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A PHASE SPACE ANALYSIS OF BAROCLINIC FLOW 
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The qualitative dynamics of a baroclinic flow experiment are studied by constructing phase space coordinates from a 
single time series. As the stress on the flow is increased we observe steady, periodic, quasiperiodic, and chaotic flow. The 
chaotic attractor we observe near the transition has the appearance of a thickened torus. 

In this paper we investigate waves produced by 
baroclinic instability [1,2]. The apparatus consists of  
a rotating cylindrical container filled with two immis- 
cible fluids of  different density. A rigid contact lid 
corotates at an angular speed co slightly greater than 
the basic cylinder speed ~2. For low values of  co the 
interface is static, but above a critical value waves ap- 
pear on the interface, and we successively observe 
periodic, quasiperiodic, and chaotic flow. This bifur- 
cation sequence is similar to that previously observed 
for Taylor-Couet te  flow [3]. 

The physical quantity we measure is the height of  
the interface between the two fluids. This is done us- 
ing a thin vertical wire spanning the interface. Since 
the two fluids have different conductivities, motions 
of  the interface cause changes in the impedance of  
the wire. These measurements produce a single time 
series x (t), which represents only one of  the (in prin- 
ciple) infinite degrees of  freedom available for the 
fluid's motion. Thus, in the phase space of  this flow 
we are observing motion along only one dimension. 
As has been shown in refs. [ 4 -6 ] ,  however, qualitative 
behavior in other dimensions can be recovered from 
x ( t )  by any of  several methods. The first method we 
employ here constructs three phase space coordinates 
(x 1, x 2, x 3) using time delays. We take x 1 (t) = x (t), 
x 2 (t) = x (t - 7" 1 ) and x 3 (t) = x (t - r 2). Although 

22 

the representation o f  the system's attractors obtained 
in this manner is not  unique, we find that other choices 
of  coordinates give qualitatively similar pictures. 

The relevant physical parameters for all experi- 
ments reported here are the quiescent depth of  each 
layer H = 7.0 cm, the cylinder diameter L = 11.5 cm, 
its angular velocity ~2 = 3.38 rad/s, and the average 
kinematic viscosity of  the two fluids, u = 0.014 cm 2/s. 
In each experiment we vary the normalized differential 
spin rate (Rossby number) R 0 = ~/2~2 while holding 
the Froude number F = 4~Z2L2p/(gHAp) constant. A 
summary of  our measurements is given in fig. 1. The 
cases we analyze in detail in figs. 2 and 3 both have 
Ap/p = 0 . 0 5 2 .  

In fig. 2 R 0 = 0.169. The time series x( t )  is given 
in fig. 2a, and fig. 2b is the power spectrum of  x (t). 
A plot o f x  1 versusx 2 (fig. 2c) suggests that the under- 
lying attractor of  this flow is a two dimensional torus, 
i.e., quasiperiodic flow containing two irrationally re- 
lated frequencies. This is more clearly demonstrated 
in the Poincard section of  fig. ld, made by plotting x 2 
versus x 3 whenever x 1 = 0 (the average value). The re- 
suiting cross section or "slice" is the intersection of  
the attractor and a plane, and forms two closed curves, 
one for trajectories coming out o f  the plane and the 
other for trajectories going into the plane. Each of  
these closed curves is topologically equivalent to a 
circle. 
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Fig. 1. Summary of experiments. The experiments at parameter values marked in black are presented in detail in figs. 2 and 3. F 
= 4S22L2p/(gHAp) is the Froude number, and Re = to/212 is the Rossby number. 
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The dynamics  on the torus can be summarized by  

the cons t ruc t ion  o f  a one dimensional  map  o f  the  

circle on to  itself. To do this, as each successive 

point  appears on the left  hand Poincar6 section it 

is assigned an angle O n relative to the in ter ior  refer- 

ence poin t  shown in fig. 2d. A plot  o f  On+ 1 versus 

O n,  shown in fig. 2e, illustrates h o w  the circle maps  

on to  itself. Notice that  a l though this map is one to 

one, as it must  be for a torus,  on the right hand side 

it  is developing an inf lect ion point ,  as it must  to 

make  a t ransi t ion to chaos. 

In order  to demons t ra te  the independence  o f  the 

quali tat ive behavior  on the choice  o f  phase coordi-  

nates, in figs. 2 f  and 2g a Poincar~ sect ion and re turn 

Fig. 2. Quasiperiodic flow, R0 = 0.169. (a) A 200 s sample of 
the time series x ( t ) .  Note that x ( t )  was low pass filtered at 3 

Hz. (b) A power spectrum ofx( t ) .  To construct the spectrum 
x (t) was sampled at an interval At = 0.8 S and divided into 
ten 4096 point records. After smoothing with a cosine bell, 
the FFT of each record is squared and averaged together. (c) 
A reconstructed phase plot, x (t) versus x (t - r), with ¢ = 7 . 8  

s. (d) A Poincar6 section, constructed by plotting x (t - ¢1 ) 
versus x ( t  - r 2 )  w h e n e v e r  x ( t )  = 0 .  r I = 7 . 8 ,  and r2 = 1 5 . 6 .  

(e) Return map for left section of  (d). The cross is the refer- 
e n ~  point used to calculate O n.  (f) Plotting successive periods 
between upward zero crossings ofx( t )  gives an alternative 
representation of the Poinca~6 section; (g) A return map con- 
structed from (f). 
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Fig. 3. Chaotic flow. Same as fig. 2, except that  R o = 0.224, 
r = rl  = 3.3, r2 = 6.6, and At = 0.22. 

the at tractor is less than three. As R 0 increases, the 
amplitude of  the chaotic mot ion increases, until at 
R 0 = 0.30 the amplitude of chaotic mot ion becomes 
comparable to that of  quasiperiodic motion,  and the 
torus is destroyed;  the Poincar6 sections for this case 
have the appearance of  scatter plots. 

Other than the qualitative statements above, we 
are unable at this stage to say very much about the 
nature of  this chaotic attractor.  Our results indicate, 
though, that the transition to chaos proceeds through 
the development of an inflection point  in a mapping 
of  the circle. Because of the potent ial  universal prop- 
erties of  this transition [7], there is currently a great 
deal of  interest in transitions of  this type. Some 
similarities in phenomenology are apparent in a map- 
ping due to Curry and Yorke [8], in numerical 

studies of  a seven mode truncation of  the Nav ie r -  
Stokes equations by  Franceschini [9], and in numer- 
ical studies of  the dissipative nonlinear Schr6dinger 
equation by  Huerre, Moon, and Redekopp [10]. We 
plan to explore the possible connections by making 
a detailed study of  the transition region. 

The use of  phase space coordinates gives a clear 
picture of  a torus underlying a quasiperiodic flow, 
and illustrates some qualitative features of  the transi- 
t ion that  would not  be clear otherwise. Beyond the 
inception of  chaotic mot ion at a critical value of  the 
control  parameter,  the amplitude of  chaotic motion 
increases relative to that  of  quasiperiodic motion,  
until  the underlying torus is destroyed. 

map are made by an alternate method.  Fig. 2f  is a 

plot  of  Tn+ 1 versus Tn, where T n is the time between 
successive upward zero crossings o f x ( t ) .  Note the 
similarity to fig. 2d. In fig. 2g a return map is con- 
structed from fig. 2f  by again plott ing successive 
angles relative to the plot ted central reference point.  
The development of  the inflection point  is even more 
pronounced in this representation. 

Fig. 3 shows the corresponding set of  pictures 
w h e n R  0 = 0.224. The power spectrum (fig. 3b) 
contains broadband components,  implying that the 
flow is now chaotic. The Poincar~ sections indicate 
that the torus is now " th ick"  or "fuzzy".  Apparent ly  
the chaotic mot ion is largely transverse to the persis- 
tent quasiperiodic motion.  At this level of  resolution 
we see no indications of  fractal structure, and we are 
unable to determine whether or not  the dimension of  
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