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Abstract
In this article we investigate the size, in terms of total assets managed, of equity mutual funds. We show that the large tail

of the size distribution of equity funds is best described by a log-normal as opposed to a power law. We begin our analysis by
comparing the power law tail hypothesis to the log-normal tail hypothesis and show that not only is the log-normal hypothesis
more likely but that the power law tail may be rejected. We argue, using a stochastic growth model, that the mutual fund
ecology is young and as such it is in a transient state and given enough time it will converge to a steady state in which the
large tail of the distribution follows a power law. Previous analysis of the mutual fund ecology dangerously treated the process
as stationary without identifying the time scales in which the process converges. Such a treatment predicts a stationary size
distribution with a power law tail that was argued to follow Zipf’s law. We construct a stochastic growth model for the
ecology of mutual funds in which the evolution is governed by three processes; growth, modeled as a Gibrat process, creation
and annihilation of funds. We provide an analytical solution to the model which allows us to identify the time scales of the
evolution process and treat the process as time dependent . Our model can be made more realistic by modifying the growth
process with the empirical observations that the variance and drift of the growth process are size dependent . We show, using
simulations, that the modified model does an excellent job of describing the top tail of the size distribution. By describing
the distribution using a random process we show, as was argued by Herbert Simon, that investor choice is not of fundamental
importance for the description of all of the observable attributes of the economy.
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I. INTRODUCTION

The investigation of distributions has been an area of active research in economic and social systems for many years.
One approach for explaining these distributions is to examine the processes that govern their behavior and treat them
as stochastic processes [19, 28, 32, 33]. By modeling these processes one can identify key properties responsible for
creating the observed distribution and perhaps even find similarities across several seemingly disparate systems [33].

Some of the observed distributions in various types of systems seem to exhibit heavy tails. Among these distri-
butions are the distribution of wealth [35], the distribution of firm sizes [2, 39] (aggregated across industries) and
the distribution of number of inhabitants in cities [18] which are shown to follow Zipf’s law. Lately there have been
observations that several phenomena in financial markets obey heavy tailed distributions. Out of these phenomena
two have been the center of recent research: the distribution of traded volume and the distribution of returns [20, 21].
These distributions were observed to have a power law tail with different tail exponents. The exponent of these two
tails was extensively studied [13, 40] and there is an ongoing attempt to try to relate the two exponents through
a simple mechanism [15, 17, 25, 35]. It is believed that the relation between these two exponents depends on the
distribution of investors wealth which is believed too to obey a power law tailed distribution.

The upper tail of investor wealth distribution can be studied by investigating the characteristics of large players.
Large players such as institutional investors were shown to play a large role in market activity [10] and as such they
contribute to some of the behaviors we observe in financial markets. One can hypothesize that these Institutional
investors are responsible for the tails of the distributions due to their size and stature in the financial world. As such,
we are interested in studying the statistical properties of institutional investors. We chose to work with mutual funds
due to the high quality data available. In this work we focus on the size distribution of mutual funds and show that
the distribution of equity fund sizes is better described as a log-normal. The log-normality of the size distribution is
in contrast with arguments that the distribution obeys Zipf’s law [15, 16]. Since mutual funds are firms our work is
a study of the size distribution of firms belonging to a single industry.

The distribution of firm sizes has been actively researched over the years yielding interesting observations and as
a consequence models were proposed to explain them. It has been observed early on that the size distribution of
firm sizes is highly skewed [32, 41]. This observation holds true for the size distribution of firms belonging to a
single industry and for for the distribution of firm sizes across industries. The firm size distribution was found to
be right skewed [1, 2, 4, 11, 32, 36, 37, 41] in the sense that the modal size is smaller than the median size and
both are smaller than the mean firm size. We find that the size distribution of mutual funds exhibits similar right
skewness. This is not surprising since mutual funds are firms. The observed skewness of the size distribution can be
explained by modeling the growth process of the firms as a stochastic process and many such processes have been
proposed [15, 16, 19, 28, 32, 33, 38, 41]. Even though these processes yield skewed distributions the upper tail of
these distributions is log-normal in some and pareto in others.

The functional form of the upper tail of the firm size distribution is debated. One must discuss separately the size
distribution of firms in a single industry from the distribution aggregated across industries. It is accepted that by
aggregating across industries the resulting size distribution has a power law tail [2, 4, 11] but it is not clear whether
it is the result of the aggregation process [4, 11]. For firms belonging to a single industry the upper tail was found
to be a log-normal [1, 4, 11, 32, 36, 37, 41] while others found it to be a power law [2]. Previous work on the size
distribution of mutual funds argued that the distribution follows a power law upper tail [15–17] while we, on the other
hand, show in this work that the distribution is better described by a log-normal upper tail.

In order to explain the observed log-normal upper tail of the mutual fund size distribution we investigate the
mechanism of growth [42]. Previous work on the mechanisms of growth of mutual funds include [3, 16]. The growth is
decomposed into two mechanisms; return and money flux. Clearly, these two mechanisms, return and net money flux,
are correlated since a fund yielding high returns will attract investors while a poor performance by a fund will deter
investors. For work done on correlations between the flux of money into or out of a mutual fund see [7, 8, 22, 31, 34]
and references there in.

Another interesting question is whether there is any size dependence in these changes. It was shown that the growth
rate of firms is larger for small firms and is size independent for large firms [4, 5, 12, 23, 24, 26, 29]. Such a constant
return to scale industry (for large firm sizes) is consistent with a Gibrat model for the growth process. We investigate
the size dependence of the growth process on the mutual fund size and fins similar results for the size dependence.
The return seems to be independent of size. Meaning, that on average the performance of a fund is independent of
the fund size as was also investigated by[17]. We find this to be in agreement with an efficient market in which we
can not achieve greater return by simply going to larger funds. This observation of efficiency in regard to fund size
is complimentary to the believed efficiency with respect to performance [27]. In contrast to the return, the money
flux decays with the fund size. Thus for small sizes the dominating mechanism is money flux whereas returns are the
dominating growth mechanism for large funds sizes and the growth is then independent of the mutual fund size.

We show in this work that the variance of the growth process for mutual funds is size dependent. The variance in
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growth rate decays with size with a rate that depends on the size. This is in accord with observations the the variance
of the growth rate of firms in individual industries is size dependent [1, 4–6, 11, 14, 36, 37] and references there in.
Not only do we observe a size dependence in the variance of the growth rate but we observe the same functional form.
The variance in firm growth rates was shown to obey a power law decay and not surprisingly we show that so does
the variance for the variance in the mutual fund growth rates.

With the empirical observation as guide lines, we offer a random growth model that captures the essence of the
mechanism responsible for the observed distribution of fund sizes. We solve the model analytically and we show that
the distribution evolves from a log-normal initial state towards a power law stationary state. Using a Green’s function
approach for the solution of the time dependent evolution of the fund size PDF we show that dynamics of the growth
process yield a log-normal tail. This log-normal tail is an innate quality of the dynamics and does not depend on the
way funds are created. The independence of the log-normal tail and the creation process is valid as long as funds are
not created with a heavier tailed distribution then a log-normal. The distribution evolves towards a power law tailed
distribution due to the annihilation process of funds. The role of a random annihilation process in creating a steady
state power law tailed distribution was previously studied in [30].

The solution for the time dependent evolution of the distribution enables us to identify the important time scales
in which the distribution converges toward a power law. Using the empirical rates we calculate the time scales and
show that they are indeed large compared to the age of the industry. Thus, our analysis predicts that the distribution
will be better described by a log-normal then a power-law, which is verified using the empirical data.

The paper is organized as follows. Section II examines the size distribution of mutual fund using the empirical data.
The underlying processes responsible for the size distribution, as they appear in the data, are discussed in Section
III. Using the empirical observation for the dynamical processes Section IV lays out our model and the resulting
equations that govern the time evolution of the size distribution. The model is solved and discussed in Section V.
Section VI presents simulation results of the proposed model and compares them to the empirical data. Section VII
presents modification to the model as suggested by the data. The modified model is simulated and compared to the
data.

II. THE OBSERVED DISTRIBUTION OF MUTUAL FUND SIZES

Recently the distribution of fund sizes was reported to have a power law tail which follows Zipf’s law [15–17]. Zipf’s
law is defined such that the Cumulative Distribution Function (CDF) for the mutual fund size s obeys a power law

P (s > X) ∼ X−ζs ,

with an exponent of ζs ≈ 1. where s denotes the mutual fund size.
In the following section we will investigate the size distribution using the CRSP database. The analysis will be

carried out for equity funds, which are defined as funds with a portfolio consisting of at least 80% stocks. We test
the hypothesis of a power law tail against the hypothesis that the distribution is actually a lognormal . In Figure 1
the cumulative distribution of sizes P (s > X) is plotted. The cumulative distributions (CDF) for the years 1993,1998
and 2005 were calculated using the empirical data for equity funds. [43]. In [17] the CDF for fund sizes in the year
1999 is plotted on a double logarithmic plot. In Figure 2 we reconstruct the graph by plotting the CDF for funds
with sizes s > 106 on a double logarithmic scale. The CDF is compared to an algebraic relation of exponent ζs = −1
which is represented in the plot by a line of slope -1. It is not at all obvious that this is a power law. Thus, in the
following subsection we will test the hypothesis of a power law tail in several ways. At first we will check the validity
of a power law fit to the data using statistical tests.

A. Is the distribution of fund sizes a power law?

In this section we investigate the hypothesis of a power law upper tail for the fund size distribution. By quantitatively
testing the validity of such a hypothesis, we argue that such a power law hypothesis is weak at best for some years
and can be unquestionably rejected for the other years.

Following [9] and references there in, we test the validity of the power law hypothesis. The power law hypothesis is
such that above a certain fund size denoted by smin the probability density function p(s) obeys a power law for sizes
larger than smin

p(s) =
ζs
smin

(
s

smin

)−(ζs+1)

, (1)
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FIG. 1: The CDF for the mutual fund size s (in millions) is plotted on a double logarithmic plot. The cumulative distribution
for funds existing at the end of the years 1993, 1998 and 2005 are given by the full, dashed and dotted lines respectively.
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FIG. 2: The CDF for the mutual fund size s (in millions) existing in the end of 2005 is plotted in a double logarithmic scale (
dotted line) is compared to an algebraic relation with exponent −1 (full line)

where the distribution is normalized in the interval [smin,∞). Thus, such a power law fitting has two parameters
smin and the exponent ζs. The MLE for the scale parameter ζs depends on smin. This crossover size smin is not
chosen arbitrarily (by visualization) but is chosen such that it minimizes the Kolmogorov-Smirnov (KS) statistic D
[9]. The KS statistic is the distance between the CDFs of the empirical data Pe(s) and the fitted model Pf (s)

D = max
s≥smin

|Pe(s)− Pf (s)| .

By following the above procedure we fit the size distribution of funds existing at the end of the years 1991 to 2005.
The estimated parameters are summarized in Table I. The value for ζs and smin is given for each of the each of the
years. The mean of the yearly values is calculated ζ̄s = 1.09 ± 0.04 and can be regarded as agreeing with Zipf’s law
for which the exponent is ≈ −1. The standard error is calculated by dividing the standard error by the square root
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FIG. 3: The number of equity funds as a function of time for the yeas 1991 to 2005(•). The data is compared to a linear
dependence.
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FIG. 4: (a) The p-value for a power law tail hypothesis calculated for the years 1991 to 2005. (b) The number of equity funds
Ntail(t) in the upper tail s.t. s ≥ smin as a function of time for the years 1991 to 2005(•).

of the number of observations (number of years).
Our ability to fit the data with a power law does not mean that the power law fit is a good one. In order to check

the validity of the power law hypothesis we will try and address the plausibility that the sample we observe is actually
drawn from the hypothesized power law model. We do so by calculating the p-value for this model. The p-value
is the probability that a data set of the same size randomly drawn from the hypothesized distribution will have a
goodness of fit not better than the empirical data. As the goodness of fit we use the KS statistic D described above.
The p-value is calculated numerically using a monte-carlo method [9]. The method is such that we generate a large
number of synthetic data sets. Each synthetic data set is drawn from the empirical distribution for s ≤ smin and for
s > smin we draw from a power law distribution with an exponent that is the best fit to the empirical data given
smin. For each data-set we calculate the KS statistic to it’s best fit. The p-value is the fraction of the data sets for
which the KS statistic to it’s own best fit is larger then the KS statistic for the empirical data and it’s best fit. The
resulting p-value were calculated numerically using 10000 randomly chosen data sets.

In Figure 4(a) the p-value for each of the years 1991 to 2005 is given. The results are summarized in Table I where
the p-value for the power law fit is calculated for the data at the end of each year as well as the mean across the years.
The standard error for the mean was calculated by dividing the standard deviation by the square root of the number
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variable 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 mean std std-err

N 372 1069 1509 2194 2699 3300 4253 4885 5363 5914 6607 7102 7794 8457 8845 - - -

ζs 1.33 1.36 1.19 1.15 1.11 0.78 1.08 1.10 0.95 0.97 1.01 1.07 1.07 1.10 1.14 1.09 0.14 0.04

smin 955 800 695 708 877 182 1494 1945 1147 903 728 836 868 1085 1383 974 408 105

Ntail 81 129 232 256 280 1067 290 283 557 662 717 494 652 630 550 - - -

p-value 0.58 0.48 0.02 0.45 0.07 0 0.01 0.11 5 10−4 0.04 0.03 0.07 0.08 0.08 0.15 0.15 0.19 0.05

µ(10−3) 26.1 41.8 81.2 46.2 72.7 67.9 57.7 38.8 39.5 19.6 -30 -10 50.2 17.8 30.5 38.5 26.1 6.7

σ 0.078 0.200 0.260 0.293 0.229 0.282 .289 0.302 0.283 0.278 0.255 0.242 0.236 0.240 0.246 0.247 0.055 0.014

R -0.50 -1.35 -1.49 -1.71 -3.29 -18.42 -2.25 -1.29 -6.57 -4.96 -2.63 -2.95 -2.00 -1.05 -0.99 -3.43 4.45 1.15

TABLE I: The values for each of the parameter (rows) are given for each year (columns). The mean and standard deviation
are evaluated for the yearly values. The standard error is calculated by dividing the standard deviation by the square root of
the number of observations, which corresponds to the number of years.
N - the number of equity funds existing at the end of each year.
ζs - the power law tail exponent (1).
smin - the lower tail cutoff above which we fit a power law (1).
Ntail - the number of equity funds belonging to the upper tail s.t. s ≥ smin.
µ - the drift term for the geometric random walk (9).
σ - the standard deviation of the mean zero Wiener process (9).
R - the log likelihood ratio of a power law fit relative to a log-normal fit (3) .

of observations. One can notice that the p-value decreases with time s.t. the power law hypothesis can not be rejected
at the beginning but as time progresses it can be rejected. The number of equity funds increases approximately linear
with time as can be seen in Figure 3 and so do the number of equity funds in the upper tail Ntail given in Figure 4(b).
The number of funds in the upper tail is defined as the number of funds in each of the years with a size s ≥ smin.
Figure 4 suggests that as the number of funds in the upper tail increases one can reject the power law hypothesis due
to better statistics. However, the hypothesis can not be rejected for the year 2005. The values of Ntail and N for
each year are summarized in Table I.

We can conclude that the power law tail hypothesis is questionable however it cannot be unequivocally rejected.
In the following section we show that regardless of the validity of the power law hypothesis, the data is more likely to
be explained by a log-normal hypothesis.

B. Is the distribution of fund sizes log-normal?

Whether we choose to reject the power law tail hypothesis or not we can test the data for another hypothesis. We
propose that the data is better described by a log normal distribution. The log normal distribution is defined such
that the density function pLN (s) obeys

p(s) =
1

sσ
√

2π
exp

(
(log(s)− µs)2

2σ2
s

)
and the CDF is given by

P (s′ > s) =
1
2
− 1

2
erf
(

log(s)− µs√
2σs

)
.

A qualitative method to compare a given sample to a distribution is by a probability plot in which the quantiles
of the empirical distribution are compared to the suggested distribution. Figure 5(a) is a log-normal probability plot
for the size distribution of funds existing at the end of the years 1991 to 2005 while Figure 5(b) is a log-normal
probability plot for the size distribution of funds existing at the end of 1998. The empirical quantiles are compared to
the theoretical log-normal values. For both years, the quantiles fall on the dashed line which represents the log-normal
theoretical values. Thus, for most of the tail the distribution seems to follow a log-normal distribution. However, the
largest values in the tail of the distribution are above the dashed line for both the years 1991 and 2005. This means
that for very large sizes the empirical distribution decays faster then a log-normal. Since a power law distribution
decays slower then the log-normal this hints that a log-normal tail hypothesis is better suited.
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FIG. 5: A log-normal probability plot for the size distribution (in millions of dollars) of equity funds. The size quantiles are
given in a base ten logarithm. The empirical quantiles (◦) are compared to the theoretical values for a log-normal distribution
(dashed line). This is similar to a QQ-plot with the empirical quantiles on the x-axis and the theoretical quantiles for a
log-normal on the y-axis. (a) The empirical quantiles are calculated from funds existing at the end of the year 1998. (b) The
empirical quantiles are calculated from funds existing at the end of the year 2005.
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FIG. 6: A Quantile-Quantile (QQ) plot for the size distribution (in millions of dollars) of equity funds. The size quantiles are
given in a base ten logarithm. The empirical quantiles are calculated from the size distribution of funds existing at the end
of the year 1998. (a) A QQ-plot with the empirical quantiles as the x-axis and the quantiles for the best fit power law as the
y-axis. The power law fit for the data was done using the maximum likelihood described in Section II A and the fit parameters
are smin = 1945 and α = 1.107. The empirical data was truncated from below such that only funds with size s ≥ smin were
included in the calculation of the quantiles. (b) A QQ-plot with the empirical quantiles as the x-axis and the quantiles for the
best fit log-normal as the y-axis. The log-normal fit for the data was done used the maximum likelihood estimation given smin

(2) yielding µ = 2.34 and σ = 2.5. The value for smin is taken from the power law fit evaluation.
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FIG. 7: A histogram of the base 10 logarithm of the log likelihood ratios R computed using (3) for each of the years 1991 to
2005. A negative log likelihood ratio implies that it is more likely that the empirical distribution is log-normal then a power
law. Since the log likelihood ratio for any of the years is negative we can conclude that a log-normal hypothesis better suits
the size distribution of funds existing at the end of the years 1991 to 2005.

A visual comparison between the two hypothesis can be made by looking at the Quantile Quantile (QQ) plots
for the empirical data compared to each of the two hypotheses. In a QQ-plot we scatter plot the quantiles of one
distribution as the x-axis and the other’s as the y-axis. If the two distributions are the same then we expect the points
to fall on a straight line. Figure 6 is a QQ-plot for the size distribution (in millions) of equity funds compared to the
two hypotheses. The empirical quantiles are calculated from the size distribution of funds existing at the end of the
year 1998. In Figure 6(a) the empirical quantiles are the x-axis while the quantiles from the best fit power law are
the y-axis. The power law fit for the data was done used the maximum likelihood described in Section II A and the
fit parameters are smin = 1945 and α = 1.107. The empirical data was truncated from below such that only funds
with size s ≥ smin where included in the calculation of the quantiles. (b) A QQ-plot with the empirical quantiles as
the x-axis and the quantiles for the best fit log-normal as the y-axis. The log-normal fit for the data was done used
the maximum likelihood estimation given smin (2) yielding µ = 2.34 and σ = 2.5. The value for smin is taken from
the power law fit evaluation. In both we can conclude that the tail of the empirical distribution decays faster then
either a power law or a log-normal. The log-normal is clearly a better fit.

A more quantitative method to address the question of which hypothesis better describes the data is to compare
the likelihood of the observation in both hypotheses. We define the likelihood for the tail of the distribution to be

L =
∏

sj≥smin

p(sj).

We define the power law likelihood as LPL =
∏
sj≥smin

pPL(sj) with the probability density of the power law tail
given by (1). The lognormal likelihood is defined as LLN =

∏
sj≥smin

pLN (sj) with the probability density of the
lognormal tail given by

pLN (s) =
p(s)

1− P (smin)

=
√

2
s
√
πσ

[
erfc

(
ln smin − µ√

2σ

)]−1

exp
[
− (ln s− µ)2

2σ2

]
. (2)

The more probable it is that the empirical sample is drawn from a given distribution, the larger is the likelihood
value for that set of observations. The ratio of these likelihoods implies from which probability distribution is it more
likely that the observed data follows. However it does not address the issue of the validity of such a fit to the data.
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We define the log likelihood ratio as

R = ln
(
LPL
LLN

)
. (3)

The sign of the log likelihood is determined by the value of the ratio of likelihoods for the two distributions. If R
is positive it implies that the likelihood for a power law tail is larger then the likelihood for the sample to be drawn
from a log-normal distribution. Thus, a positive value for R implies that the power law hypothesis is more probable
then a log-normal. A negative value for R implies that the log-normal tail is more probable . For each of the years
1991 to 2005 we computed the maximum likelihood estimators for both the power law fit and the log-normal fit to
the tail, as explained above and in Section II A. Using the fit parameters, the log likelihood ratio was computed (3)
for each of the years 1991 to 2005 and the results are summarized in Figure 7. The histogram clearly shows that for
each of the years (all points) the resulting R is negative, implying that the log-normal hypothesis is more probable.
We conclude that the log-normal tail hypothesis is better suited to describe the empirical data.

III. EMPIRICAL JUSTIFICATION FOR THE MODEL

So far we have shown that the upper tail of the size distribution is better described as a log-normal than a power law
as was previously . In the following sections we attempt to justify the observation through a stochastic growth model.
We wish to construct a model that is as simple as possible while capturing the essence of the dynamics of the mutual
funds as observed from the empirical data. Our empirical analysis is carried out using the CRSP Survivor-Bias-Free
US Mutual Fund Database. This data base enables us not only to study the sizes over time but also to investigate
the mechanism of growth. We investigate the time behavior of equity funds over the years 1991 to 2005. We define
an equity fund as a fund with a portfolio consisting of at least 80% stocks. Even though the data base has data on
mutual funds dating back to 1961 the data on equity mutual funds as defined above is available for funds mainly from
the year 1991. Thus, we chose to treat the data as if no equity funds were available prior to 1991.

We define a model consisting of three possible events; creation of funds, annihilation of funds and changes in the size
of funds. In the following section we investigate these three processes while trying to characterize it on the simplest
manner. Some of the characteristics of these processes will be neglected in order to keep the model as simple as
possible. Nevertheless, we show later on that this simple model captures the essence of the process.

We begin by analyzing the growth process in which is the process in which mutual funds change their size. The
growth is decomposed into two mechanisms; return and money flux. The first process is that of the mutual fund
performance in which the assets under management change due to the return. The second growth process is the flux
of money from investors. This flux can be either negative corresponding to investors leaving the fund or positive
corresponding to money invested in the fund. However, we can only measure the net flux of money.

The data set has monthly values for the Total Assets Managed (TASM) by the fund and the Net Asset Value
(NAV). Using these values we can define the size s of a fund (in millions of US dollars) at time t as s(t) ≡ TASM(t)
and the fractional change in the fund size s as

∆s(t) =
s(t+ 1)− s(t)

s(t)
. (4)

The return at time t is defined by measuring the fractional change in the Net Asset Value (NAV) of the fund at time
t

∆r(t) =
NAV (t+ 1)−NAV (t)

NAV (t)
. (5)

The fractional change corresponding to net flux of money ∆f is defined as

∆f (t) =
s(t+ 1)− [1 + ∆r(t)]s(t)

s(t)
. (6)

The fractional change in size due to return ∆r and the fractional change due to money flux ∆f are related through
the relation

∆s(t) = ∆f (t) + ∆r(t). (7)

Clearly, these two mechanisms, return and net money flux, are correlated since a fund yielding high returns will
attract investors while a poor performance by a fund will deter investors. For work done on correlations between the
flux of money into or out of a mutual fund see [7, 8, 22, 31, 34] and references there in.
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FIG. 8: The fractional changes in a funds size as a function of size (in millions). The total fractional size change ∆s (4), the
return ∆r (5) and the fractional flux of money ∆f (6) are represented by (◦), (2) and (4) respectively. The calculation is for
fund size changes in the year 2005. The data was binned into 8 logarithmically spaced bins. The error bars were calculated as
the standard error of the mean (in both x and y) in each bin.

Another interesting question is whether there is any size dependence in these changes. To help answer this question,
the empirical fractional size changes; ∆s, ∆r and ∆f were calculated for the year 2005 and are plotted as a function of
the fund size s in Figure 8. The return ∆r, as can be seen in Figure 8, seems to be independent of size. Meaning, that
on average the performance of a fund is independent of the fund size and equity funds can be viewed as a constant
return to scale industry[17]. We find this to be in agreement with an efficient market in which we can not achieve
greater return by simply going to larger funds. This observation of efficiency in regard to fund size is complimentary
to the believed efficiency with respect to performance [27]. In contrast to the return, the money flux ∆f decays with
the fund size. Thus for small sizes the dominating mechanism is money flux whereas returns are the dominating
growth mechanism for large funds sizes. This will be further investigated in a following paper. For the purpose of
this work we concentrate on the total change ∆s.

The size movements are modeled as an iid random process such that a size change ∆s at time t is uncorrelated
with previous size changes. At first this seems like an improper assumption since a size change consists of return
and money flux (7) components that were shown to be correlated. Nevertheless, although ∆s is correlated with past
performance since the market is assumed to be efficient, we can regard performance (return) to be a random process
and as such so will be the size movements. We can conclude then that an iid approximation for the size changes is a
valid approximation.

As a first approximation, we model the distribution of size changes as a log-normal. In such an approximation the
logarithmic changes are modeled as a normal random variable N(µ, σ) with a mean µ and standard deviation σ which
are independent of the fund size in agreement with a Gibrat type process. This is a simplification that allows us to
solve the model analytically and to gain insight into the time evolution of the distribution. We will later show that
there is a size dependence for both the drift and standard deviation terms and we will offer modified models to take
these size considerations into account.

The parameters µ and σ were measured for each of the years 1991 to 2005 by taking the mean and standard deviation
of the log size changes. The results for each of the years, their mean and their standard error are summarized in
Table I. The standard error was calculated by dividing the standard deviation by the square root of the number of
years. The rates we use here after in our numeric analysis are the means of these yearly rates as given in Table I.

next we examine the creation of new funds. We investigate both the number of funds created each year Nc(t) and
the sizes in which they are created. Using a linear regression we find no statistically significant dependence between
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FIG. 9: (a) - The creation size sc Probability Density Function (PDF) for funds created in the years 1991 to 2005 (full line).
The creation size PDF (full line) is compared to the size PDF of equity funds existing in the end of 2005 (dashed line). The PDF
estimate for the size of created funds sc was calculated using a gaussian kernel smoothing technique. The kernel smoothing
window is optimal for a normal density (MATLAB built in function). The PDF was calculated using the sizes sc of all the
funds created in the years 1991 to 2005. (b) - The Cumulative Probability Density P (sc > X) for the sizes of funds created in
the years 1991-2005. The CDF was calculated using order ranking of the empirical data.

Nc(t) and N(t − 1). Thus, we approximate the creation of funds as a Poisson process with a constant rate ν. The
number of funds as a function of time is plotted in Figure 3 and suggests a linear time dependence for the number of
funds N(t).

In Figure 9(a) we plot the PDF for the size sc of new funds. The density function is estimated using a gaussian
kernel smoothing technic. The density was estimated for the aggregated data for all created funds. In Figure 9(b)
the CDF P (sc > X) of new fund sizes is plotted. With the above plot as motivation we approximate the probability
of a new fund to be created with a size ω, f(ω), as a normal in log size with a mean µs = 0 and standard deviation
σs = 3. In order to gauge qualitatively how the empirical initial fund size distribution differs from a log-normal we
use a probability plot Figure 10. The empirical initial fund size distribution differs mostly in the upper and lower
tails as can be seen in Figure 10 where the data points diverge from the straight line. For the lower tail (small initial
fund sizes) the data points fall beneath the line which means that the empirical distribution is heavier tailed. In
contrast, for the upper tail (large initial fund sizes) the data points fall above the line which means that the empirical
distribution is lighter tailed compared with a log-normal. In the mid of the Data point falling on the dashed line
correspond to quantiles which are in agreement with a log-normal. Thus, we can safely approximate the process as
log-normal since the upper tail of the creation size distribution decays faster then a log-normal and as such can not
be regarded as a potential source for heavy tails in the size distribution. Moreover, in Figure 10 the PDF for the size
of new funds is compared to the size PDF of funds existing at the end of 2005. It is clear that the creation process is
not responsible for the observed size distribution.

The third process is the annihilation of funds. We argue that the annihilation process is such that the total number
of annihilated funds is proportional to the number of funds, i.e. there is a size dependent probability λ(ω) for any
given fund to be annihilated. In Figure 11 we plot the number of annihilated funds Na(t) as a function of the total
number of equity funds existing at the previous year N(t − 1). Using a linear regression we conclude that Na(t)
depends linearly on N(t). As a result, we define the annihilation process as follows; each existing fund is annihilated
with a rate λ(ω) that might depend on the fund size ω. If we define the number density as n(ω, t), the rate Λ of
annihilated funds is given by

Λ =
∫ ∞
−∞

λ(ω)n(ω, t)dω.

If we make the simplifying assumption that the rate is independent of size, the rate λ is just the slope of the linear
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FIG. 10: A log-normal probability plot for the size distribution (in millions) of new equity funds. The empirical quantiles
(◦) are compared to the theoretical values for a log-normal distribution (dashed line). This is similar to a QQ-plot with the
empirical quantiles on the x-axis and the theoretical quantiles for a log-normal on the y-axis.

regression in Figure 11 yielding an annihilation rate per annum of λ = 0.092± 0.015 at a 95% confidence level. Since
we assume the annihilation to be a Poisson process the monthly rate is just the yearly rate divided by the number of
month per year. Using simulations, we verified that the size dependence of the annihilation rate does not change the
essence of the dynamics and this simplification is justified.

IV. A MODEL FOR THE MUTUAL FUND GROWTH DYNAMICS

We begin with a simple model for the growth dynamics of mutual funds. A simple model for stochastic growth of
firms was proposed by Simon et al [32] and more recently similar model describing the growth of equity funds was
proposed by Gabaix et al [16]. There are key differences in the approach we offer. First, they model the tail of the
distribution taken to be funds with size in the top 15% whereas we model the entire spectrum of fund sizes. We
define an equity fund as a fund with a portfolio containing at least 80% stock for a larger sample that will ensure
better statistics. We found that the distribution is the same even for a more strict demand of 95%. However, such a
strict constraint leads to smaller samples and weaker statistical statements. The model proposed by Gabaix et al has
a fund creation rate which is linear with the number of funds whereas the data suggests that the rate has no linear
dependence on the total number of funds. Moreover, the model is solved for the steady state distribution whereas we
solve for the time dependence and show that the asymptotic power law behavior is reached only after a long time.

In our model, the number of mutual funds increases with time. The growth is both in the number of funds and in
the total size (money) of the ecology. We denote by N(t) the number of funds at time t and by S(t) the total size at
time t. The number density of funds of size s at time t is denoted by n(s, t). We begin by assuming that the size of
a fund follows a geometric brownian motion

ds(t) = s(t) (µdt+ σdWt) , (8)

where Wt is N(0, 1), a mean zero and unit variance normal random variable. For simplicity we will work with the
natural logarithm of the mutual fund size which is denoted by ω ≡ log(s) which satisfies the following stochastic
evolution

dω(t) = µdt+ σdWt. (9)

The Fokker-Planck equation (also known as the forward Kolmogorov equation) for the number density can be
written as

∂

∂t
n(ω, t) =

[
−µ ∂

∂ω
+
σ2

2
∂2

∂ω2

]
n(ω, t). (10)
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FIG. 11: The number of equity funds annihilated Na(t) in the year t as a function of the total number of funds existing at
the previous year N(t− 1) (◦). The plot is compared to a linear regression of the data points (full line). The error bars were
calculated for each point under a Poisson process assumption to be the square root of the average number of annihilated funds

at that year. The average number of annihilated funds in each year was taken to be ¯Na(t− 1) =
√
λN(t− 1) where λ was

calculated as the slope of the linear regression to the points.

However, not only do the fund sizes change but funds can be created and annihilated.
We denote by λ(ω) the rate in which a fund of size ω is annihilated. This can be restated so that any fund of size

ω has a probability of λ(ω)dt to be annihilated from time t to t+ dt. The rate of creation of new funds is defined as
ν . The creation process is such that at time t a new fund is created with a probability νdt. The size of these new
funds is distributed with a distribution f(ω, t). Thus, at time t, when a new fund is created, it has a size between ω′
and ω′ + dω′ with a probability f(ω′, t)dω′.

The time evolution of the number density can be written as

∂

∂t
n(ω, t) = −λ(ω)n(ω.t) + νf(ω, t) +

[
−µ ∂

∂ω
+
σ2

2
∂2

∂ω2

]
n(ω, t). (11)

Thus, given the creation and annihilation rates λ and ν, the size distribution of new funds f(ω, t) and the initial
condition n(ω, 0) we can solve for the number density using (11). The total number of funds is defined as

N(t) =
∫ ∞
−∞

n(ω′, t)dω′ (12)

and obeys the following time evolution

dN(t)
dt

= −
∫ ∞
−∞

λ(ω)n(ω, t)dω + ν. (13)

Once the number density is known it is straight forward to calculate the probability density through

p(ω, t) =
n(ω, t)
N(t)

. (14)

Since the total number of funds N(t) is independent of size ω, the probability density and the number density exhibit
the same size dependence up to a time dependent constant. Thus, we can solve for the number density instead of the
probability density in order to examine the size dependence of the distribution.
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V. ANALYTICAL SOLUTION FOR THE NUMBER DENSITY n(ω, t)

We define the dimensionless size ω̃ = (µ/D)ω where D = σ2/2, the dimensionless time τ = (µ2/D)t and the rate
γ = 1/4 + (D/µ2)λ for which the Fokker-Plank equation is written in the simple form[

∂

∂τ
+ γ − ∂2

∂ω̃2

]
η(ω̃, τ) =

D

µ2
νe−ω̃/2f(ω̃, τ). (15)

Using a Laplace transform to solve for time dependence and a Fourier transform to solve for the size dependencethe
time dependent number density n(ω, t) can now be calculated for a given source f(ω, t).

A. An impulse response (Green’s function)

The Fokker-Planck equation in (15) is given in a linear form

Lη(ω̃, τ) = S(ω̃, τ), (16)

where L is a linear operator and S is a source function. We define the Green’s function G(ω̃, τ) to be the solution for
a point source in both size and time

LG(ω̃ − ω̃0, τ − τ0) = δ(ω̃ − ω̃0)δ(τ − τ0), (17)

where δ is the Dirac delta function . Using the Green’s function, the number density for any general source can be
written as

η(ω̃, τ) =
∫ ∫

S(ω̃0, τ0)G(ω̃ − ω̃0, τ − τ0)dω̃0dτ0. (18)

We solve for the Green function using a source of the form

D

µ2
νe−ω̃/2f(ω̃, τ) = δ(ω̃ − ω̃0)δ(τ − τ0). (19)

This is a source for funds of size w0 generating an impulse at t = t0. We will assume that prior to the impulse at
t = 0− there were no funds which means that the initial conditions are η(ω̃, 0−) = 0. The Green’s function can be
solved analytically as described in Appendix A. The solution is given by

G(ω̃ − ω̃0, τ − τ0) =
1√

π4(τ − τ0)
exp

[
− (ω̃ − ω̃0)2

4(τ − τ0)
− γ(τ − τ0)

]
θ(τ − τ0). (20)

B. A continuous source of constant size funds

After obtaining the green’s function we will look at a continuous source of funds of size ωs starting at a time ts
which can be written as

f(ω, t) = δ(ω − ωs)θ(t− ts). (21)

As described in Appendix A the large times limit of the upper tail of the number density, calculated using an
asymptotic expansion in large ω̃, is given by

n(ω̃, τ) = exp
(
ω̃ − ω̃s

2
−√γ|ω̃ − ω̃s|

)
νD

2µ2√γ

[
erf

{
2
√
γ

(
(ω̃ − ω̃s)2

4γ

)1/4
}

+ erf

{
2
√
γ

(
√
τ − τs −

(
(ω̃ − ω̃s)2

4γ

)1/4
)}]

.

(22)
Since γ > 1/4 the density is final for both ω̃ →∞ and ω̃ → −∞. The steady state number of funds is given by

lim
t→∞

N(t) =
ν

λ
. (23)
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This number is such that the total number of funds created is equal to the number of funds annihilated For an annual
creation rate of ν = 700 ± 300 and an annihilation rate of λ = 0.092 ± 0.015 the steady state number of funds is
expected to be N = 7600 ± 3500 which can be larger then the 8845 equity funds existing at the end of 2005. The
value for ν was calculated as the constant parameter in a linear regression between the number of created funds Nc(t)
in year t and the total number of funds existing in the previous year N(t− 1). The value for λ was calculated as the
proportion parameter in a linear regression for the number of annihilated funds Na(t) in year t and the total number
of funds in the previous year N(t− 1) as can be seen in Figure 11.

We can now determine a more quantitative notion of large sizes or large times. Given the above asymptotic solution
the size is considered large if

4γ(ω̃ − ω̃s)2 � 1, (24)

which can be rewritten as

ω − ωs �
D

4µγ
=

D

µ+ 4Dλ/µ
. (25)

Using the values for the monthly rates given in Table I we get that D/(4µγ) ≈ 0.5 which means that we should define
large size to be

s� ss, (26)

where ss is the size of funds created by the source in millions of dollars approximated as ss = 1 (in millions). By
demanding that at large times the solution be time independent, we arrive at the following definition for large times

t− ts �
|ω − ωs|
2µ
√
γ

=
|ω − ωs|√
µ2 + 4Dλ

. (27)

Using the measured monthly rates in Table I and the value for λ = 0.092 given in Section III we get that
1/(
√
µ2 + 4Dλ) ≈ 420 and the large times condition is written as

t− ts � 420 |ω − ωs| . (28)

Since we use t is units of months, this means that even for a fund of size ω = 1 a large time is considered such that it
is much larger than approximately 40 years. For large times the number density is independent of time and is given,
as a function of the dimensional parameters, by

n(ω) =
ν

2
√
γ

exp
(
µ(ω − ωs)

2D
−
µ
√
γ|ω − ωs|
D

)
. (29)

Since the steady sate number of funds is constant we can calculate the probability density by dividing by N = ν/λ

p(ω) =
λ

2
√
γ

exp
(
µ(ω − ωs)

2D
−
µ
√
γ|ω − ωs|
D

)
. (30)

The tail distribution is given by

p(w) ∼ n(w) ∼ exp
(
µ

D
(
1
2
−√γ)(ω − ωs)

)
. (31)

For which the CDF has a power law tail with an exponent ζs such that

P (s > X) ∼ X−ζs , (32)

with

ζs =
−µ+

√
µ2 + 4Dλ

2D
. (33)

Using the parameter values in Table I the exponent has the value

ζs = 0.18± 0.04. (34)

The asymptotic value for the exponent is smaller then the measured exponents from the empirical data assuming a
power law tail which are given in Table I. Since the distribution is currently log-normal we expect that if we were to
measure the exponent for a power law tail fit it will be larger since the tail has to widen with time. This is indeed
the case.
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FIG. 12: The CDF from numerical calculation for time horizons of 5, 50 and 100 years given by (from left to right) the dotted,
full and dashed lines respectively. The distributions are compared to the t→∞ distribution represented by right full line.

C. A normal source of funds

The empirical observations suggest that the funds are created with a lognormal distribution in the fund sizes s or
a normal distribution in the log sizes ω. The above analysis can be easily applied to a source of the type

f(ω̃, τ) =
1√
πσ2

s

exp
(
− (ω̃ − ω̃s)2

σ2
s

)
θ(τ − τs). (35)

By solving for η(ω̃, τ), as described in Appendix A, we get that the solution for the number density is given by

n(ω̃, τ) =
∫ τ

τs

νD

µ2
√
π (σ2

s + 4(τ − τ ′))
exp

[
(τ − τ ′)(σ2

s(1− 4γ) + 8ω̃)− 4(4γ(τ − τ ′)2 + (ω̃ − ω̃s)2 + 2(τ − τ ′)ω̃s)
4(σ2

s + 4(τ − τ ′))

]
dτ ′.

(36)
There is no closed form (that we could get) for (36) and we leave the solution in the integral form. The number
density can be calculated numerically using (36) and indeed the resulting distribution is normal for short time scales
and becomes exponential in ω (power law in s) for long times. In Figure 12 the CDF for the fund size s was calculated
numerically using (36) for time horizons of 5, 50 and 100 years. As expected, the size distribution seems to converge
towards a power law. The convergence is such that, for any finite time horizon, the tail of the distribution is lognormal
while the a larger portion of the CDF becomes a power law as the time horizon increases. Only at infinitely large times
does the distribution become a complete power law. This is due to the fact that the Green function is log-normal and
for the tail to become a power law funds must diffuse in size space towards larger and larger sizes.

VI. SIMULATION OF THE MODEL

In this section we describe simulation results of the above growth model and compare the resulting probability
density to the one given above.

A. The Simulation Model

The details of the actual simulation of the model are given in Appendix B. The rates used in the simulation
were calculated from the empirical data. The annihilation rate was calculated using a linear regression as shown
in Figure 11. The annihilation rate was taken to be λ = 0.092/12 per month. The creation rate was taken to be
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FIG. 13: The cumulative size density P (s > x) from simulations (◦) is compared to the numerical calculation of the cumulative
size density (full line). The comparison is given for the time horizons:1,5,10,20 and 50 years from left to right respectively.

ν = 500/12 per month. The value of ν affects only the number of funds in the simulation and does not affect the
resulting distribution.

The parameters for the size changes were calculated from the CRSP monthly data for equity funds in the years
1991 to 2005 and are given in Section III. The drift µ was calculated as the mean of the logarithmic size changes
and σ was calculated as the standard deviation of these logarithmic size changes. The results were µ = 0.038 and
σ = 0.247.

The new fund source was taken to be a mean zero normal (log normal in s) with a standard deviation of 3,
f(ω) = N(0, 3). The initial state for the simulation is no funds. At time t′ = 0, the source is introduced and funds
are created in a poisson process. The simulation continues up to time t′ = t which is the defined time horizon. At
this time we record the size distribution. By repeating the process many times better statistics are achieved.

B. Simulation Results

The simulation was carried out with the above parameters for several times t where the observation of funds sizes
is made. Each simulation was repeated 1000 times for each time horizon and the cumulative probability density
P (s > X) was calculated. In Figure 13 the CDF obtained from simulation is compared to the numerical calculation
using (36) calculated for the same time horizon. The comparison is given for varying time horizons of 1,5,10,20 and
50 years. It is apparent from the plot that as time progresses the distribution converges to a power law as expected.
Nevertheless, the time scales are quite large and are of the order of 100 years.

A comparison between the distribution obtained by simulating the model and the empirical distribution is given
in Figure 14(a) and Figure 14(b). Since the number of equity funds is negligible at the beginning of 1990 we can
consider the dynamics to have started then resulting in a time horizon for the year 1998 of 8 years. Thus, the empirical
distribution in Figure 14(a) and Figure 14(b) is compared to a simulation with an evolution time horizon of 8 years.
Even though the results from this simplified model do not completely coincide with the empirical data it captures
important aspects of the dynamics and more importantly it emphasizes the transient state in which the mutual fund
ecology is currently residing.

VII. A MORE REALISTIC MODEL

The simplified model given is by no means an exact model for the mutual fund growth process. However it does
convey the transient phase for which the distribution of fund sizes is better described by a lognormal. Using the
simplistic model we were able to calculate the time scales in which the distribution converges to the steady state
distribution. However, the growth process is surprisingly more complex and exhibits two very interesting phenomena.

The first phenomena is that the variation in growth rate σ seems to decay with size. A similar phenomena was
observed for the processes of firm growth [1, 4, 36, 37]. It was found that the standard deviation of the growth
process obeys the same power law with the same exponent. This is not too surprising if one takes into account that
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FIG. 14: In the following plots we compare the results from simulating three models with the empirical distribution. The
comparison is between the empirical distribution at the end of 1998 given and the CDF obtained from simulation with the
corresponding time horizon of 8 years. For each model the results are given by a pair of plots ( a row). The left column of
plots are comparisons between the cumulative size density P (s > x) from simulations (full line) to the empirical cumulative
size density (dashed line). The right column of plots are Quantile-Quantile (QQ) plots of the empirical distribution quantiles
in the Y-axis and the simulation quantiles as the X-axis. The quantiles were calculated for the logarithm of the of the sizes (in
millions). The first row, Figures (a) and (b) are simulation results of the simple model described in Section VI. The second
row, Figures (c) and (d) are simulation results of the model with a size dependent diffusion constant (39). The third row,
Figures (e) and (f) are simulation results of the model with a size dependent diffusion constant (39) and drift term (40).
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FIG. 15: The standard deviation in the logarithmic size change of an equity fund σ as a function of the fund’s size s. The
variance was calculated for the aggregated data; (a) for the years 1991 to 2006 and (b) for the year 1998. The data is compared
to a linear regression for the logarithms.

funds are firms belonging to the same industry. In Section VII A we modify the simplistic model to incorporate the
size dependence of the diffusion constant D = σ2/2 . The model is then simulated and compared to the empirical
distribution.

The second interesting observation is that the average growth rate µ is larger for smaller funds then it is for larger
ones as was described in Figure 8 in Section I. As was noted in the beginning the dominating form of growth for
small funds is by influx of money whereas for larger ones it is return on the assets. Using a linear regression between
the return and the fund size we find, surprisingly, that there is no simple correlation between return and mutual fund
size. As a result, the growth rate becomes constant for large funds for which the return on assets is the dominating
source for growth. In Section VII B we incorporate the decaying growth rate into our model. The model is then
simulated and compared to the empirical distribution. The resulting distributions (from simulations) for different
years are compared to the corresponding empirical distributions. The agreement is overwhelmingly good. Thus, it
seems that this modified model is complex enough to capture the essence of the process and using it we can predict
the future shape of the equity mutual fund size distribution.

A. model 2.1

A striking result is that the variance in the logarithmic size change is size dependent with a power law dependence
of the form

σ(s) ∼ s−β , (37)

with an exponent of β ≈ 0.2. This can be seen in Figure 15(a) and Figure 15(b) where the standard deviation was
binned into five logarithmically spaced bins with respect to the fund size. The fund size was calculated as the average
value of funds sizes in each bin and the standard error was calculated to be the standard deviation divided by the
square root of the bin occupancy. The value of the standard deviation for each bin and the error were calculated in
the same manner.

The figures suggest that a power law hypothesis relation between σ and s is a good approximation and regardless
of the exact functional form of the relation, it is apparent that σ(s) is a decreasing function of s. The consequence is
that the diffusion rate in log size space for the mutual funds is decreasing with their size and as a result the tails of
the distribution should remain thinner. This thinning of the tails results in an even slower conversion to the power
law tail existing in the steady state as suggested by our simplistic model.

Not only does the convergence to the power law tail be slower but the exponent to which the distribution converges
to is also affected by the decay of σ. For large ω we take the standard deviation to be small such that λD/µ2 � 1 for
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FIG. 16: (a) The mean logarithmic size change of an equity fund µ as a function of the fund’s size s (in millions). The mean
was calculated for the aggregated data for the years 1991 to 2005. The data is compared to a power law relation given by (40).
(b) The mean logarithmic size change of an equity fund µ as a function of the fund’s size s for the aggregated data for the
years 1991 to 2006.

which we approximate the tail exponent which is given by (33) as

ζs =
λ

µ
, (38)

which for the measured monthly annihilation and drift rates yields ζs ≈ 0.2 ± 0.05. The value for the annihilation
rate is λ = 0.092± 0.015 given in Section III and for the drift we use µ = 0.038± 0.007 given in Table I.

We modified the simplistic model to have a size dependent standard deviation of the form

σ′(s) = σ0s
−0.2, (39)

where σ0 = 10−0.25 ≈ 0.56. The model was simulated using the same values for the remaining parameters as in the
previous simple model .

In Figure 14(c) and Figure 14(d) we compare the modified simulation with the empirical distribution. The com-
parison is for a simulation with a time horizon of 8 years which corresponds to an observation on the empirical size
distribution of equity funds at the end of 1998 since the number of equity funds in the data set is negligible prior to
1991. It is clear that the distribution is closer to the observed distribution than the model with a constants standard
deviation. This can be seen using the QQ-plot given in Figure 14(d) where the quantiles obtained from the modified
simulation were compared to the quantiles obtained from the empirical data for the logarithm (base 10) of the size of
funds (in millions) existing at the end of 1998.

B. Model 2.2

Another aspect of the growth process that we have neglected so far is the dependence of the drift term µ on the
size of the fund as can be seen in Figure 8. We now wish to further enhance our model to take this size dependence
into account. As a first approximation we fit a power law relation between the drift µ and the size s (exponential in
the log size ω) of the form

µ(s) = µ0s
−α + µ∞. (40)

This relation implies that the growth rate decays with the size of the fund. Smaller funds grow (in percent wise) faster
then larger funds. For very larger sizes the growth rate becomes approximately constant with a rate µ∞. Similar to
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variable 1991-1996 1991- 1998 1991- 2002 1991- 2005

σ0 0.21± 0.07 0.26± 0.06 0.32± 0.08 0.35± 0.07

β 0.29± 0.03 0.25± 0.03 0.21± 0.03 0.21± 0.03

µ0 0.38± 0.14 0.33± 0.11 0.22± 0.04 0.19± 0.05

α 0.69± 0.26 0.7± 0.24 0.76± 0.14 0.74± 0.21

µ∞ 0.016± 0.01 0.014± 0.008 0.0015± 0.0025 0.005± 0.004

TABLE II: σ0 and α - The fitted parameter values for the size dependence of the variance of the growth process (37).
µ0, α and µ∞ - The fitted parameter values for the size dependence of the average growth rate (16).
The values are given with 95% confidence for the data averaged over different time horizons . The time horizons start in the
year 1991 and end in the years 1996, 1998, 2002 and 2005. The results for each parameter of the fit (line) is given in a different
column from left to right corresponding to the different time horizons.

what we have done previously , we compute the mean of the log size change in each of the 5 bins and check for a
size dependence in the drift term µ. The results are plotted in Figure 16(a) for the aggregated size changes of funds
from the years 1991 to 2005 and in Figure 16(b) for the log size changes in the years 1991 to 1998. As can be seen in
Figure 16 the functional dependence of the average growth rate µ seems to be constant over the years. However the
fitted, parameters change as is expected since the overall growth of the market differs from year to year. Fitting (40)
for the data, aggregated over different years, we get slightly different values for the fit parameters given in Table II.

Where α = 1± 0.5, µ0 = 0.35± 0.3 and µ∞ = 0.01± 0.005 with 95% confidence. Using the above value for µ∞ in
(38) for the steady state power law exponent yields ζs = 0.8± 0.4 which is in agreement with the observations.

We simulated the model with the added size dependence for the drift term and compared to the empirical distribution
in Figure 14(e). The QQ-plot for the comparison of the simulation results and the empirical distribution is given in
Figure 14(f) where the quantiles obtained from the modified simulation were compared to the quantiles obtained from
the empirical data for the logarithm (base 10) of the size of funds (in millions) existing at the end of 1998.

The empirical evidence seems to suggest that not only does the diffusion constant and the drift term depend on size
but so does the annihilation rate. The annihilation rate dependence is such that it decays with size for large sizes.
Through out our models and simulations we kept the annihilation rate a constant independent of size. It is in fact the
annihilation which is responsible for the formation of a power law tail. The effect of the annihilation is that most of
the annihilated funds will be with smaller sizes, due to the relatively larger number, and as a result the distribution
of funds changes to compensate for the loss of small funds and the upper tail gets wider. From simulation results we
concluded that the fact that the annihilation rate is size dependent does not affect the size distribution as much as
the size dependence of the diffusion rate and drift term.

To verify that the model captures the evolution of the size distribution the parameters of model 2.0 were calculated
from the aggregated data for several periods. Using the power law relations for the decaying variance in growth
rates (37) and the average growth rate (16) the value of the parameters were fit for the periods 1991 to 1996, 1998,
2002 and 2005. The value of the parameters is given in Table II. Using these estimated parameters model 2.2 was
simulated for the corresponding time horizons of 6, 8 ,12 and 15 years. The comparison of the simulation results and
the empirical distributions is given in Figure 17. It is apparent from the figure that the model accomplishes to capture
the essence of the distribution for the different years. It is apparent from the QQ-plot that the functional forms of
the two distributions are in agreement.

To conclude, the modified model takes into account the violation of Gibrat’s law through the size dependence of the
growth process. The empirical data suggests that there is an algebraic dependence between both the average growth
rate µ and the variance of the growth process σ. These departures from Gibrat’s law are such that the time scale
calculated above for the convergence into a steady state distribution will be upper bounds. Thus, the time needed
for the system to evolve into a state described by a power law for the tail of the distribution is even longer then the
estimated times described previously. These departures from the simple model are shown to explain the difference in
the observed distribution from the expected distribution from the simple model.

VIII. CONCLUSIONS

In this work we investigated the distribution of equity fund sizes and offered a stochastic model for the growth
process. We showed that the upper tail of the distribution is better described as a lognormal then a power law as
our model predicts. We identified three key processes; size change, creation and annihilation of funds, as responsible
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FIG. 17: Model 2.2 was simulated for different time horizons and is compared to the empirical distribution. The left Column
is a comparison of the CDF obtained by simulating Model 2.2 (full line) and is compared to the empirical CDF (dashed line).
The right Column is a QQ-plot comparing the two distributions. (a), (b) - The distribution at the end of 1996 is compared to
a simulation of a time horizon of 6 years.
(c), (d) - The distribution at the end of 1998 is compared to a simulation of a time horizon of 8 years.
(e), (f) - The distribution at the end of 2002 is compared to a simulation of a time horizon of 12 years.
(g), (h) - The distribution at the end of 2005 is compared to a simulation of a time horizon of 15 years.
The parameters for the simulation are given in Table II

for the distribution we observe. In contrast with past work in the subject we did not assume that the distribution is
stationary. We allowed the distribution to evolve with time and we were able to identify the time scales on which our
model evolves. A system that can be described by our model will evolve such that the tails are initially log-normal
and become power-law after a long time. We showed that the growth process governing the mutual funds is more
complicated and the terms are size dependent. Nevertheless, this does not affect the functional form of the distribution
but only increases the time it will take the distribution to reach a power law state. Thus, we can conclude that mutual
funds obey a log-normal size distribution and given another millennia for the market to evolve we will find them in a
distribution better described by a power law.
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Appendix A: Analytical Solution To Model 1.0

We define the dimensionless size ω̃ = (µ/D)ω where D = σ2/2 and the dimensionless time τ = (µ2/D)t for which[
∂

∂τ
+
D

µ2
λ(ω) +

∂

∂ω̃
− ∂2

∂ω̃2

]
n(ω̃, τ) =

D

µ2
νf(ω̃, τ) (A1)

By defining the function

η(ω̃, τ) = e−ω̃/2n(ω̃, τ) (A2)

The Fokker-Plank equation (A1) is rewritten as[
∂

∂τ
+
D

µ2
λ(ω) +

1
4
− ∂2

∂ω̃2

]
η(ω̃, τ) =

D

µ2
νe−ω̃/2f(ω̃, τ) (A3)

We simplify the problem by approximating the annihilation rate as independent of size and by defining the rate
γ = 1/4 + (D/µ2)λ the Fokker-Plank equation is written in the simple form[

∂

∂τ
+ γ − ∂2

∂ω̃2

]
η(ω̃, τ) =

D

µ2
νe−ω̃/2f(ω̃, τ) (A4)

We define the Laplace transformed function φ(ω̃, u) as

φ(ω̃, u) =
∫ ∞

0

η(ω̃, τ)e−uτdτ (A5)

and the Fourier transformed functions

ψ(k, u) =
∫ ∞
−∞

φ(ω̃, τ)
e−ikω̃√

2π
dω̃ (A6)

ψ0(k) =
∫ ∞
−∞

η(ω̃, 0−)
e−ikω̃√

2π
dω̃ (A7)

(A8)

For which (A4) is written as

[
u+ γ + k2

]
ψ(k, u) =

D

µ2
νf̃(k, u) + ψ0(k) (A9)

with the source distribution transformed as follows

f̃(k, u) =
∫ ∞

0

∫ ∞
−∞

e−ω̃/2f(ω̃, τ)
e−ikω̃−uτ√

2π
dω̃dτ (A10)

We define a generalized source as

F(k, u) =
D

µ2
νf̃(k, u) + ψ0(k) (A11)

For which the solution for ψ(k, u) is then

ψ(k, u) =
F(k, u)

u+ γ + k2
(A12)

The time dependent number density n(ω, t) can now be calculated for a given source f(ω, t).
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1. An impulse response (Green’s function)

The Fokker-Planck equation in (A4) is given in a linear form

Lη(ω̃, τ) = S(ω̃, τ), (A13)

where L is a linear operator and S is a source function. We define the Green’s function G(ω̃, τ) to be the solution for
a point source in both size and time

LG(ω̃ − ω̃0, τ − τ0) = δ(ω̃ − ω̃0)δ(τ − τ0), (A14)

where δ is the Dirac delta function . Using the Green’s function, the number density for any general source can be
written as

η(ω̃, τ) =
∫ ∫

S(ω̃0, τ0)G(ω̃ − ω̃0, τ − τ0)dω̃0dτ0. (A15)

We solve for the Green function using the previous analysis with a source of the form

D

µ2
νe−ω̃/2f(ω̃, τ) = δ(ω̃ − ω̃0)δ(τ − τ0). (A16)

This is a source for funds of size w0 generating an impulse at t = t0. We will assume that prior to the impulse at
t = 0− there were no funds which means that the initial conditions are η(ω̃, 0−) = 0 which yields ψ0(k) = 0.

Using (A11) we write

F(k, u) =
1√
2π

exp [−ikω̃0 − uτ0] (A17)

and ψ(k, u) is given by

ψ(k, u) =
1√
2π

exp [−ikω̃0 − uτ0]
u+ γ + k2

. (A18)

The inverse Laplace transform yields

φ(k, τ) =
1√
2π

exp
[
−(τ − τ0)

(
γ + k2

)
− ikω̃0

]
θ(τ − τ0), (A19)

where θ is the Heaviside step function. An inverse Fourier transform yields

G(ω̃ − ω̃0, τ − τ0) =
1√

π4(τ − τ0)
exp

[
− (ω̃ − ω̃0)2

4(τ − τ0)
− γ(τ − τ0)

]
θ(τ − τ0). (A20)

2. A continuous source of constant size funds

After obtaining the green’s function we will look at a continuous source of funds of size ωs starting at a time ts
which can be written as

f(ω, t) = δ(ω − ωs)θ(t− ts). (A21)

Rewriting the source using dimensionless variables yields

f(ω̃, τ) = δ(ω̃ − ω̃s)θ(τ − τs) (A22)

and using (A15) yields

η(ω̃, τ) =
∫ ∫

F(ω̃′, τ ′)G(ω̃ − ω̃′, τ − τ ′)dω̃′dτ ′

=
∫ ∫

e−ω̃
′/2 νD

µ2
δ(ω̃′ − ω̃s)θ(τ ′ − τs)G(ω̃ − ω̃′, τ − τ ′)dω̃′dτ ′

=
∫ τ

τs

e−ω̃s/2
νD

µ2
G(ω̃ − ω̃s, τ − τ ′)dτ ′

= e−ω̃s/2
νD√
πµ2

∫ τ

τs

1
2
√

(τ − τ ′)
exp

[
− (ω̃ − ω̃s)2

4(τ − τ ′)
− γ(τ − τ ′)

]
θ(τ − τ ′)dτ ′. (A23)
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We change variables such that x =
√
τ − τ ′ for which the integral is rewritten as

η(ω̃, τ) = e−ω̃s/2
νD√
πµ2

∫ xmax=
√
τ−τs

0

exp
{
− (ω̃ − ω̃s)2

4x2
− γx2

}
dx. (A24)

We approximate the integral for large sizes using the method of steepest ascent∫ xmax

0

exp {−g(x)} dx ≈
∫ xmax

0

exp
{
−g(x∗)− 1

2
g′′(x∗)(x− x∗)2

}
dx

=
√

π

2g′′(x∗)
exp {−g(x∗)}

[
erf

(√
g′′(x∗)

2
x∗

)
+ erf

(√
g′′(x∗)

2
(xmax − x∗)

)]

≈
√

π

2g′′(x∗)
exp {−g(x∗)}

[
1 + erf

(√
g′′(x∗)

2
(xmax)

)]

≈

√
2π

g′′(x∗)
exp {−g(x∗)} . (A25)

The expansion was done under the assumption that g′′(x∗) > 0 where x∗ is such that g′(x∗) = 0. In the last part we
made the approximation that x∗ � 0 and xmax � x∗. The approximation that x∗ � 0 is valid for times τ � τs. If
the value x∗ is not much larger then 0 then the lower bound in the integration will be replace by xmin

We define ∆ω̃ = ω̃ − ω̃s and write

g(x) =
∆ω̃2

4x2
+ γx2. (A26)

By demanding that the first derivative vanish we get

x∗ =
(

∆ω̃2

4γ

)1/4

. (A27)

For which

g(x∗) =
√
γ |∆ω̃|

g′′(x∗) = 8γ. (A28)

As described above the integral is approximated by

η(ω̃, τ) = exp
(
− ω̃s

2
−√γ|ω̃ − ω̃s|

)
νD

2µ2√γ

[
erf

{
2
√
γ

(
(ω̃ − ω̃s)2

4γ

)1/4
}

+ erf

{
2
√
γ

(
√
τ − τs −

(
(ω̃ − ω̃s)2

4γ

)1/4
)}]

.

(A29)
Finally the number density is given by

n(ω̃, τ) = exp
(
ω̃ − ω̃s

2
−√γ|ω̃ − ω̃s|

)
νD

2µ2√γ

[
erf

{
2
√
γ

(
(ω̃ − ω̃s)2

4γ

)1/4
}

+ erf

{
2
√
γ

(
√
τ − τs −

(
(ω̃ − ω̃s)2

4γ

)1/4
)}]

.

(A30)

3. A normal source of funds

The above analysis can be easily applied to a source of the type

f(ω̃, τ) =
1√
πσ2

s

exp
(
− (ω̃ − ω̃s)2

σ2
s

)
θ(τ − τs), (A31)

for which we write

η(ω̃, τ) =
∫ ∫

e−ω̃
′/2 νD

µ2
√
πσ2

s

exp
(
− (ω̃′ − ω̃s)2

σ2
s

)
θ(τ ′ − τs)G(ω̃ − ω̃′, τ − τ ′)dω̃′dτ ′. (A32)
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Substituting the form for the green function from (A20) into the above equation for η yields

η(ω̃, τ) =
∫ ∫

e−ω̃
′/2 νD

µ2
√
πσ2

s

exp
[
− (ω̃′ − ω̃s)2

σ2
s

]
1√

π4(τ − τ ′)
exp

[
− (ω̃ − ω̃′)2

4(τ − τ ′)
− γ(τ − τ ′)

]
θ(τ−τ ′)θ(τ ′−τs)dω̃′dτ ′.

(A33)
Performing the integration on ω̃′ in (A33) we solve for η(ω̃, τ) and the transformation (A2) yields the solution for the
number density

n(ω̃, τ) =
∫ τ

τs

νD

µ2
√
π (σ2

s + 4(τ − τ ′))
exp

[
(τ − τ ′)(σ2

s(1− 4γ) + 8ω̃)− 4(4γ(τ − τ ′)2 + (ω̃ − ω̃s)2 + 2(τ − τ ′)ω̃s)
4(σ2

s + 4(τ − τ ′))

]
dτ ′.

(A34)
There is no closed form (that we could get) for (A34) and we leave the solution in the integral form.

Appendix B: The Simulation Model

We define three rates:

1. The rate of size change taken to be 1 for each fund and N for the entire population.
Thus, each fund changes size with a rate taken to be unity.

2. The rate of annihilation of funds of size ω defined as λ(ω)n(ω, t) .
Each fund is annihilated with a rate λ which can be depend on the fund size.

3. The rate of creation of new funds ν.
Each new fund is created with a size ω with a probability density f(ω).

In order to simulate the process we define probabilities for the occurrence of each of the above with probabilities
that are defined in such a way that the ratio of any pair is equal to the ratio of the corresponding rates. At every
simulation time step, with a probability ν

1+λ+ν a new fund is created and we proceed to the next simulation time
step. If a fund was not created then the following is repeated (1 + λ)N times. We pick a fund at random. With a
probability 1

1+λ we change the fund size and with a probability of λ
1+λ the fund is annihilated. The simulation time

can be compared to ’real’ time if every time a fund is not created we add 1/(1 + λ) to the clock. The time is then
measured in what ever units our rates are measured in. In our simulation we use monthly rates and as such a unit
time step corresponds to one month.
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