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Abstract. When two oscillators are coupled together there are parameter regions 
called ‘Arnold tongues’ where they mode lock and their motion is periodic with a common 
frequency. We perform several numerical experiments on a circle map, studying the width 
of the Arnold tongues as a function of the period q ,  winding number p / q ,  and 
nonlinearity parameter k ,  in the subcritical region below the transition to chaos. There are 
several interesting scaling laws. In the limit as k -+ 0 at fixed q, we find that the width of 
the tongues, AQ, scales as kq,  as originally suggested by Arnold. In the limit as q + m at 
fixed k ,  however, AS2 scales as q-3 ,  just as it does in the critical case. In addition, we find 
several interesting scaling laws under variations in p and k .  The q - 3  scaling, token 
together with the observed p scaling, provides evidence that the ergodic region between 
the Amold tongues is a fat fractal, with an exponent that is 3 throughout the subcritical 
range. This indirect evidence is supported by direct calculations of the fat-fractal exponent 
which yield values between 0.6 and 0.7 for 0.4 < k < 0.9. 

AMs classification scheme numbers: 
PACS numbers: 0340,0540 

1. Introduction 

The phenomenon of mode locking is ubiquitous in physical systems. When two 
oscillators are coupled together they often entrain each other, so that their 
combined motion becomes periodic. In other cases, though, this does not happen, 
and their combined motion has two independent frequencies. Typically these 
locked and unlocked regions are interwoven in a complicated fashion in parameter 
space, as shown in figure 1. The black regions, called the Arnold tongues, represent 
the mode-locked parameter values [I]?. This basic scenario is quite common, and 
often manifests itself even when there is no obvious way to decompose the system 

Even more general results have been proved in [Z]. 
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Figure 1. The Arnold tongues for the sine map, equation ( l ) ,  plotted as a function of 
the nonlinearity parameter k and the winding number parameter Q. The black regions 
correspond to parameter values where there are stable periodic orbits, labelled by their 
winding numbers p / q .  

into independent oscillators, such as in Rayleigh-Benard convection 131 and other 
fluid flows. 

In this paper we perform several numerical experiments to investigate the scaling 
properties of the Arnold tongues. Our efforts focus on the subcritical region, below 
the first transition to chaos. We observe several interesting scaling laws. One 
apparent consequence of these scaling laws is that the complement of the Arnold 
tongues (the ergodic region) forms a fat fractal [4-61, with a fat-fractal exponent of 
$. This is supported by numerical experiments where we measure 0.6 < /3 < 0.7 for k 
in the range [0.4,0.9]. We conjecture that this number is universal. 

Our results contradict several tenets of conventional wisdom. For example, there 
has been a wide feeling that the subcritical regime is uninteresting, since there is a 
soluble renormalisation theory [7,8]. Although there is nothing wrong with this 
theory, it is inadequate: it says nothing about the widths of the Arnold tongues. Our 
numerical results tangibly demonstrate that the widths of the tongues have 
interesting scaling properties. In contradiction to previous statements, the subcritical 
scalings are by no means trivial. 

Another widely misunderstood point about the tongues concerns a scaling law 
due to Arnold, obtained through a perturbation calculation in the limit of small 
nonlinearity. This scaling has been mistakenly applied in the wrong limit in attempts 
to calculate analytically the value of the fat-fractal exponent. Our results demon- 
strate that Arnold’s scaling law only applies in the limit in which it was originally 
obtained. In the opposite limit we find an alternative scaling law, leading to a 
fat-fractal exponent of $. 

Before proceeding, we would like to emphasise that the work reported here is by 
no means the final word on the scaling of the subcritical Arnold tongues. Most of 
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our results are empirical, based on numerical experiments performed on only one 
circle map. Some of the properties that we observe suggest universal behaviour, but 
obviously more work on other maps is needed. But what is particularly needed is a 
theory. We hope that, although incomplete, the results that we present here are 
suggestive enough to stimulate further work in this direction. 

Before proceeding further we present a brief review. 

2. A few essential facts about circle maps 

In geometric terms, a dissipative oscillator whose asymptotic motion is periodic is 
nothing more than a dynamical system with a limit-cycle attractor. Thus, its 
asymptotic motion is represented by a closed curve in its phase space, topologically 
equivalent to a circle. When two oscillators are coupled together, the natural space 
in which to consider their combined asymptotic motion is the direct product of two 
circles, i.e. a 2-torus. When the oscillators mode lock, the attractor of the combined 
system is a limit cycle embedded on the torus, and when they unlock the trajectory 
is ergodic, densely covering the torus. 

Taking a PoincarC section reduces the torus to a circle. The flow on the torus in 
this surface of section becomes an iterated mapping of the circle with a single 
iteration of the resulting circle map corresponding to a complete revolution about 
one axis of the torus. This description breaks down for more complicated attractors, 
such as chaotic attractors. As long as the attractor is a limit cycle or torus, however, 
the dynamics can be reduced to a circle map?. 

In general it is difficult to obtain the explicit form of a circle map directly from 
equations of motion. But qualitative studies can be made by explicitly constructing a 
circle map, with the knowledge that there is an infinite family of continuous coupled 
oscillators corresponding to this map. An example of such a map which has received 
a great deal of attention is the sine map, given by 

x , + ~  = f ( x t )  = xt  - (k/2n) sin(2nxJ + 52 

where t is an integer labelling the number of iterations, and k and 52 are parameters. 
Equation (1) satisfiesf@ + 1) = f ( x )  + 1, as it must to be a map of the circle. 

A quantity of particular interest is the winding number 

p = lim (x ,  - x,) / t .  (2) 
t-+m 

When the nonlinearity parameter k = 0, the sine map reduces to a simple rotation of 
the circle with winding number 52. For irrational values of 52 there is a single ergodic 
orbit covering the circle, and at rational values there is a one-parameter family of 
periodic orbits parametrised by the initial condition xo. Thus, the periodic orbits 
have zero measure in 52, while the ergodic orbits take up the full measure. When k 
is increased above zero, the one-parameter family of periodic orbits is destroyed. 
Instead, as long as 0 < k S 1, for a given s2 the sine map has a unique attractor 
which is either a limit cycle of period q, or an ergodic orbit covering the circle. The 
limit cycles have rational winding numbers p / q ,  where p and q are two integers that 

Of course, geometric properties, such as the time to cross successive Poincark sections, are not 
described by the circle map, but otherwise the dynamics on the circle map is topologically equivalent to 
that of the original flow. 
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are relatively prime. At any fixed k, 0 < k 6 1, each rational ratio p / q  occupies an 
interval in 52. We call these periodic intervals. Viewed in the k,  52 plane, the set of 
all periodic intervals forms an infinite number of long thin ‘tongues’, each of which 
is widest at k = 1, contracting down to a point at k =0,  as shown in figure 1. 
Numerical experiments [9-111 indicate that the combined measure of the periodic 
intervals is one at k = 1. Thus, in varying k from 0 to 1 the combined measure of 
the periodic intervals also changes from 0 to 1. At  any fixed k in the range 
[0,1] the periodic intervals are dense in &, i.e. given any value of & there 
is always a periodic window arbitrarily nearby. 

The Arnold tongues are naturally labelled by their winding number p / q .  In order 
to understand the properties of the Arnold tongues, it is useful to organise their 
winding numbers using a construction called the Farey tree. Given two rational 
numbers of the form p l / q l  and p 2 / q 2 ,  their Farey daughter is given by their Farey 
sum ( p l  + p 2 ) / ( q l  + q2). Starting with the values 0/1 and 1/1, by taking Farey sums 
it is possible to construct all the rational numbers in [0, 11. Through this process 
these rational numbers are naturally arranged in a binary tree, with 1/2 at the top of 
the tree, 1/3 and 2/3 branching out from it, and so on. Every number has two Farey 
parents; one of these, which we will refer to as the immediate parent, is one level 
higher in the tree, while the other parent is two or more levels up [12]. 

Sandwiched in between the Arnold tongues are the parameter values with 
irrational winding numbers, where the attractor is ergodic and covers the circle. We 
will call these parameter values the ergodic set. The fact that the periodic intervals 
are dense immediately implies that their complement is a Cantor set. (Thus for a 
two-parameter circle map such as (l), the ergodic set is topologically the Cartesian 
product of a Cantor set and a line interval.) For k = 1, numerical experiments 
[9-111 indicate that the Cantor set is thin, i.e. that it has Lebesgue measure zero. 
The fractal dimension is approximately equal to 0.87 and is believed to be universal 
[9,10, 131. For k < 1, however, the Cantor set is fat, i.e. it has positive measure. 
This implies that the fractal dimension is 1. The dimension is thus indistinguishable 
from that of a simple Euclidean set such as a line interval. 

3. A brief review of fat fractals 

As discussed in [4-6,14-191, the inadequacy of the dimension is a problem for fat 
Cantor sets and their more general counterparts, fat fractals, i.e. fractals with 
positive Lebesgue measure. The fact that a set has positive Lebesgue measure 
automatically implies that its fractal dimension is an integer. As a result, for fat sets 
the fractal dimension gives no information about fractal properties. An alternative is 
to examine the scaling of the coarse-grained measure p ( ~ ) ,  where E is the 
resolution, i.e. the scale of the coarse graining?. For thin fractals, p ( 0 )  = 0, and the 
leading-order scaling of the coarse-grained measure is a simple power law in E ,  i.e. 
p ( ~ )  where df is the fractal dimension, D is the dimension of the space 
in which the fractal is embedded and A is some positive constant. For fat fractals, it 
seems to be the case$ that the leading-order scaling in the limit as E+ 0 also goes as 

t The possibility of power-law scaling for fat fractals was originally suggested by Mandelbrot [4]. This 
idea was made more explicit and extended in [5, 6, 14-19]. 
$ Although it is possible to construct examples for which this power-law scaling is violated, these appear 
to be unphysical (see [19]). 
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a power law, except that it has a finite asymptote p(O) ,  i.e. 

p ( ~ )  = p ( 0 )  + A & @  (3) 
where A and p are constants. A is unimportant, depending on the units of E and p .  
The exponent p, on the other hand, is independent of the choice of units and is an 
important quantity, providing a characterisation of fractal properties. For fat fractals 
@ is generally unrelated to the fractal dimension. 

The exact definition of p depends upon the method of coarse graining, and 
several different methods have been proposed [5,6,14,15,17].  However, under 
certain quite general conditions, relationships between the resulting exponents exist, 
and the decision of which one to use can be based on convenience [18,19]. 

For the purpose of this study, the fat fractals of interest are closed, bounded 
one-dimensional Cantor sets that derive their fractal structure from the holes 
embedded in them. Let h ( ~ )  be the combined Lebesgue measure (linear extent) of 
all holes having a size E or larger. The coarse-grained measure of the fractal set is 
then defined to be p ( ~ )  = 1 - /I(&), and the fat-fractal exponent p is given by 

E - 0  log E (4) 

In this paper the fat fractal of interest is the complement of the periodic 
intervals, i.e. of the ergodic set. The ‘holes’ in the fractal are the Arnold tongues. 
Note that one nice property of the fat-fractal exponent is that it is like a 
codimension in that it is independent of the dimension in which the set is embedded. 
Thus, the Arnold tongues have the same fat-fractal exponent for a continuous flow 
in three dimensions as they would for the equivalent circle map in one dimension. 

4. Direct computations of fat-fractal scaling 

Since the ergodic set sandwiched between the Arnold tongues is a fat fractal, it is 
obviously interesting to know its fat-fractal exponent. Direct evaluation of the 
fat-fractal exponent is trival at two parameter values for which the ergodic set is not 
a fat fractal. At k = 1, the ergodic set is apparently a thin fractal with fractal 
dimension df = 0.87 19, 101. This implies that 0 = 0.13. At k = 0, the ergodic set is 
the set of all irrational numbers in [0, l ) ,  and a direct computation of 0 yields 
p = m t .  In between, for 0 < k < 1, the ergodic set is a fat fractal, and the value of p 
is not at all obvious. 

In this section we attempt to compute 0 through direct numerical experiments. 
To estimate the coarse-grained measure ,U(&), we compute the boundaries of all the 
periodic intervals whose size is greater than E ,  and compute their combined measure 
h ( ~ ) .  The coarse-grained measure is then 1 - h ( ~ ) .  

For a given rational winding number p / q  and nonlinearity parameter k,  the 
boundaries of the corresponding periodic interval can be computed to machine 
precision. To do this we use a linear interpolation rootfinder to find the critical Q 
values where the periodic orbit becomes marginally stable. Our numerical methods 
are described in more detail in the appendix. 

t Fat-fractal exponents measure properties of the closure of a set (see [19]). @ = m at k = 0 is a result of 
the fact that the closure of the ergodic set has no holes. 
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To compute p( E )  it is important that we find all the periodic intervals whose sizes 
are greater than E.  In order to be sure that we find all of them we organise the 
rational winding numbers using the Farey tree, as described in 42 [12]. Based on 
many numerical experiments, we find that any given periodic interval is always 
smaller than the periodic interval corresponding to its immediate parent in the Farey 
tree. Assuming this is true, it gives a systematic procedure for computing all of the 
stability intervals larger than a given size. Starting with p = 0 and p = 3 we 
systematically explore every possible path? down the tree, stopping whenever we 
encounter a stability interval whose width is less than E. This results in a tree with a 
very jagged bottom, as shown in figure 2. 
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Figure 2. An illustration of the Farey tree construction applied to the sine map. The 
vertical axis corresponds to the winding number parameter a, and the horizontal axis 
corresponds to the depth in the Farey tree. We plot only values corresponding to periodic 
intervals whose size is  greater than E = As can be seen, this results in a tree with a 
very jagged bottom, illustrating the complicated dependence of ASL on the position in the 
Farey tree. The difference in the scalings of the critical ( k  = 1.0) and subcritical ( k  = 0.8) 
cases is also apparent. For the critical case there are many more large intervals. The 
subcritical Farey tree is dominated by the intervals with winding number I /q .  

f Due to the symmetry of the mapping of (l), the periodic intervals corresponding to p in [0, i] are 
identical in size and distribution to those corresponding to p in [i, 11. 
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Figure 3. A plot of p ( ~ )  - p(0) against E for the sine map at k = 0.8. p is the 
coarse-grained measure of the ergodic set and E is the scale of resolution. The agreement 
with the power-law form of (3) is quite good, demonstrating that the ergodic set is a fat 
fractal with a scaling exponent /3 = 0.68 f 0.05. We argue later in the text that fi  = I 
exactly for 0 < k < 1. 

Using this procedure, we computed p ( ~ )  through a range in E at roughly 25 
different values of k. Plotting log(p(E) - p ( 0 ) )  against log E ,  as shown in figure 3, 
shows that at small E ,  p ( ~ )  approaches a power law to a high degree of accuracy. 

One of the benefits of this scaling law is that it allows us to compute accurate 
values for the asymptotic measure p(0 ) .  Once the scaling is known, p ( ~ )  can be 
extrapolated to E = 0, making the estimate of p ( 0 )  considerably more accurate than 
it would be by just using p ( ~ )  at the smallest computed value of E. As shown in 
figure 4, p ( 0 )  computed in this way varies smoothly with k ,  following the 
relationship p ( 0 )  = (1 - k)".314 which is consistent with the conjecture of Jensen et a1 

I I I I 
0 0.2 0.4 0.6 0.8 1.0 

k 

Figure 4. The measure of ergodic orbits, p(O), plotted against the nonlinearity 
parometer k .  The cuwe is a plot of the function (1 - k)".3'4 as conjectured by Jensen et a/ 
11 01. 
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[lo], based on data for values of k in the range 10.9, 1.01. However, our results 
indicate that their conjecture is valid through the entire subcritical region of k. 

The consistency of our result for p(0) as a function of k with that of Jensen et a1 
is somewhat surprising. The data they use to support their result also suggests other 
scaling laws that, when cast into the language of fat fractals, lead to a prediction that 
p =  1. This is incompatible with our numerical observation that 0.6</3 <0.7 for 
0.4 < k < 0.9. 

Though p(0) is quite easy to obtain, it is more difficult to get an accurate value 
for the scaling exponent p. There are several difficulties. One of them has to do with 
numerical limitations on gathering data near k = 0 .  In this region the combined 
measure of the periodic intervals is quite small, and there are very few periodic 
intervals larger than machine precision. As a result we have almost no data on the 
fat-fractal scaling behaviour when k < 0.4. 

Yet another problem in computing /3 occurs due to slow convergence near k = 1. 
The underlying reason for this comes from a crossover effect associated with the 
transition from a fat fractal to a thin fractal at k = 1. This crossover effect is easily 
seen by numerically differentiating the data for the plot of log p ( ~ )  against log E and 
plotting the result as a function of log E, as shown in figure 5 .  For the data at k = 0.8 
the computed derivative converges fairly quickly to a value near p = 0.68. For 
k = 0.95, in contrast, the asymptote is never reached; at the smallest values of E the 
computed derivative is still changing, making it difficult to estimate the asymptotic 
value of p. This problem becomes more pronounced as we approach k = 1. 

As a result of these problems we can only compute /3 accurately in the range 
0.4 < k < 0.9. Taking into account the sources of error discussed above, in this range 
we estimate p = 0.68 f 0.05. This leaves several important questions unanswered, 
the most basic being: is the value of /3 constant through a range of k values, or does 
it vary with k? This question is particularly interesting in view of the ‘phase 
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Figure 5. An illustration of the convergence of the computed value of the fat-fractal 
scaling exponent /3 with the scale of resolution E. The numerical data of figure 3 are 
numerically differentiated. The resulting slopes are plotted against the corresponding 
values of log&, to give an idea of the rate of convergence. We show two cases. At 
k = 0.80 (0) the convergence is within experimental error at the smallest values of E. At 
k = 0.95 (0), however, due to crossover phenomena there is no convergence, even at 
the smallest value of E that we were able to compute. 
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Figure 6. Computed values of the fat-fractal exponent /3 plotted against the nonlin- 
earity parameter k .  In the range where we have reliable data the computed value is close 
to 3 .  Near k = 1, however, cross over phenomena such as that shown in figure 5 prevent 
us from being able to get accurate estimates. Thus, we feel that the apparent smooth 
transition to criticality is due to crossover effects, and the true value of /3 is $ (broken line) 
throughout 0 < k < 1. 

transition’ from a fat fractal to a thin fractal at k = 1. At k = 1 we know that p is the 
complement of the fractal dimension, which according to the computations of 
Jensen et a1 [9, 101 has a value of p = 0.13. This is substantially different from the 
value of 0.68 observed at k = 0.9. What happens in between? Is there a 
discontinuous jump, or does the value change continuously? 

A brute force computation of the exponent at different values of k,  as shown in 
figure 6, suggests a smooth transition. However, we believe that this is entirely a 
crossover effect, and that the exponent takes on the constant value /3 = i. 

5. Numerical evidence supporting scaling laws for AQ(q,fi, k) 

Arnold [l] has studied the behaviour of the stable periodic intervals for (1). In 
particular, he proved that 

A Q  c Ckq (5 )  
where C is a constant. For small k and q,  this upper bound is actually a very good 
estimate?, as shown in figure 7, where we plot the logarithm of A Q  against the 
logarithm of k.  For q = 1 the kq law is exact throughout the entire subcritical region 
of (1). For larger values of q, however, deviations begin to appear at large k,  as can 
be seen by examining the upper right-hand part of the figure; the upper bound 
ceases to be a good estimate. As q increases, deviation becomes more severe, so 
that for very large values of q it is numerically impossible to get close enough to 
k = 0 to observe kq scaling at all. The breakdown of the kq law for sufficiently large 
values of k and q is illustrated in more detail in figure 8, where we give similar plots 
for q = 10, 15 and 20. 

t See [lo] also. 
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Figure 7. According to Amold [l 1, in the limit as k- ,  0 at fixed q, A Q  = k9, for q = 1 , 2  
or 3. In this figure we see that this works quite well, even for larger values of q. AQ is the 
width of a given periodic interval, k is the nonlinearity parameter, and q is the period. The 
ratio shown near each curve is the winding number. 

I I 

Another interesting limit, relevant to fat-fractal properties, is when q 4 m while 
k is held fixed. To investigate this limit, we plot the logarithm of AQ against the 
logarithm of q, with p = 1, for several different values of k, as shown in figure 9. 
This plot reveals a very different behaviour: the curves approach a straight line, 
indicating that AQ scales as a power law in q. Measurements of the asymptotic slope 
of these curves yield powers that in every case are extremely close to -3 (for 
example, at k = 0.8 we measured the slope as -2.9998 f 0.0004). This scaling is not 
restricted to winding numbers with p = 1, as can be seen in figure 10, where we plot 
log As2 against log q for several different values of p at k = 0.8. This leads us to 
hypothesise that, in the limit as q 4 CQ at fixed k, 

A Q  = Cq-3 

where C is some constant of proportionality. Note that Kaneko has observed a 

lo- ’  1 

Figure 8. Arnold‘s scaling law breaks down for large k or q, as seen in this figure, 
which is  like figure 7 except that q is larger. 
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Figure 9. The widths of periodic intervals plotted agoinst the period q ,  for intervals with 
winding number l / q ,  at several different values of the nonlinearity parameter k .  For large 
q the data approach a straight line of slope -3. This convergence is slower at smaller k, 
corresponding to a crossover to Amold’s kq scaling. A,  k = 1.0; 0, k = 0.8; B, k = 0.65; 
0, k = 0 . 5 ;  A, k = 0 . 4 ;  8, k = 0 . 3 ; 0 ,  k = 0 . 2 .  

similar relationship?. The dependence of C on p and k is indicated in figures 9 and 
10, respectively, where we see that different values of these quantities result in 
different intercepts. 

This power-law scaling is particularly interesting when compared with the result 
[lo, 121 obtained for critical maps ( k  = 1). They demonstrate that 

lim q3AQ = constant 
q-m 

which is the scaling that we observe, except that we are seeing this same scaling in 
the subcritical regime. This is somewhat surprising, since the argument that 

1 IO‘ 102 103 lo4 105 
Q 

Figure 10. For a given nonlinearity parameter k = 0.8, AB is plotted against the 
period q for several different values of p .  For large q the asymptotic scaling goes as q-3. 

t Kaneko has previously observed a similar relationship, of the form Ak = Cq-3. If AB is proportional to 
Ak, then these two results are equivalent. See [20]. 
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Cvitanovic et a1 [12] use to derive this result explicitly assumes criticality. In 
particular, they assume that the periodic intervals and their neighbourhoods are 
self-similar, i.e. that the separation between the centres of two periodic intervals 
with winding numbers l / q  and l / (q  + 1) scales like AQ(1, q).  For critical maps this 
is true, but for subcritical maps there is nothing in existing renormalisation theories 
to suggest that this should be so. Thus there is no a priori reason to suspect that the 
4 - 3  scaling should hold in general, and this numerical result is surprising. 

It is immediately apparent that the domain of validity of the q-3 law is quite 
different from that of the kq law. They cannot be exactly valid at the same time, 
since at fixed k, (6) implies exponential scaling in q. The key point is that Arnold’s 
calculation is an upper bound, and is a good estimate only in the limit as k - 0  at 
fixed q. The 4 - 3  law, in contrast, is valid in the opposite domain, i.e. as q+w at 
fixed k.  The difference in the domains of validity can be seen by comparing figure 9 
with figures 7 and 8. In the latter two figures we see that the kq law is not satisfied 
when k and q are large, and in figures 9 and 10 we see that the q-3  law is not 
satisfied when k and q are small. Thus, these scaling relations are valid in 
complementary regions of the parameter space, with a crossover in between. 

To summarise, our numerical experiments suggest that for fixed p and a fixed 
value of k in (0, 11, AQ scales as q-3  in the limit as q + 03, but in the limit as k +  0 
for fixed q AQ scales exponentially in q. 

5.1. Scaling of AQ as a function of p and q at fixed k 

In the previous subsection, we found that AS2 scaled as q-3 for fixed k. 
Unfortunately, numerical study reveals that at fixed q there is a wide discrepancy in 
the values of AQ produced by different values of p .  The behaviour is not monotonic 
in p ,  i.e. the values of AQ fluctuate wildly as p increases, making it clear that the 
dependence of AQ on p is quite complicated. To avoid this problem, we seek a 
statistical law. By reordering the AQ values according to their size, they can be 
assigned labels p which indicate their order in size. For convenience, we let p’ = 1 
correspond to the largest window, p = 2 correspond to the second largest window, 
etc, and = n(q)  correspond to the smallest window. When there is no degeneracy 
in window sizes, n(q)  =$#(q )  where #(q )  is the Euler-Totient function whose 
values are the number of integers not exceeding q that are relatively prime with 
respect to q. The results of this reordering process are shown in figure 11, where we 
show the size distributions at k = 0.8, for several different values of q. We have 
experimented with various ways of plotting our results, and found that, for each 
fixed q, the data is reasonably well represented by a power law of the form 

where C is a constant. As seen in figure 11, equation (7) gives a fairly good fit for 
large p ,  but there are significant deviations when p is small, particularly for large q. 

The variation of the exponent with q is shown in figure 12, where we plot a(q) 
against q. We see that 

where y ( k )  G 0. 
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Figure 11. The distribution of interval sizes at fixed period q .  At fixed k = 0.8 we 
compute all the periodic intervals with a given q, and sort them in order according to their 
size. The order is labelled by an index a = 1, 2, . . . , a,,,. A Q  is plotted against p for 
several different values of q .  

We can test for the consistency of (7) and (8) with our data by noting the 
following. For a fixed k and q, let ABmin and AB,,, be the smallest and largest 
computed window widths. Now, form their ratio ASZ,in/AB,,,. Combining (7) and 
(8) results in the expression 

AB,in/AB,,, = r ~ ( q ) " ( ~ ) ~ .  (9) 
Assuming there are no degeneracies, and using the fact that the average value of 
$(q) (hence n(q))  scales as q for q >> 1, the logarithm of the left-hand side of (9) 
should scale as q log q with slope y ( k )  for large q.  This is borne out in figure 13, 
which is a plot of log(ABmin/ABm,,) against q log q for several different values of k.  
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Figure 12. The slopes of the lines shown in figure 1 1 are plotted against the 
corresponding period 9 .  We get a rough fit to a line of slope -0.035. 
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Figure 13. The ratio of the size of the largest and smallest periodic intervals for a given 
q is plotted against q log,, q for different values of k .  

Values of y obtained by fits of (9) for several values of k suggest that 

y = b l o g k  (10) 

where b "- 0.22. 

5.2. Scaling ansatz 

It is difficult to make sense out of the behaviour of AS2 without an hypothesis to test 
our results against. We have experimented with various scaling ansatzes, but we 
have been unable to find any simple ones that fit the data in every limit. The scaling 
of AS2 in the full set of parameters p ,  q and k ,  is sufficiently complicated that, 
without a theory, it is hard to find a form for them empirically. 

Figures 9 and 10 suggest that AS2 is described by a law which is at least roughly 
of the form 

Here, g is a function which is monotonically increasing in q and monotonically 
decreasing in 15. S(x) is a sigmoid function satisfying S(0) = 0, S(m) = 1, and varying 
rapidly near a crossover at x = U. For small values of x, S must scale linearly with q 
to recover the k4  behaviour predicted by Arnold, but for large x,  S approaches a 
constant, so that the q-3 scaling can dominate. 

In our attempts to flesh out the detailed form of this scaling law, we produced 
several candidates for S.  Although several of these seemed quite promising, and 
explained much of the behaviour that we observe, in the end our numerical 
experiments constrained the form off,  g and S sufficiently that none of these forms 
were able to describe the behaviour in every limit. Since our ansatzes became more 
and more complicated, we decided it was wiser just to report our numerical 
experiments at face value. 

For example, to test the behaviour of the crossover value 0, in figure 10 we 
marked the point where the crossover seemed to occur by eye, and experimented 
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IO+ 

with different ways of plotting the data. When we plot log ASZ against q / p  the 
crossovers all occur at roughly the same place. This suggests that g@,  q )  = 4/15, and 
U is a function of k alone. To get an idea of the k dependence we measured the 
asymptotic y intercepts f(k) of the lines approached by the curves in figure 9. We 
get a good fit when we plot f(k) against l lk,  giving the approximate relationship 

f(k) = -2.69(l/k - 1.09). (12) 
This is of course only approximate; since it vanishes close to k = 1, it may well be 
that the last term is exactly 1 rather than 1.09. Also, this may only be the 
lowest-order term in a Taylor expansion of something else. Since we cannot probe 
to small values of k it is difficult to tell. 

Another test of the scaling comes from plotting AS1 against log k for different 
values of (see figure 14). The striking result is that we still see k4 scaling, 
independent of 15. Changing p only causes a shift in the ASZ intercept. This places a 
strong constraint on the form of So. 

Finally, it is interesting to study the behaviour of ASZ at criticality. Figure 13 and 
equation (10) make it clear that there is a qualitative change in the behaviour there, 
as y (the slope) apparently goes to zero. In fact, by replotting the data at k = 1, we 
see that ASZmin/ASZm, roughly follows a power law, with an exponent that is 
approximately 0.72, as illustrated in figure 15. 

Another important qualitative change has to do with the meaning of the variable 
15. Well below criticality we find that AQ,,, always corresponds to p = 1, so that 
15 = 1 implies p = 1. This is illustrated in figures 16(a) and 16(b), where we plot 
log ASZ against log q for many different values of p, at k = 0.8 and 0.9, respectively. 
In both cases, the top ‘line’ of dots corresponds to p = 1. As we increase k to 0.95 
this changes; the lines of dots corresponding to p = 1 is now in the middle, and the 
top edge now corresponds to another value of p, as shown in figure 16(c). This 
effect continues to grow, until in figure 16(d), for k = 0.99 we see that the line p = 1 
now corresponds to the smallest ASZ within the range of log q shown! 
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Figure 15. The ratio of the sizes of the largest and smallest periodic intervals for a 
given q i s  plotted against q for k = 1. Compare with figure 13. 
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Figure 16. We plot AQ against q for as many 
values of q and p as we can conveniently compute, 
for (a)  k = 0 . 8 ,  (b) k = 0 . 9 ,  ( c )  k=0.95 ,  (d) k =  
0.99 and (e )  k = 1.0. As we move towards critica- 
lity, the p = 1 line moves from the top to the bottom, 
and the exponential falloff of the bottom edge 
becomes slower, until finally at criticality both edges 
are described by power laws. At criticality, the 
slope of the tap edge is apparently Shenker's 
6 = -2.16, while the slope of the bottom edge is 
-3. 
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Nonetheless, note how the top edge of the ‘envelope’ described by all of the 
points continues to be parallel to the line defined by p = 1. This implies that 
p = constant still asymptotically follows the qW3 law very close to criticality, at least 
for low values of p .  

This dramatically shifts at k = 1, as seen in figure 16(e). Now the lower boundary 
of the envelope is straight, indicating that now both follow power laws. The lower 
boundary is defined by p = 1, which has slope -3. In the middle we see other lines 
defined by different values of p = constant, which also have slope -3. However, the 
top edge, which by definition corresponds to p = 1, has a different slope, which is 
approximately Shenker’s 6 = -2.16. The explanation is that the value of p 
corresponding to p = 1 is constantly shifting, as we follow the golden mean scaling 
through the Farey tree, so that even though any fixed p follows slope -3, the top 
edge is not as steep. The average scaling for any given q lies somewhere in the 
middle, corresponding to the mean scaling exponent -2.29 measured by Jensen et a1 
[lo]. Presumably this can also be related to the average scaling exponents observed 
in renormalisation experiments in which the scaling is not restricted to the golden 
mean [21,22]. 

To conclude: we have discovered a variety of different scaling relationships, 
corresponding to various limits and cuts through the parameter space of 
AQ@, q, k ) .  The most important scaling relationship is that, in the limit as q + CQ at 
fixed p and k, AS2(q) = Cq-3. 

At this point, we do not have a theory, and it is difficult to go much further 
without one. Nonetheless, the scalings and the ansatz that we have presented 
provide a variety of constraints that any theory must satisfy. We have certainly 
demonstrated that the subcritical scaling behaviour for the widths of the windows is 
not ‘trivial’. Also, we have enough information about the scaling to compute the 
value of the fat-fractal exponent p. 

6. Estimate of fat-fractal scaling exponent from properties of 
AQW, 4) 

Although our numerical work in the previous section did not determine a complete 
expression for AQV, q ) ,  we know enough about its asymptotic behaviour as q and 
p go to infinity at fixed k to estimate the fat-fractal exponent /3 analytically. The 
essential scaling relationship that dominates the fat-fractal scaling is the limiting 
behaviour as q --j m at fixed p and k. Based on our numerical studies, we are quite 
confident that in this limit AQ decreases according to q-3 for subcritical values of k. 
The other essential fact that emerges from our numerical experiments is that, for 
fixed k and q,  AS2 decreases in p’ faster than a power law for p << q and as a power 
law with a large exponent (proportional to q )  for larger values of p .  As we shall see, 
this very fast drop-off of AS2 with p together with the qW3 scaling determines the 
value of p. 

To begin the calculation, we note that dp(&)=p(&)-p(O) of (3) is just the 
measure of all periodic intervals which are smaller than E.  Fixing the value of E << 1, 
we have 

W E ) =  c A Q ( q , P )  
AQ<E 

where the sum is over all values of q and f i  for which the inequality holds. 
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To understand the behaviour of this sum, we make the ad hoc assumption that 

(14) AQ = Aq-3p’- a 

where A and a are positive constants. Although this is not the correct form, what 
we will demonstrate is that, providing A Q  falls to zero in p’ sufficiently rapidly, the 
asymptotic scaling is dominated by the q-3  behaviour, so that the fat-fractal 
exponent p takes on the same value independent of any detailed assumptions about 
the p’ dependence. 

The domain of the summation is sketched in figure 17. For convenience we have 
broken it into two regions. In region I the lower boundary is given by AQ = E ,  

which in this case gives 

qc = ( ~ p ’  a/A)-1/3.  

The lower boundary of region I1 is determined by the fact that < q. This condition 
is a bit complicated, since some values of p may yield reduced fractions, so that, 
unless q is prime, Pmax < q - 1. This can be taken into account on average using the 
fact that, in the limit of large q, the fraction of integers p”,, that are prime relative 
to q is pmax = 3/;n2q. For the purposes of our estimate we will simply use pmax = q 
since the factor 3/n2 does not affect the calculation-any fixed value yields the same 
result. 

The vertical line @ = p *  divides the two domains. p *  is determined by 
qc(q p * )  = p * ,  which gives 

(16) p *  = ( E / ~ ) - 1 / ( 3 + 4 .  

Summing over each region, we have 

These sums can be estimated by converting them into integrals. Doing this in the 
most straightforward way results in a lower bound on dp(&), since AQ is a 

Figure 17. The domain of the summation given in (1 9). q is the period, p is the 
size-ordered numerator of the winding number, qc is the critical curve where A Q  = E,  and 
p *  is the p value such that qc = p. 
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monotonically decreasing function of q and p .  Later we will compute an upper 
bound. 

Converting these sums to integrals gives 

6 p ( t ) = [ * r A q - ] p ' - " d p d q  q c  + I:: 5 4 q - 3 P - Y  dq. (18) 

Using (15) for qc and (16) for p * ,  these integrals are straightforward. Providing 
a Z 3  and a# -1, the result is 

(19) ( ~ ~ ( ~ 1  = cE2/3 + & ( m + l ) / ( n + 3 )  

where C and are constants. As long as a > 3 ,  the first term asymptotically 
dominates in the limit as E+O.  

This scaling comes from a lower bound on G ~ ( E ) .  Since AS2 is monotonic 
decreasing, an upper bound can be constructed by integrating AS2@ - 1, q - 1) over 
the same limits used in (18). This creates a problem at p = 1, since AS2(O, q )  = 00. 

This problem can be solved by explicitly separating the p = 1 term, so that 

@ ( E )  s [ A(q - 1)-3 dq + -/ -/ A(q - l)-3@ - l)-m dp dq 
P' - 

q e  2 q c  

r m  rm + A(q - l)-3(p' - l)-a dp dq. 

The first term comes from 15 = 1. Doing this integral shows that, as long as a > 3, 
this term continues to dominate, so that the leading-order scaling goes as E " ~ .  Since 
we have demonstrated that G,u(E) has both upper and lower bounds that scale as 
E " ~ ,  it is clear that & ( E )  must scale that way as well. 

Furthermore, it is clear that, providing AS2 falls off sufficiently fast as p +  M at 
fixed q, the dominant scaling is &'I3. The first term in (20) is independent of p ,  and 
yields this scaling; as long as the other terms vanish fast enough, this term will 
dominate. The critical scaling occurs for a power-law dependence of the form of (14) 
with a = 3 .  From our numerical studies it is clear that this is satisfied in the 
subcritical regime, since AS2 falls off as p +.m faster than p-3. It is also clear that, as 
long as the q-3 scaling holds, 3 is an upper bound for 0, regardless of the nature of 
the p scaling, since in the limit as E + 0, the lowest scaling exponent dominates. The 
p = 1 term generates a scaling exponent of 3, which guarantees that /3 s 3. 

At criticality, as we have demonstrated in figure 16(e), p =  1 no longer 
corresponds to p = 1, and the q-3 scaling law is no longer the dominant scaling. 
Instead, the dominant scaling is q', where the exponent is Shenker's 6 = -2.16. 
However, since both boundaries of the envelope in figure 16(e) are described by 
power laws, there is no single dominant scaling, and it becomes necessary to take an 
average of the different scalings. We have not done this, but the average scaling that 
Jensen et a1 [lo] report is in agreement with the value p = 0.13 that is a consequence 
of their calculations of the fractal dimension. 

Thus, we conclude that /3 = $ throughout the subcritical regime. This result is a 
consequence of the q-3  scaling, combined with the rapid asymptotic falloff of the p 
scaling. Note that this result is in agreement with our direct numerical calculations; 
prior to this computation, at the parameter values where we felt confident enough to 
make estimates (0.4< k<0 .9 )  all gave values within a few percent of 0.67. p 
discontinuously jumps to /3 = 0.13 at criticality. The transition from fat-fractal 
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scaling to thin-fractal scaling is like a first-order phase transition, even though in a 
naive numerical study it looks like a second-order phase transition, due to crossover 
effects. 

Note that our result contradicts a previous result by Grebogi et a1 [14], who 
conjectured that p = 1 for all k <  1. Their mistake was the assumption that 
A Q ( q )  -- k4. As we stated in the previous section, this is true only for the limit as 
k -+ 0 at fixed q, whereas they assumed that it was true as q at fixed k. As we 
have shown, the q-3  scaling term combined with the rapid falloff window size with p 
implies that p s 5, in contradiction with their result. 

8. Discussion 

The most striking result of 9.5 is the q-3 scaling of AQ.  Although we have not 
studied other maps, and so we cannot make a convincing statement in this regard, 
because of the simplicity of this result we feel that it is likely to be universal. It 
would be nice if someone could extend this result, either by more experiments on 
other systems or, better yet, by a theory. If true, this universality would be 
particularly interesting, since it does not come from a particular behaviour near a 
critical point. Of course, it may be that this is a special property of the sine map. 

An interesting feature of this scaling is the correspondence? to the critical scaling 
discovered by Cvitanovic et a1 [12]. This aspect of the subcritical scaling is the same 
as the critical scaling. This is somewhat contrary to conventional wisdom, which 
comes from renormalisation theories which treat the behaviour of the centres of the 
periodic intervals [7,8,11]. These theories demonstrate that all subcritical maps 
approach the same universal behaviour, which is different from that of critical maps. 
The universal properties of the subcritical maps are ‘trivial’, in that they reduce to 
those of the simple rotation, which can be understood from number theory. 

The behaviour that we have studied here relates not to the centres of 
the periodic intervals, but rather to their widths, AQ.  As we have demonstrated, 
the scaling of the widths does not appear to be trivial. Some aspects, such as the 
asymptotic q dependence, are the same as the critical behaviour. Other aspects, in 
particular the p dependence, are quite different from the critical behaviour; AS2 falls 
off much faster for the subcritical regime than it does in the critical regime. As a 
result, the fat-fractal properties are dominated by the q dependence in the 
subcritical regime. This is the origin of our conjecture that /3 = 3 throughout this 
regime. 

Perhaps the main conclusion of our paper is that more attention should be 
devoted to theoretical treatment of the scaling properties of the subcritical Arnold 
tongues. In contrast to the critical surface, which is just a boundary between two 
regions of parameter space, the subcritical region occupies a finite portion of 
parameter space, and is easy to find experimentally. Many have assumed that the 
properties of the subcritical region are trivial, but our experiments suggest that there 
are many interesting scaling relationships. 

?The part of their argument having to do with the scaling of the centroids applies equally well to the 
subcritical case. The part which does not is the assumption of self-similarity. It is surprising that the 
widths of the subcritical periodic intervals behave sufficiently like the centroids to make them scale the 
same way. 
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Appendix 

We describe here the numerical methods used to generate the data discussed in the 
text. The first part deals with the calculation of the interval widths for a given p / q  
cycle of the sine circle map. The second part shows how the intervals can be 
calculated in an efficient manner taking into account the Farey-tree ordering of 
locking intervals. The mapping we consider here is the standard sine circle map but 
the techniques are general and can be applied to any mapping of a single variable 
which displays locking behaviour. The circle map is 

x,,~ = x, + Q - (k/2n) sin(2nx,) (All  

where Q is the bare winding number and k the nonlinearity parameter. We define 
f ( x , )  = x, + Q - ( k / 2 n )  sin(2nx,) so the map is now of the form x,+~ = f (x,). The 
condition for locking in a p / q  cycle (k fixed) is f 9 ( Q $  x,) = p + x, where Q: is some 
value of Q in which the locking p /q  is stable. xq  denotes one of the q stable fixed 
points of the map, and f 4 ( x )  is the qth iterate of the function f ( x ) .  We want to 
locate the marginally stable values of S2: which define the interval of stability of the 
p /q  locking. The condition for this is that de,/&, = 0. This quantity can be written 

dQ,/du, = (1 - a f w ~ , y ( a f v a ~ , ) .  

a f w ~ ,  = af(x,)/ax 
af%m, = 1 + (af(~,_~)la~)(af9--’ia~,). 

(A2) 

In terms of derivatives of the mapping itself, af /ax, one can write 

For each value of x in the interval 0 < x < 1 there exists a solution of equation (Al) 
for the parameter Q,. Therefore, we pick a value of x, calculate the value of Q,, 
and evaluate the function dQ,/&,. The zero of this function is found using a 
modified linear interpolation rootfinder which requires finding values of x which 
bracket the zero. We use this method rather than Newton’s method because it is 
certain to produce convergence and yet is only marginally slower. 

As mentioned earlier in the text, we calculate intervals according to their 
distribution on the Farey tree rather than calculating all intervals with a given q and 
iterating the value of q. This is an advantage when computing the measure because 
one does not calculate many intervals smaller than the size of interest. The 
procedure used is to start with the intervals 0/1 and 1/1 and generate the successive 
Farey sums, defined as p / q  = p ‘ / q ’  @p” /q ”=  ( p ’  +p”)/(q’ + 4”). Thus the first 
interval down in the tree is 1/2, then 1/3 and 213, etc. We go down the 0/1 branch 
until we reach a smallest window size which we specify. Then we work our way back 
up that branch exploring all side branches as we go until we get back up to the 
interval 1/2. We only go to 1/2 since the particular map we use is symmetric about 
1/2. This only works provided that the interval formed by the Farey sum is always 
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smaller than the intervals of the ‘parents’. We log all exceptions to this assumption 
in the program and have not found any exceptions for a variety of k values in the 
interval 0 < k < 1. The details of the computer program which generate the tree 
structure requires that the code be written in a recursive language such as c or 
PASCAL; FORTRAN does not work for this. 
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