
QUANTITATIVE FINANCE VOLUME 4 (AUGUST 2004) 383–397 RE S E A R CH PA P E R

TAYLOR & FRANCIS LTD tandf.co.uk

What really causes large price changes?
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Abstract
We study the cause of large fluctuations in prices on the London Stock
Exchange. This is done at the microscopic level of individual events,
where an event is the placement or cancellation of an order to buy or sell.
We show that price fluctuations caused by individual market orders are
essentially independent of the volume of orders. Instead, large price
fluctuations are driven by liquidity fluctuations, variations in the
market’s ability to absorb new orders. Even for the most liquid stocks
there can be substantial gaps in the order book, corresponding to a block
of adjacent price levels containing no quotes. When such a gap exists
next to the best price, a new order can remove the best quote, triggering a
large midpoint price change. Thus, the distribution of large price changes
merely reflects the distribution of gaps in the limit order book. This is
a finite size effect, caused by the granularity of order flow: in a market
where participants place many small orders uniformly across prices, such
large price fluctuations would not happen. We show that this also
explains price fluctuations on longer timescales. In addition, we present
results suggesting that the risk profile varies from stock to stock, and
is not universal: lightly traded stocks tend to have more extreme risks.

1. Introduction

It has been known for more than 40 years that price

changes are fat-tailed [1, 15, 21, 36, 39–41, 43, 46–48, 50,

55], i:e: there is a higher probability of extreme events

than in a normal distribution. This is important for

financial risk, since it means that large price fluctuations

are much more common than one might expect. There

has been much conjecture concerning the origin of fat

tails in prices [2, 3, 7, 8, 10, 20, 22, 30, 42, 44, 45, 60, 61].

Most of these theories are either generic mechanisms for

generating power laws, such as multiplicative noise or

maximization of alternative entropies, or agent-based5 Author to whom any correspondence should be addressed.
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models that make qualitative predictions that are not very

specific.
Two theories that deserve special mention because

they make testable hypotheses about the detailed

underlying mechanism are the subordinated random

process theory advocated by Mandelbrot and Taylor

[45] and also by Clark [8] and the recent theory of

Gabaix et al [20]. Clark’s proposal is that because order

arrival rates are highly intermittent, aggregating in a

fixed time interval leads to fat tails in price returns.

Gabaix et al’s proposal is that high volume orders cause

large price movements. We show that neither of these

theories describes large price changes in the London

Stock Exchange:6

Instead, we show that large price fluctuations are

driven by fluctuations in liquidity, i:e: variations in the

response of prices to changes in supply and demand. The

number of agents that participate in the market at any

given time, and thus the number of orders to buy or sell, is

rather small. Even for a heavily traded stock, the typical

number of orders on one side of the book at any given

time is generally around 30. While it is in some cases a

good approximation to regard the market as a statistical

system, which can be treated using mathematical methods

from statistical mechanics [5, 6, 13, 18, 57, 59], markets

are far from the thermodynamic limit, and display strong

finite size effects. Fluctuations in orders are important,

but it is not the size of orders that drives large price

changes, but rather the uniformity of their coverage of

price levels. Revealed supply and demand curves at any

instant in time are irregular step-like functions with long

flat regions and large jumps. The market can be regarded

as a granular medium, in which the incremental changes

in supply and demand are the grains. The statistical

properties of prices depend more on the fluctuations in

revealed supply and demand than on their mean

behaviour.
A common assumption is that large price returns

r(t) are asymptotically distributed as a power law. In

more technical terms, letting m(t) be the mid-price at time

t, this means that rðtÞ ¼ logmðtÞ � logmðt� �Þ satisfies

Pðr > xÞ � x��. Pðr > xÞ is the probability that r > x, � is
an arbitrary time interval, and f ðxÞ � gðxÞ means that f(x)

and g(x) scale the same way7 in the limit x ! 1. � is

called the tail exponent. It was initially thought that

� < 2, which is significant because this would imply that

the standard deviation of price returns does not exist,

and that, under aggregation, independent price returns

should converge to a Levy stable distribution [15, 43].

However, most subsequent studies indicate that � > 2 is

more common [1, 36, 39–41, 46–48, 50, 55]. Nonetheless,

it still remains controversial whether a power law is

always the best description of price returns. In this paper

we do not attempt to resolve this debate. However, we

will use power laws as a useful way to describe the

asymptotic behaviour of price changes, in particular

to compare the distribution of price changes for different

stocks. Our results suggest that tail exponents vary from

stock to stock, and are not universal.
In the remainder of this section we review the

continuous double auction, explaining what we define

as an ‘event’, and introducing notation that we will use

throughout the rest of the paper. We also discuss the

relationship between returns and events, and review

related literature. Section 2 presents some summary

statistics for the data set. Section 3 demonstrates that

there is very little difference in the price response of large

and small orders, and that large price fluctuations are

driven by fluctuations in liquidity. This is made more

explicit in section 4, where we show how gaps in the

occupied price levels in the order book lead to large price

changes, and that the gap distribution closely matches the

return distribution. In section 5 we compare the returns

triggered by market orders, limit orders, and cancella-

tions, and show that they are very similar. Section 6

demonstrates that the tail behaviour of returns on the

event scale matches the tail behaviour on longer time-

scales, and that returns in event time and real time are

similar. Section 7 studies the behaviour of the gap

distribution in more detail, demonstrating that the

(at least approximate) power law behaviour we observe

is not driven by fluctuations in the number of orders in

the book, but rather depends on correlations in occupied

price levels. We conclude and offer a few speculations

about the ultimate explanation of large price fluctuations

in section 8.

1.1. Background: continuous double auction

To understand our results it is essential that the reader

understand the double continuous auction, which is the

standard mechanism for price formation in most modern

financial markets. Agents can place different types of

orders, which can be grouped into two categories:

impatient traders submit market orders, which are

requests to buy or sell a given number of shares

immediately at the best available price. More patient

traders submit limit orders, or quotes which also state

a limit price �, corresponding to the worst allowable price

for the transaction. (Note that the word ‘quote’ can be

used either to refer to the limit price or to the limit order

itself:) Limit orders often fail to result in an immediate

transaction, and are stored in a queue called the limit

order book. Buy limit orders are called bids, and sell limit

orders are called offers or asks. At any given time there is

a best (lowest) offer to sell with price a(t), and a best

(highest) bid to buy with price b(t). These are also called

6 For futher discussion of the paper of Gabaix et al, see [17].
7 f ðxÞ � gðxÞ means that limx!1LðxÞf ðxÞ=gðxÞ ¼ 1; where LðxÞ is a
slowly varying function. A slowly varying function LðxÞ is a positive
function that, for every t, satisfies limx!1LðtxÞ=LðxÞ ¼ 1:
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the inside quotes or the best prices. The price gap between
them is called the spread sðtÞ ¼ aðtÞ � bðtÞ. Prices are not
continuous, but rather change in discrete quanta called
ticks, of size �p. The number of shares in an order is
called either its size or its volume.

As market orders arrive they are matched against
limit orders of the opposite sign in order of first price and
then arrival time, as shown in figure 1. Because orders are
placed for varying numbers of shares, matching is not
necessarily one-to-one. For example, suppose the best
offer is for 200 shares at $60 and the next best is for
300 shares at $60:25; a buy market order for 250 shares
buys 200 shares at $60 and 50 shares at $60:25, moving
the best offer a(t) from $60 to $60:25. A high density
of limit orders per price results in high liquidity for market
orders, i:e: it implies a small movement in the best
price when a market order is placed.

There are a variety of different order types defined in
real markets, whose details differ from market to market.
For our purposes here, any given order can always be
decomposed into two types: we will call any component of
an order that results in immediate execution an effective
market order, and any component that is not executed
immediately, and is stored in the limit order book, an
effective limit order. For example, consider a limit order
to buy whose limit price � ¼ aðtÞ. Suppose the volume
at a(t) is 1000 shares, and the volume of the new limit
order is 3000 shares. Then this limit order is equivalent to
an effective market order for 1000 shares, followed by
an effective limit order of 2000 shares with limit price a(t).

In either case the same transactions take place, and

the best prices move to bðtþ 1Þ ¼ aðtÞ and aðtþ 1Þ ¼

aðtÞ þ gðtÞ, where g(t) is the price interval to the next

highest occupied price level. Throughout the remainder

of the paper we will simply call an effective limit order

a ‘limit order’, and an effective market order a ‘market

order’.
When a market order arrives it can cause changes in

the best prices. This is called market impact or price

impact. Note that the price changes are always in the

same direction: a buy market order will either leave the

best ask the same or make it bigger, and a sell market

order will either leave the best bid the same or make it

smaller. The result is that buy market orders can increase

the mid-price mðtÞ ¼ ðaðtÞ þ bðtÞÞ=2, and sell orders can

decrease it.
There is no unique notion of price in a real market.

We will let � be the limit price of a limit order, and

mðtÞ ¼ ðaðtÞ þ bðtÞÞ=2 be the midpoint price or mid-price

defined by the best quotes. All the results of this paper

concern the mid-price, rather than transaction prices,

but at longer timescales this makes very little difference,

since the mid-point and transaction prices rarely differ

by more than half the spread. The mid-point price is

more convenient to study because it avoids problems

associated with the tendency of transaction prices

to bounce back and forth between the best bid and ask.

Price changes are typically characterized as returns

r�ðtÞ ¼ logmðtÞ � logmðt� �Þ.

1.2. What causes returns?

In this paper we study changes in the mid-price at the

level of individual events. The arrival of three kinds of

events can cause the mid-price to change:

. Market orders: A market order bigger than the
opposite best quote widens the spread by increasing
the best ask if it is a buy order, or decreasing the best
bid if it is a sell order.

. Limit orders: A limit order that falls inside the spread
narrows it by increasing the best bid if it is a buy order,
or decreasing the best ask if it is a sell order.

. Cancellations: A cancellation of the last limit order
at the best price widens the spread by either increasing
the best ask or decreasing the best bid.

We prefer to study individual events for several

reasons. (1) It removes any ambiguity about time scale,

and makes it easier to compare stocks with different

activity levels. (2) It minimizes problems associated with

clustered volatility (the positive autocorrelation of the

absolute value of price changes). Clustered volatility is

also driven by variations in event arrival rates, so its effect

is weaker when the time lag between price changes is

measured in terms of the number of intervening events.

(3) Individual events are the most fundamental level
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Figure 1. Schematic illustration of the continuous double
auction mechanism. Limit orders are stored in the limit order
book. We adopt the arbitrary convention that buy orders are
negative and sell orders are positive. As a market order arrives,
it has transactions with limit orders of the opposite sign, in order
of price (first) and time of arrival (second). The best quotes at
prices a(t) or b(t) move whenever an incoming market order has
sufficient size to fully deplete the stored volume at a(t) or b(t),
when new limit orders are placed inside the spread (when the
limit price satisfies bðtÞ < � < aðtÞ) or when all the orders at the
best prices are canceled. Bids and offers that fall inside the
spread become the new best bids and offers.
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of description—returns on any longer scale can be

constructed from returns on an event scale. We will

generally measure time in terms of event time: the time

interval between events t1 and t2 is measured as the

number of intervening events plus one. (One is added so

that two adjacent events comprise an event time interval

of one:)
Analysis at the event scale is particularly useful under

the assumption that large price fluctuations are

asymptotically power law distributed because of the

invariance properties of power laws under aggregation.

If two independent variables X and Y both have power

law tails with exponents �X and �Y, then the variable

Z ¼ X þ Y also has a power law tail with exponent

minð�X ,�Y Þ. Thus, if we show that returns at the level of

individual events have power law tails with exponent �
and if there are no strong and persistent correlations,

returns on any longer event time scale should also have

power law tails with exponent �. In fact, � appears to be

the same whether returns are measured in event time or

real time (see section 6).

1.3. Review of previous work

There is considerable prior work using limit order data to

address questions about market microstructure. For

example, in a very early study, Niederhoffer and Osborne

discussed the granularity of revealed supply and demand,

and showed orders tend to cluster at particular prices [49].

Clustering of limit orders, as well as stop-loss and take-

profit orders, is also studied in [32, 33, 51]. Of particular

relevance is the work of Biais et al [4], who, for the Paris

Bourse, document several properties of order flow,

including the concentration of orders near the best

prices. They study the relation between order flow and

the dynamics of prices, and mention the existence of gaps

in the limit order book. Another relevant observation

was made by Knez and Ready [35] and Petersen and

Umlauf [53], who demonstrate that, for the New York

Stock Exchange (NYSE), the most important condition-

ing variable for price impact is the size of an order relative

to the volume at the best price. Goldstein and Kavajecz

[23] document the effect of changes in tick size on limit

order book depth, while several theoretical papers justify

the existence of a positive bid–ask spread and investigate

the motivations for placing limit orders as opposed to

market orders [9, 19, 25, 29, 31, 52]. In addition, we

should mention recent empirical studies by Coppejans

and Domowitz [11] and Coppejans et al [12] that

document variations in liquidity and co-movements of

liquidity with returns and volatility.
Our work adds to this literature by investigating the

relationship between order placement and price move-

ment at the level of individual events. Our motivation is

to understand what drives large price movements, to gain

insight into the fat tails of price returns. A relevant paper

in this regard is the work of Plerou et al [54], who showed
that, for the NYSE in a fixed time interval, the scaling
behaviour in the standard deviation of individual price
fluctuations roughly matches that of price fluctuations,
and dominates over fluctuations in the number of events.
This seems to contradict the later conclusions of the same
authors in Gabaix et al [20].

2. Data

In order to have a representative sample of high-volume
stocks we select 16 companies traded on the London
Stock Exchange (LSE) in the 4-year period 1999–2002.
The stocks we analysed are Astrazeneca (AZN), Baa
(BAA), BHP Billiton (BLT), Boots Group (BOOT),
British Sky Broadcasting Group (BSY), Diageo (DGE),
Gus (GUS), Hilton Group (HG:), Lloyds Tsb Group
(LLOY), Prudential (PRU), Pearson (PSON), Rio Tinto
(RIO), Rentokil Initial (RTO), Reuters Group (RTR),
Sainsbury (SBRY) and Shell Transport & Trading Co:
(SHEL). These stocks were selected because they have
high volume and they are all continuously traded during
the full period. Table 1 gives a summary of the number of
different events for the 16 stocks:8

The London Stock Exchange consists of two parts:
the completely automated electronic downstairs market
(SETS) and the upstairs market (SEAQ). The trading
volume is split roughly equally between the two markets.
We study the downstairs market because we have a record
of each action by each trader as it occurs. In contrast,

Table 1. Summary statistics of the 16 stocks we study for the
period 1999–2002. The columns give the number of events of
each type, in thousands. All events are ‘effective’ events—see the

discussion in section 1.1

Tick
Market
orders

Limit
orders Cancellations Total

AZN 652 2067 1454 4173
BAA 226 683 487 1397
BLT 297 825 557 1679
BOOT 246 711 501 1458
BSY 404 1120 726 2250
DGE 527 1329 854 2709
GUS 244 734 518 1496
HG. 228 676 472 1377
LLOY 723 1664 1020 3407
PRU 448 1227 821 2496
PSON 373 1063 734 2170
RIO 381 1122 771 2274
RTO 276 620 389 1285
RTR 479 1250 820 2549
SBRY 284 805 561 1650
SHEL 717 4137 3511 8365
Total 6505 20 033 14 196 40 734

8 We have observed similar results on less liquid stocks, except that the
statistics tend to be poorer, and as we discuss in section 4, e.g. figure 8,
less liquid stocks appear to have lower tail exponents.
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trades in the upstairs market are arranged informally

between agents, and are printed later. There are no

designated market makers for SETS; however, any

member of the exchange is free to act as a market

maker by posting simultaneous bids and offers. This

should be contrasted with the NYSE, for example, which

has a designed specialist to trade each stock:9 During the

period we study the book is fully transparent, i:e: all

orders in the book are fully revealed:10

Trading begins each day with an opening auction.

There is a period leading up to the opening auction in

which orders are placed but no transactions take place.

The market is then cleared and for the remainder of the

day (except for occasional exceptional periods) there is

a continuous auction. We remove all data associated with

the opening auction, and only analyse orders placed

during the continuous auction.
An analysis of the limit order placement shows that,

in our dataset, approximately 35% of the effective limit

orders are placed inside the book (� > aðtÞ or � < bðtÞ).

Thirty-three percent are placed at the best prices (� ¼ bðtÞ

or � ¼ aðtÞÞ, and 32% are placed inside the spread

(bðtÞ < � < aðtÞ). This is roughly true for all the stocks

except for SHEL, for which the percentages are 71%,

18% and 11%, respectively:11 Moreover, for all the

stocks the properties of buy and sell limit orders are

approximately the same.
In this dataset, cancellation occurs roughly 32% of

the time at the best price and 68% of the time inside the

book. This is quite consistent across stocks and between

the cancellation of buy and sell limit orders. The only

significant deviation is once again SHEL, for which the

percentages are 14% and 86%.

3. Fluctuations in liquidity drive the tails

The assumption that large price changes are caused by

large market orders is very natural. A very large market

order will dig deeply into the limit order book, causing

transactions at many price levels, increasing the spread,

and changing the mid-price. Surprisingly, this is not the

cause of most large price changes. Instead, as we will

demonstrate in this section, most large price changes are

due to discrete fluctuations in liquidity, manifested by

gaps in filled price levels in the limit order book. Large

price changes caused by large orders are very rare,

and play an insignificant role in determining the statistical
properties of price changes.

In this section we will focus on price changes caused
by market orders, and in section 5 we will discuss price
changes due to limit orders and cancellations.

3.1. Large returns are not caused by large orders

We first demonstrate that most large returns are not
caused by the arrival of large market orders. The
probability density function of price returns that
are caused by market orders can trivially be written

as pðrÞ ¼
R
pðrj!Þpð!Þ d!, where p(r), p(!) and pðrj!Þ are

the probability density functions for returns r, market
order size !, and returns given market order size. The
conditional probability pðrj!Þ characterizes the response
of prices to new orders, and can be viewed as the
probability density of market impacts, or, alternatively, as
characterizing the distribution of liquidity for market

orders. When a market order of size ! arrives the mid-
price will move if ! is larger than or equal to the volume
at the matching best price (i:e: the bid for sell market
orders and the ask for buy market orders). In the limit of
continuous prices we can trivially write

pðrj!Þ ¼ ð1� gð!ÞÞ�ðrÞ þ gð!Þf ðrj!Þ, ð1Þ

where �ð�Þ is the Dirac delta function12 and g(!) is the
probability that the mid-price moves as a function of the

order size !. The function f ðrj!Þ is the probability of
a price shift r, conditioned on the mid-price moving in
response to an order of volume !. g(!) and f ðrj!Þ behave
quite differently. g(!) depends strongly on !. For the
LSE it scales roughly as gð!Þ � !0:3, about the same as the
average market impact [17]. In contrast, f ðrj!Þ is
surprisingly independent of the volume !, in the sense

that the unconditional fluctuations in r dominate the
dependence on !.

To demonstrate this, in figure 2 we show the
cumulative probability for non-zero price returns condi-
tioned on order size, i:e: Fðr > X j!Þ ¼

R1

X f ðrj!Þ dr, for
several different ranges of market order size !. The
orders are sorted by size into five groups with roughly the
same number of orders in each group. The distributions
for each range of ! are roughly similar, both for

individual stocks such as AZN, and for the pool. Each
curve approximately approaches a power law for large r
independent of !, illustrating that the key property
determining large price returns is fluctuations in market
impact, and that the role of the volume of the order
initiating a price change is minor. For the pooled stock
result, for large returns the curves for large order size tend

to be on top of those for small order size, illustrating
a weak dependence on order size, but this is relatively

9 Another difference between the two markets is that clearing in the
LSE is fully automated and instantaneous; in contrast, in the NYSE,
clearing is done manually, creating an uncertainty in response times.
10 In 2003 the LSE began to allow ‘iceberg orders’, which contain
a hidden component that is only revealed as the exposed part of the
order is removed.
11 For the Paris Stock Exchange from 1994, Bias et al [4] observed 42%
of the orders inside the spread, 23% at the best, and 35% inside the
book. We do not know why SHEL is anomalous, although it is worth
noting that it is the most heavily traded stock in the sample, a close
proxy is also traded on the NYSE, and it has the second largest tail
exponent among the 16 stocks chosen for the study.

12 The Dirac delta function �ðxÞ is defined so that �ðxÞ ¼ 1 when
integrated over any domain that includes 0, and �ðxÞ ¼ 0 otherwise.
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small, and not visible in the results for individual stocks.

Although we do not present them here, using the

TAQ database we have obtained similar results for a

small sample of stocks traded in the NYSE, suggesting

that this behaviour is not specific to the LSE:13 This is

particularly interesting given the significant differences in

the structure of the NYSE, and also because the TAQ

data set includes upstairs trades.
To reinforce this point, in figure 3 we show

pð!jr > XÞ, the probability of a market order of size !
conditioned on the return being greater than a certain

threshold X. We do this for the stock Astrazeneca (AZN)

for several different values of X, getting virtually the same

curve independent of X. The distribution of order sizes

that generate large returns is essentially the same as those

that generate small returns. Similar results are obtained

for all the stocks in our sample. Thus, it seems that order

size does not play an important role in generating large

returns.
Gabaix et al [20] have recently proposed that large

returns can be explained by assuming the market impact

density function pðrj!Þ is sharply peaked around a central

value14 k!1=2, so that it can be approximated as a Dirac

delta function �ðr� k!1=2Þ. The result of figure 2 makes it

clear that the sharply peaked assumption is a poor

approximation—the distribution is quite broad, in the

sense that the conditional distribution pðrj!Þ � pðrÞ, and

p(r) is not sharply peaked.

Figure 2. Dependence of returns on order size. Fðr > X j!Þ is
the probability of a return r > X conditioned on the order size !
and on the fact that the price shift is non-zero. Results shown
are for buy orders, but similar results are seen for sell orders.
The orders are sorted by size into five groups with roughly the
same number of orders in each group. Ranging from small
orders to large orders, the curves are black, red, green, blue, and
magenta. In panel (a) we show the result for AZN and in panel
(b) we show the average over the pool of 16 stocks described in
table 1. For the pooled data for each stock we normalize the
order volume to the sample mean, and then combine the data.
Each curve approximately approaches a power law for large r
independent of !, illustrating that the key property determining
large price returns is fluctuations in market impact, and that the
role of the volume of the order initiating a price change is minor.

13 Note added in press: based on 5min averages, Weber and Rosenow
[64] also report that liquidity is the dominant effect, using data from
NYSE and Island.

Figure 3. pð!jr > XÞ, the distribution of market order sizes
conditioned on generating a return greater than X, for the stock
AZN. The values of X correspond to the 50 percentile (red),
90 percentile (blue), and 99 percentile (green) of the return
distribution. The black line is the unconditional distribution
p(!). The jumps are due to the tendency to place orders in round
numbers of shares.

14 Analyses of several markets make it clear that the mean response of
prices to orders varies considerably from market to market, and is not in
general well characterized by a square root law [17, 18, 38, 57]. It is also
worth noting that the volume distribution in figure 3 does not appear to
have a power law tail. This is true of all the stocks in our sample.
In contrast, power law tails are observed for stocks in the NYSE [24],
and this was also observed to be true for upstairs data in the LSE
(Lillo and Farmer, unpublished). See also the discussion in [37].
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3.2. Volume dependence of mean market impact

From a variety of previous studies it is clear that the mean
market impact is an increasing function of ! [14, 16, 26,
27, 34, 38, 56–58, 62, 63]. How do we reconcile this with
our claim that the distribution of market impact is almost
independent of volume? The key is that the main effect of
changing the order volume is to change the probability
that the price will move, with very little effect on how
much it moves. From equation (1) one easily obtains

Eðrj!Þ ¼ gð!Þ

Z
f ðrj!Þr dr / gð!Þ, ð2Þ

where for the last proportionality relationship we have
used the result from figure 2 that f ðrj!Þ is almost
independent of !. Thus, the expected price change
scales as the probability of a price change, a relationship
that we have verified for both the LSE and the NYSE.
However, this variation is still small in comparison with
the intrinsic variation of returns; the mean market impact
of a very large order is less than the average size of the
spread, but the largest market impacts are often more
than 10 times this large.

3.3. Correlations between order size and liquidity

One possible explanation for the independence of price
response and order size is that there is a strong correlation
between order size and liquidity. There is an obvious
strategic reason for this: agents who are trying to transact
large amounts split their orders and execute them a little
at a time, watching the book, and taking whatever
liquidity is available as it enters. Thus, when there is a lot

of volume in the book they submit large orders, and when

there is less volume, they submit small orders. This effect

tends to even out the price response of large and small

orders. We will see that this effect indeed exists, but it is

only part of the story, and is not the primary determinant

of the behaviour we observe here.
In fact, the unconditional correlation between market

order size and volume at the best is rather small. For

AZN, for example, it is about 1%. However, if we restrict

the sample to orders that change the mid-price, the

correlation soars to 86%. The reason for this is that for

orders that do not change the price, there is essentially no

correlation between order size and volume at the best.

For the rarer case of orders that do change the price, in

contrast, most market orders exactly match the volume

at the best. As shown in table 2, for the stocks in our

sample, 86% of the buy orders that change the price

exactly match the volume at the best price. (This is 85%

for sell orders:)
The relationship between the volume of market

orders and the best price becomes more evident with a

nonlinear analysis. Figure 4 shows Eð!jVbestÞ, where !
is the market order size and Vbest is the volume at the

corresponding best price. We see in this figure that the

expected order size is non-zero even for the smallest

values ofVbest. It growsmonotonically withVbest, but with

a slope that is substantially less than one, and a roughly

concave shape. This makes the nonlinear correlation

between order size and liquidity clear. However, in the

following section we will see that the dependence of order

size on liquidity is not strong enough to substantially

suppress large price fluctuations.

Table 2 . Summary table of the percentage of the time that non-zero changes in the best prices are equal to the first gap (left) and
that the market order volume ! exactly matches the volume at the corresponding best price Vbest(right). Assuming a Bernoulli

process the sample errors are of the order of 0.1–0.2%.

% of non-zero returns
equal to first gap

% of non-zero returns
with ! ¼ Vbest

Tick Sell Buy Sell Buy

AZN 94.3 99.6 83.7 90.1
BAA 95.9 99.1 86.2 87.0
BLT 95.0 99.2 85.8 85.6
BOOT 95.9 99.2 85.7 84.7
BSY 94.3 99.7 85.0 88.0
DGE 96.3 99.7 86.5 87.4
GUS 95.8 99.5 85.0 83.5
HG. 95.9 99.5 85.8 83.0
LLOY 97.3 99.8 88.4 88.6
PRU 95.9 99.5 85.5 78.1
PSON 93.1 99.6 81.2 86.2
RIO 95.7 99.7 84.6 86.4
RTO 96.1 99.5 84.4 85.3
RTR 93.0 99.7 83.5 85.4
SBRY 95.6 99.4 85.3 83.2
SHEL 98.7 99.9 93.0 92.8
Average 95.6 99.5 85.6 86.0
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3.4. Liquidity fluctuations drive price fluctuations

In this section we demonstrate in concrete terms
that price fluctuations are driven almost entirely by

liquidity fluctuations. To do this we study the virtual
market impact, which is a useful tool for probing the

supply and demand curves defined by the limit order
book. Whereas the true market impact pðrj!Þ tells us

about the distribution of impacts of actual market orders,
as discussed in section 3:1, the virtual market impact is

the price change that would occur at any given time if
a market order of a given size were to be submitted. More

formally, at any given time t the limit orders stored in the
order book define a revealed supply function S(�, t) and
revealed demand function D(�, t). Let V(�, t) be the total
volume of orders stored at price �. The revealed supply

function is

Sð�, tÞ ¼
X�
i¼ aðtÞ

Vði, tÞ: ð3Þ

The revealed supply function is non-decreasing, and so for

any fixed t has a well-defined inverse �ðS, tÞ. The virtual
market impact is the price shift caused by a hypothetical

order of size S, e:g: for buy orders it is �ðS, tÞ � aðtÞ. The
virtual market impact for sell market orders can be defined

in terms of the revealed demand in a similar manner. By
sampling at different values of t, for any fixed hypothe-

tical order size we can create a sample distribution of
virtual market impacts. This naturally depends on the

sampling times, but these can be chosen to match any
given set of price returns.

In figure 5 we show the cumulative distribution of

virtual market impacts for the stock AZN for several

different values of D, corresponding to different quantiles

of market order size. The cumulative distributions define

a set of approximately parallel curves. They are shifted as

one would expect from the fact that larger hypothetical

order sizes tend to have larger virtual market impacts.

These curves are similar in shape to the distribution of

returns. Most striking, for the median market order size,

the curves are almost identical. We see similar results

for all the stocks in our sample. This demonstrates quite

explicitly that the distribution of returns is determined by

properties of the limit order book, and that the typical

price return corresponds to the price response to an order

of typical size. The fact that the price distribution is so

close to the virtual market impact of a typical order shows

that correlations between order size and liquidity are not

important in determining price fluctuations.

4. Granularity of supply and demand

At first sight, the behaviour described in the previous

section seems baffling: how can market order size be so

unimportant to price response? In this section we show

how this is due to the granularity of revealed supply and

demand, which causes large fluctuations in liquidity.
The cause of this puzzling behaviour is fluctua-

tions in occupied price levels in the limit order book. In

particular, one can define the size of the first gap g as

the absolute difference between the best log price, �best,

Figure 4. The dependence of order size on liquidity. Liquidity is
measured as the volume at the best price, which is binned into
deciles with roughly equal numbers of events. The vertical axis
shows the mean market order volume for each decile, and the
horizontal shows the volume at the best. The units of both axes
are thousands of shares. The ranges shown around each point
indicate one standard deviation (and are not standard errors).
The dashed line has slope 1 and serves as a point of comparison.

Figure 5. The cumulative probability distribution Pðr > xÞ of
virtual market impacts for the stock AZN, based on samples of
the limit order book taken just before the arrival of a market
order. From left to right the continuous lines are the virtual
market impact for hypothetical buy orders of size ! ¼ 100
shares (red), ! ¼ 1600 shares (green), ! ¼ 8700 shares (blue),
and ! ¼ 25 000 shares (magenta); these correspond to the 0.1,
0.5, 0.9, and 0.99 quantiles of market order size. These are
compared to the average distribution of returns (black dashed),
which is very similar to the virtual market impact for the 0.5
quantile. Note that we have discarded cases in which the virtual
market impact is undefined due to excessively large hypothetical
market order volume, but these comprise only about 3% of the
events.
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and the log price of the next best quote, �next , as

g ¼ j log�best � log�nextj. In figure 6 we show a typical

set of events before and after a large price fluctuation. In

figure 6(a) we see that there is a large first gap on the

sell side of the limit order book. In figure 6(b) we see the

configuration of the book an event later, after a market

order of exactly the same size has removed all the volume

at the best ask. This results in a large change in the mid-

point price. Thus, the large return simply reflects a large

gap inside the book that has been revealed by the removal

of the best ask. We find that this is the typical behaviour

underlying almost all large returns.
As already shown in table 2, typically about 85% of

market orders that result in price changes exactly

match the volume at the best price. Furthermore, as

shown in the first two columns of this table, when they do

exceed the volume at the best price, it is quite rare that

they penetrate the next occupied level. For buy (sell)

market orders, on average 95:5% (99:5%) of the non-zero

shifts in the best price are exactly equal to the first gap.

Interestingly, there is a significant asymmetry between

buy and sell. Traders act to minimize their transaction

costs, so that jumps of more than one gap are rare,

particularly for sell orders. (However, as we stressed

earlier, the return distribution can be generated by

a constant order of median size—this correlation is

interesting, but not essential:) Note that the trader

initiating the change does not pay a large spread—that

would only happen to the next trader, if she were to

immediately place a market order:15

This is by far the most common scenario that

generates large price changes. In figure 7(a) we compare

the distribution of the first gaps to the distribution of

price returns for the stock AZN. We see that the

distributions are very similar. For the first gap size the

tail index � ¼ 2:52� 0:07, and for the return distribution

� ¼ 2:57� 0:08, showing that the scaling behaviours

are similar. However, the similarity is not just evident

in the scaling behaviour—the match is good throughout

the entire range, illustrating that most of the large price

changes are caused by events of this type. Figure 7(b)

shows the same comparison for the pool of 16 stocks.

The agreement in this case is even more striking:16

To demonstrate that the correspondence in the above

figure is not just a coincidence for AZN, we have

computed the tail exponents for returns and first gap

size for all 16 stocks in our data set. We do this using

15 In general, after a large shift in the bid or ask price, the next orders
tend to be limit orders, but we have not yet been able to study the
statistical properties of the sequence of subsequent events in detail. See
[4, 9, 25, 29, 52] for an empirical study of the role of quote size after
a market order.
16 We have also studied the distribution of higher order gaps. Moving
away from the best price �0, the nth order gap for n ¼ 1; 2; . . . can be
recursively defined as gn ¼ j log�n�1 � log�nj, where �n is the nth
occupied price level. Interestingly, we find that the tail behaviour of
higher order gaps is the same as that of g1.

Figure 6. A typical configuration of the limit order book for AZN before and after a large price fluctuation. The two panels plot the
volume (in shares) of limit orders at each price level; sell limit orders are shown as positive, and buy limit orders as negative. In panel
(a) we see that there is a large gap between the best ask price and the next highest occupied price. The arrival of a market order to
buy removes all the volume at the best ask, giving the new limit order book configuration shown in panel (b), which has a much
higher best ask price than previously.
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a Hill estimator [28] by considering the largest
ffiffiffi
n

p
returns,

where n is the size of the sample. The results are shown in
figure 8, where we plot the tail exponents of returns
against those of first gaps. The points cluster tightly
along the diagonal, making it clear that there is a strong
positive correlation (R2 ¼ 0:93) between the gap tail
exponents and the return tail exponents; a least-squares
linear fit has a slope of 0:98� 0:05, and we are unable to
reject the null hypothesis that the tail exponents of the
gaps and returns are drawn from the same distribution.

It is worth noting that lightly traded stocks tend to
have a smaller tail exponent than heavily traded stocks.
This is already clear in figure 8, where we have used
a colour coding to identify stocks of different volume. To
investigate this more quantitatively, in figure 9 we plot
the tail exponent of price changes against the number of
market orders for each stock in the sample. While the
relationship is noisy, there is a clear positive trend; the

slopes of the linear fits to positive and negative returns are

both highly statistically significant. The tail exponents

vary from about 1:6 to 2:8, whereas the error bars

are more than a factor of 10 smaller than the range

of variation:17 This suggests that the tail exponent is not

universal. Not surprisingly, stocks that are more heavily

Figure 7. The cumulative distribution Pðg > xÞ of the size of
first gaps g (red continuous line), compared to the cumulative
distribution of returns generated by market orders Pðr > xÞ
(black dashed line). Panel (a) refers to buy market orders for
AZN, on a double logarithmic scale to highlight the tail
behaviour. The two distributions are very similar. The result
is even more impressive when we consider the average over the
16 stocks described in table 1 (Panel (b)).

Figure 8. A comparison of tail exponents � for returns
(horizontal axis) vs. tail exponents for the first gap (vertical
axis). The first gaps are sampled immediately preceding the
market order that triggers the return. This is done for all the
stocks in table 1, and includes both the buy and sell sides of the
limit order book. We use red circles for low liquidity stocks, blue
squares for medium liquidity stocks, and green triangles for high
liquidity stocks. Empty symbols refer to sell market orders and
filled symbols to buy market orders. The black dashed line is the
linear regression. We see that there is a clear positive relation-
ship between the number of orders and the tail exponent.

Figure 9. Dependence of the tail exponent of price changes on
the number of market orders, for the data of figure 8. Black
circles are for positive returns (caused by buy market orders),
and red triangles are for negative returns (caused by sell market
orders). The steeper red curve is the fit to negative returns and
the black curve the fit to positive returns.

17 Table 3 gives error bars for tail exponent estimations based on
absolute returns (including both buy and sell events), while figures 7
and 8 are based on buy and sell returns taken separately, but the error
bars are comparable.
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traded tend to display less extreme risk than stocks that
are lightly traded.

5. Limit orders and cancellations

We have so far considered only returns caused by market
orders. In this section we will discuss returns caused by
limit orders and cancellations, and show that they are
statistically indistinguishable from those caused by
market orders.

The distribution of returns caused by limit orders,
market orders, and cancellations for AZN is shown in
figure 10. The distributions are quite similar. To make the
analysis more quantitative, we compute the tail exponents
for the 16 stocks in the sample. Table 3 shows the Hill
estimates for returns caused by market orders, limit
orders and cancellations. The table shows clearly that
the tail exponents for the three distributions are very close:
For all 16 stocks the estimated tail exponents are well
within the 95% confidence intervals. On the other hand,
table 3 shows that there is a much larger variation across
stocks.

Why are the distributions of different events so
similar? The correspondence between returns caused by
market orders and returns caused by cancellations is
not surprising. In terms of the effect on best prices,
removal of the volume at the best price by cancellation is
equivalent to removal by a market order, in both cases
creating a price change equal in size to the first gap.
However, for a limit order this is not so obvious: a limit
order that falls inside the spread decreases the spread, and
causes a price change in the opposite direction from
market orders and cancellations. To investigate this we
have studied the distribution of the spread, which also
appears to be a power law, but with a larger tail exponent.
At this point the reason for the close correspondence
between the returns generated by limit and market orders
remains unexplained.

6. Price changes on longer timescales

One can naturally ask whether the microscopic event level
analysis we have presented here explains the statistical
properties of price changes over longer and/or fixed
time horizons. The timescale for the analyses we have
presented here is quite fast: for Astrazeneca, for example,
within the period of this dataset there are on average
about eight market orders every 5min, but due to highly
uneven rates of event arrival, it is not uncommon that
many events arrive within the same second. It is natural
to question whether events on this timescale reflect the
properties of longer timescales, e:g: on the daily timescale
of many other studies. Given that order arrival is highly
clustered in time, it is also natural to ask whether
a description in event time also provides an explanation
in real time. We now address both of these questions.

The permanence of these price movements can be
seen through the continuity between price returns on the
single event scale and the multiple event scale. Figure 11
shows the return density function for AZN for 1, 2, 4, 8,
16, and 32 market order arrivals, as well as for 5, 10, and
20min timescales. Each curve consists of a non-power
law central behaviour crossing over to an approximate
power law tail behaviour. We see that the tails of all the
distributions are quite similar, though the crossover point
from the central behaviour to the tail behaviour increases
for longer timescales. The regularity of the movement
in the crossover point as we vary the timescale, and
the similarity of the tail behaviour across a range of
timescales, indicates that the tail properties on the single

Figure 10. A comparison of the distribution of absolute returns
(including both buy and sell orders) caused by limit orders,
market orders, and cancellations for AZN. The black circles are
for market orders, the blue triangles are for limit orders, and the
red squares are for cancellations.

Table 3. Hill estimator of the return caused by market orders,
limit orders and cancellations. We analysed the top percentile
and give 95% confidence intervals. The confidence intervals

assume the samples are uncorrelated, and so may be
over-optimistic.

Tick Market orders Limit orders Cancellations

AZN 2.57 � 0.08 2.56� 0.07 2.57� 0.06
BAA 1.77� 0.06 1.77� 0.08 1.76� 0.08
BLT 1.8� 0.1 1.8� 0.1 1.8� 0.1
BOOT 1.80� 0.07 1.80� 0.07 1.79� 0.08
BSY 2.28� 0.04 2.25� 0.06 2.26� 0.06
DGE 2.31� 0.06 2.31� 0.07 2.31� 0.07
GUS 1.80� 0.09 1.80� 0.07 1.80� 0.07
HG. 1.7� 0.1 1.7� 0.1 1.66� 0.07
LLOY 2.72� 0.03 2.72� 0.04 2.72� 0.05
PRU 2.20� 0.06 2.20� 0.07 2.20� 0.06
PSON 1.9� 0.1 1.9� 0.1 1.91� 0.09
RIO 1.83� 0.09 1.82� 0.08 1.83� 0.07
RTO 1.73� 0.09 1.73� 0.08 1.73� 0.07
RTR 2.45� 0.04 2.44� 0.05 2.45� 0.03
SBRY 1.89� 0.07 1.88� 0.07 1.88� 0.07
SHEL 2.62� 0.04 2.61� 0.07 2.62� 0.04
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event scale are reflected on larger scales (at least as large

as 20min). Also, this figure makes it clear that the behav-

iour in real time is essentially the same as the behaviour

in event time. We see similar behaviour for all the stocks

in our sample. Since other studies have shown the con-

tinuity between timescales from 10min to as long as a

month [39, 47, 55], it seems clear that an explanation at

the level of single events is sufficient:18 This is particularly
striking, given that, on a longer timescale, other processes

may become important, such as order splitting. Figure 11

suggests that for understanding the statistical properties

of prices these can be neglected.
The fact that we observe essentially identical dis-

tributions when we aggregate over individual transactions

or over fixed time rules out any explanation of fat tails

for price returns based on a subordinated random

process, as was suggested by Clark [8]. While fluctuations

in the number of events in a given length of time might be

quite important for other phenomena, such as clustered

volatility, they are clearly not important in determining

the price return distribution.

7. Correlations in occupied sites

A natural hypothesis about the origin of the large gap

distributions involves fluctuations in the number of

occupied sites in the order book. If there are only a few

orders in the book, so that it is mostly empty, we

naturally expect large gaps to exist. Perhaps the
approximate power for the gap distribution can be
explained by a similar power law in the number
of occupied sites? In this section we show that this is
not the case, but rather that the power law behaviour
depends on correlations in occupied price levels.

Interestingly, we do find evidence of power law
scaling in the number of occupied price levels.
Figure 12(a) shows the probability density function

Figure 11. Price returns aggregated on different timescales and
for different number of trades. The price return is defined as
logmðtÞ � logmðt� �Þ, where � is from left to right 1, 2, 4, 8, 16
and 32 market orders (continuous lines) and 5, 10, and 20min
(dashed lines). The data are for AZN, based on absolute returns
(both buy and sell).

Figure 12. The effect of a finite number of orders for the
stock AZN. Panel (a) shows the unconditional distribution
of the number of occupied price levels for buy orders,
plotted on a double logarithmic scale. The dashed line is the
best fit of the low N region with a functional form pðNÞ / N�.
Panel (b) shows the probability density of first gap sizes
conditional on the number of occupied price levels, pðgjNÞ.
We divide the sample into four subsamples according to
the value of N. Specifically, we have 0 < N � 15
(black circles), 15 < N � 30 (red squares), 30 < N � 45
(green diamonds), and 45 < N � 60 (blue triangles).
Surprisingly, the first gap size shows approximate
power law behaviour even when the number of occupied
sites is very large.

18 We have studied the response to individual events, and see some
evidence for mean reversion of large price changes. However, the results
of figure 11 make it clear that these are not sufficient to undo the initial
change.
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p(N), where N is the number of occupied price levels in the

order book at any given time. The low N region is well fit

by a power law, pðNÞ � N�, over about two decades.
However, the fluctuations in the number of orders

stored in the book cannot explain the power law behaviour

of prices, because the tail exponent of the power law

behaviour of the gap distribution near zero is much too

large. If we assume that the location of order deposition

is uncorrelated, then an order arrival on a bounded

domain gap size should be proportional to 1/N. But

with pðNÞ � N� and g � 1=N, pðgÞ � g�ð�þ 2Þ. For � � 5:5
this results in pðgÞ � g�7:5. In contrast, the empirically

observed scaling exponent for the density for AZN is

about 3:5.
Surprisingly, the distribution of gap size shows

approximate power law scaling, independent of N. This

is illustrated for AZN in figure 12(b), where we plot the

probability of gap size conditioned on N, pðgjNÞ, for

several different values of N. The same approximate

power law scaling behaviour is seen independent of N.

The approximate power law behaviour is evident even

with as many as 60 occupied sites on one side of the book.

Considering that it is rare for orders to be placed more

than 100 price ticks away from the best price, this

illustrates that occupied sites display non-trivial correla-

tions, which are essential for explaining large price

fluctuations. This conclusion is reinforced by studies

we have done comparing the real distribution of occupied

levels with models based on IID order placement, which

do not reproduce the power law behaviour.

8. Conclusions

For the London Stock Exchange, we have shown

that large fluctuations in prices are unrelated to large

transactions, or to the placement of large orders. Instead,

large price fluctuations occur when there are gaps in

the occupied price levels in the limit order book. Large

changes occur when a market order removes all the

volume at the best price, creating a change in the best

price equal to the size of the gap.
At a higher level, these results demonstrate that large

price changes are driven by fluctuations in liquidity.

There are times when the market absorbs changes in

supply and demand smoothly, and other times when

a small change in supply or demand can result in a very

large change in the price. This is due to the fact that

supply and demand functions are not smooth, but rather

have large, irregular steps and jumps. The market is

granular, due to the presence of only a finite number of

occupied price levels in the book. This is what in physics

is called a finite size effect. Even for an active stock

such as AZN, the number of occupied price levels on

one side of the book at any given time is typically about

30, and so the system is far from the continuum limit.

However, we have shown that this is not a simple

matter of fluctuations in the number of occupied price

levels; while there is an approximate power law in the

limit N ! 0 in the frequency for occupying N price levels,

this is not sufficient to explain fluctuations in prices.

Instead, the power law in gaps persists even when the

number of occupied levels is quite high, reflecting non-

trivial correlations in the positions of orders sitting in the

book.
The empirical results that we have presented here

raise as many questions as they answer. In particular,

what is responsible for the approximate power law

distribution of gap sizes, and why do limit orders have

the same tail exponents as market orders and cancella-

tions? We have done some modeling to address this

question. In particular, we have modified the statistical

model of order flow introduced by Daniels et al [13, 59]

to include non-uniform order placement, more closely

reflecting the empirical order placement distribution

[6, 65], which has an approximate power law tail. For

some parameter values our simulations reproduce the

power law tails of the gap distribution (and hence of

returns), but since we do not yet understand the necessary

and sufficient conditions for this, we do not include these

results here.
The work presented here suggests that it is important

to properly model market institutions. However, at this

point it is not clear how these results would change for

a different market institution. Fat tails are also observed

in markets, such as the London Metals Exchange, that

follow very different exchange mechanisms:19 While the

LSE follows a continuous double auction, it is our belief

that key elements are likely to persist with other market

mechanisms. In particular, we hypothesize that large

price fluctuations in any market are driven by liquidity

fluctuations, and that the granularity of fluctuations in

supply and demand remains the key factor underlying

extreme price fluctuations.
These results are important because they reveal the

detailed mechanism through which prices display (at least

approximate) power law fluctuations. They suggest

that many previous models that claimed to explain this

phenomenon were misdirected, and provide strong con-

straints on future models. The tail exponent of large price

changes appears to depend on parameters of the market:

more lightly traded markets (with lower event rates) tend

to display fatter tails, with more extreme risks. This has

important practical importance because it gives some

understanding of what determines financial risks, and

gives some clues about how to reduce them.

19 One of us (JDF) did an unpublished study in 1995 of daily data for
industrial metals such as copper, zinc, iron, nickel, etc. traded on the
London Metals Exchange, whose exchange mechanism resembles a
Walrasian market. All of these have large kurtosis, indicating fat tails.
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