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We study the three standard methods for reconstructing a state space from a time series: delays, derivatives, and 
principal components. We derive a closed-form solution to principal component analysis in the limit of small window widths. 
This solution explains the relationship between delays, derivatives, and principal components, it shows how the singular 
spectrum scales with dimension and delay time, and it explains why the eigenvectors resemble the Legendre polynomials. 
Most importantly, the solution allows us to derive a guideline for choosing a good window width. Unlike previous 
suggestions, this guideline is based on first principles and simple quantities. We argue that discrete Legendre polynomials 
provide a quick and not-so-dirty substitute for principal component analysis, and that they are a good practical method for 
state space reconstruction. 

1. Introduction 

State space reconstruct ion is the creat ion o f  a 
mult idimensional ,  determinist ic state space f rom 
a lower dimensional  t ime series. It is a prerequi-  

site step for analyzing a t ime series in the 

language of  dynamical  systems or  for making 

predictive state space models.  In the statistics 

li terature, the idea o f  state space reconstruct ion 

is quite old [1]. It was in t roduced into dynamical  
systems theory independent ly  by Packard  et al. 
[2], Ruell  #t, and Takens  [3]. The  impor tant  con- 

tr ibution f rom dynamical  systems was the demon-  
stration that  recons t ruc ted  state spaces can 

preserve geometr ical  invariants, such as the 
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eigenvalues o f  a fixed point, the fractal dimension 

of  an attractor,  and the Lyapunov exponents  o f  a 

trajectory. This was demons t ra ted  numerically by 
Packard  et al. and proven by Takens.  

Takens  proved that  in the absence of  noise it is 

always possible to embed  a time series in a state 
space. W h e n  the dimension is sufficiently high, a 

reconstruct ion is almost  always an embedding.  

The  method  of  reconstruct ion is irrelevant, as are 

the values o f  free parameters  of  the reconstruc-  
tion, such as the lag time. 

However ,  in practical  applications, the choice 

o f  parameters  such as the lag time may have a 
significant effect on the quality of  the results. For  

example, real time series are inevitably contami-  

nated  by noise, and different reconstruct ions  

behave differently in the presence  of  noise [4]. 
Consequent ly ,  in the last ten years much of  the 
research in this area has focused on different 
methods  of  reconstruct ion,  and on the problem of 
finding good reconstruct ion parameters  [5-9]. The  
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three methods of state space reconstruction in 
popular use are delays [3], derivatives [2], and 
principal components [9]. The relations between 
these methods have remained unclear, as has 
their dependence on the choice of parameters. 

In this paper we analyze the reconstruction 
problem theoretically. The core of our analysis is 
a closed-form solution to principal component 
analysis in the limit of small window width. This 
solution is based on derivatives of the time series, 
and it gives insight into the relationship between 
delays, derivatives and principal components. It 
provides a theoretical understanding of the be- 
havior of principal components, which makes it 
possible to compare them quantitatively to 
derivatives and delays. It also explains several 
properties of principal component analysis origi- 
nally observed by Broomhead and King [9], such 
as the similarity of the eigenvectors to Legendre 
polynomials. 

Perhaps most important, the small-window so- 
lution provides a quantitative understanding of 
the relationship between the free parameters and 
the reconstructed state space. This allows first- 
principles analysis of the problems surrounding 
the choice of parameters. We develop a theoreti- 
cal guideline for choosing a generally good win- 
dow width. This guideline is based on quantities 
that are simple to compute directly from the time 
series. Furthermore, it yields good results in pre- 
liminary numerical experiments. 

This paper is closely related to a previously 
published paper of ours, ref. [4]. In that paper, 
we proposed a general framework for under- 
standing how state space reconstructions and 
nonlinear coordinate transformations affect noise 
and estimation error. In this paper, we limit our 
attention to delays, derivatives, and principal 
components. There are interesting connections 
between the two papers which we have not had 
time to investigate. 

This paper is organized as follows: In section 2, 
we review delay vectors and principal component 
analysis. In section 3, we derive a solution to 
principal component analysis and test it numeri- 

cally. In section 4, we examine the implications of 
the solution towards practical problems of state 
space reconstruction. Section 5 contains a sum- 
mary of results and open questions. Several math- 
ematical issues are discussed in appendices. 

2. Review 

In this section, we review the work of Packard 
et al., Takens, and Broomhead and King. This 
section also serves as an introduction to notation. 

2.1. Delay vectors 

A delay vector x(t) for a univariate time series 
x(t) is defined by 

x ( t )  = ( x ( t - m p v ) , x ( t - ( m p -  1)z) . . . . .  

x( t )  . . . .  ,x( t+mf~'))*,  (1) 

where r is the lag time, mf is the number of 
future coordinates, mp is the number of past 
coordinates, and t denotes the transpose. The 
dimension of a delay vector is m =mp + m e + 1. 
We take delay vectors to be column vectors. 
Usually, delay vectors are defined so that the 
future-most coordinates are first. For conve- 
nience in what follows, we have reversed the 
order. 

Let l be the dimension of the underlying dy- 
namical system which generates x(t)  .2. Takens 
[3] proved that in the absence of noise, if m > 
21 + 1, then m-dimensional delay vectors generi- 
cally form an embedding of the underlying state 
space #3. An embedding exists for generic r, so in 

#2Or, as in Takens' proof, let l be the dimension of a 
Euclidean manifold that contains the attractor of the dynami- 
cal system that generates x(t) .  The time series x( t )  is pre- 
sumed to be the output of a smooth measurement function on 
the/-dimensional state space. 

¢3Note that while rn > 21 + 1 generically guarantees an em- 
bedding, in some cases there is an embedding for l < m < 21. 



J.F. Gibson et al. / Practical state space reconstruction 

the idealization of arbitrarily precise measure- 
ments of x(t), the choice of r is unimportant to 
the reconstruction. However, real data are neces- 
sarily noisy, and finite amounts of data cause 
estimation errors. These limitations make the 
choice of r important, for theoretical reasons 
that we discussed in detail in ref. [4]. In typical 
practical applications, the dimension l is un- 
known, so that both m and r must be chosen 
without guidance from Takens'  theorem. 

A single time series provides data for a se- 
quence of delay vectors. Suppose we have N 
samples of x(t), sampled at the interval At. 

coordinates of x(t) is meaningless to algorithms 
in which the delay matrix is the only input  #4. 

The construction of the delay matrix is the first 
step of any state space reconstruction method. 
Alternate methods of reconstruction, such as 
derivatives and PCA, are really coordinate trans- 
formations on delay vectors. To be clear, we will 
call the construction of X (essentially, the choice 
of the parameters m and ~-) the delay reconstruc- 
tion, and we will call subsequent operations coor- 
dinate transformations. 

2.2. Principal component analysis 

{x(iAt)}, i~[O,N-1] .  (2) 

If we set the lag time to an integer multiple of the 
sampling time, z = hAt, we can construct N ' =  
( N - ( r a p  + m f ) h )  delay vectors from the time 
series. The first delay vector is x(t o) where t o = 
mpZ, and the last is x(t o + (N '  - 1)At). The delay 
matrix X ~ R N'xm is a normalized sequence of all 
delay vectors, 

[ Xt( to) ) 
X=N'-l/z[x. *(t°+At) 

I x t ( t o + ( N ' - I ) ) A t  

(3) 

Substituting with eq. (1) and t o =rap7 reveals 
that X is invariant with respect to changes in mp 
and m e if m = m p  d- m f  d- ] and r are held con- 
stant: 

X = N ' -  I/2 

x ( O )  . . . . .  x ( h ( m  - 1 ) A t )  

x(,at) . . . . .  x((h(m - 1) + 1)At) ) : - . 

x ( h ( N - - m +  1)At) . . . . .  x ( ( N -  1)At) 

(4) 

Thus the distinction between future and past 

Principal component analysis (PCA, also known 
as Karhunen-Lo~ve decomposition, principal value 
decomposition, and singular systems analysis) is a 
general algorithm for decomposing multidimen- 
sional data into linearly independent coordinates. 
Broomhead and King [9] proposed using PCA as 
a coordinate transformation on delay reconstruc- 
tions in order to eliminate linearly dependent  
coordinates and artificial symmetries. We give a 
brief review in order to provide a background for 
discussion. 

2.2.1. Methodology 
The first step in PCA is the estimation of the 

covariance matrix #5. For delay vectors, we define 
the matrix ~x ~ Rm ×m by 

= = x * x .  (5) J ~ c X  

From the definitions of X and -~x, it is easily 
shown that 

( ~'~%)ij ~ ' ( X i ( t )  x j ( t ) ) t ,  (6) 

#4For example, consider an algorithm that at tempts  to 
predict the next value of the time series, x(NAt). If m is 
held constant,  it is equivalent to set mp = 0 and predict 
from x ( h ( N -  m + 1)At) or to set mf  = 0 and predict from 
x ( h ( N -  1)At). 

#5pCA can also be formulated in terms of the singular 
value decomposition of the delay matrix X. This is a stabler 
form for numerical calculations when X is ill-conditioned. 
See ref. [10]. 
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where xi(t) denotes the ith coordinate #6 of x(t), 
( )t denotes a time-average, and t ranges from t o 
to t o + ( N ' - 1 ) A t .  Hereafter we will suppress 
the time-indices in averages, and we will assume 
that N'At is large enough that eq. (6) is effec- 
tively an infinite-time average, in which case w J~'X 

approaches the covariance matrix of delay vec- 
tors. In this limit, the elements of ~ are given by 
the autocorrelation function. 

(~J"~x)ij = A ( ( i  - j ) z ) ,  

where 

(7) 

A(~') = ( 2 T ) - '  lim " j r  x( t )  x(t  - r) dt. 
T - ~ =  - T 

Throughout this paper, we use ~ to indicate a 
covariance matrix and a subscript to indicate its 
coordinate system. 

The next step in PCA is the diagonalization of 
the covariance matrix. Since ~x is real symmetric 
it can be written as the product 

= *,  (8) 

where S is m x m orthonormal and ,~2 is m x m 
diagonal. S: R m ~ R m defines a rotation on delay 
vectors, 

yt(t) = x*( t )  S. (9) 

The components yj(t) of the vector y(t) are 
called principal components. 

Define the matrices Y=XS  and -~y = YtY. It 
is easily shown that My is the covariance matrix 
of principal components, 

(~,), j  = <y, yp .  (10) 

By the definitions of Y and ~x, eq. (8), and the 
orthonormality of S, 

~y=S+~.S, (11) 

_ v 2 .  (12) 

Thus the covariance matrix of principal compo- 
nents is diagonal, and the principal components 
are linearly independent. 

Let sj be the j th  column of S and l e t  ttj  2 = ~jj. 
Then sj is an eigenvector of ~x and o) 2 is the 
corresponding eigenvalue. By eq. (9), principal 
components are the projections of delay vectors 
onto the eigenvectors. 

y j ( t )  = x * ( t )  "sj. (13) 

By eqs. (10) and (12), the eigenvalues measure 
the variance of the principal components #7 

(y~)  = O)2. (14) 

The set of m eigenvalues, {o,,.2}, i ~ [0, m - 1], is 
called the singular spectrum. The eigenvalues and 
eigenvectors are ordered so that tr02 >__ tr 2 >__ tr22, 
etc. 

Sauer et al. [11] extended Takens' proof to 
principal components, showing that generically 
21 + 1 principal components form an embedding. 
In some cases, fewer principal components are 
needed. Let q be the minimum number of princi- 
pal components which form an embedding. Since 
we are interested in embeddings, we will assume 
that m > q. 

2.2.2. Motivation 
In some cases PCA can reduce noise. Here we 

have in mind setting the delay dimension m large, 
and then projecting the delay reconstruction into 
q < m principal components. 

Suppose that the time series x(t) is the sum of 
a smooth time series $(t)  and a Gaussian l iD 
noise process r/(t), 

x(t)  = $ ( t )  + r / ( t ) .  (15) 

This induces isotropic Gaussian l iD noise in de- 
lay coordinates, with variance (~72). The pro- 
jection of the noise in any direction also has 
variance (r/2); thus the signal-to-noise ratio of 

#6Our convention is to start indices at zero: vectors begin 
with i = 0 and matrices with (i, j )  = (0, 0). 

#7Note that for principal components, ( y j ) =  0 for j > 0, 
therefore (y2 )  is the variance of yy for j > 0. 
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any rotated coordinate is proportional to the 
square root of its variance. For example, the 
signal-to-noise ratio of yj(t) is ¢ ( y2 ) / ( r/2 ) .  

When the time series has noise in the form of 
eq. (15), PCA is the optimal linear coordinate 
transformation. This is because subsets of princi- 
pal components have maximum variance, and 
consequently, maximum signal-to-noise ratios. 
Precisely speaking, for all orthonormal coordi- 
nate transformations S': R"  ~ R m and y'* = xtS ', 
on a fixed set of delay vectors X, and for all 
values of d ~ [1, m], 

d - 1  d - 1  d - 1  

E 0.i 2= E (y21 >_ E (y;21. (161 
i = 0  i = 0  i = 0  

For proof, see ref. [17]. Because they have maxi- 
mum variance, the first d principal components 
have the maximum signal-to-noise ratios of all 
d-dimensional projections of a fixed delay recon- 
struction. In this sense, PCA is the optimal linear 
coordinate transformation. 

However, there are two major qualifications: 
First, a set of d principal components is optimal 
only for a fixed delay reconstruction. Changing 
the delay reconstruction (i.e. changing m or ~') 
generally changes the singular spectrum and thus 
the signal-to-noise ratios. Second, the variances 
of principal components are constrained by the 
variance of the time series. Because the trace of a 
matrix is invariant under similarity transforma- 
tions, Tr My = Tr ~x, or equivalently, 

m - 1  
%2 = m(x2) .  (17) 

j = 0  

The total variance of all m principal components 
is the same as that of all m delay coordinates. If 
the first few principal components are very large, 
the last principal components must be very small. 
The principal components with the smallest vari- 
ance can actually have worse signal-to-noise 
ratios than delays. We can compare the signal- 
to-noise ratio of a given principal component 
yj(t) to that of a delay coordinate by comparing 

o~ 2 with (x  2 >. Again, let q < m be the number of 
principal components (Y0 through yq_ l) which 
form an embedding. If 

0"2_1 > (x2),  (18) 

then Y0 through yq_l have better signal-to-noise 
ratios than an individual delay coordinate. 

PCA can also detect noise-dominated coordi- 
nates. Broomhead and King noted that often the 
singular spectrum decreases until it hits a plateau, 
after which the eigenvalues are roughly equal. 
One possible (but not necessary) explanation for 
a plateau is the presence of Gaussian noise on 
the time series. If we assume the time series x(t)  
is of the form of eq. (15), then the isotropic noise 
in delay coordinates imposes a lower bound of 
(r/21 on each eigenvalue. Under this assumption, 
the height of the plateau indicates the variance of 
the noise, and an eigenvalue lying on the plateau 
represents a noise-dominated principal compo- 
nent. If q principal components form an embed- 
ding and 

0"2-1 >> < n 2 > ,  (19) 

then we say that the state space of q principal 
components is approximately deterministic. 

Of course, principal components are simply 
projections of delay coordinates. If the condition 
specified by eq. (19) is not met, the m-dimen- 
sional delay reconstruction effectively occupies a 
less-than-q-dimensional subspace of R m. Conse- 
quently, the delay reconstruction does not form 
an approximately deterministic state space, even 
if m >_ 21 + 1 (see ref. [9]). The advantage of PCA 
over delays is that it makes this problem appar- 
ent. 

Another advantage of PCA is that it provides a 
rough characterization of the delay reconstruc- 
tion. As noted in ref. [9], the delay vectors in the 
time series can be thought of as exploring, on 
average, an m-dimensional ellipsoid. The eigen- 
vectors {s t} give the directions and the eigenval- 
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ues {%.2} give the lengths of the principal axes of 

this ellipsoid. 
In the following section, we develop a theoreti- 

cal understanding of PCA, which will provide us 
with a better  understanding of these issues. 

3. Small-window solution 

A word about notation: The usual dimension 
parameter,  m, is inconvenient for this analysis. 
For convenience~ we set m to be odd, i.e. m = 
2p  + 1. Then the invariance of X and -='x with 
respect to mp and mf if m and ~- are held 
constant allows us to express delay vectors sym- 
metrically. For x ~ ~m=2p+l, we let mp = m r  = p ,  

so that 

Theoretical insight to PCA can be gained by 
studying its properties in appropriate limits. For 
example, if r is held constant and m tends to 
infinity, it can be shown that PCA becomes dis- 
crete Fourier analysis. For a good review, see 
Vautard and Ghil [12]. 

The main result of this paper is a solution to 
PCA in the limit of small window widths. In this 
section, we derive the small-window solution, and 
shows how it relates delays, derivatives, and prin- 
cipal components. The derivation is indirect: First 
we find a coordinate transformation that relates 
delay vectors to derivatives of the time series. 
Then we show that the coordinate transformation 
gives the covariance matrix a simple form that 
can be diagonalized to leading order in closed 

form. 
We put the following restrictions on x(t):  

(1) x( t )  is analytic on t ~ R: 

(2) x( t )  is bounded and its derivatives are 

bounded for t ~ •. 

(3) lim r_.~ T - l f  r_rxZ(t)dt  ~ O, 

(4) lim r _,® T -  if T_T(X(1)(t ))2 dt -4= O, 

where x °) = d i x / d t  i. The generalization to x( t )  
with additive Gaussian IID noise is straightfor- 
ward (see ref. [9]). The solution can also be 
generalized to C °~ functions by including error 
terms in Taylor expansions of x(t) .  

Note that these restrictions exclude such 
functions as x ( t ) =  t z and x ( t ) =  exp ( - t2 ) .  An 
example of a function which satisfies all the re- 
strictions is x ( t ) - - s i n  t. But we are primarily 
interested in smooth functions given by real-val- 
ued projections of trajectories on chaotic attrac- 
tors of smooth dynamical systems. 

x ( t )  = ( x ( t - p r )  . . . . .  x ( t )  . . . . .  x ( t  + p r ) ) .  
(20) 

As a result, the small-window solution comes out 
in terms of integers p representing odd values of 
m. Also, we will describe the time-scale of delay 
vectors with the window width 7w = (m - 1)z, in- 
stead of the lag time z. 

3.1. Coordinate transformation 

3.1.1. Derivatives and discrete Legendre 
polynomials 

First we derive a coordinate transformation 
which involves the derivatives of the time series. 
The j th-order  derivative of x( t )  can be estimated 

by a discrete linear filter 

P 

wj( t )  = E rj.p(n) x ( t  + n~'), (21) 
n = - - p  

where the time series x( t )  is the input, w~(t) is 
the output, and ry, p(n) is an appropriate discrete 
convolution kernel, parameterized by the choice 
of p and the order of the desired derivative, j. 

Since x( t )  is analytic, we can expand it in a 
Taylor series, provided that the window width r w 
is sufficiently small. 

w y ( t ) =  ~ ry, p(n)  x~i)(t . (22) 
n = - - p  i=  
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Assume that we can switch the order of sum- 
mation to obtain 

xU)(t). From eqs. (25) and (26), it can be shown 
that 

~ ,1-i [ P ] 

wj( t ) = i=oE i[ x(i)( t ) [ n =~-pnirj'p( n ) l " (23) 
p 

E nJrj, p (n )=PJc j (p )  • (27) 
n = --p 

From eq. (23) it is clear that we can make wj(t) 
proportional to the j th  derivative by causing the 
bracketed factor to vanish for i < j. This is done 
by choosing rj, p(n) so that it is orthogonal to n i, 
i.e. 

E i n ri, p(n ) = 0 for i < j .  (24) 
n = - p  

A kernel r which satisfies this constraint leaves 
the i = j  term in eq. (23) as the leading-order 
term in ~'w, so that wj(t) is approximately propor- 
tional to x(~)(t). 

Many filters satisfy eq. (24). We restrict our 
attention to mutually orthonormal filters. This 
provides an additional constraint, 

p 

Y'~ r i ,p (n)  rj, p ( n ) = S i j  f o r i , j < 2 p .  ( 2 5 )  
n = -p  

It can be shown that the orthogonality constraints 
of eqs. (24) and (25) specify a unique set of m 
kernel functions, which can be generated from 
the recurrence relation 

1( 
I n j _ rj , , (n)  = c y  

for j <  2p,  

j - 1  p 

k~=ork,p(n)l=~_plJrk,p(l)) 

(26) 

where cj is a normalization constant. It can be 
shown that rj, p(n) is an even or odd j th-degree 
polynomial in  n for even or odd j. The normal- 
ization constant cj can  be determined from the 
requirement that E~P= _pr2p(n)= 1; this makes cj 
a function of p. It can be shown that cj(p) scales 
as V~ for large p. Formulae for the first six ci(p) 
and the first six rj, p(n) are given in appendix A. 

The choice of normalization determines the 
constant of proportionality between wj(t) and 

Plugging eqs. (24) and (27) into eq. (23), and 
1 making the substitution p~-= ~r w gives 

wj(t) ~ .  x ( t )  +@(r~+2) .  (28) 

The ev en /o d d  symmetry o f  rj, p(n) causes the 
order r~ +1 term to vanish. To leading order, the 
output wj(t) is proportional to the j th-order  
derivative xU)(t), with a constant of proportional- 
ity determined by j, p, and ~'w. 

Discrete forms of continuous orthogonal func- 
tions are widely used in digital signal processing 
(see, for example, ref. [13]). In the limit p ~ 0% 
the kernels ri, p(n) reduce to the Legendre poly- 
nomials #s, so we call them discrete Legendre poly- 
nomials. On the other  hand, each rj, p(n) reduces 
to a standard finite-difference filter for estimating 
a derivative #s when p takes on its smallest value 
(this value is different for each value of j). These 
relationships are examined in appendix A. 

3.1.2. Discrete Legendre polynomials in R m 
The discrete Legendre polynomials form an 

orthonormal basis in R m=2p+ 1, with basis vectors 
rj defined by 

rj = (ri, p ( - p )  . . . . .  rj,p(O) . . . . .  rj, p(p))*. (29) 

By eq. (21) the projection of a delay vector onto a 
basis vector rj is 

wi(t ) = x t ( t )  rj. (30) 

We call wj(t) a Legendre coordinate, since it is 
the projection of a delay vector onto a discrete 
Legendre polynomial. We emphasize that the 

#8Except for a difference of  normalization. 



J.F. Gibson et al. / Practical state space reconstruction 

Legendre coordinate wj(t) is a time-varying, 
s tate-dependent  quantity, proportional to a 
derivative of the time series. This is opposed to 
the discrete Legendre polynomial rj, which is a 
fixed basis vector of an orthogonal coordinate 
system in R ' .  Legendre coordinates and discrete 
Legendre polynomials are related by eq. (30). 

Taken together, the m discrete Legendre poly- 
nomials define a transformation R: ~m~.). ~m, 
given by the m × m matrix 

R -- ( r o , r  l . . . . .  rm_l). (31) 

By eqs. (25), rti.rj = 8ii, and therefore R is or- 
thonormal. 

Define the vector of Legendre coordinates by 
w(t)=(Wo(t),wl(t) . . . . .  Wm_z(t))t. Then by eqs. 
(30) and (31), 

wt(t)  = x t ( t )  R. (32) 

Since R is orthonormal, Legendre coordinates 
are a simple rotation of delay coordinates. When 
~'w is small, the Legendre coordinates are propor- 
tional to derivatives; therefore the relationship 
between delays and derivatives consists of a rota- 
tion and a rescaling. 

However, this is not to say that Legendre coor- 
dinates are equivalent to derivative coordinates 
obtained through the standard finite-difference 
estimators. First, the reduction of discrete Legen- 
dre polynomials to finite-difference filters takes 
place at a different value of p for each rj. There-  
fore, the standard finite-difference filters ((1), 
( -  1, 1), (1, - 2, 1), etc.) correspond to r / s  of dif- 
ferent dimensions. Embedded as vectors in O~", 
the finite difference filters are not orthonormal. 
For example, the first three finite-difference fil- 
ters embedded as vectors in R 3 are (0,1,0), 
(0, - 1, 1), and (1, - 2, 1). Consequently, if we use 
finite-difference filters to form a state space of 
derivatives, the noise in the state space is non- 
isotropic, and the noise on different derivative- 
coordinates is correlated. Second, the Legendre 
coordinates are proportional, not equal, to 

derivatives. This is not a trivial difference, since 
for noisy x(t) the prefactor in eq. (28) determines 
the signal-to-noise ratio of the Legendre coordi- 
nate. Generally, the signal-to-noise ratios ~f 
Legendre coordinates are better  than those of 
finite-difference estimates of derivatives. These 
issues are discussed in detail in appendix A. 
From a practical point of view, Legendre coordi- 
nates are generally a better choice than finite- 
difference estimates of derivatives. Because of 
this, we will abandon discussion of derivatives in 
favor of the better-behaved Legendre coordi- 
nates. 

When ~'w is small, the Legendre coordinates 
make it possible to quantitatively estimate the 
gross shape of an attractor in delay coordinates, 
and in particular, how the shape of the attractor 
varies with Zw. From appendix A, rt0 = 
(1, 1 . . . .  ) / x /m ,  which corresponds to the identity 
line. According to eqs. (28) and (30), the projec- 
tion of x onto this line is w 0 = @(1). Directions 
orthogonal to the identity line correspond to rj 
with higher values of j; in these directions the 
projection is wj = @(7~). This explains the well- 
known fact that for small Zw, the attractor is 
extended along the identity line and squeezed in 
the directions perpendicular to it. Furthermore,  it 
shows that for small z w the reconstructed attrac- 
tor lies within a long, thin, ellipsoid. The princi- 
pal axes of the ellipsoid range from (w 2) = @(1) 
to (w 2_ l) = @(~.2m-2) in length. The orientation 
of the principal axes is given by the discrete 
Legendre polynomials. Fig. 1 shows this for a 
three-dimensional reconstruction of the Lorenz 
x(t). The attractor is extended along r0, narrower 
along r~, and very narrow along r 2, as predicted 
by eq. (28). 

Note that this description of the reconstruction 
as an ellipse is very similar to the one given by 
PCA (see section 2.2.2). In the next section we 
will show that PCA is closely connected to the 
discrete Legendre polynomials. Further, note that 
derivatives can be estimated from the time series, 
and that the other factors in eq. (28) are known. 
Thus eq. (28) allows us to make theoretical esti- 
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Fig. 1. Discrete Legendre polynomials and a Lorenz attractor reconstructed with delays. Here we plot two different projections of 
an attractor reconstructed from the Lorenz x( t )  and the orthogonal coordinate system defined by the discrete Legendre 
polynomials. The reconstruction was made with m = 3, z = 0.04 delay vectors• The  three discrete Legendre polynomials for R 3 
were calculated from formulae in appendix A: r* 0 = (1, 1, 1 ) / v ~ ,  r*l = ( - 1, 0, 1) /vr2,  and r* 2 = (1, - 2, 1 ) / v ~ .  The Lorenz system is 
given by eqs. (62)-(64). 

mates of the geometry of delay reconstructions 
when the time series is the only available infor- 
mation. We will return to this idea in section 4.2. 

elements 

(,-w),j = (wiwy). (33) 

3.2. Diagonalizing the covariance matrix 

We now return to the original problem of solv- 
ing PCA. As stated in section 2.2, PCA is solved 
by finding a rotation on delay vectors which diag- 
onalizes the covariance matrix. In this section, we 
show that the rotation from delays to Legendre 
coordinates almost diagonalizes the covariance 
matrix, and that the remaining rotation can be 
approximated in closed form. 

3.2.1. Covariance of Legendre coordinates 
The matrix R defines a transformation be- 

tween delay coordinates and Legendre coordi- 
nates, wt(t)=xt(t)R. We carry out the same 
transformation on the delay matrix to define W = 
XR. Then the covariance matrix of Legendre co- 
ordinates is given by ~w = W'W= Rt_~xR, with 

The relation between Legendre coordinates 
and derivatives allows us to calculate ~w explic- 
itly. Substituting into eq. (33) with eq. (28) gives 

q.i+j 
w c i c j  ( x ( i ) v . ( j )  \ 

(~w)ij= 2 i+---j i!J! \ .~ / +~(~./+j+2). (34) 

Since x(t) is bounded and has bounded deriva- 
tives, integration by parts shows that 

(x'i'x'J')= r-~=lim l f~x' i ' ( t)  x(J'(t)dt (35) 

=((O--1)(i-j)/21(x((i+j)/2))21 for i + j  even, 

for i + j  odd. (36) 
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Substituting into eq. (34) with eq. (36) gives 

(0 i+j CiCj ((x((i+j)/2')2) _ 1)(i-J)~ 2 "i'w 

(~w)ij = "{-d~('I "/+j+2) for i + j  even, 

for i + j  odd. (37) 

The e ve n /odd  symmetry of the discrete Legen- 
dre polynomials causes (Ew);j to vanish to all 
orders of r w when i + j  is odd. To simplify the 
equations we define 

Ki= <(X(i))2>. ( 3 8 )  

Then -~w written out in matrix form is 

W 

C0C2T~ 
c~K 0 0 222! Kl 

2 2  ClTw 
0 22 K 1 0 

2 2 4  C2C0T w C2Tw 
-- 2~2.1 KI 0 24212 K2 

0 c3cff~ K 2 0 
243! 

0 

ClC3Tw 
243! K2 

0 

2 6 C3'1" w 
263!"~K3 

+ [ ( i  + j  + I rood 2)d~( ' r /+J+2)] .  (39) 

The second, bracketed, term indicates a matrix 
whose elements are given by the enclosed for- 

mula. 
Eq. (36) has a few interesting consequences; 

these are examined in appendix B. One conse- 
quence is that if r 0 and K 1 are nonzero (as 
required by the restrictions on x(t)), then K~ ~ 0 
for i > 0 .  

3.2.2. Diagonalization of Legendre coordinates 
In a loose sense, the rotation from delay coor- 

dinates to Legendre coordinates diagonalizes the 
covariance matrix to leading order, because the 
(0, 0) element is the only order-1 element in =-w. 
However, ="w is not diagonal in the sense that is 
important to PCA. PCA finds linearly inde- 

pendent coordinates, and linear dependence is 
measured by correlation. For i + j  even, the cor- 
relation between wi(t) and wi(t) is given by 

~(  Z~w +j) (-w),j 
= - - ~ ( 1 ) .  

i(--w)ii(~,-~w)jj V / t ~ ( T w  ) e ( ' r  2j ) 
(40) 

Since the correlation is of order 1, the Legendre 
coordinates are not linearly independent, and in 
this sense ~w is not diagonal. Therefore,  a fur- 
ther rotation is needed to approximate PCA. 

Because (~w)ij = 0  for odd i+j ,  the diago- 
nalization of ~w can be decomposed into two 
separate diagonalizations, one among the even 
coordinates of w and one among the odd. Define 
a {(m + 1) × ½(m + 1) covariance matrix of the 

even coordinates, --~w ~, by 

H e  (~'~'w)ij = ( ~w)2i,2j" ( 4 1 )  

Then 
4 C~KO C0C272 C0C4T w 

222[ Kt 244! K2 "-" 

2 2 4  6 
C0C27 w C2~w C2C4Tw 

-- 222--T-KI 242!2 K2 262 !4----~. K3 

4 6 2 8  
C0C47 w C2C4Tw C4Tw 
2 ~ ' ~ - 4  f. K2 262!4! K3 284!ir4 

• 'i 

+ [ ~ ( ~.z~+ zj +z) ]. (42) 

If r w is small enough that the decrease of 
C C T 2 i + 2 j  2 i + 2 j  " I " T i j w / ( 2  (2t).(2j).)  with i and j domi- 
nates possible increases in Ki+ j, then ~w ~ can be 
diagonalized to leading order in closed form by 
the method described in appendix C (at least to 
some finite i + j ) .  In appendix C, we show that 
the approximation breaks down as z w nears 
2V/3K0/K 1 . We therefore define the critical win- 

* by dow width r w 

* 2 ~  3K° (43) 
T w = K1 

The following solution to PCA is valid for % << 

,w*. 
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The eigenvalues of _~  are the even eigenval- 
ues of -~ .  By the results of appendix C, these are 

~o ~ = Cg~o + e(,~w), 

0. 2 = C21"w 

2-~., / ~ ~4 ~0 

10 + e ( ~ w ) .  

+e(,w~), 

( ~ , ~  - ~0~3) ~ 

(44) 

(45) 

(46) 

order-zw z. Substituting, eq. (50) in S = R V  gives 

S = R + R [ ~ ( r Z w ) ] ,  (51) 

=R+[@(r2w)].  (52) 

We can make the substitution R[@(r2)] = [~,(z2)] 
because R is orthonormal. Geometrically, eq. (52) 
means that the rotation from Legendre coordi- 
nates to principal components is small. Taking 
eq. (52) column by column, 

s i = r  j +@(~.2). (53) 

The covariance matrix of odd Legendre coordi- 
nates can be diagonalized in the same way, giving 

o.12= K1 + @(~.4), (47) 

3 2 
t C3,w / ( 1 + e (< ) ,  or 2 = ~ 2 3 3 ! ]  ~ K3-  K1] 

[C5"/'w~ [ K 2 (K2K3--K1K4) 2 
0"52= [ 2---~. ] [ K5 -~1 KX(K--~lK'-33:-~2 ) 

(48) 

+ @(r~2). (49) 

The diagonalization procedure in appendix C re- 
quires that ~'w be small enough that the eigenval- 
ues of -~w decrease rapidly. Therefore the critical 
window width Zw* can also be derived retrospec- 
tively by setting tr 2 = (r 2, solving for z w, and 
substituting with the limiting value of Co(p) / 

Cl(p). 
Next we find the eigenvectors of ~x, which are 

the columns of S, where S+,~xS =Z.  Let V be 
the m × m matrix whose columns are the eigen- 
vectors of ~w, i.e. V+~,,V=~,.  Since ~w = 
R+~x R, then ( R V ) + ~ x R V = ~ , .  Therefore S =  
RV. From appendix C, 

Thus, to leading order, the eigenvectors of -~"x 
are the discrete Legendre polynomials. Although 
this might seem to contradict the statement that 
discrete Legendre polynomials do not diagonalize 
=' to leading order, this is not the case: Because '~X 
the eigenvalues of -~x range from order-1 to 
order-~ "2m, a small error in an high-order eigen- 
vector can result in an eigenvalue error that is as 
large as or larger than the eigenvalue itself. Thus 
eq. (53) provides a way to calculate leading-order 
approximations to eigenvectors, but these approx- 
imations cannot be used to make leading-order 
approximations to eigenvalues or principal com- 
ponents. 

Formulae for principal components must be 
derived by other means. In appendix C.3, we 
show how principal components are a Gram-  
Schmidt orthogonalization of Legendre coordi- 
nates. This gives the following recurrence rela- 
tion: 

j - 1  
. . ,Y i"] /  

yy(t) = Wj(t) -- ].., Yi[t)/.--7-ZTT +~(7~+2) .  
i=0 kYi ) 

(54) 

By eq. (28), an alternative form of the recurrence 
is 

V =  lm q_ [~ (q .2 ) ] ,  (50) 

where I m is the m × m  identity matrix, and 
[~(rwZ)] indicates a matrix whose elements are 

j -1 ) 
yj( t)  = c~-~ ( yix~" ) 

X(Y)( t ) -  E Yi(t)  (y2  5 
i=O 

+ ~,(,,w+2). (55) 
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Because the even derivatives of x ( t )  are uncorre- 
lated with the odd, the terms in the sum with i + j 
odd vanish, for both recurrence relations. We 
represent them in the sums anyway, for ease of 
expression. 

Iterating the recurrence relation gives 

3.3. N u m e r i c a l  tests 

In this section, we present numerical tests of 
these results. The data used in this section were 
obtained from numerical integration of the 
Lorenz equations, 

y0(t)  =Co[ x(°)(t)] + @(r2),  (56) 

ClTw y l ( t )  = ---T [xO)(t)] + de(~'3), (57) 

2 
C2rw [x(2)(t) +x(°) ( t ) (K, /K0)]  Y2(t) = 2-~.i 

+e,(,4), (58) 
3 

c3"rw [x(3)(t) +X(1)(t) (Kz/K1) ] Y3(t) = 

+ @(ZwS), (59) 

yg(t) = 244! ~x(4)(t) +x(2)(t) 
K"-~I ~ ~ o K'-"" ~ 

+ x ( ° ) ( t )  K12rj- Kl r3_  KoK2 ) + O'(%6), (60) 

5 [ K2K3__K1K4 Cs"rw [x(5)(t) +X(3)(t) . . . .  
Ys(t) = ~ K2 2 -  K1K 3 

+ x ( l ) ( t )  - - - -  + @(TVw). (61) 
K 2 - -  K I K  3 } 

Squaring and averaging over time shows that these 
principal components are consistent with the 
eigenvalues given by eqs. (44)-(49). 

Note that the recurrence relation implies yj = 
O'(~-~). Thus, for a d-dimensional reconstruction 
with coordinates Y0 through Ya-1, the noisiest 
coordinate is Yd-l, with signal-to-noise scaling as 
rd-1. In ref. [4] we defined the distortion of a 
reconstruction, which measures the detrimental 
effect of noise on a reconstruction, and we showed 
that for small window widths, the distortion scales 

d-~ This is closely related to asymptotically as r w . 
the scaling of Yd- 1. In fact, eqs. (56)-(61) provide 
a method of calculating the distortion of a recon- 
struction explicitly, if the map from the original 
coordinates to the time series' derivatives is 
known. 

x (1) = sx - su ,  (62) 

u (1) = rx - u - x v ,  (63) 

v 0) = - b y  + x u .  (64) 

We used the parameter values s = 10, r = 28, 
8 b = 7  and a fourth-order Runge-Kut ta  algo- 

rithm, with a fixed integration step dt = 0.001. 
The time series {x(iAt)} consisted Of 50000 val- 
ues of x ( t )  sampled at the interval At = 0.01. 

To predict the behavior of principal component 
analysis, we needed to compute the derivatives 
X (i) and their average squared values, K i. Dif- 
ferentiating eq. (62) with respect to time and 
substituting with eqs. (62)-(64) gives an explicit 
function for x (2) in terms of (x, u, v). We iterated 
the differentiation to obtain functions for x (3), 
x (4), and x (5). We evaluated these functions over 
the 50000 point trajectory of (x, u, v) to estimate 
% =  ((x(J)) 2) and to obtain a time series of 
derivatives. Note that the derivatives and the K'S 
could also be estimated directly from the time 
series of x ( t ) ,  for example, by using the discrete 
Legendre polynomials and eqs. (21) and (28). 

Fig. 2a shows a segment of x ( t )  in the time 
units of eqs. (62)-(64). Fig. 2b shows a numerical 
estimate of the autocorrelation function of x ( t ) ,  

A ( T )  = ( x ( t ) x ( t -  r ) ) .  For the purpose of visual 
comparison, the critical window width r* is indi- 

* using cated in both (a) and (b). We estimated % 
eq. (43) and numerical estimates of K o and K I- 

* =  0.63, which falls near This gave the value % 
the first minimum of the autocorrelation func- 
tion, at z = 0.69. For simple functions like the 
Lorenz x ( t ) ,  such correspondence is probably not 
coincidental, since ~* and the first minimum of 
the autocorrelation function are both related to 
the "period" of the system. But in general we do 
not expect such correspondence, since the auto- 
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Fig. 2. (a) A sample of the Lorenz x(t). The relative size of the critical window width ~'w * = 0.63 is indicated by a line segment. 
(b) The autocorrelation function of the Lorenz x(t). This was estimated from a 50000 point time series, with At = 0.01. The critical 
window width is indicated by a dashed line. 

correlat ion funct ion need  not  have a min imum at 
finite r ,  whereas  ~-* is finite for any analytic x ( t )  

with a spect rum of  finite non-zero  xi's. 

For  numerical  principal componen t  analysis, 

we formed delay matr ices by eq. (4), f rom a 
10 000 point  subset o f  the time series, using m = 9 

and various values o f  ~'. For  each delay matrix, 

we made  numerical  calculations o f  the covariance 
matrix and its singular value decomposi t ion  (eqs. 

(5) and (8)). This gave numerical  values for the 
eigenvectors sj and the eigenvalues %.2. 

Fig. 3 compares  the numerical  eigenvalues to 
those predicted f rom eqs. (44)-(49). The  predic- 

tions agree well with the numerics  for small r w. 
2j power-law Each  eigenvalue %2(r w) exhibits r w 

scaling with r w. For  fixed rw, the o)2's decrease  

exponential ly with j. The  latter effect is indicated 
by the roughly equal vertical spacing of  eigenval- 

ues at a fixed value of  r w. Both  the power-law 
scaling and the exponential  decrease  are conse- 
quences  of  eqs. (44)-(49). 

The  domain  of  validity for the small-window 
solution is well-characterized by the critical win- 
dow width, r*.  For  the Lorenz  x ( t ) ,  ~* = 0.63. 
The  predic ted eigenvalues in fig. 3 are fairly 

1 , accurate  until ~'w = ~rw. The  power- law scaling 

begins to break down here,  and h igher-order  ef- 

fects emerge in the eigenvectors (see fig. 4). 

For  r w > r*,  P C A  is outside the domain  of  validity 
of  the small-window solution. As r w becomes  

large, the numerical  eigenvalues converge on 
(x2 ) .  This happens  because,  for the Lorenz  x ( t ) ,  

lim~ _~® A ( r )  -- 0: As  ~- increases, the off-diagonal 

elements  ( - ~ x ) i j - - A ( ( i - j ) r )  vanish, but  the diag- 
onal  e lements  remain constant  at A(0). 

~ X  

approaches  diagonal  form and its eigenvalues ap- 
p roach  its diagonal  elements,  A(0) = ( x  z >+9. 

Thus  there  are three main  regimes in fig. 3: 

* The  eigenval- - S m a l l - w i n d o w  regime,  r w << r w. 
ues are well-predicted by the small-window solu- 

tion. Higher -order  eigenvalues are small due to 
the exponential  decrease  with j, but  they increase 

2j rapidly with ~'w, scaling as r w . 

- M o d e r a t e - w i n d o w ,  t rans i t ion  reg ime,  Zw - Zw. 

The  eigenvalues diverge f rom the small-window 
solution, but  they still decrease  with j roughly 
exponentially. 

#9Note that the large-window behavior of PCA depends on 
how the limit ~'w--' oo is reached: If m is held constant and 
~- ~ ~, the eigenvalues converge on <xe). If ~" is held constant 
and m--* ~, PCA becomes a discrete Fourier analysis, as 
noted in [12]. 
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Fig. 3, Predicted and numerical eigenvalues as a function of 
z w for the Lorenz x(t).  Here p = 4 (m = 9). We plot all nine 
numerical eigenvalues with solid lines and six predicted eigen- 
values with dotted lines. The  critical window width is indi- 
cated by a vertical dashed line. The eigenvectors plotted in fig. 
4 correspond to the eigenvalues ~r 2, ~l z, and 0-22 in this plot in 
the range 0.08 < ~w -< 1.28. The  time-axis of this plot coincides 
with the time-axis of  the autocorrelation function in fig. 2b. 

- Large-window regime, ~'w >> 7*. The eigenval- 
ues converge on ( x 2 ). 

Fig. 4 compares the first three numerical eigen- 
vectors to leading-order predictions. By eq. 53, 
the order-1 term of the eigenvector sj(n) is the 
discrete Legendre polynomial rj, p(n). For small 
window widths, this term dominates and the nu- 
merical eigenvectors resemble discrete Legendre 
polynomials. For ~'w = 0.08, the approximation 
si(n)---rj, p(n) is good. As the window width in- 
creases towards ~'w*, the higher-order terms in 
%2(n) become significant, and the appearance of 
the eigenvectors is more complicated. 

Broomhead and King originally noticed the 
resemblance between eigenvectors and Legendre 
polynomials in their application of PCA to nu- 
merical Lorenz data [9]. It is also noticeable in 
Vautard and Ghil's application of PCA to global 
surface air temperature data [14], though in the 
latter case the window width is large enough that 
second-order effects are significant. 

o 

~0~5 N 

~ l i [ I , I ,  

-4 -2 0 2 4 
n 

Fig. 4. Numerical  eigenvectors and leading-order predictions 
for the Lorenz x(t). We plot the first three eigenvectors sj(n) 
for m = 9 as a function of their coordinate-index n, using 
dashed lines for numerical eigenvectors and solid lines for 
predictions. By eq. (53), sj(n) is approximated to leading 
order by a discrete Legendre polynomial. Thus  for predicted 
eigenvectors, we simply plotted discrete Legendre polynomials 
from the formulae in appendix A, which were derived from 
the recurrence relation of eq. (26). The numerical eigenvec- 
tors were calculated for rw = 0.08, 0.16, 0.32, 0.64, and 1.28. 
The numerical eigenvectors for z w = 0.08 are nearly indistin- 
guishable from the discrete Legendre polynomials. For in- 
creasing ~'w there is increasing dicrepancy. 

Fig. 5 compares numerical and predicted phase 
portraits. The numerical portrait was obtained 
from projecting delay vectors onto the numeri- 
cally calculated eigenvectors. The predicted por- 
trait was obtained from eqs. (56) and (57). The 
agreement is good. We obtained similar results 
for portraits of other principal components. 

4. Practical consequences 

In section 2.2.2, we discussed how the delay 
reconstruction is characterized roughly by PCA. 
In this section, we use the theoretical understand- 
ing of PCA to put this characterization into ana- 
lytic form, thereby obtaining a framework for 
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Fig. 5. Numerical and predicted phase portraits of principal components. We plot yl(t)  vs. Y0(t) for p = 3, ~'w = 0.06. Note that 
the vertical axes are expanded relative to the horizontal. 

choosing good delay reconstructions. In particu- 
lar, we derive a guideline for choosing a good 
window width, and we re-examine the conditions 
under which principal components are good coor- 
dinates. We also show why PCA does not esti- 
mate dimension. 

As a first step, we show that Legendre coordi- 
nates are close to principal components, in a 
precise sense. This allows us to phrase further 
discussions in terms of the simpler Legendre co- 
ordinates. 

4.1. Closeness of Legendre coordinates to principal 
components 

In section 2.2.2, we discussed how PCA gives 
the optimal linear coordinate transformation for 
a fixed delay reconstruction, in terms of signal- 
to-noise ratios, because principal components 
have the maximum total variance of all projec- 
tions from m to d < m coordinates. However, 
when ~'w is small, the Legendre coordinates are 
close to optimal, in the following sense: For a 
fixed set of delay vectors, consider the principal 
components yt  =xtS and the Legendre coordi- 
nates w t = xtR. Because My and ~,~ are related 
by a similarity transformation, their traces are 

equal. 

m - 1  m - 1  

Tr--~, = E ( y / 2 ) = T r ~ w =  E (w~). (65) 
i=0  i=0  

For small ~'w, (y /2)=  @(~.w2i) and (w/2) -- ~'(~'w2i). 
Therefore, for 1 < d < m - 1, 

m - 1  d - 1  

~., (Yi 2 ) = ~_, (yi 2 ) + ~'(r2wd), (66) 
i=0  i=0  

m - 1  d - I  

E (w2) = E (Wi2)+@(r2wd). (67) 
i=0  i=0  

The order-~-w 2 terms can be viewed as the variance 
lost in projecting from m-dimensional delays to d 
principal components or d Legendre coordinates. 
By transitivity of eqs. (65)-(67), 

d - 1  d - 1  

E (y2)= E (wi 2) +~(Z2d). (68) 
i=0  i=0  

The difference in variance between projections of 
d Legendre coordinates and d principal compo- 
nents is on the same order as the variance lost in 
projecting from m-dimensional delays. It is two 
orders of ~'w higher than the variance of the 
smallest of the coordinates in the projection, 
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Fig. 6. Principal components and Legendre coordinates. We plot the principal components y2(t) versus Y0(t) on the left. On the 
right are the corresponding Legendre coordinates, w2(t) versus Wo(t). The portraits are similar, but they are not identical. They are 
related by a well-conditioned invertible linear transformation. The principal components were calculated numerically from p = 3, 
r w = 0.06, delay vectors. The Legendre coordinates were obtained by projecting the same delay vectors onto discrete Legendre 
polynomials, given in appendix A. 

(Y~-1) 2a-2 =~'(~'w ). Thus the Legendre coordi- 
nates w(t) are close to optimal because they have 
nearly maximal variance. 

The closeness of Legendre coordinates to 
principal components can also be seen from 
the recurrence relation of eq. (54). Principal 
components equal Legendre coordinates with- 
components of only lower-order Legendre coordi- 
nates subtracted off. Therefore,  not only are all 
rn principal components and m Legendre polyno- 
mials related by an invertible linear transforma- 
tion, but so too are projections; i.e. the first 
d < m principal components and the first d < m 
Legendre coordinates are related by an invertible 
(and generally well-conditioned) linear transfor- 
mation. Therefore  attractors reconstructed from 
d Legendre coordinates are very similar to attrac- 
tors reconstructed with d principal components. 
See fig. 6 for an illustration. 

Legendre coordinates are a quick and not-so- 
dirty substitute for principal components when 
the window width is small. They may actually be 
superior in some situations: Principal components 
must be estimated numerically, which for small 

data sets may introduce substantial estimation 
errors. In contrast, the discrete Legendre polyno- 
mials do not need to be estimated. As a result, 
for short data sets in high dimensions, numerical 
PCA may actually be inferior to the alternative 
provided by discrete Legendre polynomials. We 
have not had the opportunity to investigate this in 
detail. 

4.2. Choosing the window width 

As first pointed out in ref. [2], the choice of the 
lag time r requires a balance of two effects. Small 
lags cause the reconstruction to be stretched out 
along the identity line, which amplifies noise. On 
the other hand, for chaotic'systems, large lags 
cause overly complicated reconstructions, which 
cause estimation error. The small-window solu- 
tion to PCA provides insight towards the problem 
of balancing these effects. 

The problems with small lags have been ex- 
plained already. In section 3.1.2, we showed why 
small lags cause stretched-out attractors, and in 
section 2.2.2, we showed why stretched-out at- 
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Fig. 7. Phase portraits of  Legendre coordinates for varying window widths. The  time series the Lorenz x ( t )  with 1% additive 
I * 1 * Gaussian l iD  noise. In all four plots, p = 1 (m = 3), and we show w2(t) versus wilt) .  In (a) r ,  --- ~r*,  (b) ~'w ~ ~rw, (c) z w = ~'w, 

(d) r~ = 0.64 = r*. As  rw increases, signal-to-noise ratios increase and the geometry stays constant  until r ,  reaches ½r~*. Past this 
value, signal-to-noise ratios are nearly constant  and the geometry becomes increasingly complex. 

tractors have poor signal-to-noise ratios. The 
problems with large lags may be seen by imagin- 
ing a delay reconstruction with a fixed dimension 
and a variable window width. As the window 
width is increased, the relation between the first 
and last coordinates of a delay vector is governed 
by an increasingly longer-term iteration of the 
dynamics. Consequently, if the dynamics are 
chaotic, the delay reconstruction acquires increas- 
ing complexity, and any numerical analysis on the 
reconstruction, such as dimension estimation or 
modeling dynamics, requires an increasing num- 
ber of datapoints to maintain a given accuracy [4]. 

Of course, the optimal balance between noise 
and complexity depends how the reconstruction is 

used. For example, a dimension calculation might 
be more sensitive to noise and less sensitive to 
the complexity of the reconstruction than nonlin- 
ear predictive modeling. However, it is possible 
to discuss the balance in general, context-inde- 
pendent manner, and to derive a balance which is 
generally good. For simplicity, we will phrase the 
discussion in terms of Legendre coordinates, in- 
stead of principal components. We will also tem- 
porarily assume that the sampling time can be 
made arbitrarily small. The ramifications of a 
minimum sampling time will be discussed in sec- 
tion 4.3. 

Consider how signal-to-noise ratios of Legen- 
dre coordinates vary with rw: As with principal 
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components, the signal-to-noise ratio of a Legen- 
dre coordinate is proportional to the square root 
of its variance. For ~'w << z*, eq. (28) and substi- 
tuting with eq. (38) gives 

= , .  2J( j [ )  Kj + /~'('r2j+2~ (69) 

* increasing zw increases If we begin with T w << ~'w, 
variances and therefore improves signal-to-noise 
ratios. As ~'w nears ~'*, the small-window analysis 
breaks down, which causes the variance of wy to 

2/" and the break away from scaling according to ~'w, 
improvement in signal-to-noise ratios begins to 
taper off. 

On the other hand, consider how changing Cw 
changes the complexity of the attractor: For 
~'w << T*, the geometry of the delay reconstruc- 
tion is determined by eq. (28). In this regime, the 
reconstruction is decomposed into a prefactor 
that depends on rw, and the derivatives x(i)(t), 
which do not. The prefactor determines the rela- 
tive scale of each Legendre coordinate and its 
signal-to-noise ratio, as described above, but the 
derivatives determine the scale-independent non- 
linear structure of the attractor. Since the deriva- 
tives are independent of ~'w, the scale-indepen- 

* As ~'w dent structure is constant for ~'w << Zw. 
nears ~w*, the higher-order terms in eq. 28 be- 
come significant. These terms represent the 
higher-order derivatives of x(t), whose functional 
relationships are more complicated. Because of 
this, the reconstruction is relatively simple until 
~-w --- ~-* and increasingly complicated thereafter. 

Thus the small-window solution provides in- 
sight towards both sides of the balance: Increas- 
ing ~'w towards ~'* increases the signal-to-noise 
ratios, while the complexity of the reconstruction 
remains approximately constant. As ~-~ nears ~'w*, 
the small-window solution breaks down, and the 
signal-to-noise ratios increase less rapidly, while 
the complexity begins to increase. Thus a good 
balance between signal-to-noise ratios and com- 
plexity can be obtained by using a window width 

* In other words, good less than but near to ~'w. 
delay reconstructions sit on the upper edge of the 
small-window solution. 

This balance is illustrated in fig. 7. In this 
figure, we show phase portraits of Legendre coor- 
dinates reconstructed from a time series of the 
Lorenz x(t) with 1% additive Gaussian l iD noise. 

* =  0.63. Fig. 7 shows a For the Lorenz x(t), rw 
phase portrait of w2(t)vs, w,(t) for p = 1 (m = 3). 
In (a) Zw = 0.08 << Zw*, and the reconstruction is 
very noisy. In (b), increasing ~'w to 0.16 increases 
the signal-to-noise ratios of both coordinates, 
without changing the geometry of the recon- 
structed attractor. Note that the scales of the plot 

1 . have changed. In (c) z w = 0.32 = ~'w, and again 
the signal-to-noise ratios are better. At this point, 
the geometry of the reconstructed attractor be- 
gins to change, but it is still close to the simple 
object seen in (a) and (b). In (d), ~'w = 0.64 = ~'w- 
The signal-to-noise ratios are not much better, 
because the small-window analysis has broken 
down and wy(t) no longer scales with ~-~. The 
geometry of the attractor is no longer governed 
by its derivatives, so the attractor has become 

1 , complicated. It is clear that z,, = ~'w as shown in 
(c) is a good value for ~'w. As predicted, it is less 
than but near to rw. 

In general, the precise value of z w which gives 
the best balance depends on the application, and 
the best way to choose ~'w is with a numerical 
optimization. For example, for predictive model- 
ing, one would minimize the prediction error over 
z w. Since numerical optimizations can be has- 
tened by a good starting point, we recommend 
starting the search at a window width less than 
but near to rw- 

Numerical optimization is not always an op- 
tion. For example, in dimension calculations, 
there is no known error function to minimize. As 
an intermediate solution for such cases, we rec- 
ommend making a log-log plot of {(wE>} versus 
zw (a Legendre-coordinate version of fig. 3). Sig- 
nal-to-noise ratios can be ascertained from the 
magnitudes of {(wE)}; the emergence of higher- 
order effects are indicated by the deviations of 
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2j scaling. The desired balance {(w2>} from % 

between the effects can be judged by eye. 
Lastly, when only a swift ball-park estimate is 

desired, we recommend setting 

100 

50 

3 ( X 2  ) 
r w = /~ r*  = 21za 3//--~ = 2/z 

V K1 ( ( d x / d t )  2 ) 

(70) 
E 

20 

10 

where /x  is a fixed constant less than but on the 
1 order of  1. For example, /~ = $ gave good results 

in fig. 7. Note that the derivatives in eq. (70) can 
be computed by a number  of methods. We rec- 
ommend using the discrete Legendre polynomials 

because of their ability to average out noise #1°. 
Once the window width is fixed, we must choose 

values of r and p which produce the given win- 
dow. By eq. (69) and the scaling of ci(p), the 
variances of the principal components  scale as p. 
Therefore  in the idealized case of an infinite 
sampling rate, arbitrarily large signal-to-noise ra- 
tios can be obtained by letting p --+ ~ and r -+ 0, 
keeping r w = 2pr fixed. 

We then recommend projecting the delay re- 
construction onto the first q < m discrete Legen- 
dre polynomials, where q is the smallest number  
of derivatives which form an embedding. Unfor- 
tunately, there is no simple rule for determining 
q (see section 4.4). 

4.3. Ramifications of minimum sampling time and 
finite noise 

Of course, letting p ~ ~ with a fixed window is 
not a practical recommendation,  since we cannot 
decrease the lag time r below the sampling time 
At. This limits the variance that can be gained by 
increasing p. In this case, we should set r = At 

and p = r w / 2 r ,  where r w has been chosen by the 
methods of section 4.2. The question then arises 

+t°This might require iteration, since the discrete Legendre 
polynomials must  be applied over a window width. We recom- 
mend starting with a small window, then increasing the win- 

* * becomes more precise. dow towards r w as the est imate of  ~',~ 

2 
0.005 0.01 0.02 0.05 0.1 0.2 0.5 

Fig. 8. The parameter space of a Lorenz x(t) reconstruction, 
delay dimension m versus lag time r. Dark grey regions 
represent  restricted parameters  ( r  < At = 0.01 or rn < q = 4). 
The light grey region represents  parameters  in the large 
window regime ((m - 1)r > r*  = 0.63). The white region rep- 
resents the set of  small-window parameters  which form em- 
beddings. Dashed lines indicate constant  window widths, and 
solid lines indicate parameters  at which the signal-to-noise 
ratio of W3=q_ I is unity, for three different noise levels, 
calculated from eq. (71). 

whether  these parameters  result in an approxi- 
mately deterministic state space. 

By eq. (19), if trqzl >> (~72), then a state space 
of q principal components  is approximately de- 
terministic. As a rough approximation, we can 

* Then sub- replace o,2_1 with (w 2_ l) if r w << r w. 
stituting with eq. (69) gives 

2 q-1 / (rt 2) 
"w+-'c+ - '(p) >> (, 7T)t V '+q-' (71) 

From this inequality it is possible to determine, 
for a given noise level, which parameters  result in 
approximately deterministic state spaces. This is 
illustrated in fig. 8, where we plot the parameter  
space (re, r )  of the delay reconstruction for a 
Lorenz x(t) sampled at A t=0 .01 .  The solid, 
diagonal lines represent  parameters  for which the 
two sides of  eq. (71) are equal for a given noise 
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level #11 and q = 4 #12. Thus each solid line repre- 
sents, for the given noise level, the boundary 
between noise-dominated state spaces (below the 
line) and approximately deterministic state spaces 
(above the line). 

The shaded regions in fig. 8 represent parame- 
ters which are restricted by other considerations. 
The region r < At ffi 0.01 is excluded because the 
lag time cannot decrease below the sampling time. 
The region m < q - - 4  is excluded because the 
minimum embedding dimension for the Lorenz 
x(t) is four. The region ~'w < 7* is shaded lightly 
to represent a milder restriction: We would like 
to stay within the small window regime in order 
to get a simple reconstruction. Thus the white 
region represents the accessible set of small- 
window parameters which will form embeddings. 

Putting all the restrictions together, we see that 
as the noise level increases, less and less of the 
white region is available for approximately deter- 
ministic reconstructions. For example, a 1% noise 
level covers the bottom corner of the white re- 

1 :¢ gion, so that reconstructions with z w << Xrw are 
1 . noise-dominated, but reconstructions with X~'w < 

r w < r* are approximately deterministic. (Dashed 
lines indicate parameters (re, r) with constant 
window width.) Raising the noise level to 16% 
reduces the range of good window widths to 
1 . . 
~ ' r  w < "r w < 'r w . 

Note that the constant window-width lines are 
not exactly parallel to the noise-level lines. For 
example, the ~rwl. line lies below the 16% noise 
line at (m, ~-) -- (4,0.1), but crosses over it as ~- 
decreases and m increases. At (m, r )  = (30, 0.01), 

1 . line reaches its maximum extension above the ~ w  
the 16% noise line. This is a result of the V~- 
scaling of c 4 ( P )  , and it is why we recommend 
setting reconstruction parameters with the mini- 

~H1By 1% noise, for example, we mean  ¢ ( ' t / 2 ) / ( x  2) = 

0.01. 
"12In the small-window limit, the min imum embedding 

dimension for the  Lorenz x(t)  is four. This can be seen by 
calculating the function (x  (°), x °), x (2), x (3)) =f (x ,  u, v) from 
the Lorenz equations (62)-(64), and then inverting f .  Note 
that this casts doubt on whether  the m ffi 3 plots in fig. 7 are 
embeddings.  

mum lag time and maximum dimension for a 
given window. The 256% noise line, however, lies 
entirely above the region of accessible small- 
window parameters; therefore it is not possible to 
reconstruct an approximately deterministic state 
space from a Lorenz x(t) with this noise level 
and this sampling time by using Legendre coordi- 
nates. 

In our example, the sampling time is roughly 
two orders of magnitude smaller than the critical 
window width. In practical situations, we might 
have a coarser sampling of the time series, with 
only one order of magnitude difference, or less. If 
the sampling time in our example were increased 
to At = 0.1, this would shift the r lower bound 
from 0.01 to 0.1, the white region of accessible 
small-window parameters would be much smaller, 
and slightly lower noise levels would obscure re- 
constructions with the same window width. If At 
reached 0.2, the white region would vanish, and 
approximately deterministic small-window recon- 
structions would be impossible at any noise level. 
Since Legendre coordinates require small win- 
dows, this would effectively rule out a Legendre 
(~72) coordinate reconstruction. 

Note that this analysis relies only on the vari- 
ance of the noise, (r/2); the minimum embedding 
dimension for derivatives, q; the critical window 
width, r*;  and Kq_ 1. If these quantities are known 
or can be estimated for a given time series, the 
parameter  space can be mapped out as in fig. 8. 

4.4. PCA and dimension estimation 

The possibility of a relationship between the 
singular spectrum and the dimension of the un- 
derlying dynamical system has been discussed in 
the literature [10, 12, 15]. As discussed in section 
2.2.2, the singular spectrum often reaches a 
plateau, which can be attributed to noise on the 
time series, of the form of eq. (15). The eigenval- 
ues above this plateau are called significant eigen- 
values. Broomhead and King [9] claimed that the 
number of significant eigenvalues reflects the 
number of linear modes in x(t) that lie above 
the noise level. This is consistent with our results 
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(but we note that this number is dependent on 
the choice of window width). A stronger claim 
has been discussed in the literature, namely, that 
the number of significant eigenvalues reflects the 
dimension of the manifold which embeds the 
dynamical system. The stronger claim has been 
rejected on grounds of genericity [12] and by 
counter-example [10, 15]. 

The small-window solution provides a conve- 
nient framework in which to discuss the stronger 
claim analytically. Let us consider noiseless time 
series, ignoring at first the higher-order terms of 
the small-window solution. Suppose that the sin- 
gular spectrum reaches zero at finite k. That is, 
tr2 __ (y2)___ 0. For a stationary time series, this 
means that yk(t) must be identically zero. But by 
eq. (55), Yk(t) = 0 implies that 

k-1 
X(k ) ( t )  = ~ a i x ( i ) ( t )  (72) 

i=0 

for some set of ai's. Eq. (72) represents k-dimen- 
sional linear dynamics. Therefore, the singular 
spectrum vanishes at finite k only for time series 
from linear dynamics. For nonlinear systems, no 
derivative is identically a linear combination of 
lower-order derivatives, so no eigenvalue can van- 
ish. Geometrically, this means a delay-vector tra- 
jectory from a linear dynamical system occupies a 
fixed-dimensional linear subspace of R m, while 
nonlinear systems produce trajectories that span 
R m, regardless of the choice of m. The same is 
true when the higher-order terms in eq. (55) are 
included, because these terms are composed of 
higher-order derivatives of x(t), which are sub- 
ject to the same argument. 

When noise is included in the time series, it 
induces a lower bound on the singular spectrum, 
as discussed in section 2.2.2. The eigenvalues 
decrease exponentially as ~.2i, and the number of 
significant eigenvalues is determined by the inter- 
section of the decreasing part and the noise floor. 

In ref. [4], we gave a geometrical description 
which illustrated the complications of estimating 
the minimum embedding dimension. In general, 

the minimum embedding dimension must be esti- 
mated by a nonlinear algorithm. 

5. Conclusion 

5.1. Open questions 

Several problems are left outstanding: We rec- 
ommend Legendre coordinates for algorithms 
such as dimension estimation, but Legendre coor- 
dinates may be used as they are, or they can be 
rescaled so each has the same variance. Straight 
Legendre coordinates have the advantage of 
isotropic noise, but rescaled Legendre coordi- 
nates seem more appropriate for local analysis 
techniques. It is unclear which is better. 

As stated earlier, the good delay reconstruc- 
tions sit on the upper edge of the small-window 
solution. The small-window solution could be ex- 
tended towards this edge by quantifying the 
higher-order effects in Legendre coordinates or 
principal components. This would also shed more 
light on reconstructions which are forced into the 
moderate-window regime by sampling limitations. 

There are interesting but undeveloped connec- 
tions between this paper and ref. [4]. For exam- 
pie, the signal-to-noise ratios discussed in this 
paper are clearly related to the distortion defined 
in ref. [4]. 

5.2. Summary 

The small-window solution to PCA explains 
several known characteristics of PCA: the resem- 
blance of eigenvectors to Legendre polynomials, 
the exponential decrease of the singular spec- 
trum, and the relative insensitivity of the singular 
spectrum to changes in m and z if z w = (m - 1)~- 
is fixed. Because PCA becomes equivalent to 
Fourier analysis in the limit of large windows, 
we also have the interesting result that as the 
window width tends from zero to infinity with a 
small fixed ~', the eigenvectors of PCA go from 
Legendre polynomials to trigonometric functions. 
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We have clarified the relationships between 
delays, derivatives, and principal component 
analysis, and we have shown why the number of 
significant eigenvalues is unrelated to the dimen- 
sion of the underlying system. We have shown 
that principal component analysis is a useful co- 
ordinate transformation, and we have derived 
explicit criteria that predict when principal com- 
ponents are above the noise floor and better than 
delays. 

We have derived a set of discrete Legendre 
polynomials which are useful both for state space 
reconstruction and, in a more general context, for 
stable estimates of derivatives of discretely sam- 
pled functions. We have described analytically 
the counteracting effects one must balance when 
choosing a window width. We have outlined a 
procedure for choosing a window width that gives 
a good balance. For situations that require only a 
rough estimate of the best window width, we have 
given a simple, analytic formula. 

Appendix A. Discrete and continuous Legendre 
polynomials 

The first six discrete Legendre polynomials for 
n ~ [ -p ,p]  (i.e. rj ~ ~m=2p+l) are 

1 
ro.p(n ) = co(p ) , 

1 
rl,p(n ) = pcl(p) n, 

r2,p(n)= 1 ( p ( p +  1) )  
p2c2(  P ) n2 3 ' 

r3,p(n ) = 1 (n 3 - n  3p2 + 3 P -  1)  
p3c3 (p) 5 ' 

1 ( 2 6P 2 + 6p - 5 
r4,P (n) = p4c4(p ) n 4 - n  7 

3p(p  2 -  1)(p  + 2) 1 + 
35 ] 

1 ( _n35 (2p  2 + 2 p - 3 )  
r 5 p(n) = pScs(p ) n 5 , 9 

15p 4 + 30p 3 - 35p 2 - 50p + 12 t 
+n 63 ] 

(73) 

These formulae were generated from the recur- 
rence relation for discrete Legendre polynomials, 
given by eq. (26). Discrete Legendre polynomials 
for n ~ [ - p  + 1, p] (i.e. r /~  R m=2p) can be ob- 
tained by making the appropriate alteration of 
recurrence relation. 

The normalization constants cj(p) are 

Co(P) = (2p + 1)1/2, ' 

c l (P ) = [(2p + 1 ) (p  + 1)/3p] 1/2, 

= i 4p2 c2(P) ~-[( - 1 ) ( p + l ) ( Z p + 3 ) / 5 p 3 ]  1/2 

c3(P) = ½[(4p 2 -  1)(p 2 -  1)(2p + 3) 

× ( p  + 2)/705 ] 1/2, 

c4(P) = ~ [ ( 4 p  z -  1 ) ( p 2 -  1)(4p2_ 9) (p  + 2) 

× (2p + 5 ) / 9 p  7] l/Z, 

Cs(P) = 2 [ ( 4 p 2 -  X)(p 2 -  X ) ( 4 p Z - 9 ) ( p Z - 4 )  

× ( 2 p + 5 ) ( p + 3 ) / 1 1 p 9 ]  1/2 (74) 

The normalization constants were derived from 
the condition EP= _pr~,p(n)= 1. 

In this appendix, we prove that rj, p(n) ap- 
proaches the jth Legendre polynomial in the 
limit p ~ 0% except for a difference of normaliza- 
tion. We also demonstrate that ri, p(n) reduces to 
a finite differencing filter when p takes on the 
lowest value allowed. 

First we prove the continuous-limit equivalence 
by induction. The discrete Legendre polynomials 
are normalized to have unit length in ~2p+l, 
whereas the Legendre polynomials Pj(X) are nor- 
malized to reach unity at X = -+ 1. To start the 
induction, we put rj, p(n) the normalization of 
Pj(X): Define r~,p(n)=rj, p(n)/rj, p(p), so that 



J.F. Gibson et al. / Practical state space reconstruction 23 

r;,p(+p) = 1. Then by eqs. (73) and (74), 

r'o,p(n ) = 1, 

3 n  2 _ p 2  _ p  
' , (75) r2,p(n ) = 2p2 --p  

n 
r'l,p( n ) = _ p '  

5 n  3 - 3 p 2 n  - 3pn + n 

r~,p(n) = 2P 3 _ 3P 2 + P  (76) 

Rearranging terms gives a recurrence relation for 
renormalized Legendre polynomials, 

1 
Pj'(X) = f11~zjpj,(~:) ds ~ 

j - 1  1 1 ~ J e ; ( ~ )  ) × # -  E P;(x)f d~ . 
i=O 

(82) 

Letting X = n / p ,  taking the limit p ~ oo, and 
writing r' as a function of X, we get 

lim r'o,p(X) = i, 
p ----~ oo 

lim r'2,p(X) = 1 ( 3 X 2 -  1), (77) 
p---~ ~ 

lim r ' l , p (X)  = X ,  p-- .~  

lim r'3,p(X) = 1 ( 5 X 3 -  3 X ) .  (78) 
p ---~ oo 

By inspection, limp_.® rj, p (X)= Pj(X) for 0 _<j _< 
3, where Pj(X) is the j th  Legendre polynomial. 

To continue the induction, we will show the 
equivalence of the recurrence relations for ri, p(n) 
and Pj(X)- This is more convenient using the 
unit-length normalization: Define 

This is the continuum limit of eq. 26, the recur- 
rence relation for rj, p(n). Therefore, the discrete 
Legendre polynomials approach the Legendre  
polynomials in the limit of large p, except for a 
difference of normalization. 

On the other hand, consider r~,p(n) with p as 
small as possible. By eq. (26), ry, p(n) exists only 
for 2p > j .  Thus for j -- 0, 2, 4, the minimum p 's  
are p = 0, 1,2, respectively. In vector form, the 
renormalized discrete Legendre polynomials for 
these (j, p )  pairs are 

r'o,o(n ) = (1)+, 

r ; , l (n  ) = (1, - 2 , 1 ) * ,  

r~.2(n ) = (1, - 4 , 6 ,  - 4 ,  1)*. 

(83) 

(84) 

(85) 

1 

P;(X)  = 4fa__lpj2(~: ) ds c Pj(X).  (79) 

so that f l lPj~2(X)dx = 1. From real analysis (see, 
for example, ref. [16]), any polynomial of j th  
degree can be decomposed into a linear combina- 
tion of the first j + 1 Legendre polynomials. For 
the j th  degree polynomial g j, the decomposition 
is 

J f l l~Ye i (~)  d~ 
)(J = E e i ( x )  , ( 8 0 )  

i=0 dE 
J 
~., PI(x) f11uP'(~) d~:. (81) 

i=0  - 

By inspection these are finite differencing filters 
for the zeroth, second, and fourth derivatives. 
(For r~,p(n) with odd j, this reduction occurs 
when m is even.) 

We can think of finite-differencing as a special 
case of the discrete Legendre polynomials. This is 
helpful because it shows why finite-differencing is 
generally not the best method for estimating 
derivatives of discretely sampled, noisy functions: 
Suppose that x( t )  is sampled at intervals At, and 
that At << r*. Then the filters given by eqs. (83), 
(84) will provide estimates of x, x <2), and  x <4), 
according to eq. (28), with (m, ~'w) equalling (1, 0), 
(3, 2At)  and (5, 4At), respectively. By eq. (69), the 
signal-to-noise ratios of these estimates scale as 
ml/2~ "j. Compare this to the m -- 5 renormalized 
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discrete Legendre polynomials for x, x ~2), and 
X (5), 

r~,2(n ) = (1, 1, 1, 1, 1)*, (86) 

r~,2(n ) = (1, ' ' * - ~ , - 1 , - ~ , 1 )  , (87) 

r~,z(n ) = (1, - 4 ,  6, - 4 ,  1)*. (88) 

In each of these estimates, (m, %) -- (5, 4At). The 
signal-to-noise ratios of these estimates are better 
than those of the finite-difference estimates by 

2 5 factors of x/5, ~/r~-, and 1, respectively. Further, 
eqs. (86)-(88) give estimates with uncorrelated 
noise. Therefore, the general discrete Legendre 
polynomials generally provide better estimates of 
derivatives than finite-difference estimators #~3. 

As the discreteness parameter p ranges be- 
tween its lowest allowed values and infinity, the 
r~,p(n)'s form a bridge between finite differencing 
and continuous Legendre polynomials, retaining 
the advantages of each. The discrete Legendre 
polynomials estimate derivatives from a discretely 
sampled functions, like finite-differencing, but 
with the noise-reductive averaging that one would 
get from projecting continuous functions onto 
continuous Legendre polynomials. The discrete 
Legendre polynomials estimate derivatives more 
accurately than discretely sampled continuous 
Legendre polynomials, since the latter are not 
exactly orthogonal when sampled discretely (con- 
sider how poorly (1, -0.5,  1), a discrete sample of 
P2(X), would approximate a second derivative). 
Fig. 9 shows the transition of r'2,p(n) from finite 
differencing to the second Legendre polynomial 
as p increases. 

#13Three caveats: (1) The ml/2~'J w scaling breaks down as 
r w nears r*.  (2) Discrete Legendre polynomials are symmetric 
filters, so if the value of the derivative at either end of the 
window is needed, it may be better to keep the window as 
small as possible for a given derivative. (3) If one is concerned 
with the accuracy of estimates of derivatives at a single point 
to, then the window width recommended for best results on 
average may not be appropriate. 

J 

Fig. 9. The second discrete Legendre polynomial. We plot 
r~.p(n) vertically, n / p  horizontally, and the discreteness pa- 
rameter p increasing towards the back. For p = 1, r'z.p(n)= 
( 1 , -  2, 1), which is the finite-difference filter for the second 
derivative. In the continuous limit, p ~ % r'2.p(n) approaches 
the second Legendre polynomial. 

Appendix B. Rate of increase of ( (x") )  2) with i 

Eq. (36) has an interesting implication on the 
average squared values of derivatives of bounded 
analytic functions. The Schwarz inequality for 
random variables ~ and X is 

2 _< (89) 

If we consider xt°(t) and x( i+2) ( t )  a s  random 
variables whose distributions are defined by the 
function x(t), the Schwarz inequality and eq. (36) 
(setting j = i + 2) yield 

( ( x ( i + l ) ) 2 )  < ( ( x ( i + 2 ) ) 2 )  

for i > 0, (90) 

provided that the denominators are non-zero and 
that x(t) is a bounded analytic function with 
bounded derivatives. Note that if ((x(°)) 2) and 
((x°)) 2 } are non-zero, then by induction ((x(i)) 2) 
is non-zero for all i > 0. Therefore, for bounded 
analytic functions x(t), with non-zero variance in 
x(t) and xtl)(t), the variance of all higher-order 
derivatives is non-zero, and the ratio between the 



Z F. Gibson et al. / Practical state space reconstruction 25 

variances of the (i + 1)th and ith derivatives is 
monotonically non-decreasing with i. 

In terms of {ri}, eq. (90) is 

ri+___!l < ni+___j2 (91) 
Ki Ki + 1 

Appendix  C. Diagonal izat ion  of  ---~ mW 

We break the diagonalization of --~2 into two 
parts: First, we show how to diagonalize a real 
symmetric matrix with exponentially decreasing 
elements• Second, we examine the application of 
this algorithm to =,we. 

C.1. The symmetric eigenvalue problem for 
exponentially decreasing matrices 

Let A be an m × m real symmetric matrix of 
the form 

A i j  = aij~.  i+j  .-[- d~'(~i+J+ 1), (92) 

where a o. -- #'(1) and e << 1. In this appendix we 
show that A can be diagonalized to leading order 
by one sweep of the cyclic Jacobi method, and 
that leading-order approximations to its eigenval- 
ues and eigenvectors can be calculated in closed 
form. 

The cyclic Jacobi method is a numerical algo- 
rithm for diagonalizing real symmetric matrices 
[17]. Generally, it consists of a series of similarity 
transformations, 

A ~ A  O) = J0tAJ 0 ~ A  (2) =JtlZ(l)J 1 e t c .  (93) 

each of which zeroes a single off-diagonal ele- 
ment. Successive transformations generally undo 
previously set zeroes, so the numerical algorithm 
sweeps through the matrix repeatedly, zeroing 
and rezeroing the off-diagonal elements, in a 

fixed order, until the matrix is diagonalized to the 
required precision (the method can be shown to 
converge [17]). Each Jn in the cyclic Jacobi 
method is an m × m Givens rotation J(k, 1, 0), 

= 

1 
cos 0 

- s i n 0  

k 

• .- sin 0 

• • • cos 0 

l 

k 

l 
1 

(94) 

The diagonal elements of a Givens rotation are 

unity, except [ J(k, l, O)]k k = [ J(k, l, O)]ll = COS 0, 
and the off-diagonal elements are zero, except 
[J(k,  l, O)]kt = - [J (k ,  l, 0)]lk = sin 0. 

By the definition of the J(k, l, 0), the elements 
of A (1) -~- Jr(k, l, O) AJ(k, l, O) are given by 

A~ ) =Aij for i # k, 1 and j # k, l, 

A(1)_a cosO_Atjs in 0 for j -~k , l ,  j k  --~'kj 

A~ ) =Aik COS/9 +Ail sin 0 for i ~ k, 1, 

A(~)g =Akk COS 2 0 +Art sin 2 0 - 2Akt sin 0 cos 0, 

A~ ) =Art cos 2 0 +All sin 2 0 + 2Akt sin 0 cos 0, 

h ( ~ )  l = Z k l ( C O S  2 [9 --  sin 2 0) 

+ (Akk --A,)s in  0 cos 0. (95) 

A (1) is symmetric, so elements not listed here can 
be found from their symmetric counterparts; for 
example a ( 1 ) - a ( ] )  ~Zli - -~Z i l  " 

Generally, A~t ) is zeroed by setting 0 so that 
sin 0 cos 0 / (cos  2 0 - sin 2 0) = Akt/ (At t  -Akk ) .  
However, the exponentially decreasing form of A 
(eq. (92)) allows us to make a simplifying approxi- 
mation. Taking k < 1, define 

Okt = - ( a~l/akk )¢ t-k 

-- - - A J . 4 k k  + ~e( El-k + t ) .  (96) 

Then, because ~ << 1, leading-order approxima- 
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tions to eqs. (95) for 0--Okl can be obtained by 
substituting with eq. (92) and expanding the 
trigonometric functions with Taylor series about 

= 0. The six equations for elements of the gen- 
eral transformation reduce to two, giving 

A ?  (,) ,+, =ai~ +@(~/+j'+l), (97) 

a~,9 = [ aij for i, j 4~ 1 (98) 

'J [ a i l  - -  a i k a k l / / a k k  for j = l, all i. 

Substituting i = k and j = l in eq. (98) confirms 
that a~k~/) = 0. Note that the higher-order terms of 
the approximations are absorbed into the higher- 
order term for the matrix element Ag) Also note - - tJ  " 
that A o) is of the same exponential form as 
A: their elements are on the same orders of 
(except for the element which is zeroed). There- 
fore the transformation can be iterated. A sin- 
gle step in the i t e ra t ion  is A (~ +1) = 

J*(k, l, Okt) A(~)J(k, l, Okl), where 

A i  j(n+l) ____ ai  j(n) E i+J q - t ~ ( E i + j + l ) ,  (99) 

( n + l ) _  [a~7) 
a i j  --  | r~(n),.l(n)r~(n)/n(n) 

~i l  t*ik t*kl / t ~ k k  

for i, j + l 

for j = 1, all i. 

(lOO) 

Note that a transformation of this type causes 
changes only in the lth column and l th row of A. 

The simplified form of the similarity transfor- 
mation makes one sweep across the matrix ele- 
ments sufficient for leading-order diagonalization. 
We prove this by induction: 

Proof. Suppose n transformations on A diago- 
nalize its l x I upper-left block, i.e. 

a(,,) = [ 0 for i ~ j ,  i < 1, j < l, 

'J ~ O'(1) otherwise. 
(101) 

We will show that the diagonal block can be 
extended by one row and one column by l trans- 
formations 

J* A(")J . . .Jr-  (102) A ( n + l ) = J l t - l , t . . .  O,l O,l 1,l,  

o ~ t-1 
= I-I Jtkl]h(n) I-IJkl" (103) 

k = l - 1  ] k=0 

where Jgl = J(k, 1, Ogt) with Okl given by 

a~  ) t-k (104) Okl ~- --  ,,l(n-------Se 
" k k  

In this proof we take l to be fixed, and k to range 
between 0 and l -  1. 

To show that the diagonal block can be ex- 
tended by eq. (103), we must verify first that the 
similarity transformations do not undo zeroes 
within the 1 × l upper-left diagonal block, and 
second that these transformations introduce 
zeroes at A ~  +0 for k ~ [0, l - 1]. The first veri- 
fication is straightforward: Givens similarity 
transformations on matrices of the form of A 
with 0kt = ~'(E t-k) and k < l alter elements only 
on the lth row and column. Therefore  the zeroes 
in upper-left l × l diagonal block of A c~) are 
preserved. 

To prove the second, consider the innermost 
transformation ( k = 0 )  in eq. (103), A (~÷1)= 

Jto.tA(mJo.t. Because the 1 × l upper-left block of 
A (n) is diagonal to leading order, a~  ) = 0 for 
i ~ k = 0, i < I. Thus eq. (100), which gives the 
transformation of elements in the lth row and 
column, becomes 

l 
0 

,,(n+l) a~ 0 

( a~;) --  a(n),~(n) / , , (n)  
~iO t~OI /**00 

for i = k = 0 ,  
f o r 0 < i  < l ,  

for i > l. 

(105) 

A(n+ The transformation zeroes 0,l 1), but without 
changing any of the other elements in the lth row 
and column which are to be zeroed later in this 
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sequence of transformations (that is, without 
changing elements A~7 ) for i 4= 0, i < 1). 

The following transformation in eq. (103) is for 
k = 1. Because the k = 0 transformation changed 
neither a (n+ l) Lt nor a~  +1) from its previous value, 
the rotation angle 0kt defined by eq. (104) will 

A(n+2) zero ~,t , even though it is defined in terms of 
a], ~] and a~] ). Applying eq. (100) again we get 

l 0 

a(n + 2) __ 
Wil -- "la(n ) __ ~(n)a(n)/a(n)  

] Wil t~iO WOl /wOO 
l --r~(n)a(n)/,'T(n) Wil Wll /t*ll 

for i < k =  1, 

for 1 < i < l ,  

for i > l. 

(106) 

Now two elements in the Ith column have been 
zeroed, and the others to be zeroed are un- 
changed. 

This generalizes for each transformation k < 1, 
and iterating eq. (100) l times gives 

A = a i j E  i+ j  + [~(E i+j+ 1)] are 

A o = a0o + 6e(E), (108) 

AI= (all  a21/e2 + # ' ( ,3) ,  - 00J (109) 

a22 
A2= a22 aoo 

(a00al2 - aolao2) 2 I 
aoo(a___~al_~l ~ o21___ ~ ] , 4  

+ ~ ( e 5 ) .  (110) 

Approximations to the eigenvectors of A 
can be obtained in the following manner: Define 
V as the matrix whose columns are the eigen- 
vectors of A in conventional order, i.e. VtAV= 
diag(a 0, a l , . . . ) .  Then an approximation to V is 
given by 

m - 1  l - 1  

I~r= H H Jkl • (111) 
l=1 k=O 

a(n+l) ( 0 
il = r~(n)_ ~"1-1 a(n)a(n) /o(n)  

~il l'I'k=O~il Wkl / W k k  

f o r / < /  
f o r / > / .  

(107) 

Thus the sequence of transformations given by 
eqs. (103) and (104) extends the 1 × l diagonal 
block of A (n) to an (1 + 1) x (l + 1) diagonal block. 

The induction is started with A(~)=Jot~AJ01 , 
which gives a 2 × 2 diagonal block. Iterating eq. 
(107) (m - 2) times extends the diagonal block to 
cover the entire matrix, at which point the eigen- 
values A i are given by the diagonal elements, 
I~i = a~i "')e2i + E2i+ 1. QED 

To find the order to which I, ~ is accurate, note 
that because (l~tAI~)i/= 6ijO'(E 2i) + #'(Ei+/+l), 

the further Givens transformations needed to di- 
agonalize A to all orders have 0,.j=O'(e/-i+1) 
(taking i <j ) .  The largest of these is for j - i = 1, 
giving 0 = ~9(E2). The largest higher-order term 
in these rotations is sin0 =#'(E2), so the true 
eigenvectors of A are 

V= ~,~(Im"[- [t~'(,2)]). (112) 

where I m is the m × m identity matrix. Thus the 
accuracy of I)" is 

To get all m approximate eigenvalues in closed 
form, one must iterate eq. (107) through the 
entire matrix. However, since upper-left blocks of 
A stay constant once they have been diagonal- 
ized, the first few eigenvalues can be obtained by 
a few iterations. The first three eigenvalues of 

V= l~'+ [t~'(,2)] • (113) 

Alternatively, since the largest rotation on the 
right-hand side of eq. (111) is #'(e), we can ap- 
proximate V with the identity matrix, giving 

V =  I m + [~ ' ( e ) ] .  (114) 
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C.2. Application to covariance matrix of  Legendre 
coordinates 

In this appendix, we show how to apply the 
diagonalization procedure of appendix C.1 to the 
covariance matrix of Legendre coordinates. This 
gives an estimate for the value of r w at which the 
small-window solution breaks down. 

Appendix C gives formulae for the eigenvalues 
and eigenvectors of a matrix [Ao.] = a o C + J +  
@(ei+j+l), where aij=O'(1) and E << 1. By eq. 
(41) the covariance matrix of even Legendre coor- 
dinates, ~ ,  has the form 

instance i = 0 #14. To eliminate the dependence 
on p, we replace c2(p)/c2(p) with its limiting 
value, limp _.= c2(p)/c2(p) = 3. This gives the re- 
quirement 

K1 2 
12Kor~<< 1. (118) 

* by We define the critical window width ~w 

* 2v/3K° (119) 
T w = K1 

~ e  . . =  " " C2iC2jKi+J , r2 i+2 j  
( - -w) t ]  ( -- 1) t+l 22i+2J(2i ) [(2j!) - w  

+ d ~ ( T 2 i + 2 j + 2 ) .  (115) 

Then eq. (118) is equivalent to requiring % << * T W • 

We set • to 

[ rw ~2 (120) = _'S-,k" 

• t -wJ 

In order to apply the diagonalization procedure, 
we must factor the elements of , ~  in a form 
which fits the form of A. 

The small parameter • in A should be propor- 
2 in ~2,  but the tional to the small parameter Zw 

constant of proportionality is not immediately 
apparent. The constant can be determined by 
requiring that successive diagonal elements of - ~  
decrease rapidly. By the definition of we its -,w, 
diagonal elements are alternating diagonal ele- 
ments of ~w, so this requirement is met if 

(-=w),,i >> for i [ O , m -  1]. 
(116) 

Substituting with eq. (37) gives 

2 C~+l Ki + Tw 1 - - < < 1  f o r / ~ [ 0 ,  m - 1 ] .  
4(i + 1) 2 c~ Ki 

(117) 

For simplicity's sake, we reduce eq. (117) to the 

a n d  aij to 

• .  C2iC2j ( 3Ko l i+J 
air = ( - 1)'+J (2 i ) ! (2 j ) l  I, K 1 I Ki+J" (121) 

We can apply the iterative diagonalization proce- 
dure of appendix C.1 to -~w e for • << 1 as long as 
variations in aij are smaller than variations in 
e '+j. It follows from the requirement e << 1 that 
the small-window solution is valid for ~'w << Zw. 

C.3. Recurrence relation for principal components 

Here we present a loose derivation for eq. (55), 
the recurrence relation for principal components. 
Consider the first two even Legendre coordinates, 

#14It would be better to choose the value of i which puts 
the most  stringent requirement  on ~'w. However, it is difficult 
to determine which i this is. By the results of  appendix B, the 
ratio Ki+l//t¢,i is monotonically non-decreasing with i. On  the 
other  hand, (i + 1) -2  decreases. The ratio 2 2 Ci+l//Ci has negli- 
gible variation. Thus  it is not clear whether  c2+lri+t/[(i + 
1)2c2Ki] increases or decreases with i. However, in our experi- 
ence, it is almost constant  with i. We believe that this is 
related to the restrictions placed on x(t) in section 3. 
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w o and w 2. By eq. (37), these coordinates are 
correlated, so a rotation is needed to decorrelate 
them. By eq. (28), w 0 = ~(1)  and w 2 = ~'(~'w2), and 
by eq. (37), the covariance between them is order- 
r~. Therefore,  the rotation 'which decorrelates 
them has a negligible effect on w o, but to w 2, it 
adds an order-r  2 component of  w 0. Rotations 

between w 0 and w 4, w 6, w 8, etc., are similar. Thus 
when all these rotations have been carried out, 
w 0 is unchanged to leading order 

W o ~ W o ,  (122) 

but each higher-order even Legendre coordinate 
wj. has had an order  Z~w component of w 0 added 
to it, 

w 2  --, + O o2Wo = ), 
w 4 ~ w 4 + aoaW o = ae(r4) ,  etc., 

(123) 

(124) 

where the a 's  are constants determined by the 
correlations between coordinates. 

Next consider the rotations between w 2 + ao2Wo 

and higher-order coordinates such as w a + ao4W 4. 

The coordinate w 2 + a02w 0 is now in the logical 
position formerly occupied by w0: it is correlated 
only to higher-order coordinates, which are at 
least two orders of Zw smaller. Therefore,  this set 
of rotations brings about the following transfor- 
mation: 

W 2 + 0t0214'0 --) W 2 -~- aO2WO , (125) 
14,'4 -.1-- O/04Wo ---I. W4 -t- O~04W 0 

_ 4 +aE4(W2 + ao2Wo) - @(Tw), (126) 

W 6 + O/06W 0 ~ W 6 + O~06W 0 

--I-0~26 ( W 2 --F O~02W0) = t ~ ( T  6 ) ,  

etc., (127) 

which preserves the linear independence of w o 

and w 2 + a02w 0. 
When all sets of decorrelating transformations 

have been carried out, each Legendre coordinate 
has had a same-order component of each lower- 

order Legendre coordinate added to it. 

w 0 ~ w0, (128) 

W 2 "-') W 2 "[- O~b2W0, (129) 

' ' (130) W 4 ""* W 4 "1- 0~24W 2 + O/04W0, etc. 

Since each set of transformations preserves the 
linearly independence set by previous sets, the 
right-hand sides are linearly independent,  and 
therefore equal to the principal components (to 
leading order). 

j - 1  

Yi = wj + E a; jwi  + ~ ' ( r~ +2) (131) 
i=O 

The linear independence of principal components 
can be used to determine the coefficients of the 
linear combination, giving the recurrence relation 

j-1 (y;wi) 
y j ( t ) = w j ( t ) -  • y / ( t )  + de(~-J+2). 

i=O 

(132) 

Thus to leading order the principal components 
are a Gram-Schmidt  orthogonalization of Legen- 
dre coordinates. 
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