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We construct a simplified model for the chemistry of molecules such as polypeptides or single stranded nucleic acids, 
whose reactions can be restricted to catalyzed cleavage and condensation. We use this model to study the spontaneous 
emergence of autocatalytic sets from an initial set of simple building blocks, for example short strands of ammo acids or 
nucleotides. When the initial set exceeds a critical diversity, autocatalytic reactions generate large molecular species in 
abundance. Our results suggest that the critical diversity is not very large. Autocatalytic sets formed in this way can be 
regarded as primitive connected metabolisms, in which particular species are selected if their chemical properties are 
advantageous for the metabolism. Such autocatalytic sets may have played a crucial role in the origin of life, providing a 
bridge from simple molecular species to complex proteins and nucleic acids. Many of our results are experimentally testable. 

1. Introduction 

The origin of life poses fundamental problems 
concerning the prebiotic origins of molecular 
species. Present life forms contain a rich set of 
chemical constituents which regenerate themselves 
through processes of replication, transcription, and 
translation, relying heavily on the collaboration of 
proteins and nucleic acids. Although contem- 
porary life may have evolved from earlier, simpler 
forms, there seems to be a minimum level of 
complexity below which life based on templating 
is not possible. How, then, were the conditions 
needed to achieve life based on templating ever 
ieachtSd? 

The experiments of Miller and Urey [l] and 
others indicate that it is possible to form amino 
acids and other small metabolites from simpler 
constituents in a fairly direct way, but it is a long 

way from there to the complex proteins and nucleic 
acids needed for contemporary life. The possibil- 
ity that we study here is that the origin of life 
came about through the evolution of autocatalytic 
sets of polypeptides and/or single stranded RNA. 
By autocatalytic set we mean that each member is 
the product of at Yeast one reaction catalyzed by at 
least one other member. Our central thesis here is 
that templating is not required to achieve an auto- 
catalytic set. Instead, simple polymers can cata- 
lyze the formation of each other, generating 
autocatalytic sets that evolve in time to create 
complex chemical species whose properties are 
tuned for effective collaboration with each other. 
The system thus bootstraps itself from a simple 
initial state to a sophisticated autocatalytic set, 
which might be regarded as a precursor life form. 
The sets provide the rich substrate of raw materi- 
als and coupled catalytic relationships needed for 
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the origin of contemporary life. The importance of 
autocatalytic properties has also been discussed by 
Calvin [2], Eigen [3], Eigen and Schuster [4, 5], 
Kauffman [6, 7], Rossler [8, 9, 10], and Dyson [11, 

121. 
The molecular species comprising our autocata- 

lyric sets may be any polymers that can undergo 
catalyzed cleavage and condensation reactions. 
Given a sufficiently diverse supply of simple 
monomers and small polymers as raw materials, 
catalyzed reactions between them can form more 
complex molecular species. The new species in 
turn serve as substrates and catalysts for further 
reactions, increasing the complexity of the system 
until an autocatalytic set is created. Catalyzed 
pathways from the "food set" maintain the mem- 
bers of the autocatalytic set. The result is a 
metabolism converting simple molecules into com- 
plex ones. Different catalytic pathways within the 
network compete with each other, enhancing the 
concentration of some species at the expense of 
others. The set thus evolves in time, creating a rich 
but focused collection of molecular species whose 
cooperative chemical properties make them more 
fit than others. Such autocatalytic sets might serve 
as a bridge from simple building blocks such as 
amino acids and nucleotides to contemporary life 
based on a genetic code. 

Experiments have shown that ligation (end con- 
densation) and cleavage reactions among poly- 
peptides may be catalyzed by other polypeptides 
[13, 14, 15]. More complicated reactions may also 
be catalyzed, e.g. transpeptidation reactions, where 
pieces of two polypeptides switch places. These 
more complicated reactions may, however, be re- 
garded as compositions of ligation and cleavage. 
Thus, there is good experimental evidence indicat- 
ing that the type of catalyzed reactions we study 
here occur for polypeptides. 

In addition, recent experiments have shown that 
certain single stranded RNA sequences can be 
reproduced autocatalytically. It has been conjec- 
tured that this mechanism might be extended to 
include arbitrary sequences [16]. If this were true, 

then single strands of RNA would be capable of 
catalyzing each other in precisely the fashion that 
we model here. Our model is general, describing 
any family of polymers undergoing catalyzed 
cleavage and condensation reactions. 

What we do here can be viewed as a preliminary 
attempt to simulate and understand the qualitative 
behavior of a model chemistry. Simple con- 
stituents forming a food set are pumped into a 
stirred tank which is allowed to overflow. Our 
results demonstrate that what happens is critically 
dependent on the properties of the food set. Below 
a critical complexity very little happens. Above 
this critical complexity, however, a chain reaction 
is triggered that generates a rich autocatalytic set. 

The model chemistry we construct here also 
presents an interesting problem in dynamical sys- 
tems theory. For a fixed set of chemical species we 
model the dynamics in terms of ordinary differen- 
tial equations describing the change in concentra- 
tion of each species. The set of chemical species 
can change in time, however, so that the equations 
themselves are dynamic. 

Rossler first stressed the qualitative dynamics of 
autocatalytic networks that grow in complexity [8, 
9, 10]. Even though the system is always finite at 
any given time, it potentially explores an infinite 
dimensional space. The system evolves by chang- 
ing its equation of motion. These changes can take 
place over a very long time scale. Such systems 
provide a novel type of dynamical system which 
has received very little attention. 

The work described here has practical motiva- 
tions as well. Current molecular cloning tech- 
niques now make it possible to generate very large 
numbers of novel DNA molecules in expression 
vectors, hence to clone very large numbers of 
novel genes, and study their RNA or protein 
products for catalytic or other activities. Such 
experiments are now underway, and may ulti- 
mately lead to actual construction of autocatalytic 
polymer systems, possibly with useful commercial 
properties. Our work may be viewed as a feasi- 
bility study for this process. Our results suggest 
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that there is a minimum critical complexity of the 
food set and catalytic properties which must be 
achieved if such efforts are to succeed. 

Basic aspects of the model discussed here have 
already been introduced elsewhere [6, 7]. 

2. Description of the model 

Real chemical reactions among large sets of 
peptides or oligonucliotides are too complicated to 
have any ho~e of simulating in detail because of 
limitations on both our current knowledge of bio- 
chemistry and of current computer technology. 
Any simulation must use a drastically simplified 
model of chemical reactions. The goal in con- 
structing such models is to preserve the qualitative 
features that are most important in generating 
robust reproduction of what is typically seen in 
experiments. 

The polymers under study are assumed to be 
one dimensional chains, represented by one di- 
mensional strings over an n letter alphabet, of the 
form s x, s 2, • • •. The letters s may represent differ- 
ent amino acids, or alternatively, different nucleo- 
tides. The strings are oriented from left to right. In 
proteins this corresponds to the orientation from 
the amino terminal on one end to the carboxy 
terminal on the other end, and for single stranded 
RNA it corresponds to the asymmetry between 
the 5' and 3' ends. The polymers are allowed to 
have any length up to a given maximum.* Two 
types of reactions axe allowed: End joining reac- 
tions (or ligation), i.e., gluing two polymers to- 
gether, and cleavage reactions, i.e., splitting a larger 
polymer into two pieces. Since these reactions are 
reversible, the presence of a given end joining 
reaction implies that the corresponding cleavage 
reaction is also present. Other types of reactions, 
such as exchange, can be represented as combina- 
tions of these two. 

*We used 1000 as the maximum length in our simulations, 
bu t  this has very little effect on the results. 

For simplicity, at this stage we consider only 
catalyzed reactions. Uncatalyzed reactions may 
ultimately play an important role in allowing 
"tunnell ing" to new species, but in view of the 
enormous discrepancy in reaction rates, it seems 
plausible to ignore them for the moment. Thus in 
order for a reaction to occur at all, it must have at 
least one catalyst present in the system. Our reac- 
tions are of the form. 

e 
c + h m a + b ,  (1) 

where c is the concatenation of a and b, e is the 
enzyme catalyzing the reaction, and h represents 
water, which plays an important role in setting the 
equilibrium concentrations. 

As illustrated in fig. 1, the list of species to- 
gether with their reactions can be visualized as a 
graph, with arrows connecting the two cleavage 
products a and b and the condensate c to a nodal 
point, corresponding to the reaction. The network 
of catalysts can be thought of as a superimposed 
graph connecting the catalysts to the reaction 
nodes. These graphs can change in time as new 
species are created or old species are eliminated 
from the system. Assignment of chemical proper- 
ties amounts to giving a procedure for determin- 
ing the reaction and catalysis graphs, together 
with associated kinetic properties such as reaction 
velocities, equilibrium constants, etc. In the fol- 
lowing section we address the problem of con- 
structing reaction grophs, defering the problem of 
establishing the chemical kinetics to section 5. 

3. Graph theoretic results 

Producing a chemically reasonable way to as- 
sign reaction graphs is the most difficult aspect of 
this problem, and the place where the greatest 
assumptions must be made. The complication 
comes about because of the enormous difficulty in 
predicting the chemical properties of a polymer 
directly from its chemical composition. This is 
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a = food set 

0 = other chemicals 

3-= reactions 

4. - *- * = action of catalysts 

Fig. 1. A typical example of a graph that might describe an autocatalytic set. The reactions are represented by nodes connecting 
cleavage products with the corresponding condensate. Dotted lines indicate catalysis pathways, and point from the catalyst to the 
reaction being catalyzed. 

particularly true of polypeptides. Although two 
polymers might have quite similar composition, 
differences in conformation and structure can 
cause their chemical properties to be quite differ- 
ent. One approach is to assume that this is so 
complicated that the reactions catalyzed by each 
polymer can be assigned at random. This method 
has unrealistic aspects, since it is clear that if an 
enzyme catalyzes a given reaction, in spite of all 

the complication it is still likely to catalyze similar 
reactions. To explore the extent to which the basic 
results of the model depend on the details of this 
assumption, we are investigating other ap- 
proaches, for example match rules [17]. This will 
be presented in a future paper. We ultimately 
hope that the salient properties of the behavior 
can be characterized by a few basic parameters, 
and will otherwise be independent of the details. 
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Our rule for random assignment of reactions is 
implemented as follows: For a given starting list 
of molecular species, we compute the maximum 
number of allowed condensation and cleavage re- 
actions by counting the number of distinguishable 
combinations of string concatenations and string 
cleavages. The number of reactions that we actu- 
ally assign is obtained by multiplying the number 
of allowed reactions of each type by a probability 
P. To assign condensation reactions, we chose two 
molecules at random, while for cleavage reactions 
we chose a molecule and a cleavage point at 
random. In both cases enzymes are chosen at 
random from the set of species currently present. 
Kinetic properties are also assigned at random, as 
discussed in the next section. 

Assignment of reactions can be viewed as a 
dynamical process. We initialize the system by 
choosing a starting list, called the "firing disk", 
typically chosen to be all possible strings shorter 
than a given length L. Reactions within the firing 
disk are assigned as described above. Con- 
densation reactions may generate new species out- 
side the firing disk, thereby expanding the list. The 
introduction of new species creates new reaction 
possibilities; to take these into account, on the 
next time step we count the number of combina- 
torial possibilities involving the new species. Mul- 
tiplying by P gives the number of new reactions. 
This process is repeated on subsequent time steps. 
As long as new species are created on each step 
the graph continues to grow; otherwise growth 
stops. 

One of the immediate questions that we wish to 
address is, " H o w  many species do we need in the 
food set in order to generate an autocatalytic 
network?" Whether or not a graph grows indef- 
initely depends strongly on P. For sufficiently 
small P, it is virtually guaranteed to stop growing, 
and the graph is subcritical. For sufficiently large 
P, it is virtually guaranteed to grow without bound, 
and it is supracritical. The value of P on the 
boundary between subcritical and supracritical be- 
havior is the critical value. 

Although the reaction graphs studied here are 
strongly non-isotropic, an idea of the behavior 
that we should expect as P is varied can be 
obtained through a comparison with results from 
the theory of isotropic random graphs. Let R be 
the ratio of the number of edges (arrows) to the 
number of nodes. When R is small most of the 
nodes are isolated, i.e., they do not connect with 
any edges. For R = 0.5, most of the nodes become 
connected into one large cluster, and for R > 1 
cycles of all lengths begin to form. Since R is 
proportional to P, we expect that as P increases 
the reaction graph will undergo a transition from 
a sparsely connected system with many isolated 
components to a richly connected system with one 
large component predominating. 

For any given probability P, there is always a 
critical size for the firing disk so that the ratio R 
becomes large enough that the graph is highly 
connected, and thus supracritical. As the length of 
a polymer increases, the number of possible ways 
to cleave it also increases. As a result, the number 
of possible reactions that it participates in goes 
up. As already shown [7], in the limit of large sets 
the ratio of the number of reactions to the number 
of species goes as L, the maximum size present in 
the firing disk. As a result, for sufficiently large 
firing disks the reaction graph is supracritical. 

The critical transition is illustrated in fig. 2, 
where we plot the number of new species created 
as a function of time, using typical parameter 
values. For the subcritical case, shown in fig. 2a, 
the number of new species decays exponentially 
until the graph stops growing. As P is increased 
the decay time increases, until eventually it 
reaches a critical point where it goes to infinity. 
Fig. 2b illustrates a case near the critical point; N t 
exhibits significant fluctuations, and on any given 
run the graph may either stop growing or grow 
without bound. If P is increased still more, the 
graph becomes supracritical, as illustrated in fig. 
2c; after an initial period of decay, the graph 
grows at a rate that is faster than exponential. For 
parameter values sufficiently near critical, the be- 



J.D. Farmer et al . /  A utocatalytic replication of polymers 55 

a 

2 , 9 3  

3 , 8 6  

7 

A 

v 

.9o 

! .,13 J 
• B 

t 

c 

Fig. 2. The number of new molecular species created at each iteration during the generation of a random reaction graph. All cases 
illustrated used B = 2, and L t = 6. (a) Below the supracritical point the graph decays. (b) Near the supraccritical point, the graph size 
behaves erratically. (c) Above the supracritical point, the graph size increases without bound. Note the semi-log scale. 

havior seen in these figures is typical*. Since the 
assignment of reactions depends to some extent 
on random roundoff, re-seeding the random num- 
ber generator may result in slightly different be- 
havior. It is even possible that on one run a graph 
is subcritical, while on another it is supracritical, 
illustrating that the critical point is only defined in 

*Far from criticality, for low P the graph will immediately 
stop growing, while for very high P it will immediately start 
growing without any initial decay. 

an average sense. Nonetheless, our results are gen- 
erally qfiite well behaved, and the deviations from 
the mean behavior are not unreasonably large. 

The critical surface can be estimated numeri- 
cally using a simple trial and error procedure. For 
a given alphabet size B and a given firing disk 
radius L, values of P are found, Pm~x and Pmin, so 
that Pma~ is clearly supracritical and Pmi= is clearly 
subcritical. The midpoint is tested; if supracritical, 
it replaces Pm~; if subcritical, it replaces Pmt~. 
This process continues until a value of P is found 
where the graph grows so slowly that it is effec- 



56 J.D. Farmer et al. / A utocatalytic replication of polymers 

-I 

-8 

I0 

I I 

la  

I I I I I I 

L/- I0 

-1 

-S I I 

1 tog (N/)  

b 

Fig. 3. (a) Dependence of Peat, the probability of catalysis at 
the supracritical threshold, on L t, the maximum length of the 
molecular species in the initial firing disk. The alphabets have 
different numbers of letters, as indicated. The line labeled t is 
from the theoretical results outlined in appendix A. (b) As in 
(a), except that the L t is replaced by log(Nr), where Nr is the 
total number of species in the firing disk. 

tively very close to critical. The results obtained 
with different values of B and L are given in 
fig. 3. 

These results agree quite well with a previous 
estimate of the critical value of P, based on com- 
binatorial arguments [7]. In Appendix A this 
calculation, which was previously made only for 
the case where B = 2, is extended to arbitrary 

values of B. The central result is that criticality 
occurs roughly when 

e = B -2L. (2) 

Since the number of molecular species present in 
the firing disk approaches B t for B large, the 
implication of eq.(2) is that the critical point oc- 
curs when the firing disk has the order of the 
square root of 1 / P  species. 

Fig. 3. illustrates the dependence of Pc~it, the 
critical probability of catalysis on the initial food 
set. Fig. 3a shows log(Pc,~t ) as a function of L r, 
the size of the firing disk, including a comparison 
with the theoretical curve obtained in appendix B 
for alphabet size B = 2. Fig. 3b shows a plot of 
log(Pent) as a function of log(N 0, where Nr= 
Y~. Lt IQi is the number of species in the critical i = l ~  
firing disk, for a variety of different values of B, 
illustrating that log(Pc~t) scales linearly with N r, 
the number of different species in the initial set, 
independent of the alphabet size. 

Another interesting property of the system is 
the distribution of the number of species with a 
given length. For the firing disk, the number of 
species with a given length L is B L. The distri- 
bution function is therefore exponentially increas- 
ing with length, with a sharp cutoff. Figs 4a and 
4b illustrate two successive iterations of the graph 
update procedure. The underlying form of this 
distribution is revealed by plotting on a semi-loga- 
rithmic scale, as shown in fig. 4c, which demon- 
strates that the tail is roughly exponential. Similar 
results are observed at other parameter values, 
providing the total number of different species is 
large enough to produce good statistics. 

The "sharp edge" of the firing disk can cause a 
ringing phenomenon for small polymer lengths, as 
illustrated in fig. 4d. After the first iteration, the 
distribution is extended from the firing disk by a 
factor of two in length, with the basic shape 
repeated. The repetition occurs because (for B = 2) 
the longest length contains half of the total num- 
ber of species, and the condensation reactions 
between the longest lengths dominate the next 
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Fig. 4. Distribution of polypeptides as a function of their length. (a) and (b) illustrate the action of one iteration of the graph update 
procedure. (c) Same as (b), but with a semi-log plot, indicating the exponential tail. (d) Length distribution for a system with only 2 
symbols in the alphabet, which causes a ringing at short lengths. 

step, causing a peak at 2L. (This effect is even 
larger for B > 2, when the dichotomy between the 
edge and center of the disk is even more extreme.) 
Successive iterations repeat this process, gener- 
ating more peaks. After enough iterations have 
taken place, however, the peaks begin to overlap, 
and the distribution develops a smooth tail, as 
illustrated in fig. 4c. 

The important point of these results is that the 
number of simple species needed to generate a 
supracritical graph is not very h igh -  with a twenty 
letter alphabet, for example, .a firing disk contain- 
ing all possible monomers and dimers is sufficient 

to generate a supracritical graph with a probabil- 
ity of catalysis of only 10 -s. Of course, this de- 
pends significantly on the random assignment of 
catalytic properties. It seems likely, however, that 
use of alternate schemes such as matching will 
only improve matters. 

P is difficult to estimate in real systems. Per- 
haps the best estimate can be obtained from stud- 
ies of the immune system, where is it known that 
an antibody recognizes a random antigen with a 
probability of roughly 10 -5 [18]. Since antigen 
antibody recognition is a reasonable model for 
enzyme ligand binding at a catalytic site, this gives 
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some feeling for the probability that a randomly 
chosen polypeptide catalyzes a given reaction. The 
estimate is dangerous because antibodies may con- 
stitute a highly evolved set, specialized for ligand 
binding, and because ligand binding is not the 
same as catalysis. Another indication can be ob- 
tained from the work of Fox [19], which suggests 
that weak catalytic properties in abiogenicaUy de- 
rived protenoids are not rare. 

4. Extending the model to include kinetics 

The existence of a supracritical graph is not 
sufficient to guarantee the generation of an auto- 
catalytic set. Once chemical kinetics are taken into 
account competition for resources limits growth. 
Differences in efficiency can produce drastic dif- 
ferentials in concentration, so that many species 
are effectively not present in the system at all. 
Thus, even though it complicates matters consid- 
erably, a consideration of kinetics is essential for a 
realistic assessment of the potential to generate 
autocatalytic sets. 

To simulate the influx and efflux from a chem- 
ostat, we assume that the raw materials from the 
foodset are supplied at a constant rate. For con- 
venience, unless otherwise noted we set the food 
set equal to the firing disk. To do this we initialize 
the system by setting the concentration of all 
species of length less than L r to a nonzero value, 
and setting all others to zero, thereby defining the 
food set. We then drive the system by adding to 
the concentration of the members of the food set 
at a constant rate. All molecular species are re- 
moved with the same first order loss rate, as would 
be expected, for example, from letting the chem- 
ostat overflow at a constant rate. After the passage 
of sufficient time, with this type of driving and 
damping the set of species present in the system 
becomes fixed, and the concentration of each ap- 
proaches a constant value. 

The fact that the system has a finite mass impo- 
ses a minimum concentration, corresponding to a 
single molecule. For most purposes concentrations 
significantly below this level can be ignored. This 
is an important practical benefit, since it allows us 
to restrict the simulation to a finite number of 
different species. Physically the threshold sets the 
effective size of the system. If the chemostat has 
roughly the volume of a bacterium, for example, 
one molecule per bacterium corresponds to a con- 
centration of about 10 -9 molar. In our simula- 
tions we are often forced to use higher thresholds, 
which can be thought of as decreasing the size of 
the container. For very small systems it might be 
more appropriate to use a stochastic molecular 
model rather than continuous concentrations, but 
we doubt that this will change our results very 
much. 

A simplifying assumption that we have made is 
that we have a well-stirred chemostat. This is not 
necessarily the case. Spatial structure might well 
develop in a primordial soup, which could consid- 
erably complicate the problem. In this case, the 
size parameter (which depends on the threshold) 
should be adjusted to the volume of the typical 
region over which mixing and chemical interac- 
tions occur. In more realistic simulations we should 
model enclosure in a lipid boundary (liposome) or 
a protenoid microsphere [19], with a radius of 
1-20 microns (which corresponds roughly to the 
size of a bacterium). Diffusion across volumes in 
this size range is fast' enough to ensure near well 
stirred conditions. 

Updating of the reaction graph proceeds as 
descrihed in the previous section, but with a few 
important differences. When a reaction generates 
a new species, it is not immediately added to the 
system as before, but is rather placed on a list of 
candidates. In solving the differential equations for 
concentration updating, candidates are treated the 
same as other species, but they are not allowed to 
catalyze new reactions until their concentration 
crosses the threshold, at which point they are fully 
admitted to the system. In the simulations re- 
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ported on here we have ignored the possibility 
that a species crosses the threshold and then drops 
below it again; we do not remove reactions when 
this takes place. 

We now discuss the differential equations that 
we use to model the kinetics. A fully realistic 
model is intractable for our purposes, since it 
requires keeping track of many intermediates for 
each reaction, resulting in an enormous multipli- 
cation in both the number of variables and the 
number of equations. The common approxima- 
tions that are normally employed for catalyzed 
reactions are of no help, since there is no clear 
separation of the molecular species into products, 
enzymes, and substrates: A given species can play 
all three of these roles in different reactions. The 
result is that for a given reaction none of the 
components are known to definitely be either 
saturated or unsaturated. 

To cope with this problem we have developed a 
new scheme for approximating the behavior of 
catalyzed reactions. This scheme makes one major 
approximation, namely, that the binding velocity 
is the same for all intermediates. This assumption 
is not accurate, but we do not think that it makes 
an important  difference in our results. We allow 
the reaction velocities due to catalysis to vary 
from reaction to reaction, and since the binding 
velocity takes on meaning only in relation to the 
.other velocities of the system, we do have the 
diversity in relative reaction rates which seems to 
be the qualitatively important factor. 

With this assumption the concentration of each 
species can be separated into two parts, the free 
part, and the bound part, which is the sum of the 
concentrations of all intermediates in which a 
given species is bound. This doubles the number 
of variables, but this is a minor complication 
compared with keeping track of all intermediates 
separately. The resulting dynamical equations are 
derived in detail in Appendix B. The results can 
be summarized as follows: For every catalyzed 
reaction of the form of eq. (1), let x a and x b 
denote the free concentrations of the products a 

and b, x c denotes the free concentration of the 
condensate c, and x e denotes the free concentra- 
tion of the enzyme. Bound concentrations are 
denoted similarly as x a, x b, etc. This reaction has 
a forward velocity 

v r = vokrxeXaX b (3) 

and a backward velocity 

o r = o o k r x e x c h ,  

where k r is the forward equilibrium constant, 
associated with the condensation reaction, k r is 
the backward equilibrium constant, associated with 
the cleavage reaction, o 0 characterizes the increase 
in velocity caused by catalysis for a given reaction, 
and h is the concentration of water. Each reaction 
changes the free concentration of a, b, c, and e, 
according to the rules ~a = -o r ,  Xb = --Or, X¢ ffi 
--V r, and ~e = - o  r - v  r. When this is combined 
with the effects of driving and damping, the total 
change in concentration for any given species i is 

xi = ~ [reaction terms] + k~Z  i - k d x  i 

+ r H (  L f -  L ), (4) 

where ku is a "dissociation constant" or "unbind- 
ing velocity", which is inversely proportional to 
the typical time that a complex remains bound in 
an intermediatary, and k d is the dissipation con- 
stant reflecting chemostat overflow. The last term 
is the driving term, which is nonzero only for 
members of the food set; I is the length of species 
i, L r is the radius of the food set, r is the rate of 
concentration input, and H is the Heaviside func- 
tion, H ( x )  = 1 for x > 0, H ( x )  = 0 for x < 0. The 
change in bound concentrations for each reaction 

can similarly be written as ~a = Or, )~b = Or' )~c = Of, 
and ~e = vr + °r, so that the total change in the 
bound concentration for anygiven species can be 
written as: 

~i = ~ [reaction terms] - ku~ i - kd~ i. 
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In the simulations reported here, we set h = 1, 
k t = 1, k r ffi 10, k u = 1000, and o 0 was randomly 
chosen in the range 10 < o 0 < 1000. The first three 
values are reasonable approximate averages for 
the forward and reverse rates of peptide bond 
formation in an aqueous medium, where cleavage 
is favored [20]. 

5. Results incorporating kinetics 

In this section we describe how the purely graph 
theoretical results are modified when kinetics is 
taken into account. Certain properties are obvi- 
ous. For example: The fact that the system has a 
finite mass automatically limits the growth of the 
reaction graph. Even if the graph is strongly 
supracritical, there is a maximum size beyond 
which it simply cannot grow, due to the fact that 
resources are finite. Thus, in a strict sense there is 
no such thing as supracritical behavior when 
kinetics are considered. There does, however, re- 
main a marked qualitative distinction between 
supracritical and subcritical behavior, in terms of 
the size to which the system grows (el. fig. 5). 

Kinetics introduces an important third parame- 
ter that influences the critical behavior, namely, 
the concentration threshold required for catalysis. 
The limiting cases are clear: As the threshold goes 
to zero, we return to the purely graph theoreti6 
ease. At the other extreme, regardless of how 
supracritieal the purely graph theoretical c@e is, it 
is always possible to set the threshold high enough 
that no new reactions are ever catalyzed. In be- 
tween these two extremes the number of species 
initially increases, but then levels off as it exhausts 
the capacity of its resources. 

Fig. 5. gives an overview of the effect of the 
threshold concentration and the probability of 
catalysis on the total number of polymers formed 
from the food set. For zero threshold, the system 
reduces to the ease of graph iteration considered 
above, where the critical probability of catalysis is 
known. Fig. 5 shows, for low thresholds (10-13), 
that as the probability of catalysis increases past 
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Fig. 5. A contour plot of the logarithm of the asymptotic 
graph size asymptotic graph size as a function of P, the 
probability of catalysis and log(T), the logarithm of the con- 
centration threshold. All of the simulations in this figure were 
made using a 2 letter alphabet, with a firing disk of radius 2 
and with driving and damping constants both set at 10,000. 
Contours B through H represent graph sizes ranging from 7 to 
I0,000. 

this value, the total number of polymers shows a 
sharp increase. For larger probabilities of cataly- 
sis, the system forms a large number of polymers. 
The finite number of polymers formed will reflect 
three factors: (i) Constant influx of polymers in 
the food set and first order loss of all molecular 
species assures that the system will relax to a 
steady state with constant total mass. (ii) The 
dissociation constant favoring cleavage over con- 
densation in an aqueous environment implies that 
on average larger polymers are present in lower 
concentrations. (iii) Consequently, the existence of 
a threshold for catalysis limits the number of 
polymers that can come to function as catalysts, 
and therefore limits the growth of the graph. This 
effect is seen even for low values of the threshold, 
where as the probab~ty of catalysis increases 
beyond the critical value for supracritical behav- 
ior, the rate of growth of the asymptotic number 
of polymers in the system slows. As the threshold 
increases, fewer polymers are able to function as 
catalysts. Therefore, the probability of catalysis 
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must increase to achieve the same asymptotic 
number of polymers. 

The main conclusion to be drawn from these 
experiments is that the chemistry specified initially 
must have a minimum complexity for active auto- 
catalytic behavior to take place, where complexity 
of the chemistry is determined by the size of the 
initial food set and by the probability of catalysis. 
There is a minimum size of the system below 
which autocatalytic behavior cannot take place, 
given a fixed probability of catalysis. Kinetics 
tends to inhibit the formation of a large reaction 
network, which decreases the extent of autocata- 
lytic behavior. For a sufficiently large system, 
however, this is not a problem. 

6. Future work 

The results that we have reported here represent 
a first step toward an understanding of autocata- 
lytic sets. A great deal remains to be done. To 
make more contact with experiments, and to in- 
vestigate the robustness of the ideas presented 
here, we intend to build in a much higher degree 
of realism than exists in the present model. Planned 
enhancements include: 

1) A string match model for assignment of 
catalytic properties, such as in ref. [17]. It is 
plausible that the probability of catalytic activity 
increases with polymer length. This feature is not 
present in the purely random model, but is easily 
incorporated using string matching. For realism, 
the details of the match procedure will need to be 
specialized for either polypeptide or RNA cataly- 
sis. The string match approach provides a good 
contrast to the random assignment scheme used 
here, and should give us a good feeling about the 
robustness of the behavior. 

2) Inclusion of "high energy" compounds such 
as ATP, whose exergonic hydrolysis is coupled to 
endergonic peptide bond synthesis, thus driving 
synthesis of large peptides. In the absence of such 
high energy compounds, the concentrations of 
small and large polymers heavily favors small 

polymers due to thermodynamic considerations 
reflected here in the higher rate of cleavage over 
condensation in an aqueous environment. 

3) A more detailed study of the loop properties 
in the system. 

4) A treatment of uncatalyzed as well as cata- 
lyzed reactions. Although uncatalyzed reactions 
proceed much more slowly, they may play a cru- 
cial role in seeding catalyzed reactions. This can 
dramatically lower the critical threshold. 

5) If a set is indeed autocatalytic, there should 
be a sufficient number of connected pathways 
within it so that it can sustai'n itself as long as 
there are pathways to the food set. To test this, we 
intend to demonstrate that once the firing disk 
initiates growth, the autocatalytic set persists even 
after the food set is contracted down to a smaller 
number of elements. 

6) A study of the evolutionary capacity of auto- 
catalytic sets in competition with each other. 

7. Summary 

We have extended the previous analysis of auto- 
catalytic sets [7] in several respects: Using a 
random scheme for assignment of catalytic prop- 
erties, we have confirmed the existence of a critical 
transition from a (subcritical) graph with very few 
connections, to a (supracritical) graph which is 
highly connected. When it is subcritical, the graph 
growth rate decays exponentially; when it is 
supracritical, the growth rate may initially decay, 
but eventually becomes faster than exponential. 
After the passage of sufficient time, the supracriti- 
cal graph apparently exhibits universal properties, 
such as an exponential tail in the frequency distri- 
bution of lengths. We have verified a previous 
estimate for the location of the critical surface in 
parameter space, and extended it to alphabets 
with more than two letters. 

Based on a new scheme for dealing with satura- 
tion effects in networks of catalytic reactions, we 
have begun a numerical study of the effect of 
kinetics in autocatalytic sets. While kinetics trun- 
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cates supracritical behavior, the effects of graph 
supracriticality are evident in the size and richness 
of the reaction graph that develops with a con- 
centration threshold. 

Our results suggest that autocatalytic properties 
may have played a major role in supplying the 
complex chemical prerequisites needed for the 
origin of life. The scenario that we are suggesting 
proceeds as follows: When the concentration and 
variety of simple polypeptides exceeds a critical 
threshold, an autocatalytic network is triggered, 
causing the formation of a rich set of proteins. 
Similarly, short strands of nucleic acids might 
generate autocatalytic networks, catalyzing the 
formation of a rich set of RNA molecules. Eventu- 
ally these two networks begin interacting with 
each other, making use of cross-catalytic proper- 
ties to form an even richer set. Throughout 
this process, chemical kinetics naturally selects 
polymers with the most efficient properties for 
cooperating in the metabolic pathways of the au- 
tocatalytic network; the species which emerge from 
this competition are effectively the "fittest". Fi- 
naUy, in the presence of this rich set of highly 
evolved raw materials, the nucleic acids begin 
templating the formation of proteins and each 
other, creating the basis for life as we now know 
it. 
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Appendix A 

Supracritical firing disc scaling law 

The aim of the appendix is to derive relations 
between the probability that an arbitrary peptide 
catalyses an arbitrary reaction, P, and the maxi- 
mum length polymer maintained in an initial set 
of polymers of length L = 1, 2 . . . . .  L r, such that 
that set of polymers generates an infinite catalysed 
reaction graph. 

We derive results initially for B = 2 kinds of 
amino acid monomers, and restrict attention to 
end condensation and cleavage reactions, as de- 
fined in the text. The set of 2 (t''÷~) polymers is 
called the "firing disc". Since this initial set is 
maintained, the initial generation of novel peptides 
derives only from end condensation of preexisting 
peptides to form peptides of length L r + 1, L t + 
2 . . . . .  2L r. Any specific peptide of length L', L r < 
L' < 2L r can be formed in 

Y= 2Lr+  1 - L' (A.1) 

ways via end condensation. The number of such 
reactions among the polymers of length L' is 

2t'i[2Lr + 1 - L']. (A.2) 

Each of the possible new condensation reactions 
might be catalysed by any of the members of the 
initial firing disc, with probability P, thus the 
expected number of new condensation reactions 
which are catalysed, Qx is 

2Lt 

QI=P2/'~+1 ~[~ 2/'f[2Lr+ 1 -  L']. (g.3) 
L' =Lt+ I 

If the total number of catalysed reactions given 
in (A.3) is small with respect to the possible 
number of new peptides to length 2L r, then Q1 is 
a good estimate of the number of novel peptides 
whose formation is catalysed by members of the 
firing disc. The criteria we develop below for 
supracritical behavior based on this assumption is 
self-consistent in satisfying this constraint. 

There are Q1 novel peptides that are available 
to participate in new reactions either as substrates 
or catalysts. We discriminate 4 cases: (i) The Q1 
may catalyse reactions among members of the 
firing disc whose large product is of length L r or 
less, hence within the firing disc. We ignore these 
since the firing disc is maintained. (ii) The Qq can 
catalyse any of the condensation reactions among 
members of the firing disc as substrates, forming 
products of length L r + 1 to 2Lr. (iii) The Q1 can 
participate as substrates in end condensation reac- 
tions on the left or right terminus of any of the 
Q1 + 2/'t+1 old and new members of the peptide 
set now in the catalysed reaction graph. These 
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novel condensation reactions might be catalysed 
by any of the old and new members of the reac- 
tion graph. (iv) The Qt are substrates for new 
cleavage reactions, catalysed by any of the old or 
new members of the reaction graph. 

Case ii, Catalysis of oM condensation reactions 
The number of novel peptides formed by this 

mechanism on the second iteration is 

Q2 = Q2/2t''+l. (A.4) 

Case iii, New condensation reactions 
The number of new peptides after the first 

iterate is Qx with lengths up to 2Lf. On a second 
iterate, the maximum length achievable increases 
to 4L r. It is not necessary to keep track of the size 
distribution in detail, however. End condensation 
of any of the Qt can with one another, or on each 
end of the initial peptides, hence by this 
mechanism the number of new condensation 
reactions is: 

Q2 _ QI + 2Q12L'+l > QI[Qx + 2L'+l] • (A.5) 

Each of these might be catalyzed by any of the 
total number of peptides present, with probability 
P, hence the number of new peptides, Q2 created 
by this mechanism is 

Q2>PQI[QI+2r,+q 2. (A.6) 

Case iv, New cleavage reactions 
The number of new cleavage sites afforded by 

the Q1 is the sum of the produce of the number of 
peptides of length L', times their L ' - 1  internal 
bonds. Each of these might be catalysed by any of 
the new or old polymers. This gives: 

2Lt 

Q 2 = P 2  rf+t ~ 2 L ' ( 2 L t + I - L ' ) ( L ' - I ) .  
I_," - Lt + t 

(g.7) 

More simply, a minimum estimate of the number 
of internal sites available for cleavage among the 
Q1 is Q1Lt, while the maximum Qt(2Lr - 1). Since 
any of the old or new molecules might catalyse 
these cleavage reactions, the maximum and 
minimum estimates of Q2 by this mechanism are: 

Q 2  < 2PLtQ1Q1 + 2L'+I, (A.8a) 

Q2 > PLtQtQt + 2z"+t. (A.8b) 

The total number of new peptides added to the 
catalysed reaction graph on the second iteration 
by these mechanisms, Q2(tot) is greater than the 
sum of the right hand sides of eqs. (A.4) + (A.6) + 
(A.8b). 

Divergence criterion 

Over successive iterations of the growth of the 
catalysed reaction graph, a sufficient criterion such 
that the firing disc is supracritical is that the sum 
of (A.4) + (A.6) + (A.8b) diverges. Since the sum 
is difficult to evaluate, a simpler criterion is that 
only one of (A.4), (A.6) or (A.8b) diverges. We 
show next that the rate of growth of new con- 
densation reactions from the first to second itera- 
tion dominates over the remaining mechanisms 
and dominates the process over successive itera- 
tions, hence provides a satisfactory divergence 
criterion. 

On the second iteration from (A.6) and (A.8a), 
the ratio of new peptides produced by new con- 
densation reactions to new clevage reactions is 
greater than 2Lt/Lf. This dominance derives from 
the fact that the number of possible new con- 
densation reactions is roughly the product of the 
new times total molecules, with the number of 
potential cleavage reactions is a linear function of 
new peptide lengths. The criterion for divergence 
we shall derive based on use of condensation 
reactions, yields reasonably large critical values of 
Lr, for plausible probabilities of catalysis. Hence 
dominance of condensation is a self-consistent 
assumption with respect to this divergence crite- 
rion. 
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The ratio of new peptides due to new con- 
densation reactions to catalysis of condensation 
reactions among the firing disc members is given 
by the ratio of (A.6) to (A.4) and yields: 

P2L'+t(Q a + 2(t',+I~) 2 

Q1 
(A.9) 

We shall show below that the criterion for di- 
vergence derived from condensation alone is con- 
sistent with condensation dominating graph 
growth with respect to this process as well, hence 
not only a sufficient criterion for divergence, but a 
good estimate of critical values. 

For divergence based on new condensation re- 
actions, it suffices to show that Q1 > 1, Q2 > Qi 
and Q2 > Q1 implies that Q,, > Q,-1. Substituting 
in eq. (A.6) from eq. (A.3) for Q1, and letting the 
symbol E stand for the summation term in eq. 
(A.3) 

Q2 > p223G + 3(T. + 2PT. 2 + p2E3). (A.10) 

If eqs. (A.13a-c) were equalities, then the 
squared term of each successive iteration is larger 
than the previous, hence if Q2 > Qt > 1, then Q, 
> Qn-1. Deviation of Q2 over the equality in eq. 
(A.13a) enters into Q3 as a cubic term, hence 
augments Q3 more than Q2, thus assuring that the 
series Q, diverges. 

A sufficient criterion for Qx to be greater than 1 
when the divergence criterion in eq. (A.12) holds, 
is derived next. The expected number of novel 
peptides on the first iterate, Qt is given by eq. 
(A.3). The largest term in the sum in eq. (A.3) is 
22Lr, hence, substituting this in place of the sum 
yields: 

Q1 > p23Lt+l = p 2 2 L r + 2 2 G - t  (A.14) 

Using the critical criterion of eq. (A.12) and 
substituting, 

Q1 > p22Lf+ 22Lr-1 > ( p2L ' - l ) /P  = 2Lt-1 

(A.15) 

Since Q1 -- p L t + l y ' ,  Q2 > Q1 if 
or 

p223Lt+3 

p2Lf+t = P2 zLf+z > 1 (A.11) Q1 > 2L'-1 > 1 (A.16) 

or 

22L'+2 > 1/P.  (A.12) 

Since the number of molecular species in the 
firing disc is 2 Lf+x, the equivalent sufficient crite- 
rion that Q2 > Qt is that the number of molecules 
in the disc, 

2 Lt+I > 1/P 1/2. (A.13) 

Next we show that Q2 > Q1, and Q1 > 1 implies 
Q n > Qn-x. From (6), 

Q2 > PQt(Q1 + 2L'+1) 2, (A.13a) 

Q3 > PQ2(Q2 + Qx + 2tq+t) 2, (A.13b) 

Q,, > PQ,,-t(Q,,- t  + Q,-2 + "'" + Q1 + 2Lf+l) 2. 

(A.13c) 

for any positive Lf. 
These results show that the criterion in eq. 

(A.12) or eq. (A.13), suffice for the growth of the 
catalysed reaction graph to diverge. 

While eqs. (A.12)'or (A.13) are sufficient condi- 
tions for a firing disc to be supracritical, it remains 
to be considered whether they are good estimates 
of the critical maximal size polymer, Lc, 
maintained in the firing disc, (or number of peptide 
species), since processes due to catalysis of "old" 
condensation reactions (case ii) and catalysis of 
new cleavage reactions (case iv) 
Eq. (A.12) leads, for plausible 
catalysis, P, on the order of 
polymer length, Lc, greater or 

were suppressed. 
probabilities of 

10 -6 to critical 
equal to 9. The 

dominance of condensation over cleavage is given 
by the ratio of Q2 in eq. (A.6) to Q2 in (A.8b) and 
is over 50 fold for L c = 9. Over successive itera- 
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tions of the graph, the dominance of new con- 
densation over new cleavage increases. 

Eq. (A.9) gives the dominance of new con- 
densation reactions over "old" condensation reac- 
tions, case ii. Substituting for P from eq. (A.12) 
yields for the dominance: 

Q 1 / 2  Lt+l + 2 + 2 G + I / Q  1 (A.17) 

which has a minimum at 4. For P = 10 -6, and 
solving from eq. (A.3) for Qa, the dominance of 
new condensation is over 500-fold. Dominance 
grows over each iteration of the graph's growth. 
Thus, eqs. (A.12) and (A.13) are good criteria for 
supracriticality. 

These criteria can be improved slightly as fol- 
lows: In the marginally supracritical case, each 
iteration of the graph's growth, (1,2, . . . ,  n) adds 
an identical number Qi new peptides to the cata- 
lysed reaction graph. After n iterations, the num- 
ber of molecules in the graph is nQ1 + 2 L~+x. The 
latest increment, Q, can condense on the left or 
right ends of all molecules from earlier iterations, 
and onto themselves as well, yielding 

O,2 _ Q,, + 2Q, [(n - 1)Q 1 + 2 L°+I] 

= 2Qi[nQx + 2L~+l]. (A.18) 

This leads, after substitution, to a critical value of 

2 2L'+2 > 1/2P.  (A.19) 

Finally, the criterion for supracritical discs can 
be generalized to B > 2 types of amino acids. As B 
grows larger, the total number of molecular species 
in a firing disc up to polymer length Lf converges 
to B Lr. Substituting into eq. (A.3) and eqs. 
(A.10)-(A.12) leads to 

B 2L~ > 1 / P  (A.20) 

or slightly better, from eq. (A.19) 

B 2L, > 1/2P.  (A.21) 

Appendix B 

Approximate equations of motion for catalyzed 
reactions 

A central difficulty which must be addressed in 
any treatment of catalyzed reactions is saturation. 
Each reaction involves formation of several inter- 
mediate complexes which have a nonzero binding 
time. This effect can easily become strong enough 
so that most of a given species is bound up in 
complexes, saturating the reaction with a large 
slow down in the reaction rate. The total number 
of intermediate complexes is equal to the number 
of reactions times the number of complexes per 
reaction, which typically is much larger than the 
total number of species. A realistic simulation of 
the full system with all of the complexes requires 
an unrealistic amount of computer resources. 

The traditional approximation schemes for 
dealing with saturation effects are not applicable 
here. These schemes typically assume that one of 
the components of the reaction, such as the en- 
zyme, is the limiting factor, and that all of the 
other components are present in abundance. For 
our problem, however, any given species may serve 
as an enzyme or a product at the same time; the 
reaction can be limited by saturation of any of its 
components. A new approach is needed. 

To develop an approximation scheme we con- 
sider the forward and backward reactions sep- 
arately, and assume that each of them forms only 
one intermediate complex. A given reaction in the 
reaction network is of the form 

kt __ ku 
a + b + e - - ,  c e + h ~  c + e + h ,  

kr ku 
c + h + e ~ a-b-e--, a + b + e, 

where h represents water, c is the concatenation of 
the polymers a and b, and e is an enzyme, k u is a 
phenomenological dissociation constant that de- 
pends on the average m o u n t  of time that the 
complexes remain bound. 
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To write explicit equations of motion for these 
reactions it is convenient to consider intermediate 
variables that represent the concentration of each 
chemical bound in complexes. Letting ~ denote 
the amount of a bound up in abe, and using 
similar notation for the other strings, we obtain 

_ k u  

c ~ c, (B.la) 

k u 

el ~ ex, (B.lb) 

k u 

~ a, (B.lc) 

k u 

e2 ~ %- (B.ld) 

The subscripts 1 and 2 are placed beside e to 
indicate that they come from different complexes. 
Since (B.lb) and (B.ld) are linear, however, it is 
possible to replace these with their sum: e -- e 1 + 
e 2, and just write one equation where it is under- 
stood that ~ means all the enzyme, including that 
bound in different reactions. Note that this reduc- 
tion of the bound enzyme dynamics to one equa- 
tion requires k u to be the same for all reactions. 
Our representation of the reactions then becomes 

k f  
a + b + e --* 6 + 8 + h, (B.2a) 

kr 
c + h + e ~ + b + ~ ,  (B.2b) 

_ k u  

a ~ a, (B.2c) 

ka 
~ b, (B.2d) 

_ k u  

c --, c, tB.2e) 

_ ku  

e ~ e. (B.2f) 

We assume for the moment that the concentration 
of water remains constant. 

To write down the equations of motion for the 
reactions listed in eq. (B.2) assume there is a 
matrix Oabc~ whose entries are equal to a rate 
constant that is zero unless the reaction is cata- 
lyzed. An arbitrary string s can (and typically 

does) enter into more than one reaction at once, 
playing different roles in different reactions, i.e., it 
can act either as a condensate (c), a cleavage 
product (a or b), or an enzyme (e). The equations 
of motion must contain terms corresponding to 
each of these roles, which are determined by the 
index position of V,bce. The position of each index 
determines each role in the basic equation. As- 
sume N species are present. Denote the concentra- 
tion of the i th species as s~ for the free part, and 
~ for the bound part. The equations of motion for 
the bound part are then: 

j , k , I  

(forward reaction, i in role of c) 

+ kfOjkliXjXkX i 

(forward reaction, i in role of e) 

+ krVijkiXkXih 

(backward reaction, i in role of a) 

+ krVjil<lXkXlh 

(backward reaction, i in role of b) 

+ kroyktixtxih ] 

(backward reaction, i in role of e) 

- ku.,~ i 

(dissociation of i complex) 

and the equations of motion for the free part are: 

"~i = -- E [kfVijklXiXjXl 
j , k , I  

(forward reaction, i in role of a) 

+ kfo j ik lx ix jx l  

(forward reaction, i in role of b) 

+ kfOykliXjXkXi 

(forward reaction, i in role of e) 

+ krOjkitXixth 
(backward reaction, i in role of c) 

+ k rOjk.XtXih ] 
(backward reaction, i in role of e) 

+ k u x  i 

(dissociation of i complex). 
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V~jkt is always very sparse; in practice the values 
are kept in a linked list. Furthermore, these terms 
can be matched up exactly, since the gain of the 
terms on the right side is equal to the loss of those 
on the left. The equations of motion may be 
written more compactly as: 

;, = E { k (ojk,,x, + oy,,Ixjx  
j ,k,I  

d-krh[(Oijklq-Ojikt)XkXIq-OjkliXIXi]}-kuxi,  

Xi = - E (kfxixj[(Oijkl"}'Ojikl)Xlq-OjkliXk] 
j ,k,I  

+krhx,x,(oj ,,+ ojk,,)} + k3,. 
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