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We study the chaotic attractors of a delay differential equation. The dimension of several attractors computed directly 
from the definition agrees to experimental resolution ~vith the dimension computed from the spectrum of Lyapunov 
exponents according to a conjecture of Kaplan and Yorke. Assuming this conjecture to be valid, as the delay parameter 
is varied, from computations of the spectrum of Lyapunov exponents, we observe a roughly linear increase from two to 
twenty in the dimension, while lhe metric entropy remains roughly constant. These results are compared to a linear 
analysis, and the asymptotic behavior of the Lyapunov exponents is derived. 
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1. Introduction 

In 1963, Edward Lorenz observed aperiodic 
behavior in a three-dimensional dynamical sys- 
tem [I1. Lorenz's equations are such a severe 
truncation of the infinite-dimensional Navier -  
Stokes equations that their principal significance 
for fluid flow is melap~oricai rather than pre- 
dictive. Lorenz's ob~,,rvations do  however, 

*Present address: Cen*c~ for Noulinear Studies, MS 258, 
Los Aiamos Sc~ ~tific Laboratories, l.os Alamos, New 
Mexico 87545, USA, 

present the possibility that the chaotic behavior 
observed in such an inf, nite-dimensional system 
might be caused by a finite-dimensional attrac- 
tor. Numerical studies of the Lorenz equations 
and other low dimensional systems have pro- 
vided considerable insight into the nature of 
deterministic yet random behavior observed in 
strange (chaotic) attractors, but the relationship 
between the chaotic attractors of these low 
dimensional systems and those of infinite 
dimensional systems has not yet been 
established. Although we cannot simulate the 
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Navier,-Stokes equations properly, there are 
other infinite dimensional systems that can be 

• • V  • simulated relati ely stmply, 
In 1971, Ruelle and Takens [2] ~ conjectured measure the average rate of-ex-Ponenti~"c-o-n- 

flow never c o n ~ s  more than a few ~ationally 
related discrete f requency components, ~ s  
supports the Ruelle-Takens theory, but the 
nature of the chaotic attractors in turbulent flows 
remains a mystery. 

There are several rigorous results indicating 
that the attractors of many infinite-dimensional 
dynamical systems are of finite dimension and 
hav~ a discrete spectrum of Lyapunov 
exponents• These results, including the work of 
Foias, Prodi, Teman [5, 6], Ladyzenskaya [7, 8], 
Mallet-Paret [9], and Ruelle [10] are briefly re- 
viewed in section 6. Despite these results, very 
little is known about the structure of the chaotic 
attractor~ of infinite-dimensional systems and 
their behavior as parameters are changed. Many 
questions about bifurcation sequences to "fully 
developed '~ chaotic behavior remain to be an- 
swered, among them: How quickly does the 
dimensfon of chaotic attractors change as a 
control parameter (such as the Reynolds number 
in fluid flow) is varied? How steady is this 
change? Do the dynamics necessarily become 
more chaotic as the dimension of the attractor 
increases7 (I.e., does the metric entropy in- 
crease?) Are the attractors of infinite-dimen- 
sional systems qualitatively similar to those of 
low-dimensional _systems? 

The answer to these and other questions 
requires a detailed characterization of the 
geo~letricai and statistical properties of an 
attractor. One of the main tools useful for this is 
the spectrum of Lyapunov characteristic 
exponents [I 1, 12, 13, 14]. Roughly speaking, the 

yet certain. Two conjectures have recently been 
made, one  by Kaplan and orke 5], and ano- 
the r  by Mori [16] .  The Kaplan-Yorke con- 
jecture and the Mori conjecture give identical 
results for attractors of low-dimensional sys- 
tems, and in this case, for many examples their 
predictions have been numerically demonstrated 
to be correct [17]• For higher-dimensional sys- 
tems, however, their predictions may be dras- 
tically different• We use an infinite dimensional 
system to perform this test, and find that our 
results agree with the conjecture of Kaplan and 
Yorke. 

This paper begins with a brief introduction to 
the characterization of chaotic dynamical sys- 
tems in terms of dimension, metric entropy, and 
Lyapunov characteristic exponents, followed by 
a discussion on the extension of these concepts 
to infinite-dimensional systems, and a review of 
some pertinent rigorous results. We then com- 
pute these quantities for an infinite-dimensional 
differential delay equation originally studied by 
Mackey and Glass [13]. Our primary motivation 
for choosing this example is ease of simulation. 

PART I: REVIEW OF GENERAL THEORY 

2• Dimension 

There are several different dimensions that 
can be used to describe dynamical systems and 
their attractors. In this section we present brief 
discussions of the phase space diimension, 
topological dimension, fractal dimension, in- 
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formation dimension, and embedding dimen- 

sion. 
The phase space dimension N is the number 

of independent real numbers that are needed to 
specify an arbitrary initial conditien. The phase 
space dimension is a property of a dynamical 
system. The other dimensions we will discuss 
are generally properties of sets, but we will 
consider them in the context where they are 
proFerties of ~ttractors. 

Loosely speaking, an attractor is a subset of 
tb, e phase space of a dissipative dynamical sys- 
tem. that "attracts" phase points from other 
regions of the phase space in the basin of the 
attractor. Once a phase point enters an attrac- 
tor, it does not leave it. One convenient prop- 
erty observed in many numerical experiments 
is that almost every initial condition in a given 
basin yields the same time averages, and hence 
the same asymptotic probability measure [19]. 
Ruelle and Bowen [20] have proved that the 
Lebesgue measure of an attractor of a smooth 
flow is zero. This result suggests that perhaps 
the (suitably defined) dimension of an attractor 
is generally less than that of the phase space 
containing it. For trajectories on the attractor, 
,,his reduction of dimension brings about an 
accom,."~ying reduction in t,,e information 
n,~eded to specify an initial condition. For the 
most general case, the number of phase vari- 
ables needed to describe a trajectory is N, but 
for trajectories on an attractor this number may 
be less than N. The various dimensions defined 
below seek to make the concepts of "in- 
formation required £o specify an initial con- 
dition'" and "degrees of freedom on the attrac- 
tor" more precise. 

One of the oldest notions of dimension is that 
of topological dimension, developed by Poin- 
~::~re, tarouwer, Menger, Urhsohn, and others 
" i i .  The topological dimension ig an integer 
that makes vigorous the notion of the number of 
"locally distinct directions" in a set, Since we 
:~re not going to make very n~uch use of this 
concept, and since the definition is somewhat 

involved, we refer the reader to Hurewicz and 
Wallman [21]. 

For a dynamical system with an N-dimen- 
sional phase space, let n(~) be the number of 
N-dimensional b~dls of radius ¢~ required to 
cover an attractor. The capacity, or fracml 
dimension [22] is 

DF --- lim log n (~) 
,-~ Iiog ~1" (I) 

When a set is "simple", for example, a limit cycle 
or a toms, the fractal dimension is an integer 
equal to the topological dimensien. The classical 
example of a set with a noninteger fractal 
dimension is Cantor's set. (Set~ whose fractal 
dimension exceeds their topological dimension 
are called "fractals" by Mandelbrot [22].) To 
construct Cantor 's set, delete the middle third of 
a line segment, then delete the middle third of 
each remaining piece, and so on. The fractal 
dimension is log 2/log 3. Smale's horseshoe [23], 
and many otb.er constructions of chaotic map- 
pings have an analogous structure; numerical 
simulations of dynamical systems with chaotic 
attractors, such as the example studied by 
Henon [24], indicate that such structure occurs 
for chaotic attractors. 

To understand the physical meaning of the 
fractal dimension, suppose that the N coor- 
dinates of a dynamical system are measured by 
an instrument incapable of resolving values 
separated from each other by less than an 
amount ~. For convenience, assume that all the 
coordinates are measured with equal precision. 
The instrument thus induces a partition that 
divides the phase spac,: into elements of 
equal volume. To an observer whose only a 
priori knowledge is a list of the n(~) partition 
elements that cover the attractor, the amount of 
new information gained upon learning that the 
phase point describing the state of the system is 
in a given partition element is log n(G). If the 
resolution of the measuring instrument is in- 
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creased, the number of partition elements 
needed to cover the attractor goes up roughly as 
e -°*. Thus, assuming that all partition elements 
are equally likely, for small e, the amount of 
new information obtained in a measurement is 
roughly 

but an information dimension less than one. 
(See ref. 26.) 

For an attractor of information dimension D,, 
the amount of information gained in a 
measurement made using instruments of 
resolution e is 

I = log n (e)  == D~llog el. (2) 

For most chaotic attractors, however, the 
elements of a partition do not have equal prob- 
ability. Assume that each element of a partition 
has probability P,. On the average, the amount 
of information gained in a measurement by an 
observer whose only a priori knowledge is the 
(~istribution of probabilities {P~} is 

l ( e )  = - ~ i  ~ Pl log P~. (3) 

This leads to a generalization of the fractal 
dimension" 

Dt = lim,_.0 Ilog el" (4) 

This dimension was originally defined by Bala- 
toni arid Renyi [25] in 1956. They refer to it 
simply as the "dimension of a probability dis- 
tribution". In order to avoid confusion with 
other dimensions, however, we will refer to this 
as the infor#~ution dimension. Since log n(e) 
l(e), the fractal dimension De is an upper bound 
fo~ the information dimension Dr. We will refer 
to sets whose fractal dimensions exceed their 
information dimension as "probabilistic frac- 
tals '. To construct an example, begin w:'.h a 
uniform probability distribution on the interval, 
and rather than deleting the middle third, make 
it less probable than the outer thirds, Then 
repeat this process for each third, and so on. 
The limiting set has a fractal dimenaion of one, 

I(e) ~ Dr]log el. (5) 

For a more complete discussion of the in- 
formation dimension in the context of dynami- 
cal systems, see ref. 26. Work on this topic has 
also been done recently by Yorke [27]. 

Thus, the notion of "information required to 
specify an initial condition" can be described in 
terms of the information dimension. The notion 
of "degrees of freedom", however, is perhaps 
most appropriately described by another 
dtmension, which we will refer to as the 
embedding dimension. An embedding is a 
smooth map f" X -~ Y that is a diffeomorphism 
from a smooth manifold X to a smooth sub- 
manifold Y. Define the embedding dimension 
M of an attractor as the minimum dimension of 
a subset of Euclidean space into which a 
smooth manifold containing the attractor can be 
embedded. M variables are sufficient to con- 
venientJ:' ~nd uniquely specify a point on an 
attractor, and it is in this sense that the embed- 
ding dimension is the number of degrees of 
freedom. 

If there is a smooth manifold containing the 
attractor of dimension m, then the Whitney 
embedding theorem guarantees that its embed- 
ding dimension will be M < 2 m + l .  Un- 
fortunately, chaotic attractors are not in g,-neral 
smooth manifolds, and a relationship between 
the embedding dimension and other dimerasions 
(e.g. fractal) of attractors has not yet been 
proven. 

Note that the fractal dimension, informetion 
dimension, and embedding dimension all require 
a metric on the phase space. The information 
dimension, in addition, requires a probability 
measure. 
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3. Metric entropy 

One of the essential differences between 
chaotic and predictable behavior is that chaotic 
trajectories continuaily generate new infor- 
mation, whereas predictable trajectories do not. 
The metric entropy makes this notion precise. 
In addition to providing a good definition of 
"'chaos". the metric entropy provides a quvn- 
titative way to describe "how chaotic'" a 
dynamical system is. 

Suppose a phase space is partitioned into n 
elements, each of which is assigned a symbol s;. 
Consltler a sequence S i ( m )  of m successive 
measurements made at a time interval At ,  

S,~m) = s,,.s,: . . . . .  .s~.. Let P(Sj(m)) be the 
probability of the sequence S j (m) ,  normalized 
so th;~.t xZiP(Si(m))= I. The amount of infor- 
mation: cont;~ined in sequences of length m is 

I,, = ~ P ( S j ( m ) ) l o g  '" - P ( . , j ( m  )). (6) 
! 

Taking the maximum value over all possible 
partitions /3 finite, the metric entropy is the in- 
formation per unit time in a sequence of 
measurements. 

lm 
t~ := sup, ,~ai .  ~7) 

For predictable dynamical systems, eventually 
new measuremeols provide no further new in- 
formation, and the metric entlopy is zero. For 
chaotic dynamical systems new measurements 
continue to pr,wide new information, and the 
metric entropy is positive. 

As defined here, the metric entropy depends on 
the set of probabilities P ( S ; ( m ) ) .  This in turn may 
depend on the choice of initial condition. (An 
initial point on an unstable limit cycle, for exam- 
pte. may give a qualitatively different sequence of 
measurements than a point not on a limit cycle.) 
Nevertheless, we will assume that almost every 
point within the basin of an attractor yields the 
sa.3~e limiting value for h (almost every in the 
~en,,e of I.ebesgue measure). With this assump- 

tion the metric entropy can be considered to be a 
property of an attractor. 

More con.plete discussions of the metric 
entropy can be found in refs. 20, 26, and 28 to 33. 

4. Lyapunov exponents and their relation to 
entropy and dimension 

The spectrum of Lyapunov characteristic 
exponents provides a summary of the local 
stability properties of an attractor. In addition, 
there is good evidence that the metric entropy 
and information dimension of an attractor can 
be expressed in terms of the spectrum of 
Lyapunov exponents. The spectrum of 
Lyapunov exponents will be our primary tool 
for studying attractors. In this chapter we define 
the Lyapunov exponents, and review the con- 
jectures and theorems relating the spectrum of 
Lyapunov exponents to dimension and entropy. 

The stability properties of a system are 
determined by behavior under small pertur- 
bations. A system can be stable to perturbations 
in certain directions, yet be unslable to pertur- 
bations in others. All possible perturbations can 
be examined simultaneously by following the 
evolution of an ensemble of points that is in- 
itially contained in a small N-dimensional ball, 
where N is the phase space dimension. This 
should motivate the following definition of the 
spectrum of Lyapunov exponents: 

Consider a dynamical system of dimension N. 
Imagine an infinitesimal ball that has radius e(0) 
at time t =0 .  As this bali evolves under the 
action of a nonuniform flow it will distort. Since 
the ball is infinitesimal, however, this change in 
shape is determined only by the linear part of 
the flow, and it remains an ellipsoid as it 
evolves. Call the principal axes of this ellipsoid 
at time t ~,(t). The spectrum of Lyapunov 
exponents ~ for a given starting position is 

I _ e~t) A, = im lim l log 
, ..~-~o t e(0)" (8) 
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There are N Lyapunov exponents in the spec- 
trum of an attractor of an N-dimensional 
dynamical system. Positive Lyapunov 
exponents measure average exponential spread- 
ing of nearby trajectories, and negative 
exponents measure exponential convergence of 
trajectories onto,  the at:ractor, Note tha t  the 
sum of '~he Lyapunov exponents is the average 
divergence, which for a dissipative system, must 
always be negative. 

For sufficiently dissipative systems, there are 
many examples where numerical evidence in- 
dicates that the values of the Lyapunov 
exponents are the same for almost every point 
in the basin of an attractor. In these cases, the 
spectrum of exponents may be taken to be a 
property of an attractor, independent of initial 
condition. Since this assumption seems to be 
justified for our e:iample, we will assume 
throughout that this is the case. 

We will always assume that the Lyapunov 
exponents are arranged in decreasing order. 
The qualitative stability properties of an attrac- 
tor can then be conveniently summarized by 
indicating +, O, or - ,  according to the sign of 
each exponent. Thus [ + , 0 , - ] ,  for example, 
might indicate a chaotic attractor in a three- 
din,ensional phase space, with (on the average) 
exponential expansion on the attractor, neutral 
stability along the flow, and exponential con- 
traction of trajectories onto the attractor. Note 
that for continuous flows, attractors that are not 
fixed points always have at least one exponent 
equal to zero, since on the average points along a 
trajectory confined to a compact set can neither 
separate nor merge. 

4. I. Relation to dimension 

To gain an intuitive understanding of the 
relation between dimension and the spectrum of 
Lyapunov exponents, it is easiest to begin with 
simple attractors. If an attractor has a spectrum 
[ - , - , - , . . . ] ,  since the flow is contracting in 
every direction, the attractor is a fixed point, 

and has dimension zero. A spectrum [ 0 , - , . . . ]  
indicates that the attractor is a limit cycle, of 
dimension one. Similarly, a spectrum 
[0, 0 , - , . . . ]  indicates that the attractor is a two- 
torus .  

For simple attractors such as those above, the 
notion of dimension is unambigaous, and the 
relationship to the spectrum of Lyapunov 
exponents is clear. Chaotic attractors, in con- 
trast, can be fractals [22], or probabil~stic frac- 
tals [26]; this complicates the relationship be- 
tween the dimension and the spectrum of 
exponents. As discussed in section 2, at least 
four distinct dimensions can be assigned to a 
chaotic attractor. It is a nontrivial problem even 
to determine which of these dimensions shored 
be related to the spectrum of Lyapunov 
exponents. 

Two conjectures have recently been put ~Forth 
to relate the dimension to the spectrum of 
Lyapunov exponents. Kaplan and Yorke [15] 
define a quantity they call the Lyapunov 
dimension 

D, = j + (9) 

where j i~ the largest integer for which ~!+ 
. . .  +,~j-~ O. Kaplan and Yorke conjecture that 
the Lyapunov dimension is equal to the in- 
formation dimension [27]. Mori [ 16], in contrast, 
has conjectured that the fractal dimension DF of 
an attractor is 

k 

D F = d +  ! (10) 

where d is the number of non-negative 
ex0onents, k is the number of positive 
exponents X~', and I is the number of negative 
exponents k ~'. For continuous systems of phase 
space dimension three or less, or discrete sys- 
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terns of dimension two or less, these two for- 
mulas give the same result. For larger dimen- 
sional systems, their predictions may differ. 
This is especially apparent in infinite dimen- 
sions. In this case the number of exponents is 
infinite, and their values decrease monotonic- 
ally, so the denominator in eq. (10) is infinite. 
Ti~erefore, Mori's formula predicts that the 
fractal dimension DF of an infinite dimensional 
dynamical system is always an integer, i.e. D F  = 

,t. In contrast, Kaplan and Yorke's formula 
depends only on the largest j + 1 exponents, 
rather than the entire spectrum, so that their 
formula does not necessarily distinguish infinite- 
from finite-dimensional systems. 

Frederickson, Kaptan, and Yorke [34] have 
simulated several discrete mappings, and com- 
puted ~heir Lyapunov dimension. They do not 
compute the information dimension, but they 
show that it agrees qualitatively with the 
Lyapunov dimension. Russel et al. [17] have 
calculated the fractal dimension directly from 
the d~.finition for a few examples, and compared 
it tt, that predicted from the exponents. They 
find good agreement, but unfortunately none of 
the cases they studied are of sufficiently large 
dimension to distinguish between Mori's con- 
icctu;-e and the Kaplan-Yorke conjecture. Our 
example does distinguish between these two 
,:or~jectures: We find non-integer dimensions 
according to tile Kaplan-Yorke conjecture. (See 
,,ection 8.) 

decays corresponds, at least for smooth 
measures, to the metric entropy [35]. If a fine, 
uniform partition is made of the phase space, 
the initial exponential rate at which new par- 
tition elements are filled by the evolving 
ensemble of points is determined by the positive 
Lyapunov exponents. The preceding discussion 
is intended to motivate the following relation- 
ship: 

It 

i .  

h~, is the metric entropy, and ~, i" are the positive 
Lyapunov exponents. Pesin [36] originally 
proved this for flows with an absolutely con- 
tinuous invariant measure, and it was also 
proved by Ruelle and Bowen [20] for Axiom-A 
flows. This relationship is also supported by 
numerical computations on one-dimensional 
mappings [37]. For the calculations performed 
here, we will assume that the metric entropy can 
be computed using eq. (!1). We previously 
defined a chaotic attractor us any ~.ttractor with 
positive metric entropy; according to this rela- 
tionship, a chaotic attractor is also any attractor 
with a positive L, yapunov exponent. 

5. Simulating IF finite-dimensional dynamical 
systems 

4.2. Relat ion to metric en t ropy  

We defined the spectrum of Lyapunov 
exponent.~ in terms of the evolution of a small 
b,~l!. This ball can also be considered to 
represent an ensemble of points, modeling the 
ur~,:ertainty in an initial measurement. The dis- 
cu.,,,~ion about stability can then be rephrased in 
the language of information theory. The average 
initial rate at which the information contained in 
,l measurement c,.~rresponding to a small bali 

A dynamical system is infin!te dimensional if 
an infinite set of independent numbers are 
required to specify an initial condition. For 
example, to describe the state of a classical fluid 
"* any " ' ~.ll ~ l V t , , l l  L i l i l t w  L i I ~  ¥1 t~ i~ l l t~ iL~  I I I l U  ~ J I ~ I I L 3 1 ~  I~.JI, U I ~ i  

functions must be specified at an infinite number 
of spatial points. The example we will study in 
this paper is a delay differential equation of the 
form 

~(t) = -F (x ( t ) , x ( t - , r ) ) ,  (12) 
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where 1" is a delay time. To calculate x(t)  for 
times greater than t, a function x(t) over the 
interval (t, t - ~) must be given. Thus, equations 
of this type are indnite dimensional. 

To simulate the behavior of infinite,dimen- 
sional systems on a computer it is necessary to 
approximate the continuous evolution of an 
infinite-dimensional system by a finite number 
of elements whose values change at discrete 
time steps. In this manner a continuous infinite- 
dimensional dynamical system is replaced by a 
finite-dimettsional iterated mapping. There is no 
unique method for doing this. The simulation of 
partial differential equations, for example, may 
be accompli.'hed by conversion to a set of 
ordinary diff~xential equations for the Fourier 
modes, or by' various methods that use the 
values of the spatial functions at a finite number 
of lattice points. With either type of method, a 
variety of different integration schemes are 
possible, each corresponding to a different 
iterated mapping. 

Note: To simulate on a digital computer, in 
addition to the finite dimension approximation, 
the continuous variable must be approximated 
by a finite number of states. We will not deal 
with the ramifications of this latter assumption 
here. (See ref. 37.) 

For nonlinear equations that cannot be solved 
analytically, there is no rigorous method to 
make certain that a ~imulation is faithful to the 
equations. There are, however, certain in- 
dicators: The behavior of the simulated system 
must agree for any cases where analytic solu- 
tions are known; the behavior of the simulation 
should converge as the resolution of the simu- 
lation increases; and, simulations by several 
different "proper" methods should all give 
similar results. We v, ill refer to any simulation 
scheme that satisfies the above c.riteria as a 
proper simulation. It is common practice to 
assume that proper ~it,~ulations accurately 
represent the equations being simulated; this 
assumption will be made here. 

The existence, uniqueness, and general prop- 

erties of the spectrum of Lyapunov exponents 
in infinite dimensions are not trivial problems. 
Some aspects of these questions are reviewed in 
section 6. Simulations, however, are necessarily 
finite dimensional, so th~ t the r theory o f  finite 
dimensional dynamical systems can b e  applied 
[38]. In this paper, w apply the criteria given 
above, hope that our simulation is therefore 
representing properties of the continuous equa- 
tion, and compute the spectrum of Lyaptmov 
exponents of the simulation. When the resolu- 
tion of our simulation is refined so that the 
dimension of the simulation goes from N to 2N, 
for N sufficiently large, we find that the first N 
exponents of the refined system are ap- 
proximately the same as those of the original 
N-dimensional system. (Recall that an N- 
dimensional dynamical system has exactly N 
exponents.) The fact that this procedure con- 
verges for a few test cases at very high resolu- 
tion provides the justification for our assump- 
tion that the spectrum of exponents we compute 
is approximately that of the infinite dimen- 
sional equations. 

As will be more apparent from the discussion 
in section 9, a computation of the largest m 
exponents of an N-dimensional proper simula- 
tion is equivalent in computational difficulty to 
the iteration of an raN-dimensional mapping. 
Fortunately, the largest m exponents may be 
computed without computing the N - m smaller 
exponents. 

In general, to gain a geometric picture of an 
N-dimensional dynamical system, all N coor- 
diinates of the system must be taken into ac- 
count. However, if an attr~,ctor has an embed- 
ding dimension M < N, o~ly M va.iables are 
needed to determine a trajectory on the attrac- 
tor. For example, the exis~en~.e of a stable fixed 
point may be seen with only one coordinate; a 
picture of a limit cycle can be drawn with only 
two, and so on. Any dynamical visualization 
entails this sort of projection of the infinite (or 
large N)-dimensional dynamics onto some 
lower dimensional space. In this paper we will 
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make use of projections to study the geometry 
of the attractors we are interested in. Just as 
there is some arbitrariness in the integration 
scheme used to simulate a dynamical system, so 
the projections used to study a system are also 
somewhat arbitrary. After testing several pos- 
sibilities in each case (and getting equivalent 
results) we will assume that the properties we 
see are independent of the projection we use. 

Navier-Stokes equations are homeomorphic to 
a compact subset of R" for m sufficiently large. 
Using slightly different techniques, Mallet-Paret 
[9] h:as proven the following theorem: 

Theorem (Mallet-Paret [9]). Let H be a separ- 
aole Hiibert space, and suppose 

A C U C H ,  

6. Review of rigorous results for infinite- 
dimensional systems 

There are several theoretical questions that 
have simple answers for finite-dimensional 
dynamical systems, but become more delicate in 
the context of infinite-dimensional systems. For 
example: Are the attractors of infinite-dimen- 
sional systems generally of finite dimension? 
Does the spectrum of Lyapunov exponents 
exist, and if so, is it discrete? Rigorous results 
that address these questions will be reviewed in 
this section. 

The qualitative theory of dynamical systems 
ased by Ruelle and Takens for their picture of 
turbulence applies only to finite-dimensional 
systems. '~ut  they argued that their finite 
dimer, sional results would hold for many 
infinite-dimensional dynamical systems by vir- 
tue of the Center Manifold Theorem. This 
theorem s~.~tes that when a stable fixed point of 
an infinite dimensional dynamica~ system turns 
unstable with a pair of eigenvalues acquiring 
positive real pat~ as a parameter is varicd, there 
exists a finite dimensional invariant attracting 
center manifold [38l. 

There are other mathematical results that give 
credence to the idea that chaotic behavior in 
infinite dimensional dynamical systems might be 
explained by fini~te-dimensional chaotic attrac- 
tors. Ladyzhenskaya [7,8] has generalized 
results of Foias, Prodi, and Temam [5,6] to 
show that time-dep~.r~dent solutions of the 

where A is compact and U is open. Let 

T : U ~ H  

be C t (have a continuous Frechet derivative) 
and be "negatively invariant," that is T(A):3 A. 
Suppose further there is a linear subspace C C 
H with 

IDT(x ) ] c ]< l ,  for a l i x • A  andcod imC<oo .  

Then the topological dimension of A is finite. 

Mallet-Parer uses this theorem to prove that 
the attractors of delay equations such as the 
example we study here are finite dimensional. 
Unfortunately, neither this theorem nor the 
resullts of Foias, Prodi, Temam, and Ladyz- 
henskaya set any bounds on the dimension of 
the attractor. 

The existen~,e of Lyapu~iov exponents in 
finite-dimensional dynamical systems has been 
known since Oseiedec [ii] .  Under certain 
assumptions, Ruelle [10] has recently proved the 
existence of Lyapunov exponents for infinite- 
dimensional dynamical systems. For the cases 
he considers, Ruelle's theorems assure us of a 
discrete spectrum of Lyapunov exponents, and 
moreover of a finite number of positive 
Ly~lpunov exponents~ 
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PART II: CASE STUDY 

7. Phenomenology of an infinite.dimensional 
example 

The equation we will s t u d y  here is a delay 
differential equation of the form 

dx(1) = F(x( t ) ,  x ( t  - ~)).  
dt 

(13) 

In order to be well posed, a problem in this form 
needs as initial data the value of the function 
x(t) over an interval of length ~. Delay equa- 
tions such as eq. (13) describe systems in which 
a stimulus has a delayed response. There are 
many practical examples from control 
theory, economics, population biology, and 
other fields. 

The example used for this investigation is a 
model of blood production due to Mackey and 
Glass [18]: 

Yc = a x ,  bx .  (14) 
c I + x ,  

x, is the variable at a delayed time, i.e. x, = 
x ( t  - T). In this study we keep the parameters a, 
b, and c fixed at a =0.2, b - -0 .1 ,  and c -  10, 
and vary the delay time T. x ( t )  represents tho 
concentration of blood at time t, when it ,s 
produced, and x ( t - ~ )  is the concentration 
when the "request" for more blood is made. In 
patients with leukemia, the time • may become 
excessively large, and the concentration of 
blood will oscillate, or if • is even larger, the 
concentration can vary chaotically, as demon- 

for • < tan-t(-4)/0.4 - 4,53. For 4.53 < ~, < 13.3, 
numerical simulations show that there is a stable 
limit cycle attractor. At • = 13.3, the period of 

itiating a period don- 
[42] that reaches its 

accumulation parameter at ~- = 16.8. For 1- > 16.8 
numerical simulations show chaotic attractors at 
most parameter values, with some limit cycles 
interspersed in between. 

To study the qualitative nature of the attrac- 
tors of this dynamical system, we will employ a 
variety of methods. We begin using two of the 
more common methods, namely to display a 
representative portion of a time series, fig. 1, 
and the power spectrum, shown in fig. 3. In 
addition, we show a few phase plots in fig. 2, 

t ~ • sea  

strated by Mackey and Glass. The qualitative 
behavior of this equation is quite similar to a 
model for the population of whales studied by 
May [40]. See also the two variable discrete ~ - -  " " V"v/x~'~'k/~k / " ~ f  ' ' %  
delay equation studied by Shibata and Saito ]" . . . . .  , - -  " , . . . _ s ,  .,____~._ ,.  , . ,__.~ 

[41]. 
We will now describe some of the changes 

that occur in the qualitative ,nature of the 
attractors as the parameter ~- is varied. A linear 
stability analysis shows that, with a, b, and c as 
given above, there is a s~able fixed point attractor 

Fig. I. Representative samples of time series generated 
using eq. (14), with a ~ 0.2, b --0.1, c = 10. (a) ~'--- 14. (b) 
f =  17. (c) ~ 2 3 .  (d) ~=,300, where 1" is th~ delay 
parameter. A constant function was used a.¢ an initial con- 
dition; before plotting, the equation was iterated long 
enough to let transients die out. The total time span shown 
in each frame is 500 time units. 
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Fig. 2. Phase  plots obtained by plott ing x(t)  vs. x(t - r), after  let t ing transients relax. The  parameter  values are the same as those of 
~) .  ~b), ~c~ and (d) of fig. I. 

made by plotting x ( t )  against x ( t  - T). (Note that 
the choice of x(t - T) as the other phase variable 
is arbitrary; x(t - t') c~3uld equivalently be used, 
x~here t' is an arbitrary time delay.) As we shall 
~ee, these methods are ~dequate to distinguish 
periodic behavior from chaotic behavior• but are 
inadequate to make a sharp distinction between 
the properties of qualitatively different chaotic 
behavior; this distinction requires a Computation 
of the spectrum of Lyapunov exponents. 

l,et us begin by comparing fig. !a, a periodic 
time series, to fig. Ib, a chaotic series near the 
"',,nset". Although the chaotic series seen in fig. 
Ib is approximately periodic, a careful examina- 
tion reveals that i~ is not. This is more apparent in 
~he phase plots: The limit cycle forms a closed 
loop, but the orbit of the chaotic attractor ap- 
pe,~rs to fill out a continuous band. Similarly, the 

power spectrum of the limit cycle, fig. 3a, is 
composed of delta functions (the small amount 
of broadening is due to the finite length of the 
time record). In contrast, although the power 
spectrum of the chaotic attractor, fig. 3b, con- 
tains fairly sharp peaks, it also has broadband 
components. Note: As we will see  i~.ter (fig. 4~), 
this attractor is actually a two band, 
semiperiodic chaotic attractor [43, 44, 45] asso- 
ciated with the period doubling sequence. As 
shown in ref. 46, the power spectra of these 
attractors always contain sha:p peaks, .~ince 
they are approximately phase coherent [47]. 

An examination of the time series and po,ver 
spectra shows that the chaotic attractors at lar- 
ger values of ~- contain motion on more different 
time scales than the "onset" chaos at ¢ = 17. 
The phase plots at larger values of ~" are con- 
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Fig. 3. Power spectra for the examples used in fig. ! and fig. 2. Each spectrum is constructed with It~O averages, each of 4096 samples 
taken at intervals At -- 3.75. These plots are on a semilog scale, and cover 8 orders of magnitude. 

siderably more complicated, and the spectra 
contain less pronounced peaks. At ~-= 300, the 
motion is quite aperiodic, and the spectrum 
s.'lows an exponentially decaying envelope, with 
a curious modulation superimposed on it. (We 
were unable to isolate any numerical artifacts 
that might cause this modulation; insofar as we 
were able to determine, it is a real effect.) 

Several important questions about these 
attractors remain unanswered, for example: 
What is the dimension of these chaotic attrac- 
tors? A more detailed understanding requires an 
examination of Poincar6 sections, or, if this fails 
(as it will if the dimension of the attractor is 
greater than three), a computation of the spec- 
trum of Lyapunov exponents. This is done in 
the following sections. 

Note: The numerical methods used to obtain 

the results presented in this paper are discussed 
in the appendix. 

8. Taking sections to visualize fractals in 
function space 

In this section we demonstrate how phase 
variab!,:s may be arbitrarily chosen (within 
limits), and used to construct a cross section 
picture of an attr~Lctor. We use this method, 
together with computations of the fractal 
dimension and the spectrum of Lyapunov 
exponents (see section 9), to demonstrate that 
the Kaplan-Yorke conjecture (eq. (9)) gives a 
reasonable approximation to the dimension, 
whereas the Mori conjecture (eq. (10)) does not. 

To see the geometrical structure of an attrac- 
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Fig. 4. A cross section of the chaotic attractor for ~" = 17. 
(See figs. la, 2a, and 3a.) These sections are constructed by 
plotting x(.~-1"0 vs. x ( t - , ' 9  whenever x(t)=0.$5, with 
r ~  = 10, and r z  - 20. in thi,~ figure, as well as figs. 5-7, the 
blowups shown in (b) an,J (c) are constructed by plotting 
only those points that lie within the box indicated in figs. (a) 
and (b). The number of points indicated is the total number 
of points generated, rather than the number of points that 
actually appear in the figure. The dimension DF listed in 
each case is the fractal dimension computed directly from 
the definition, as described in the text, This should be 
compared with the dimensions computed from the spectrum 
of Lyapunov exponents, shown in table I. Fig. 4a contains 
1500 points, while (b) and (~) were constructed from 200,000 
points. For this figure, Dv = !.13. 

tor, a picture  can be made of the intersect ion of 

the a t t rac tor  with a t r ansve r se  surface.  In o rder  

to do this, it is necessa ry  to choose  phase  vari-  

ables: For  example,  we chose  xt = x ( t ) ,  x.,= 

x,lt - ¢~), x~ = x ( t  - r:) ,  with "rt = 10, and -r,, = 20. 

S~arting from an (arbitrari ly chosen)  cons t an t  

initial funct ion,  after in tegrat ing long enough  to 

insure that  the t ra jec tory  wa~ close to the 

a t t rac tor ,  we made a plot of x :  vs. c3 w h e n e v e ,  

x~ = 0.85. For the limit cycle shown in fig. 2a, for 

example ,  the picture ob ta ined  consists  of four  
d o t ~  ~ 'or resoondin~ tO t h o  n , ~ i n t c  u,  h o r ~  t K ~  

- - . --. [ . .  ~ . . l ~ . .  .laL,w. E..~.~b,.~ilIL~.3p vv I I ~ w i  Ihl [ | l ~ , .  

curve cut~ through the plane defined by xt--" 
0.85. 

Fig. 4a shows a ,:ross sect ion cons t ruc ted  for  

r = 17, a parameter  value close to the initial 

t ransi t ion to chao~ at ~-= 16.8. This alttraC,~w 

shows the char., . : teristic band s t ructure ,  ~pr 

semiperiodici ty  14 ,43 ,44] ,  that  occurs  on the  

chaotic side of period doubl ing sequences .  Four  

strips, two with t ra jec tor ies  coming  out of the 

plane, and two  with t ra jec tor ies  into the plane,  

can be seen in the figure. Figs. 4b and 4c are 

b lowups  of p ieces  of this c ross  sect ion at suc- 

cessively g rea te r  resolut ion.  This  chaot ic  

a t t rac tor  has  a simple, self s imilar  m;croscopic  

s t ruc ture ,  remin iscen t  of H e n o n ' s  map [22], 

except  that  the s t ruc ture  is s impler .  At each  

scale of reso lu t ion  ,only two shee t s  are discern-  

ible to the  eye.  A careful  pe rusa l  of fig. 4c 

, , ~ s s ~ , , , , -  , . . - ,  - . , -  , , . v  , ~ . . , ~ , ~ ,  IS ~ , , v , - ~  m o r e  

probable than  the bot tom sheet .  Assuming that  

this s t ruc tu re  is also pe rpe tua t ed  on all scales,  

this indicates  tha t  this. a t t r ac to r  is a probabil ist ic 

fractal.  (See sect ion 2 and ref. 26.) However ,  

since the probabi l i t ies  of the two  shee ts  are not  

drast ical ly different ,  the f racta l  and  informat ion 

d imension should be fairly c lose  in value. 
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In order to test the Kaplan-Yorke and Mori 
conjectures, we ideally should compute both the 
fractal dimension and the information dimen- 
sion directly from their definitions, and compare 

dimension is a lower bound on the fractal 
dimension, so that the Kaplan-Yorke conjecture 
can be considered to give a lower bound on the 
fractal dimension. For the two cases where we 
made an accurate computation of the fractai 
dimension, the agreement we find between the 
fractal dimension and the computations of 
Kaplan and Yorke's Lyapunov dimension in- 
dicates that the information dimension and the 
fractal dimension are quite close, so that our 
failure to compute the information dimension is 
not a serious problem. 

To directly compute fractal dimension, we 
divide the region of the cross section containing 
the attractor into a grid of resolution l/e by l/e, 
where l/e varies from 64 to 1024 in powers of two. 
We integrate *.he equation under study to ac- 
cumulate at least 105 points on the cross section. 
At each level of resolution the number n of 
squares of the grid that are filled by points of the 
attractor is counted. The estimated dimension of 
the c.ross section is the slope of log n vs. log l/e. 

Since the attractor is continuous along the flow, 
the fractal dimension of the attractor is the fractal 
dimension of the cross section vlus one. For 

TABLE I 
A compariscn of the fractal dimension computed directly 
from the definition, to the dir~ension calcula*.ed from the 
spectrum of Lyapunov exponents according to conjectures 
by Kaplan and Yorke and Mori. 

Delay 

Dimension Dimension 
from from Dimension 
definition Kaplan-Yorke from Mori 
eq. (I) eq. (9) eq. (10) 

17 
23 
23.8 
30 

2.13±0.03 2.10±0.02 2 
2.76 ± 0.06 2.82 ± 0.03 2 

> 2.8 3.04 :~ 0.03 2 
> 2.94 3.58 ± 0.04 3 

reasons of convenience, however, for this study 
we use4 a two dimensional projection of the 
(infinite dimensional) cross section, as shown in 
figs. 4-7. If the dimension of the attractor exceeds 

We assume that fractal dimension measured in 
this way is independent of the choice of cross 
section. A few numerical experiments that we 
have performed support this, as does the 
agreement between predicted and measured 
values, but we do not know of any results that say 
that this will be true for the general case. 

Table I contains estimates of the dimension 
made at four values of ~. In order to estimate the 
accuracy of these estimates, the dimension was 
computed twice, once with n(1/1024), and again 
without it. The quoted error bars are the 
difference between these two estimates. 

For • = 23.8 and • =" 30, for small values of c it 
was not feasible to generate enough data points to 
get n to converge. Since this problem becomes 
worse as • decreases, this effect systematically 
lowers the estimate of the dimension. Thus, for 
these values of T the results given in table I are 
merely lower bounds. Note that if the Kaplan- 
Yorke conjecture is correct, the dimens:on of the 
attractor exceeds three for these parameter 
values, and the computed result is a lower bound 
in any case. 

For fig. 4a, we found the largest Lyapunov 
exponents in the spectrum of this attractor to be 
[0.007, 0, -0 .071,-0 .15, . . . ] .  (See section 9 for 
the method of computation of the Lyapunov 
exponents.) A direct computation of the fractai 
dimension of the attractor gives DF = 2.13. This 
agrees to experimental accuracy with the 
Lyapun~,v dimension computed from the 
Kaplan-Yorke conjecture (see table I). This 
does not agree with the integer value 2 predicted 
by Mori's conjecture. 

A single cross section does not do justice to 
the complexity of the global structure of this 
attractor. By making many parallel cross sec- 
tions covering the attractor, the entire attractor 
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Fig. 5. See the caption to fig. 4, and table 1. The delay  
parameter  r = 23, and DF= 1.76. Fig. 5a contains  10,000 
points: qb) and (c) were cons t ruc ted  from a total of 760,000 
,:rossings of the section. 

c:m be reconstructed. When this was done for 
r ~= 17. forty different cross sections were 
needed to make it pos'sible to smoothly inter- 
polate between the sections. The section shown 
in fig. 4 is one o, the simpler cases. For many 
cross sections, the sheetlike structures overlap, 
indicating that this attractor cannot be embed- 

ded in three dimensions, at least with this choice 
of coo;ainates. Several different values of Tt 
and T2 were tried, but none of these proved 
adequate for a three dimensional embedding. 
One interpretation is that, although this attractor 
has a fractal dimension of approximately 2,13, 
the embedding dimension M -> 4, 

As the delay parameter is increased, for most 
parameter values the dimension increases, and 
the attractor generally becomes more com- 
plicated. A cross section of the attractor at 
r = 23.0, where the dimension is the order of 
2.8, is shown in fig. 5. A glance suggests sheet- 
like sttxacture, but a closer examination reveals 
stray points. This is particularly apparent in fig. 
5c. We suggest the following interpretation: All 
these points lie on sheets, but some sheets are 
much more probable than others. This theory is 
borne out by making several plots of the same 
section, with differing numbers of points on 
them (not shown here). As the number of points 
is increased, point~ that do not appear to lie on 
sheet,.~ gain neighbors that suggest sheets. 
Nevertheless, new points appe~.r elsewhere that 
do not appear to lie on sheets, indicating sheets 
that are even less probable. (As argued in ref. 
26, this inequity of probability is to be expected 
for a chaotic attractor.) At the level of resolu- 
tion obtainable tor these numerical experiments, 
it is not possible to see self-similar scaling for 
this attractor; blow-ups of different pieces give 
pictures that are quite different in appearance. 

When T is raised to 23.8, the Lyapunov 
dimension (eq. (10)) of the attractor exceeds 
three, and a section of the attractor should fill in 
(fig. 6). There are indications that this will even- 
tually happen as the number of points is in- 
creased, but because of the unequal distribution 
of probabilities the number of points required to 
see this take place at the resolution of the 
plotter is prohibitively large. 

The attractor at ~-= 23.8 only has two non- 
negative exponents, so there are only two 
directions in which the phase space is not con- 
tracting. However, according to the Kapl~n and 
Yorke conjecture, its dimension exceeds three. 
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Fig. 6. See the caption to fig. 4, and table !. The delay 
parameter ~" = 23.8, and Dr > 1.8. (See caption of table I.) 
Fig. 6a contains 10,000 points: (b)and (c) were constructed 
using 200,000 crossings of the section. 

Notice that in fig. 6 pronounced sheetlike struc- 
tures are present. It appears as though most of 
the points lie on sheets, but a few of them 
"diffuse" outward to fill the section. (Compare 
to fig. 5.) Thus, the cross sections indicate that 
the Kaplan-Yorke conjecture correctly predicts 

the dimension, but the presence of  only two 
nonnegafive exponents preserves qualitative 
aspects o f  the sheetlike character of the 
attractor. 

is in fig, 6, 
From the results of table I, and the qualitative 

features seen in these cross sections, it is clear 
that the conjecture of Mori (eq. (10)) is not 
correct for these high dimensional attractors. 
The conjecture of Kaplan and Yorke (eq. (9)) 
agrees with our numerical experiments to within 
the ability of the experiments to test it. It would, 
however, be worthwhile to perform these com- 
putations with more data at higher resolution. 

For attractors of dimension greater than 
three, cross sections tend to all look like scatter 
plots, .,nd the value of a cross section in visu- 
alizing the structure of an attractor and com- 
puting the dimension diminishes. It is for these 
higher dimensional attractors that the Kaplan- 
Yorke conjecture, together with a computation 
of the spectrum of Lyapunov exponents, 
becomes indispensable to determine the dimen- 
sion of an attractor. 

9. Computing Lyapunov exponents for delay 
equations 

As mentioned in section 7, the state of a 
differential-delay equation (13) is determined by 
the function x on the interval [ t , t - ~ ] .  This 
function can be approximated by N samples 
taken at intervals A t  f f i ~ / ( N - - l ) .  These N 
samples can equivalently be thought of as the N 
variables of an N-dimensional discrete map- 
ping, 

( x l ,  . . . , x N - ,  X N )  = ( X ( t  -- ~ N  - l )A t ) , . . . ,  x(t 

- At), X(t)). (15) 
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Choosing any integration scheme, for example, 
Euler integration, 

x(t + At)= x( t )+  F(x, x,,)At, (16) 

where x, = x ( t - , ) ,  eq. (15) is reduced to an 
N-dimensional iterated map, x(k  + I )=  G(x(k)). 
(k labels the iteration.) Each iteration of the 
map G corresFonds to N timesteps At of the 
continuous equ~.,ieas, i.e. each iteration of G 
moves the system forward by. time : + At. Using 
Euler irttegration, the map G is defin,-d as fol- 
lows: 
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xt(k + 1)--- xN(k)+ F(xN(k) ,xdk))At ,  

x2(k  4- I ) -  x t ( k  + I ) +  F ( x t ( t ¢  + l),xz(k))At, (17) 

xs(k + 1 ) -  xs-t(k + I)+ F(xs-,(k + I), xs(k))At. 

To compute the Lyapunov exponents it is 
necessary to follow the evolution of small 
volumes. One method by which this can be done 
is to compute a reference trajectory, and simul- 
taneously compute trajectories that are 
separated from the reference trajectory by a 
small amount. Alternatively, a set of infinitesi- 
mal separation vectors 8x which define an 
infinitesimal volume element evolves according 
to 

~ ~G (x(k)) 8x~(k). (18) ¢,x(k + I)= ~. ~x~(k) 

To avoid the numerical problems associated 
with computing adjacent trajectories, eq. (18) 
can be used to compute the evolution of 
infinitesimal separations directly. When eq. (18) 
is applied to eq. (15), and recast as a continuous 
equation, it becomes 

dSx OF(x,x,) OF(x,x,) Bx,. (t9) 
d--~ = Ox 8x + 8x, 
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This equation can be solved using any con- 
venient integration scheme. We use a Runge- 
Kutta algorithm. 

The small separations 8x represent a 
difference between two functions, or, 
equivalently, a small separation between two 
infinite-dimensional vectors. For convenience 
we will refer to them as separation functions. 

Note on notation: 8xl(k) denotes the jth 
coordinate of the ith separation function on the 
kth iteration, of the simulated system. For an 
N-dimensional simulation, there are N separa- 
tion functions, corresponding to N Lyapunov 
exponents, and 1 < i, } < N. The tilde .~.d(k) 
denotes the collection of all N coordinates of a 
discretized separation function, i.e. the N-  
dimensional vector approximating a continuous 
separation function. A continuous separation 
function (in the limit N -., oo) will be written 8x ~. 

Our numerical procedure to compute 
L yapunov exponents, which is an adaptation of 
techniques used in finite dimensions i l2, 13], 
proceeds as follows: For each exponent X~ to be 
computed, arbitrarily select an initial separation 
function 8~x~(0). Integrate for a time ~, and 
renormalize ~ t ( I )  to have length one. Using a 
Gram-Schmidt procedure, orthonormalize the 
second function relative to the first, the third 
relative to the second, and so on. Repeat this 
procedure for L iterations, and compute 

II '(k -  )11 
(20) 

For L large enough, we find numerically that the 
values of ~,i converge. Note that we are arbi- 
trarily choosing the Euclidean metric to define 
distance in the phase space 

If the attractor is a stable fixed point, then X~ are 
the real parts of the eigenvalues of the linear 
part of F, and the separation functions are a real 

set of eigenfunctions. If the attractor is chaotic, 
howe'Ter, each separation function varies cha- 
otically with time, and the separation functions 
are no longer the eigenfunctions of the 

rne  separauon functions may be used to 
estimate the initial rate of relaxation of an arbi- 
trarily chosen initial condition onto  the attrac- 
tor. If an initial function x0 is expanded in terms 
of a set of separation functions, 

Xo = ~ kigx i, (22) 
! 

then kiwi gives a very rough estimate of the 
initial rate of relaxation of each component onto 
the attractor (for negative Xi). 

A few examples of separation functions are 
shown in fig. 8. Notice that separation functions 
of higher index i vary more rapidly than those 
of lower index. The results of several tests 
indicate that the ith function always has the 
or0er of i inflections. 

10. Experimental results: exponents, dimension, 
and entropy 

Figs. 9 and 10 summarize the results of our 
numerical computations of the spectrum of 
Lyapunov exponents. Fig. ~ shows the spectrum 
of the largest Lyapunov exponents, i.e. ~,i as a 
function of i, at each of three fixed parameter 
values. Fig. 10 shows each of the four largest 
exponents as the parameter ~- is varied from 14 
to 40. 

We will use the Kaplan-Yorke conjecture, eq. 
(9), to construct the following plots of the 
Lyapunov dimension (which we assume cor- 
responds to the information dimension) as a 
function of the parameter T. The dimension as a 
function of ~" is plotted in fig. I 1, for ~- between 
15 and 40. For T < 16.8, the attractor is a limit 
cycle, and the dimension is one. At ~'= 16.8 the 
period doubling sequence accumulates, and the 
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Fi~-. o. The spectrum of l .yapunov exponents ,~, is plotted against i for eq. (14), at three values of the delay parameter r. N is the 
number of gri4 points used for the discrete approximation i.e., the dimension of the simulation. (a) r = I, N = 80. The attractor is a 
fixed point: in this case the spectrum of Lyal~unov exponents shown here agree with the computed eigenvalues of the linearized 
problem. (b) r = 16.1~, N = 336. This attractor is very near the accumulation parameter of a period doubling sequence. (c) ~- -" 300, 
N = ~ ) 0 ,  (See figs. td, 2d, and 3d.) Due to computational constraints, only the first 35 exponents are shown. (d) -A~ vs. log(i) for 
case (bL illustrating the asymptotic behavior of the exponents.  (See eq. (22).) 

dimension abruptly jumps to two, corresponding 
to the onset of chaotic behavior. As ¢ increases 
further, the dimension rises upward from two, 
and most parameter values show chaotic 
behavior,, but at some there are stable limit 
cycles. ,causing the sharp downward jumps in 
Dl(r) seen in fig. i l. This is similar to behavior 
seen in several finite dimensional examples. 
Note also that the shape of the graph of the 
largest Lyapunov exponent as a parameter is 
varied, fig. 10a, is qualitatively similar to that 

seen for the Rossler dynamical system [44], the 
logistic equation [48], and the Lorenz equations 
[13]~ 

A quantitative comparison reinforces the 
~ ; m i l ~ r i h l  in  t h ; e  .~ ............ : ..... parameter range t,, low dimen- 
sional examples: The computations of the 
Lyapunov exr, onents quoted in the text were 
made using natural logarithms, and dividing by 
time units in terms of the variable t of eq. (14). 
As argued by Shaw [14], however, more phy- 
sically relevant units are bits per characteristic 
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timescale. U'~i,~g the fundamental period from 
the power spectrum of fig. 3a, calling this the 
ch:~racteristic timescale, and using logarithms in 
ba,;e two, the maximum value of the largest 
Lyapu~ov exponent trig. 10a) is approximately 
one bit per characteristic timescale. This same 
beh~vic~r at the maximum is observed for the 
logistic equation [48l, the Rossler equations [44], 
and the Lorenz equations [13]. This suggests 
:hat the chaotic attractor at r =24,  roughly 
where ~, = !, makes roughly a two ont,; one fold 
every characteristic timescale. (Se~ Shaw [14].) 

For ~ > 2,1 however, the dimension . xceeds 
three for many parameter values, and the quali- 
tative behavior is unlike that seen in the lower 
dimensit,nal examples mentioned above. Note 
that the dimension exceeds three while there are 
onh' two nonnegative exponents. Tbe dimension 
continue~ to increase (note that the number of 
nonnegative exponents eventually jumps to 
three), until the dimension approaches four. 

Fig. 12 shows a plot of the dimension as a 
function of r. using coarser increments, and 
followi..~g r from 50 to 400. Notice that the 
dimension increases at ~ fairly steady, nearly 
linear rate: at r = 350. the dimension ~ the order 
of 20. This might be interpreted as a steady 
tr:~n,,i~i,~n to more "'de,'eloped'" chaos, as is bt~rne 
ou!  by the qualitatively more chaotic ap- 
pearan,ce of the time series in fig. 2b as com- 
pared with fig. 2d. 

These results are in agreement with the pre- 
dictions of Ruelle and Takens 121, in that n,o 
quasiperiodic tori of dimen.,don greater than two 
are observe,~, in contrast to the behavior sug- 
gested bv Land=- f~' T h  transition to "tur- . t - | "  

bulence'" begins with the appearance of a cha- 
otic ::ttractor, followed by a sequence of chaotic 
attr~,.ctors of incre~ingly higher dimension. 

()he might ask: Just how steady is the tran- 
sition, to chaos? The results shown here suggest 
the f,:qlo,,ving conclusion: As the delay 
parameter is varied, a sampling of parameter 
values shows the dimension changing sharply by 
as much a, riw:) or three. For low values of the 

delay rarameter ,  where the dimension is the 
order of two, these sharp changes cause sharp 
changes in the qualitative properties of the 
attractor; for example, a chaot.lc attractor may 
become a limit cycle. For large values (e.g. 20) 
of the delay parameter, in contrast, the dimen- 
sion is the order of twenty. The dimension is 
still observed to change by values of two or 
three, but the relative change in dimension, and 
also in qualitative behavior, is much smaller. As 
one might expect, the qualitative nature of high 
dimensional chaos appears more stable to 
changes of the parameters than the low dimen- 
sional chaos. 

It is perhaps surprising that a plot of the sum 
of nonnegative exponents, fig. 13a, reveals that, 
although the dimension of the more delayed 
chaotic attractors is considerably larger, the 
metric entropy is approximately the same. To 
achieve this, all of the exponents,  both positive 
and negative, get smaller in absolute value as 
the delay is increased (see fig. 8). In order for 
the metric entropy to remain constant while the 
dimension inc,eases linearly, the positive 
exponents must decline as l/r. A plot of the 
largest expone,~t from r = 5 0  to ~,=400 is 
shown in fig. 13b. Although the highly delayed 
attractors have a large dimensio~ the local rates 
of expansion in each direction are quite small. 

We can sugeest a heuristic reason to connect 
the linear increase of the dimension as the delay 
par~'meter is variied to the constancy of the 
metric entropy. From the definition of embed- 
ding dimension, for a delay equation with an 
attractor of embedding dimension M, in prin- 
ciple the solution on the attractor on an interval 
of length ~- is determined by only M of its 
values. If the embedding dimension increases 
linearly, so does the number of necessary sam- 
ples per interval of length I-. Assuming that the 
observed linear growth of the information 
dimensiion implies linear growth of the embed- 
ding dimension, this implies that the number of 
samples needed per unit time interval is a con- 
stant. New samples are only required as a loss c,f 
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varied. We suspect that there is a ger~eral 
theorem for delay differential equations of this 
type that, the limit of large de lay  time, links 
the s~p l ing  rate neede~ to determine the state 
on t h e  attractor to the delay t i m e  ~ and the 
metric entropy. Computational limitations have 
prevented our exploration of this question. We 
hope to investigate the effect of varying other 
parameters in a future study. 
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Fig. 13. (a) The metric (Kolomogorov-Sinai) entropy h.  as a 
function of 1", from 1" = 50 to 400. Although the dimension 
increases signifl¢*~.ntly (see fig. 12), the metric entropy 
remains roughly constant. (There are fluctuations, but there 
is no systematic increase.) (b) The largest exponent At as a 
function of ~. In order to be consistent with the constancy of 
the metric entropy, and the smooth behavior of the spec- 
trum of Ly~punov exponent observed in fig. 9, the positive 
exponents must decrease as I/v for large ~. 

information about the state of tae system causes 
them to become necessary; this rate of loss of 
information is exactly the metric entropy. Thus, 
if the metric entropy is constant, one would 
expect tha* the number of samples needed per 
unit time would also be a constant. Thus, if the 
metric entropy is constant, according to this 
t, rgument, the dimension should increase 
linearly with the delay time. 

We doubt that the constancy of the metric 
entropy as a parameter is varied is a general 
property. The transition to chaos quite likely 

11. Asymptotic behavior of the spectrum of 
Lyapunov exponents 

The Mackey--Giass equation is of the form 

Yc = g(x,)- bx, (23) 

where b is a positive constant, by  considering 
the divergence of an N ~imensional proper 
simulation of this equation, and making use of 
the fact that a certain quantity approaches a 
constant as N goes to infinity, the asymptotic 
behavior of the Lyapunov exponents ,~ as i - ,  
can be derived. 

The average divergence of a discrete mapping 
is the average value of the logarithm of the 
3acobian determinant. Let GN be a N element: 
approximation of eq. (19) in the form of eq. (15), 
such as the example given by eq. (17). The 
average divergence can then be compute " to be 

(div GN)= l ~  log lg'(x~)At[ I, (24) 

wI'ere At = ~'I(N-1). The average divergence 
of GN is also equal to the sum of the Lyapunov 
exponents 

N 
(div Gs)=  ~ ~,i. (25) 

(This may be used to check the computations of 
the Lyapunov exponents ~.) 
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Lett ing 

! N ' )1}. ps= ( ioglg( x, (26) 

eq. (2+) can be rewrit ten 

(div {?/s) = NpN + N log r -  N log(N - I). (27) 

If the solution x(t) is continuous,  and At is 

made very small as N becomes  large, then 
x,.,-~ x+. Assuming that Ioglg'(x(t))l is integrable,  
p,, will approach a constant  value p as N - +  no: 

tion, and compare these numbers to the spec- 
trum of Lyapunov exponents of the attractor. 
Since this latter procedure is so much e~sier to 
perform than a computation of the spectrum of 
Lyapunov exponents,  a comlxaxison is worth- 
while to determine what qualitative information, 
if an~ +, can be gained about the global stability 
of a dynamical system from a linearized cal- 
culation. 

Assuming a solution of the form &gll)= Ae ~t, 
from eq. (19), A is given by 

A -- g ' ( X p ) e  - 2 " -  b, (30) 

t+T 

I f loglg'(xls))l ds, p = lira 
Ir _..= 

! 

(28) 

where ( . . . )  i~ evaluated as a time average.  
Using eqs. {25) and (27), and approximating pN 

as p, k+ can be approximated for large values of 
i as 

where xp is the attracting fixed point. For the 

parameters  a = 0.2, b --0.1,  and c - 10, the 
attractor is xp = I. If eq. (30) is separated into its 

real ann imaginary parts, ~, = r + iw~ with a little 
rearrangement  it becomes 

W 
r =  - b  

tan w~-' 

,L = (div G,.~) - (div G,) ~ p + log 'r - log i. (29) 
w(r) = [g'(xp) 2 e - ' " -  (r + b)Zlm. (31) 

Since p and log t are constants ,  we are left with 
a logarithmic dependence of X+ on i, which is 
confirmed by fig. 9d. The slight deviation from 
logarithmic behavior for i the order of N is due 
to the fact that the high order separation func- 
tions are not resolved accurately because of 
their many inflections (see fig. 8). 

12. Comparison with a linearized analysis 

The. spectrum ,,f I ,,.~,,,,,,,,, • -..,,,v,..',,-,, exDonents "¢ ""  - , . v  v t  U I  ,Oi. i i 

attractor that is a stable fixed point is simply 
the real part of the eigenvalues of the linearized 
problem. For a chaotic attractor,  there is no 
such simple correspondence.  Nevertheless,  one 

can pick an unstable fixed point sitting on or 
near the chao;ic attractor,  compute the real 
parts of the eigenvalues of the linearized equa- 

This equat ion has an infinite number  of discrete 
solutions. Marginal stability occurs  when the 
largest solution is r = 0~ i.e. 

tan-I( - w(O)lb) 
r = w(0) (32) 

which can be solved graphically (oee fig. 14a.) 

When ~->4.53, eq. (31) no longer correctly 
describes the stability of the attractor.  It does, 
however ,  reproduce some of the correct quali- 

tative features .  The number  of positive solu- 
tions °",v t.,~at~, J ;~.~ .,..,,.,,, ,i,,,,e ~ , , , . . .  . . . . . .  as. the " ' "~ ' " ' , . , . , .v , . .  ,,, "¢ 

positive exponents ,  but nevertheless  the in- 
crease in the number  of posit ive exponents  is 

correctly predicted,  as is their  decrease in mag- 
nitude as T is increased (see fig. 14b). Thus,  a 

linear analysis  is useful to give a very rough 

idea about  the qualitative behavior as 
parameters  are varied. 
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Fig. 14. The eigenvalues of eq. (14), linearized about the 
point xp = I, are given by the intersection of the curves with 
the diagonal line (See eq. (31).) (a) • - I and the attractor is 
a stable fixed point. In this case the set of linearized eigen- 
values and the spectrum of Lyapunov exponents are the 
same (b) • = 20. The attractor is no longer a fixed point, but 
eq. (31) is solved as though it were to get an idea of the 
behavior of the exponents. There is some qualitative cor- 
respondence, but the quantitative behavior is quite different. 
(Compare with fig. 9.) Note the change of scale between (a~ 
and (b). 

13. Conclusions 

We have approximated an infinite dimensional 
delay equation by a finite-dimensional mapping 
to enable computation of the spectrum of 
Lyapunov exponents. The low dimensional 
chaotic attractors of the delay equation studied 

here are qualitatively similar to those found in 
systems of ordinary differential equations. At 
large values of the delay parameter, however, 

The t~ansition to "turbulent" behavior begins 
with the appearance of a chaotic attractor (via a 
period doubting sequence), followed by chaotic 
attractors of increasingly higher dimension. 
Since no quasi-periodic tori are seen our results 
support the predictions of RueUe and Takens. In 
addition, the transition to high dimensional 
chaos is fairly smooth, and proceeds with a 
nearly linear increase in the number of positive 
Lyapunov exponents as the delay parameter is 
increased. With a few assumptions, this last 
statement may be rephrased as follows: When 
transients have died away, the solution over any 
time interval may in principle be determined by 
a finite number of samples on that interval. 
After the dimension becomes large enough, tl -. 
number of samples required per fixed time in- 
terval for the specification of the systems state 
is roughly a constant as the delay time • is 
varied. Once the dimension is sutficiently large, 
the dimension increases smoothly at a linear 
rate as the delay parameter is varied. It is in- 
triguing that the metric entropy remain~ roughly 
constant. 

The conjecture of Kaplan and Yorke appears 
to be correct, at least within our ability to test it 
here. Their formula provides a good estimate of 
the dimension in terms of the Lyapunov 
exponents. Linear stability analysis about a 
point in function space gives qualitative, but not 
quantitative agreement with the computed 
spectrum of Lyapunov cxponeets. By making 
use of a quantity that is asymptotically invariant 
for discrete approximations to delay equations 
of the same type as the Mackey-Glass equation, 
the asymptotic behavior of the spectrum of 
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l..yapunov exponents is correctly predicted to 

be logarithmic. 
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Appendix A 

C~)mput.tionai technique 

These computations were done on computers  
at LiC Santa Cruz (Basic, PDP 11/70), the 
National Center for Atmospheric Research 
(Fortran, Cray I), and the U. of Southern Cali- 
fornia (Fortran, PDP 11/55). Most of them were 
done in double precision. Although it is im- 
p',',~;b!e t'o ¢,u ..... the ,~,;'--, . . . . .  t,.,.,,:,, 

~t t rac tor  for  very long w i t h  any accuracy ,  it is 
r,,,,,ible to compute accurate statistical 
average,~. (See ref. 49.) The most significant 
errors in computing the Lyapunov exponents  
occur because {1) L in eq. (20) is too small, or 
~2} the timesteps A~ of the simulation are too 

coarse. For the majority of  the computations,  
A t=0 .05 .  For  a few test cases, &! w a s  
decreased to 0.025 and 0.01, and the results 
were within a few percent of those made with 
At = 0.05. The calculations were run until :the 
fluctuations in the result were under one 
percent, typically 106 timesteps. All integrations 

were done with a Runge-Kutta  algorithm. The 
power spectra shown in fig. 3 were computed 
using an F F T  algorithm and a cosine bell data 
window. 
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