n(n + 1), for 
n > l ,  2 , d x f  has a nonzero kernel. In this case, 
,~(2)(x, u, v) = - ~ .  

l l + 1  Letting w I E E x \ E  ~ (as defined above), we 
can summarize the possible growth rates of the 
pairs (u, v) by defining the spectrum o f  second 
order  exponents associated with x as 

h}2) (x)=h(2) (x ,w i, w i ) ,  i, ] =  l , .  . . , n ' .  

(29) 

The definition of • ( q )  i l  iq (x), for q > 2, proceeds 
analogously. 

3.3. Decompos i t ion  o f  the second derivative o f  

f '  

e'x = V'x e . . .  • v : ' .  (26) 

Using the "set subtraction" symbol A \ B =  

{x: x E A but x J ~ B } ,  we can alternatively de- 
fine the spectrum of Lyapunov exponents as 

For convenience we take x 0 = x so that x, = 
i f ( x ) .  In n dimensions the recursion relations of 
eq. (3) become 

x,+,  = f ( x , ) ,  

= l im 1 t l o g l l d f f ' u l l  
l 1+1 if u E E x \ E  ~ . 

(27) 

f f ' d f  t dx t+l = dx ' x , 

d2 f '+1 d 2 , , = " d x f  . x , f"  ( d . f  ® d x f  ) + d~, f  2 t (30) 

In other  words, the ith Lyapunov exponent  de- 
scribes the rate of separation for variations in 
directions excluded from those described by 
larger exponents.  

In one dimension the ordering of the recursion 
relations is not important,  because the deriva- 
tives are simply real numbers and they commute. 
In more than one dimension this is not true. 
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The resolved recursion relation analogous to 
eq. (4) is 

t - I  
2 t 

d . f  . . . .  ~ (d., , f  "dxm+lf) d2x..f 
m = 0  

" (dx~_ , f ' "d~ f )@(dxm , f ' " d x f ) .  
(31) 

T . M = U ~  0 " "  G U 7' (35) 

and each vector u E T~M can be written uniquely 
n '  i 

as u = Ei= 1 ciui, u~E U x with Ilu, II = 1. General- 
ly {ui} is not orthonormal,  and ui~ and V~ are 
not equivalent. 

In the following for convenience we assume 
that the eigenvalues/x~ are real. 

Using the chain rule for the first derivative, i.e. dxfu i ~- ~LiU i , i = 1 . . . . .  n ' .  (36) 

d x f  k = dx ,_~ f . . ,  dx, f .  d x f ,  (32) 

eq. (31) can be rewritten as 

t - I  
2 t t - - l -m 2 

d x f  = '~  dx,,+xf " d x m f ' ( d x f m @ d ,  fm)  . 
m = 0  (33) 

In a similar manner  to the arguments leading 
(34), the argument can also be made rigorous for 
complex eigenvalues (for the appropriate nota- 
tion see [2]). 

In terms of these eigenspaces the associated 
splitting of the tangent space is given for a fixed 
point by 

3.4. Fixed points Eix = Uix ~ Uix +1 @ . . .  ~ O n' . (37) 

3.4.1. Review of  first order exponents for fixed 
points 

Let  x be a fixed point f (x)  = x. Furthermore,  
for simplicity assume the linearization d x f of the 
map at the fixed po in t  is semisimple, i.e. com- 
plex diagonalizable [5]. With this assumption 
there exist n'  distinct eigenvalues /x i E C, i = 1, 
. . . ,  n', ordered by size of the absolute value 
[/x~[ > - - .  > [p.,,[ > 0 with the property that if 
txi E R then there exists an eigenspace U~x C ~" 
such that d x f  u~ = txiu ~ for all u~ E uix. Otherwise 
if ~[/~i ~ C \ ~ ,  then the complex conjugate/~i is also 
an eigenvalue and there exists a two dimensional 
real subspace Uix such that dxfUix = Uix such that 
d~ f  restricted to U~x is just a rotation and stretch- 
ing by I lz~[. For  this case it can be shown that the 
average stretching rate of a vector u i E Uix is 
given by logl~i[ and that the Lyapunov expo- 
nents of first order  are 

/~I1)(X) = log[~,l ,  i =  1 . . . . .  n ' .  (34) 

Fur thermore ,  the tangent space can be decom- 
posed into the direct sum of the eigenspaces, i.e. 

3.4.2. Computation o f  second order exponents 
For a fixed point we can compute the second 

order  Lyapunov exponents from the definitions 
(28) and (29). We restrict ourselves first on the 
case where ug E U~, i.e. we evaluate (29) first on 
eigendirections of the fixed point x which are 

i i + 1  special vectors in Ex\E x We must first com- 

d x f .  pute 2 t 

For a fixed point d x f  t = (dxf) ' .  Making use of 
this, and applying equation (33) to the pair of 
tangent vectors (u i, uj) yields 

d 2  r t + l z  ~ l  t u~, u~) 

~ .  ( d x f ) t - m  2 m m = dx f ( (dx f  ) u~,(dxf  ) u j ) .  
m = 0  

Using the bilinearity of d 2 f  and (36), 

(38) 

d 2  ~ t + l z  2 ra m t--m 
x ]  tUi ,  ui) = I~ i txj (dxf )  d2xf(Ui, uj) . 

m =0 (39) 

Although Uix and U~ are invariant under d x f, in 
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genera l  Uix x U~x is not  mapped  into ui~ or  U~ by 
d2f .  Le t  l '  deno te  the most  unstable direct ion 
where  (ui,  u~) has a componen t  af ter  it is map- 
ped  by d2f .  (Natural ly ,  if A r < 0 ,  then by "mos t  
uns tab le"  we mean  " least  s table") .  By defini- 

]t~' / ' \  F . t '  + 1 t ion,  then ,  d2f(u~, u~) is in - x - - ~  , and can be 
wri t ten  

n '  

d2f (u i ,  uj) = ~ CkU ~ with c r ¢ 0 .  (40) 
k=l" 

Using (40),  the l inearity of  d ~ f  and (36) we 
obta in  

mX" , m  u]) (41) -~ ['~k CkUk 
m = 0  k=l'  

This can finally be wri t ten as 

n '  

d2 f t+l(ui ,  Uj) :- Z Ckgk(t) U~ (42) 
k=l '  

with 

K k ( t  ) = ~ m m t -rn  (43) Ix i lx y lx ~ . 
m = O  

Now we investigate the scaling of  Kk(t), k ~  
{ l ' , . . . ,  n '}  distinguishing three  cases: 

(a) k: with I~1  < I/-t/~l, i.e. A} ~) + A ~ ) >  
A (1) . 

Kk(t  ) = t ' ~ . (m-- t ) .  (m-- t ) .  t--m 
~1~ i ],~ j " I.~ i pb j ['~ k 

m = O  

, ,  
= 

m = O  \ ~ - - ~ . /  " 
(44)  

T h e r e f o r e  Xk(t) can be wri t ten as r ~ ( t ) = / z d ~  i . '  ' 
6~(t) with I~At)l < c and 6k(t) ¢ 0  for  /x~ ¢ 0 .  

(b) k: with I~1  > I/.*i/~j], i.e. A} ~) + . ,19)< 
A(~). 

m m  
Kk(t) = IXk tZ~ tzj 

m = O  

--m t 2 ( ~ i ~ ' L j ) m  

• [tgk "~ ]'Lk m=O k ~"k / " 

(45) 

Again  Kk(t ) = /x k • 6k(t ) with 0 < 18At)l < c for  

/x k ~ 0 .  
(c) k: with I , jl = i.e. --t'~!l) q._ "-1)[(1) : 

A~ 1). 
In this case we obtain:  

Kk(t ) = /xl/xt~ • 6k(t) (46) 

with 6k(t) l inearly bounded ,  I~A/)I < t + 1. 
We can now split the sum of  equat ion  (42) into 

its th ree  possible cases: 

d 2  ~ t + l z  , t 
X f  [Ui ,  U j )  = [.£il&j Z ~ k ( t ) C k U k  

+ Z tXk6k(t)CkUk 
k:l~'kl>lm~'jl 

+ I~l~i Z 6k(t)CkUk. 
k:l~kl=l~itzil 

(47) 

No te  that  k -> l'. Now we use I/Zrl -> I/-~1, for  
k = I', . . . .  n '  to obtain:  

d 2  e t +  1-" t t 
1 I  tui ,  uj) = ~itzj  ~,  

k:l~l<lm~jl 

t 
+ / x  t, ~] 

t t 
+ tx~txj ~_~ 

6 k (t) c k u k 

(~zk / '  
--~l,/ 6k(t) CkUk 

8k(t)  ckuk 

l t l 
= l.LitXj(Vl(t ) + V3(t) ) + tZt,V2(t ) , 

(48)  

providing *l V l ( t ) # 0 .  vl(  0 and v2( 0 are boun-  
ded  and 11o3(011 grows at most  linearly. While 
any one  of  them can be zero,  at least one  of  
t hem is not  equal  to zero ,  if we assume that  
1 ' ~  { 1 , . . . ,  n '} .  Because  the three  vectors are 
l inearly independen t ,  we have v l ( t ) + v 2 ( t ) +  
V3(t ) ~ 0. Using this with the definit ion of  the 

~llf vl(t ) = 0, if it happens that V3(t ) is alternately zero and 
then nonzero, the limit of eq. (49) may not exist. However, 
from a physical point of view this is quite unlikely. 
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second order exponents we have now proved the 
following result: 

a i  (2) = A(2)(X, Ui, U]) : lim 1 2 t , ~  t l°glldxf (u,, uj)[I 

= max{All)(x) + h~l)(x), Al))(x)} , (49) 

with l ' defined by (40). If (ui, uj) lies in the 
kernel of d~ f then l' ~E" { 1 . . . . .  n'} and h I. 1] will 
be equal to -oo. 

The extension of (49) to arbitrary vectors 
i i+l j j+l  w~, wj E Ex \E ,  resp. E E x \ E  x (in accordance 

with definition (29) is straightforward by using 
2 t the bilinearity of d x f .  The only possible differ- 

ence might be the values of l', which is given by 
dZ~f(wi, Wj)  ~ " I'+1 Ex \E  x and might be different to 
the l ' given by d~f(u i, uj) in degenerate cases. 

1 l+1 
For an arbitrary tangent vector u E E~\E x , 

1' l'+1 where d~ f (u ,  u) E E x \E  , this implies then 

/~(2)(X, U) = m a x { 2 a l l ) ( x ) ,  a l ) ) (x)}  . (5o) 

This last result can be understood intuitively 
in reference to eq. (33). u grows under 
d x f m ® d x f  m according to 2h(t 1). The second 
derivative d2xf generally maps u into another 
(possibly) more unstable direction l'. This is 
further mapped by the first term d x f , -1 m, 

(I ,n+l 
which amplifies this according to a~, )(x). There 
is thus a competition between the two terms 
2A51) and al))(x) for dominance in the final 
growth rate. 

For a typical fixed point, there is in general no 
reason to expect that d 2 f preserves special direc- 
tions, so that it will throw an arbitrary pair of 

1 2 tangent vectors onto Ex\E  x. Thus typically we 
expect that 

al2)(x) = max{a}')(x) + a~')(x), a{~)(x)}. (51) 

We should emphasize that these results assume 
that the second derivative (see (40)) is nonzero. 

For a very high dimensional system, our con- 
jecture implies that the leading first order expo- 
nent dominates the second order Lyapunov spec- 

exponents corresponding to higher derivatives 

trum for large values of i and j. For example, if 
h~ 1) > 2A~ 1), the diagonal part of the spectrum is 
of the form 

{A} 2) } = (2A(11), /~I 1), A(11) . . . .  ) .  (52) 

Otherwise, if 2A~1) > hi 1), but Al l )> 2A~ l), then 
the spectrum is of the form 

{ a(2)~ (2A{ 1) 2A~I) ,  a(ll) ,  h{1) --ii , = , , . . . ) .  ( 5 3 )  

3.5. Periodic orbits 

In the appendix we prove the same result we 
have already shown in one dimension, namely 
that 

A ( q ) ( f  p, X) = p a ( q ) ( f ,  x ) .  ( 54 )  

3.6. Invariance properties 

Since we have shown that the second order 
exponents can be expressed in terms of the first, 
we know that they share the same invariance 
properties. 

4. Chaotic orbits 

For chaotic orbits it is difficult to find simple 
examples where the higher order Lyapunov 
exponents can be computed by hand. The stan- 
dard examples involving piecewise linear maps 
are uninteresting since the higher derivatives are 
identically zero almost everywhere, and so yield 
Ai(~ ) = -0o. 

On chaotic attractors numerical experience 
and also some rigorous results indicate that there 
is a natural measure describing "typical" time 
averages so that {A~)(x)} takes on the same 
value for almost every x on the attractor. At 
special values of x, such as points on unstable 
periodic orbits, {All)(x)} may take on different 
values, but these seem to be typically of zero 
measure. 
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There  is a growing body of recent work [1], 
however,  suggesting that in the limit as the 
period tends to infinity most unstable periodic 
orbits can be used to approximate the natural 
measure of the chaotic attractor they are con- 
tained in. For  example, there is good numerical 
evidence that the first order  Lyapunov exponents 
can be computed by simply finding as many long 
unstable periodic orbits as possible, computing 
their eigenvalues to find the Lyapunov spectrum 
of each orbit,  and averaging over different or- 
bits. We know of no rigorous proof that this 
procedure  is correct,  but in practice it seems to 
work very well. 

The result suggested by these numerical 
studies is that, in the limit as the period goes to 
infinity, almost every unstable periodic orbit has 
statistical properties that are typical of those of 
the attractor it lives on. If a statement along 
these lines is true, then our results for the higher 
order  Lyapunov exponents for periodic orbits 
should automatically extend to the chaotic or- 
bits, with one modification: We must assume that 
there are no regions on the attractor of positive 
natural measure where the second derivative d 2 f 
is identically zero. With this important restric- 
tion, we conjecture that equation (51) also holds 

for chaotic orbits. Tom Taylor  has recently prov- 
en an extension of Oseledec's theorem for higher 
order  Lyapunov exponents (in one dimension), 
which puts this conjecture on firmer ground [7]. 

In the next section we offer numerical evi- 
dence suggesting that this conjecture is correct,  
at least for the leading second order  exponent,  
,q?. 

5 .  N u m e r i c a l  r e s u l t s  

The direct numerical computation of higher 
order  Lyapunov exponents is more complicated 
than that of the usual first order exponents. The 
primary reason is that the higher order  expo- 
nents cannot be written as a simple product of 
terms, and we cannot use the multiplicative er- 
godic theorem to average in the way that is 
customary for the first order  exponent.  Further- 
more,  there is no obvious procedure such as the 
usual Gram-Schmid t  orthogonalization to com- 
pute the entire spectrum of higher order expo- 
nents. For the results reported here we confine 
ourselves to computations of the leading second 
order  exponent ,  "~11JL(2), which is easy to compute 
since, as we have shown, almost every pair of 

1.0 

0.5 

0.0 

- 0 . 6  

- 1 . 0  
0 

. . . .  I ' ' , ' I ' ' ' • I ' ' ' ' J . . . .  I . . . .  r I . . . .  I . . . .  I . . . .  I ' • ' ~ -  

50  100 150 200  250  3 0 0  360  4 0 0  450  500  

Fig. 1. Convergence of the largest second order Lyapunov exponent as a function of time, in comparison to twice the first order 
Lyapunov exponent, using the Ikeda map. 
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tangent vectors gives this exponent. Therefore 
w e  ca l cu la ted  ;~2~(x, u,  t) = loglld~xf'(u, u ) l l / t  
for some arbitrary tangent vector u by imple- 
menting the recursion relation (30). 

One practical difficulty is numerical overflow. 
When the dynamics are chaotic expressions such 
as eq. (33) quickly grow larger than the largest 
allowed value for the machine. This typically 
happens before we have iterated long enough to 
get a good numerical average over the attractor. 
For example, consider fig. 1, where we plot 
h(2)(x, u, t) for an arbitrarily chosen x and u, 
where f is given by the Ikeda map 

f(x, y) = (1 + /z [x  cos(z) - y sin(z)], 

/z[x sin(z) + y cos(z)]),  (55) 

with z = z(x, y) = 0 . 4 -  0.6/(1 + X 2 -[- y2) with 

/~ = 0.7 chosen. 
For comparison, we have also shown as a 

dashed line 2h(1)(x, u, t). Although h(Z)(x, u, t) 
appears to converge to 2A(1)(x, u, t), this is in- 
conclusive and does not provide very strong 
evidence for our conjecture. 

We can considerably improve this situation by 
making use of a trick that allows us to get much 
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1 . 5 0 -  

1 . 2 5  - 

1.00 

0 . 7 5  

0 . 5 0  
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t~ - 5 . 0 ,  

- 6 . 0  . . . . . . . .  , . . . .  , . . . . . . . .  , . . . .  
o.o I'.0 ~.0 ~.o 4.0 ~.0 6.o 7.0 

1os(t)- 
( (A H (t)> Fig. 2. (a) Same as fig. 1, but  using the ensemble  average technique of eq. (56). (b) plots log ~2) - 2A(11)(oo)) versus log(t),  

which makes  the convergence clearer. 
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better numerical values. For an ergodic orbit 
with a natural measure almost every x yields the 

(2) same Lyapunov spectrum Ai~ . Furthermore, al- 
most every pair of tangent vectors (u, v) tends to 
A~] ). This implies 

X(2) : lim 1 (loglld2f,(u, o)ll)x 
11 t----, ~¢ t (56) 

where the average is taken over the natural 
measure. 

We can take advantage of this and estimate 
A(2) by computing 11 
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(A~])(t)) = lim 1 ~ 1 loglld2 ' f ' ( u ,  o)11 
7 " ]=1  

(57) 

We take N as large as we need to in order to get 
good statistical convergence, and make t the 
largest value that does not cause numerical over- 
flow. This does not allow us to make t any larger, 
but it does mean that the estimates at each t are 
statistically stable. By extrapolating for several 
different values of t we can make sure that 
A~E)(t) is converging to a well defined limit as 
t----~ oo. 

In fig. 2 we repeat Ithe calculation of fig. 1 
using the ensemble average technique of eq. 
(57). As seen in fig. 2a, the convergence is quite 
good. To provide a stronger test of this, in fig. 2b 
we plot log((A~E1)(t))-2A~1)(oo)) versus log(t). 
This test is much stronger, since a small change 
from the true value destroys the monotonic con- 
vergence apparent in fig. 2b. We can thus say 
that "'11~(2)= 2A~) to at least three digits of pre- 
cision. 

We have run similar experiments on several 
other standard dynamical systems, such as the 
logistic map, the H6non map, and the "sine 
map" ,  xt+l = a .  sin(xrx,). In every case we have 
observed similar behavior, and our numerical 
experiments are in good agreement with --11x(2)= 
2A~ 1). 

Appendix 

Consider a periodic point x = x 0 of period p, 
i.e. Xn+ p = xn ,  V n .  Any iterate rn can be written 
m = j p + r  with r E [ 0 ,  p - 1 ] .  The sum in (4) 
can be written 

kp-1 k -1  p -1  

E = E (58) 
m = 0  j = 0  r = 0  

which yields 

k-1  p-1  kp-1 

= E E E i'(xn)" i"(X,,+r) 
j = 0  r = 0  n=jp+r+l 

jp+r-1 2 . 

• , I~= ° f ' ( x n )  ) (59) 

The periodicity of x implies xjp+r = x r. Further- 
more,  since d / d x  f k ( x n )  k-1 , =IIt= 0 f (Xn+l), we can 
write 

kp - 1 

H 
n=jp+r+l 

d 
f ' ( x ~ )  = -~X f (k -J)P- ' - I (XYP+'+I)  

p-1  
H t.t; x/  t x k - j - 1  

= f ~X(k-1)p+l)~Xp) 
/ = r + l  

p - 1  

= (x;Y I-[ f'(x,) 
I = r + l  

(60) 
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and and 

jp+r-1 )2  r -1  

J-[[=o- f ' ( x . )  = (Xp)2j" .=oI~ f ' ( x . )  2 • (61) 

Using (60) and (61), X"k. yields 

k-1  p - I  

= E E (x;) 
j=O r=0 

p -1  r -1  

H f¢(x , )"  f°(Xr)" ( X ; )  2j H f t ( xn )  2 
l-r+l n=O 

k-1 
= E (X;) k-l+j 

/=o 

( p ~ l  p - '  r--, , ) ) 2 
• f't(Xr) H f t ( X l ) H  f (Xn • 

"r=O /=r+ l  n=O 
(62) 

Defining c(x) as 

p - 1  p - I  r--I 

c(X) = E f"(Xr) H f '(xt) H f'(Xn) 2 , (63) 
r=O /= r+ l  n=O 

we finally obtain 

k-1  

Xkp C(X)" 2 (X;) k-l+j 
/=0 

In higher dimensions the calculation is analog- 
ous to the 1D case. The crucial difference is that 
we have to preserve the ordering of the products 
because they generally do not commute. 

Let x be a periodic point of period p of f,  i.e. 
x = f P ( x )  and therefore xjp+r = X r. We split again 
the sum in (33) as in (58) and obtain 

k-1  p - I  
d2f  kp= E E d f(k-])p-1 r Xjp+r+l 

j=O r=O 

d2m+rf(dxf jp+r @dxfJP+r). (64) 

Now using 

dx f  jp+r = dxfr(dxfP) j (66) 

we obtain 

k - I  p - I  
2 kp 

dx f  = E E ( d . f P )  k- j - Idxr+, fp-~- '  
/=0 r=O 

2 r 
dxrf(d~f @ d x f  r) 

((dxfP)J®(dxfP)J) .  (67) 

p-I  f p - r - 1  Setting A = d . f  p and B := 2.= 0 d..+~ 
d2rf(dxfr®dxfr) ,  then d2xf kp turns out to be 

k - I  
2 kp ~ dx f  ~ A k J ' B ( A J ® A  j) (68) 

g=o 

This is essentially the same structure as formula 
(38) for a fixed point, except dxf  is replaced by 
dx f  p and d2 f  is replaced by the constant map- 
ping B which is again more complicated than for 
a fixed point, but bounded. Now doing the same 
calculations as for a fixed point, we obtain exact- 
ly the same result: 

Proposition. Consider eigendirections ui, uj of 
A = d x f p with eigenvalue /xi resp. /zj, which are 
related to the first order Lyapunov exponents by 
logl~, l  = px~'~(x) and let 

n' 

B(u i, uj) = ~ CkUk; 
k=l' 

then the second order Lyapunov exponent 
/~(2)(X, Ui, Uj) of a periodic point x and the direc- 
tions ui, uj is given by 

A(e)(x, u i, u j )  =max{A~l)(x)+ A~I)(x), A}~)(X)}. 
(69) 
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