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Aggregate market impact is the net price change corresponding to an imbalance
in the net signed volume of a sequence of trades. Trades that are initiated by
buyers have a positive signed volume and tend to induce positive price impacts, and
trades initiated by sellers have a negative signed volume and tend to induce negative
price impacts. We develop a theory for aggregate market impact in terms of the
competing random walks of net volume and net returns. Under the assumptions
that individual impacts are permanent and IID we show that the aggregate impact
R for N trades of net signed volume V scales as R ~ VN~". If the distributions
of volume fluctuations and return fluctuations are sufficiently thin tailed, k = 0,
but if either of them are sufficiently heavy tailed, x # 0, with x > 0 for realistic
parameter values. We show that the same result holds under numerical extensions
of the theory to more realistic assumptions of long-memory and temporary impacts,
and demonstrate that the theory is in good agreement with data from the London
Stock Exchanges. From a practical point of view these results are important for
trade optimization, implying that market impact can be made arbitrarily small by
trading sufficiently slowly. From a theoretical point of view they are significant
because market impact is closely related to excess demand. Our theory suggests
that structural considerations, in this case understanding the process of aggregation,
dominate strategic considerations (i.e. utility maximization).
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I. INTRODUCTION
A. Motivation

Understanding the nature of supply and demand is one of the oldest problems in eco-
nomics. Supply and demand curves have two distinctly different functions. The first is that
the intersection of the supply and demand curves determines the equilibrium value of the
price, and the second is that their slopes make it possible to estimate how the price will
respond to a change in excess demand, defined as demand minus supply. Here we study the
aggregate market impact function, which is closely related to the slope of excess demand,
and thus performs the second function. We choose to study aggregate market impact rather
than excess demand for two reasons: (1) Unlike excess demand, it is observable in standard
financial markets, and so a theory for it is falsifiable. (2) The functional form of the aggre-
gate market impact can be understood in terms of a theory based on a generalization of the
central limit theorem for competing random walks.

To make our goals in this paper clear we immediately present some empirical results. Let
v; be a signed transaction, where ¢ is an index labeling the time sequencing of the transac-
tions, which we will loosely refer to as “time”. |v] is the size of each transaction, measured
either in shares or monetary units; buyer initiated transactions have positive signs and seller
initiated transactions have negative signs. Let r; = log(piy1/p:) be the corresponding log-
return, where p; is the price of transaction ¢. For a sequence of N successive transactions
beginning at time ¢, let V; y = Zi\; vi4; be the aggregate volume and R, y = sz\il Tiei be
the aggregate return. The average market impact conditioned on volume is

R(V,N) = E[[R.n[Vin = V], (1)

i.e. it is the expected return associated with a signed volume fluctuation V. The expectation
E, is taken by averaging over the transaction time index ¢. We write R(V, N) to emphasize
that this can depend both on the signed trading volume imbalance V' and the number of
transactions V.

In Figure 1 we show empirical estimates for the market impact for the company As-
trazeneca, which is traded on the London Stock Exchange. R(V, N) is estimated by record-
ing V; v and R,y over a three year period for all ¢, sorting V; y into bins containing roughly
equal numbers of points, and computing the mean values of the pairs (E;[V; x|, Et[R: n])
for each bin. In Figure 1 we show the market impact for different values of N with offsets
added to the vertical axis to aid visualization. As one would expect, the scale increases with
N. The shape of R(V, N) also changes, becoming more linear with increasing N. This is
illustrated more clearly in Figure 1(b), where we rescale the horizontal and vertical axes
using a rescaling factor based only on V; 5. The renormalization makes the increasing lin-
earity clearer. As N increases the market impact near V' = 0 becomes linear, and the size
of the region that can be approximated as linear grows with increasing V. It also illustrates
a surprising feature: The slope of the linear region decreases with N. These same basic
features (increasing linearity and decreasing slopes) hold for all the stocks of the London
Stock Exchanges in our sample.

Our main goal in this article is to explain the shape of market impact, and in particular,
its increasing linearity and decreasing slopes. Our explanation is based on a generalization
of the central limit theorem to double random walks, which may have heavy tails. From
an intuitive point of view, these two facts can be qualitatively understand as follows: The
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FIG. 1: Aggregate market impact R(V,N) for the LSE stock Astrazeneca for 2000-2002. In
(a) we plot the shifted aggregate return R(V,N) + Ry vs. the aggregate signed volume V for
three values of N. The arbitrary constant Ry is added to aid visualization; its values are Ry =
{0,-3 x 1073, —6 x 1073} for N = 1,8 and 64 respectively. In (b) for each N we rescale both the
horizontal and vertical axes by V3 = V]S,%) — V]E,E’), where V]E,E’) is the 5% quantile and V]S%) is the
95% quantile of V; n.

market impact is determined by a competition between two random walks for V' and R,
which have the same number of steps. For large N each random walk approaches a smooth
limiting distribution near V' = 0 and R = 0, so that for any fixed value of N, R(V, N)
becomes increasingly linear in V. If the increments of R and V' have similar behavior in
their tails, then the slope is constant as a function of N. However, if the increments of V' are
sufficiently heavy tailed compared to those of R, as is typically the case in financial markets,
the distribution of V' spreads with NV faster than it does with R, and the slope decreases



with N. We make these arguments more precise in terms of a nested set of theories, starting
with a simple theory in which we can compute everything analytically, and then progressing
to more realistic but slightly more complicated theories for which we rely on numerical
simulations.

From the point of view of economic theory our results are important because they reflect
on basic questions about the most effective approach to understanding price formation. The
standard neoclassic approach to understanding supply and demand is to assume that agents
maximize utility subject to assumptions about the agent information processing model (e.g.
rationality). Our results here are not inconsistent with that view, but they show that it
is simply irrelevant in determining the shape of the market impact function. The central
limit theorem is the dominant effect. Because market impact is closely related to excess
demand, these results are not an esoteric side effect of financial economics, but rather bear
on supply and demand, a central concept in economics. This is a good instance where
structural considerations (in this case aggregation) dominate strategic considerations (utility
maximization).

This paper is organized as follows: In the remainder of this section we discuss previous
work. In Section VA we describe our data set and review the market structure in the
LSE. Section II discusses the relationship between market impact and excess demand, first
under asynchronous market clearing and then for the continuous double auction. Section III
develops a theory for market impact under the idealized assumptions of IID order flow and
permanent impact for individual transactions. Section IV extends this theory to apply to
the more realistic situation in which order flow has long-memory and individual impacts are
not permanent. In Section V we do a series of empirical tests to determine the factors that
influence deviations from linearity. We then conclude and summarize in Section VI.

B. Different kinds of market impact

There are different kinds of market impact, depending on the market structure and the
type of order flow, and it is important to distinguish them. The LSE has upstairs and
downstairs markets. In the downstairs market trades are made by placing orders in a limit
order book, and it is quite common to aggressively split large trading orders into many
small pieces. The upstairs market trades are arranged bilaterally between individuals, and
while there is some order splitting, it is a smaller effect. As a result of the different market
structures the impacts can be quite different. In the upstairs market the trading volume is
much more heavy tailed (see Lillo, Mike, and Farmer, ? ), which we will argue can make an
important difference in determining the aggregate impact. For the LSE the data allows us
to separate upstairs and downstairs trades, but because there are serious problems with the
time stamps for upstairs trades, we only analyze downstairs trades.

A second factor that must be kept in mind is that large trading orders, which we will
call hidden orders, are typically split into small pieces and executed incrementally. This is
in contrast to realized orders, which are the actual orders that are traded, e.g. the pieces
into which hidden orders are split. For realized orders the impacts may be part of a larger
process of order splitting that is invisible with the data that we have here. The impacts of
hidden orders may be quite different than those of realized orders. In this paper, with the
data we are using, we can only study realized orders, but we can do this for both upstairs
and downstairs trades.



C. Previous work
1. Empirical studies of market impact for single transactions

Many studies have examined the market impact for a single transaction, N = 1, and
all have observed a concave function of V' = v;, i.e. one that increases rapidly for small v;
and more slowly for larger v;. The detailed functional form, however, varies from market
to market and even period to period. Early studies by Hasbrouck (? ) and Hausman, Lo
and MacKinlay (? ) found strongly concave functions, but did not attempt to fit functional
forms. Keim and Madhavan (7 ) also observed a concave impact function for block trades.
Based on Trades and Quotes (TAQ) data for a set of 1000 NYSE stocks the concavity of the
market impact was interpreted by Lillo, Farmer, and Mantegna (? ) using the functional

form . )
Ry 1) = SV

(2)

The exponent 3(V') is approximately 0.5 for small volumes and 0.2 for large volumes. Even
normalizing the volume V' by daily volume, the liquidity parameter A varies for different
stocks; there is a clear dependence on market capitalization C' that is well-approximated by
the functional form A ~ C° with § ~ 0.4. Potters and Bouchaud (2003) analyzed stocks
traded at the Paris Bourse and NASDAQ and found that a logarithmic form gave the best fit
to the data. For the London Stock Exchange, Lillo and Farmer (? ) and Farmer, Patelli and
Zovko (2005) found that for most stocks Equation 2 was a good approximation with 8 = 0.3,
independent of V. Hopman (? ) studied market impact on a thirty minute timescale in the
Paris bourse for individual orders and found ( ~ 0.4, depending on the urgency of the order.
Thus all the studies find strongly concave functions, but report variations in functional form
that depend on the market and possibly other factors as well.

2. Empirical studies of aggregate market impact

Studies of aggregated market impact have produced variable results, reaching different
conclusions that we will argue depend substantially on the time scale for aggregation. The
BARRA market impact model, an industry standard, uses the TAQ data aggregated on a
half hour time scale (Torre, ? ). They compare fits using Equation 2 and find 5 ~ 0.5;
they obtain similar results using individual block data. Kempf and Korn (? ) studied data
for futures on the DAX (the German stock index) on an five minute time scale and found
a very concave functional form. Plerou et al. (? ) studied data from the NYSE during
1994-95 ranging from 5 to 195 minute time scales and fit the market impact function with a
hyperbolic tangent. They noted that at shorter time scales this functional form did not work
well for small V; tanh (V') is linear for small V', but at short time scales (e.g. 5 or 15 minutes)
they observed a nonlinear impact function, becoming more linear as they went toward longer
time scales. Evans and Lyons (? ) studied foreign exchange rate transactions data for DM
and Yen against the dollar at the daily scale over a four month period. They used the
number of buyer initiated transactions minus the number of seller initiated transactions as
a proxy for the signed order flow volume V', and found a strong positive relationship to
concurrent returns. They also developed a theory for interdealer and public trading. Under
the assumption that the public’s demand function is linear they (unsurprisingly) derive a
linear market impact function. Evans and Lyons tested for nonlinearity in the data using



a quadratic term V2, and found that it provided little benefit; unfortunately, they did not
test using a cubic term, which in view of the expected approximate antisymmetry of R(V)
would have been much more informative. Chordia and Subrahmanyam ? study impact
for stocks in the S&P 500 at a daily time scale and perform linear regressions, but do not
compare to other functional forms. For the Paris bourse Hopman (? ) measures aggregate
order flow as V = Y, sign(v;)v, where the sum is taken over fixed time intervals. At a
daily scale he finds he gets the best linear regression against contemporary daily returns R
with 8 ~ 0.5. He also documents that the slope of the regression decreases with increasing
time scale. Finally, as discussed in more detail below, Gabaix et al. (? 7 ) have made
extensive studies of data from the New York, London and Paris stock markets on a fifteen

minute time scale, and find exponents § ~ 0.5.

3. Empirical studies of hidden orders

Because data for hidden orders, which are sometimes also called tradiing packages, are
difficult to obtain, there are only a few studies. Chan and Lakonishok (? , ? ). They find
that order splitting can be spread over periods as long as a week. Another study is that of
Gallagher and Looi (? ). Reference Palermo groups paper when ready.

4. Why is market impact concave?

The standard reason given for the concavity of market impact is that it reflects the
informativeness of trades. If small trades carry almost as much information as large trades,
then the price changes caused by small trades should be nearly as big as those for large
trades. For example, this could be due to “stealth trading”, because informed traders keep
their orders small to avoid revealing their superior knowledge [see Barclay and Warner, ?
)]. An alternative hypothesis due to Daniels et al. (? ) is that it reflects the accumulation
of liquidity in the limit order book. IL.e., the depth in the order book as a function of the
price will determine the market impact for a market order as a function of its size [see also
Bouchaud, Mezard and Potters (? ) and Smith et al. (? )]. Keim and Madhavan (? ) have
proposed a theory for block trades based on the hypothesis that there a cost for searching
for counterparties, and for larger orders more searching is done and so more counterparties
are found, thereby lowering the impact. Another hypothesis is that this is due to selective
liquidity taking, i.e. that liquidity takers submit large orders when liquidity is high and
small orders when it is low [see Farmer et al. (? ), Weber and Rosenow (? ), and Hopman
(? )]. Finally, Gabaix et al. ? ? ) have proposed that this is caused by a combination
of first order risk aversion and the fact that larger trades take longer for liquidity providers
to unwind. In Section IIB we present evidence supporting the hypothesis that concavity is
caused by selective liquidity taking.

5. Contrast to Gabaix et al.

Gabaix et al. (? ? ) address some of the same questions that we do and presents an
alternative theory and data analysis, and so deserve special discussion. They hypothesize
that the functional form of the market impact is driven by risk aversion. Under the assump-



tion that large orders are broken into pieces the time to fill will depend linearly on the size
of the order. They assume first order risk aversion, i.e. that risk aversion increases with
the standard deviation of price variations. Since the standard deviation of price fluctuations
grows roughly proportional to the square root of time, the fair price for an order increases
as the square root of its size. This was suggested earlier, though much less clearly, by Zhang
(7).

To test whether the data supports their hypothesis Gabaix et al. regress R? vs. V using
fifteen minute intervals. Their argument for testing their hypothesis this way goes as follows:
Assume that

ri = Kei|vil? + ny, (3)

where ¢; is the sign of v; and n; is an IID noise process. If we also assume that Ele;v;] = 0,
aggregating over N transactions, squaring and taking expectations gives

N
E[R|V] = K* (V¥ +2)  Eleiejloi|’|o;]]), (4)
i#]

V =" || is the total absolute volume (and not the signed order flow imbalance). Gabaix
et al. argue that the last term can be neglected if ¢; and ¢; are uncorrelated. They regress a
sample estimate of E[R?|V] vs. , and show that that for large V' it has a slope close to one,
implying 5 ~ 1/2.

There are serious problems with neglecting the second term. As shown by Bouchaud et
al. (? ) and Lillo and Farmer (7 ), real order flow has long memory, i.e. it has a positive
autocorrelation C'(7) that decays as a power law C(7) ~ 77, where 0 < gamma < 1. This
means that v; and v; are strongly correlated, even when |i — j| is large. As shown by Farmer
and Lillo (? ) this can dramatically alter the results. For example, using the v; of real order
flow but simulating returns with Eq. 3 one can get similar results to their, with a linear
scaling for large V.

An even more serious problem with their test comes from using the total volume rather
than the signed order flow imbalance. The total volume has the advantage of being easier
to measure, but the disadvantage that the resulting test is much less powerful. Most dis-
turbingly, their empirical results can be reproduced under trivial alternatives hypotheses.
For example, suppose that r; and v; are independent, i.e. r; = n;, where n; is a noise term
that is independent of v;. If the random processes R = > and V = >_N | have the same
number of increments, then if n; is IID and its variance exists, R? will scale as N. Similarly
because all the increments of ¢ are positive, V scales as N, so E[R?|V] ~ V. When seen in
this light, it becomes surprising to get any result other thaq linear scaling. Although effects
such as long-memory can cause nonlinear scaling of E[R?|V], this argument makes it clear
that their are many alternatives to their hypothesis that will pass their test. This makes it
critical to measure impact directly, e.g. by measuring E[R|V] (which is identically zero if r;
and v; are independent)’.

! The theory of Gabaix et al. also predict that the heavy tails of returns are related to the functional form
of E[R|V]. This is incompatible with observations that the heavy tails of returns are almost independent
of V, and instead depend much more strongly on liquidity fluctuations, i.e. fluctuations of R; around
E[R|V] [Farmer et al. (? ), Farmer and Lillo and Gillemot (? ), Weber and Rosenow (7 ).



II. RELATION OF PRICE IMPACT TO SUPPLY AND DEMAND

Aggregate market impact is closely related to supply and demand. Because our results
derive the form of aggregate market impact using methods that are quite different from the
classic neoclassical approach, one of the interesting aspects of our work that extends beyond
finance is what it implies about effective approaches to constructing economic theories.
Because the relationship between market impact and supply and demand is not entirely
obvious we develop this here. To simplify the discussion, throughout we will consider the
demand minus the supply, ¢(p) = D(p) — S(p), which is usually called the ezcess demand.
This is justified because price formation only depends on the excess demand, and not on the
supply and demand individually.

A. DMarket clearing with continuous excess demand

Consider a continuous double auction and assume market clearing. Let g(p) = >, ¢; be
the total excess demand at price p, where ¢; is the excess demand of agent i, and assume
dq/dp < 0 for all p. Suppose only one agent updates her excess demand at a time, to a new
demand function ¢, while everyone else holds theirs’ constant. It is useful to distinguish
two types of updates:

e Transaction causing. The update occurs for the part of ¢;(p) whose domain includes
the clearing price, and so causes a transaction.

e Non-transaction causing. The update occurs for the part of ¢;(p) whose domain does
not include the clearing price, and so does not cause a transaction.

For a transaction causing update the market clearing condition is ¢'(p’) = q(p') +v; = q(p) =
0, where v; = dg; = ¢, — g;- Since by assumption the agents update their individual demand
functions one at a time, v; = dq, i.e. agent ¢ trades her full excess demand fluctuation,
though the other side of the trade may be split among many counterparties. The sign of
v; indicates who initiated the trade — buyer initiated trades have positive signs, and seller
initiated trades have negative signs. The magnitude indicates the total amount traded. Let
d0p = p, — pt,_, be the corresponding change in the clearing price. Under the assumption
that ¢ is differentiable and dp is sufficiently small, ¢(p’) =~ q(p) + (0q/9p)dp, and the change
in price due to a transaction at time ¢; can be written

v Ip(q,t))
opj = ——21— = — —v;, 5
J aq/ap aq J ( )
and the change in price for a series of N successive transactions {v;}, where j = k,...,k+N,
is
kN k+N
op(q, 1,

App=7 dpj=—) %W- (6)

j=k j=k

The transaction causing updates contribute directly to changes in price, and the non-
transaction causing updates contribute indirectly by altering dp(q,t;)/0q, which alters the
response to each transaction.
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Let r; be the log-return log(p,/pj_1) generated by a transaction v;, and let

Re(N) = r; = log(prsn/pr) (7)

j=k

be the N step log-return starting at time k. The corresponding market impact is the pair
(Vik, Ry,), where Vj, = Zj’i,iv vj. The return R}, is not a deterministic function of V, due to
the dependence on the non-transaction excess demand updates and the sequence of trades
{v;}. Using Eq. 6 the return Ry (V) can be written

k+N k+N

U ap(Qvtj) Uj 8p(q7 t])
Re(N) = log(1 — L2y o -y~ L0 0/ (8)
g ]z:; p;i  9q ; p; 9q

where the approximation is valid as long as Jdp is sufficiently small. The quantity
0p(q,tj)/p;Oq is the price elasticity. Thus, the return is (minus) the price elasticity weighted
by the transaction volumes. The market impact is R(V, N) = Ei[Rx(N)|V]. In the special
case where the transactions v; are uncorrelated with the price elasticities this can be written
in the simple form

10p
pdq
Le. it is just (minus) the average price elasticity times the total volume imbalance, and so
is linear in V. In general, as we will demonstrate in a moment, because the transactions are
correlated with the elasticities, the market impact is a nonlinear function of both V' and N.

R(V,N) = —E[-—=]V. (9)

B. Revealed excess demand in the limit order book

Most modern financial markets use a continuous double auction for price formation. The
market structure is similar to the market clearing framework described above, but with
several important differences. Individual agents place trading orders to buy or sell in a
queue called the limit order book. Each limit order for x shares at price m can be thought
of as specifying an excess demand function ¢;(p) that is a step function. A buy order has
gi(p) = x for p < m and ¢;(p) = 0 for p > 7, and a sell order has ¢;(p) = 0 for p < 7 and
qi(p) = —x for p > 7. Since each individual excess demand function is discontinuous, the
total excess demand function g(p) = ), ¢; is also discontinuous. Orders that cross the best
prices and general immediate transactions are called effective market orders, and orders that
do not general immediate transactions are called effective limit orders. After each effective
market order arrives there is always a spread s = p, — p, between the best selling price p,
offered at any time (also called “the best ask”), and the best buying price p, bid (also called
“the best bid”). To avoid the alternation of transaction prices across spread, we compute
market impact based on the midprice p,, = 1/2(pa + ps)-

The limit order book contains only the revealed excess demand, which is a small fraction
of the total. As we discuss in more detail in Section IV B, for strategic reasons most agents
do not like to reveal their true intentions, and indeed go to considerable effort to hide them.
The majority of the excess demand ¢(p) remains hidden and is only revealed incrementally.
The revealed excess demand in he limit order book is typically only about X X X of the
market capitalization. Thus, the trading orders visible in the limit order book are only the



11

tip of a very large iceberg, and the excess demand contained in the limit order book contains
a highly incomplete picture of the true situation.

A striking feature of the revealed excess demand is its extreme variability. This is illus-
trated in Figure 2(a), which gives several snapshots of the excess demand q(p—py,, ty) for the
LSE stock Astrazeneca at different times ;. We have plotted this relative to the midprice

150 T
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FIG. 2: Revealed excess demand ¢(p — pm, tr) in the limit order book, for the stock Astrazeneca.
(a) shows the excess demand function at randomly chosen times tx, and (b) shows the time average

Eilq(p, tr)]-

Pm- There is strong persistence from time ¢, to tx;1, but when sampled over sufficiently
long time intervals, ¢ looks like a random function. In panel (b) we take a time average,
and show that while the average excess demand decreases rapidly near the best prices, as
one moves away in either direction the excess demand curve tends to flatten [see Bouchaud,
Mezard, and Potters (? ) and Weber and Rosenow (? )]. This is because more demand is
revealed near the best prices — far from the best prices the probability of a transaction is
low, and so there is little incentive to pay the cost of revealing one’s excess demand.

In contrast, the market impact is fully observable, and for this reason alone is a better
target for economic theory than the excess demand. The market impact is based on what
happens at the price levels where transaction prices are formed, and so is by definition an
accurate reflection of the excess demand at these price levels. It is obviously much easier to
test a theory for something that can be measured than to test a theory for something that
can’t. Because market impact involves only transactions and observed price changes, it is a
better probe of the true excess demand that the revealed excess demand is.

III. AGGREGATION THEORY ASSUMING PERMANENT IID IMPACT

To develop intuition about this problem, we begin by developing a theory based on 11D
permanent impacts, which has the advantage that we can compute everything analytically.
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In the next section, we argue that it is more realistic to consider impacts whose signs are
strongly autocorrelated (so much so that they have long-memory), with impacts that either
fluctuate in an appropriately correlated manner, or decay in time. In any case, the intuition
developed from the IID case is very useful and gives a qualitative illustration of the main
features of aggregate impact.

A. General theory

Consider a series of N 4 1 transactions with signed volumes v; corresponding to total
return Ry, = Zf\fll r; and total signed volume V' = Zf\jl v;. (The reason for using N + 1
will become clear later). Assuming that there exists a stationary probability distribution
P(R,V), the expected return given V' can be written
R(V,N +1)=FE[R|V,N + 1] = /RP(R|V,N+ 1) dR = 1 /RP(R, V,N +1) dR,

Py (V)
(10)

where Py.1(V) is the probability density for V. We assume that the N + 1 individual price
impacts r; due to the IID signed volumes v; are given by a deterministic function r; = f(v;).
Let the distribution of individual v; be 7(v;). Then the joint distribution of v; is

P(vy,...,on41) = 7(v)7m(va) ... T(Un11)-

The expected return given V is

N+1 N+1

/RP(R, V,N+1)dR= /dvl duym(vy) . T (Un) Z F)s(V =Y ), (11)

i=1

where we introduced the Dirac delta function. The key idea is to use the integral repre-
sentation of the Dirac delta, d(z) = (2m)~! [ exp(—iAz) dA, which allows us o rewrite the
integral in (11) as

N+1

/dvl cocdoygm(vy) .o m(Ungr) ; f(vz)% / d\e— MV v (12)
By changing the order of integration in A, in volume and of the summation we get
e NZH / dvy .. doy1m(vy) .. (o) f0)eN D v (13)
2m i=1
Since all the terms in the summation are identical this can be rewritten as
NZj; ! /d)\e_i)‘v / dvy ... dvyym(vy) .. .W(UNH)f(vNH)e“‘ZéV;ll”i. (14)

and by decoupling the integration in vy, from the other integrations in volume we get

N+1
2T

/d)\e_iw / dUN_Hf(’UN+1)7T(UN+1)6MvN+1 /dvl . doym(vg) .. .W(UN))e“‘ZL”".
(15)
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The last multiple integral can be written as the N** power of a simple integral, so that

/ RP(R,V,N +1) dR = X 2“ / dre NV / dv f (v} (0)e™ ( / dvﬂ(v)eMU)N. (16)

™

We now introduce the functions
h(\) = ln(/ dvr(v)e™), g(\) = ei’\v/dvf(v)ﬂ(v)e“‘”, (17)

and the integral can be rewritten as

N+1
/ RP(R,V,N +1) dR = ; / ANV g(N). (18)

™

By using Eq. 10 we finally write the aggregate price impact as

N+l 1
N4+1)=
RVN+ ) = = = pe (V)

/ dreM"Ng(X) (19)

This is an exact result that allows to calculate the aggregate impact when the probability
distribution 7(v) of individual volumes and the impact function f(v) are known. However
in general it is not possible to perform the integral analytically. Since we are interested in
the large N limit, we use saddle point approximation to obtain the asymptotic behavior of
Eq. 19.

B. Theory for power-law impact and volume distribution

To get a concrete result we have to choose specific forms for 7 and f. We consider the
important case that they are both power laws, of the form

1
Uoz+1

f(v) ~ sign(v)lv|’ (20)

Note that in order to obtain the behavior of the aggregate impact we need to know the
asymptotic behavior of the impact and of the volume distribution. We assume for simplicity
that the volume distribution 7 (v) is even, i.e. that it is symmetric for positive and negative
returns. The distribution of individual return r» = f(v) behaves asymptotically as

m(v) ~

m(r) ~ T (21)

and the returns have finite mean when 8 < «. In Fig. 3 we integrate Eq. 19 for « = 1.5 and
8 = 0.3 for several different values of V.

An asymptotic expression for the aggregate impact can be obtained using saddle point
approximation. The detailed calculation is described in the Appendix. The behavior of
R(V,N + 1) for large N has the general form

‘/
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FIG. 3: Expected price impact vs volume imbalance for several different values of N for = and f
power laws with o = 1.5 and § = 0.3 (see Eq. 20).

TABLE I: Different regions for the scaling exponent x.

region conditions K

I a>2 a>F+1 0

II [I1<a<? a>pF+1] 2—a)/a
1 |a>2 a—l<f<alla—0F-1)/2
IV |a<2 a—-1l<f<al (1-pPa
A% 0>« not defined

where the aggregation exponent r(«, ) depends on the exponent 5 and « describing the
impact function and the volume distribution. Eq. 22 is valid in a region around the value
V' = 0 which becomes larger as /N increases.

As illustrated in Fig. 4, the parameter space divides into five distinct regions, with dif-
ferent behavior for k(«, 3):

e Region I: @ > 2 and a >  + 1. In this region x = 0. Both r; and v; are sufficiently
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thin tailed so that R and V' are normally distributed for large N (actually in this
region the convergence to linearity is very fast, e.g. it typically occurs to a good
approximation with ten or so steps).

e Region II: 1 < @ <2 and a > + 1. In this region k = (2 — a)/a. The variance of
v; does not exist, but the variance of r; does exist, so V' exhibits anomalous diffusion
but R does not.

e Region III: @ > 2 and a— 1 < < a. In this region K = (o — [ —1)/2. The variance
of v; exists, but the variance of r; does not exist.

e Region IV: o < 2 and o — 1 < < a. In this region k = (1 — )/a. Neither the
variance of v; nor the variance of r; exists.

e Region V: § > a. In this region the expected value of return diverges and therefore
the aggregate impact R(V, V) is not defined.

_ D 1

Forbidden region
ok (a-B-1)12

FIG. 4: The aggregation exponent k as a function of the exponents o and 3 of Eq. 20. The
circled numbers label the different regions described in the text. The grey area corresponds to the
parameters giving a negative value of k.

It is direct to see that x is continuous at the boundaries between different regions. More-
over it is worth noting that there is a range of parameters (grey area in Figure 4) for which
r < 0. This implies that the slope of the aggregated impact increases with N. Although all
the regimes corresponding to regions I-IV are in principle observable in real data, we want
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here to focus our attention on regions I and I, also because these regions will be important
in the following discussion. As we will see below, for real data it is k > 0 and this rules out
the possibility that region III is suitable for describing real data. In region I it is K = 0, i.e.
the slope of the linear part of the aggregate impact does not change with the aggregation
N. We proved that this behavior can be observed also in cases not described by the form of
Eq. 20, such as, for example, the case of power law impact and Gaussian or exponentially
distributed volumes. In this case we prove that £ = 0 for any value of 3. We showed that
the behavior described by region I is observed more generally when the volume distribution
has tails decaying faster than a power law (Gumbel regime in Extreme Value Theory). In
region 1T it is k = (2 — «)/a, i.e. the slope changes with an exponent which is independent
of the exponent of the impact function.

C. Width of the region of linear impact

Beside the scaling of the slope of the linear region, the IID theory is also able to give
quantitative prediction on other aspects of the aggregate impact. First of all, an important
issue is to quantify the fraction of points that are explained by the linear behavior as a
function of N. This is a delicate issue that requires to go to the next term in the asymptotic
expansion where a non-linear term (in V') appears. Usually one can write such an expansion
in the form

3
ROV.N 4 1)~ =

and by requiring that V/N* > V3/N* we obtain an expression for the linear region |V| <<

(23)

N*2". We proved that in region II the aggregate impact is linear is linear for |V| <« N/,
Together with the self-similarity property of the stable distribution this result implies that
the fraction of points where the linear approximation holds tends to a fixed value smaller than
1 as N go to infinity. It is worth noting that for Gaussian distributed volumes (belonging
to region I) the aggregate impact is linear for |V| < N. As a consequence the fraction of
points where the impact is linear tends to 1 as N go to infinity.

D. Behavior of aggregate impact for large volumes

A second quantitative prediction of the IID model concerns the behavior of the aggregate
impact R(V, N + 1) for a fixed value of N and for large V. An asymptotic theory shows
that for large V it is always R(V, N + 1) ~ VP i.e. for large volumes the aggregate impact
behaves as the individual transaction impact.

E. Limitations of the model
1. Noisy impact
In the theory we have hypothesized that the impact function f(v) is a deterministic

function of the volume v. Empirical studies have shown that market impact of individual
transaction is highly noisy. Typically fluctuations of impact are even larger than the mean



17

impact. One could therefore wonder whether the theory developed above still holds for noisy
impact function.

Let us assume that the impact is not a deterministic function of the volume v;, but it
also an addittive random part

r= f(v) = fa(vi) + ¢ (24)

where &; is an IID noise independent from v; and f4(.) is a deterministic function. The
expected return given V' as

N+1 N+1 N+1 N+1
E[R|V] <qu1 (V - Zvl >pe= <Z fa(vi) +&)S(V — sz .
N+1 N+1 N+1 N+1

=< Z Fa(v)8(V — Z v;) >+ < Z &o(V — Z vi) >5e (25)

In the above derivation we used the symbol < f >, to indicate the mean value of the function
f with respect to the random variable g. Since the noise is independent (even uncorrelated
would probably works), the last term can be factorized as < ZNH IV — Zf\”{l v;) >p<
& > & which is zero because the the noise has zero mean.

Similarly, if the noise is multiplicative

r=f(vi) = &fal(vi) (26)
with < & >= & > 0, one can write
N+1 N+1 N+1 N+1
E[R|V] <vaz Z Vi) >pe= <Z&fdvz (V- sz >
N+1 N+1 B N+1 N+1
= Z < fzfd(vZ)5< sz >v,§— Z < 52 >§< fd Uz V sz >
=1 i=1 =1
N+1 N+1

=(< Z fa(vi)o(V — Z v;) >z (27)

The aggregate impact with noisy impact is the same as the aggregate impact for deterministic
impact except for an N—independent constant &.

In conclusion, the mean impact is independent on the presence and intensity of the noise
term. However the fluctuations of the aggregate impact around the mean will depend on
the noise intensity:.
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2. Finite size effect

By using the saddle point approximation we have derived above the leading term of the
asymptotic expansion of the aggregate impact. The derived behavior thus holds in the limit
n — oo. An important question to ask is how well the leading term of the asymptotic
expansion approximates the behavior of the aggregate impact for large but finite n. The
theory of asymptotic expansion is quite complicated and in this paper we present a specific
case which shows a general behavior. As a specific case we consider transaction volumes
that are described by a Student distribution with o degrees of freedom, i.e.

() 1 1
) = e af2) (15 e~ e

(28)

with o > 0 and a power law impact function

f(v) = sign(v)|v]’ (29)

In order to calculate the aggregate impact we need to compute the functions H(\), G(X)
and the distribution P, (V') of total volume needed to go from < R >y to E[R|V].
Behavior of H(\). The function H(\) is the characteristic function and it is equal to

21—04/2

"N = Fap)

A[*2 Ko pa(A]) (30)

where K, (z) is a Bessel function.
Behavior of G(\). It is also possible to calculate also G(\) which is

o B a—f—-1 B3 3+8—a A
_ _ 2
20( — )5 ) sin(T (3 — a))sign(NAP? (T LTI 1 O M)

where 1F,() are hypergeometric functions.

The main problems due to finite size comes from the range v < 2 therefore we focus
on this range. According to the theory above the aggregate impact is the ratio between
two functions. Let us consider them separately. The function Py.(V') in the denominator
cannot be calculated explicitly. However by using the series expansion of the Bessel function
we obtain that for small values of A the function h(\) behaves as

h(X) = log(H(N)) ~ —m cscam/2) ( A )2

(a/2) \2T(1+a/2) 20(2—aj2) ) (82)

Moreover in this case, when o — 2 the two terms in brackets become equal and cancel out.



19

3. Real time vs. transaction time

IV. AGGREGATION THEORY WITH TEMPORARY, LONG-MEMORY
IMPACT

A. Failure of IID model in describing aggregate impact of financial data

In order to compare the IID theory with real data we need to have an estimate of the shape
of the impact function f(v) and of the volume distribution 7(v). The impact of individual
transactions has been studied in many different markets (Lillo, Farmer, and Mantegna 2003,,
Potters and Bouchaud 2003,Lillo and Farmer2004). In all the investigated markets the
impact is an highly concave function and for large volumes the impact can be approximated
by a power law function with 5 < 1. Also the volume distribution for individual transaction
has been widely studied. In electronic markets it has been found that the volume distribution
is asymptotically distributed as a power law with an exponent a larger than 3 (Lillo and
Farmer 2004). These empirical results, which are valid also for the data under investigation
here, indicate that the IID theory should fit the real data with x = 0, because the value of
the parameters lie in region I. This is not the case because, as said above real data shows
that x > 0. In the next section we will discuss the origin of the discrepancy between IID
theory and real data. As we will see below there is a non trivial way to use IID theory to
describe aggregate impact for real data.

The main reason of the failure of the IID theory in explaining aggregate impact for real
data is that theory assumes that the flow of orders can be approximated by an independent
identically distributed random process, whereas empirical analysis shows the presence of
strong time correlations. In two recent papers (Bouchaud et al. 2004 ,Lillo and Farmer
2004) it has been shown that the process defined by the signs of market order volumes,
€; = sign(v;) is a long memory process. This means that the autocorrelation function of
¢; decays in time as Ele;.¢;] ~ 777, where 0 < v < 1. Long memory processes are an
important class of stochastic process that have found application in many different fields.
The autocorrelation function of a long memory process is not integrable in 7 between 0 and
+00 and, as a consequence, the process does not have a typical time scale. Long memory
processes can be characterized by the exponent v describing the asymptotic behavior of the
autocorrelation function or equivalently in terms of the Hurst exponent H that, for long
memory processes, is H = 1 — /2. The strong autocorrelation of ¢; is in contrast with the
hypotheses of the IID theory and explain why the theory does not work for real data.

The long memory property of signs has another important consequence that contrasts
the hypothesis of the IID model. The predictability of ¢; leads to a very intriguing paradox.
If buying tends to push the price up and selling tends to push the price down, and we
know that buying and selling are highly autocorrelated (and therefore predictable) how is it
that price returns remain uncorrelated and unpredictable and the market linearly efficient?
In other words a strongly autocorrelated sign process and a fixed and permanent impact
would give rise to an highly predictable price change process. As a consequence of the long
memory of signs one must abandon the hypothesis of fixed and permanent impact which is
postulated in the IID theory.

In the next two sections we review the hypotheses which have been recently proposed for
the origin of long memory sign and to solve the efficiency paradox.
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B. Theory for the origin of long memory of signed order flow

In a recent paper Lillo, Mike, and Farmer (2005) have suggested that the long memory of
€; can be caused by delays in market clearing. Under the common practice of order splitting,
large orders are broken up into pieces and executed incrementally. These large orders are
termed packages or hidden orders. Large investors avoid to reveal their intentionality of
buying or selling large quantities of shares and split the hidden order in smaller pieces which
are traded incrementally in the market. Lillo, Mike, and Farmer have proposed a model in
which power law distribution of hidden order size is the origin of power law correlated signs
of executed orders. More precisely, under the assumption that the size of hidden orders U is
asymptotically distributed as P(U > x) ~ x~* and that hidden orders are split in a number
of revealed orders proportional to U they showed that the resulting order sign process is
asymptotically power law correlated with an exponent v = o — 1, i.e.

a=3-2H (33)

The empirical testing of the hypothesis of the theory is difficult because data on hidden order
size are not easily available. In the original paper (Lillo, Mike, and Farmer 2005) authors
tested indirectly the theory by using the dual structure of the London Stock Exchange. More
recently, a comprehensive empirical analysis of the Spanish Stock Exchange in which hidden
orders are statistically inferred from data has shown that both the proportionality between
U and the number of revealed orders and the power law distribution of U are observed in
real data (Vaglica et al. 2007). In this paper we will take the theory of (Lillo, Mike, and
Farmer 2005) as given and we will use Eq. 33 to infer the value of a from the observed
exponent of the autocorrelation of signs.

It is important to point out that the model assumes that the long memory of executed
orders is due to the persistence in buying or selling of traders individually and not to a
kind of synchronization or herding between different traders. Here we show that this crucial
assumption of the model is correct. Our database for the London Stock Exchange contains
the brokerage code for the buyer and the seller of each transaction. We therefore can compute
the autocorrelation function of market order sign by considering either orders placed by the
same brokerage code or by different brokerage codes. Our analysis shows that when only
transactions with the same brokerage code are considered the autocorrelation is still power
law with a slightly smaller exponent than in the case irrespective of the brokerage code.
Moreover for a fixed lag the autocorrelation function with the same brokerage code is one
order of magnitude larger than the autocorrelation function irrespective of the brokerage
code. Finally, when only transactions with different brokerage code are considered the
autocorrelation function decays very rapidly to zero and it is clearly not consistent with a
power law behavior. This indicates that the long memory of signs is due to the presence of
investors that place many revealed orders of the same sign in order to execute large hidden
orders and that there is no clear sign of herding behavior among different investors.

C. Reconciling efficiency and long-memory: Temporary price propagator vs.
asymmetric liquidity

Explain how long-memory is resolved by fluctuating liquidity. Equivalence of our ap-
proach to that of Bouchaud et al. Need to replace permanent impact propagators by tem-
porary propagators. As mentioned above the long memory of signs ¢; leads to the puzzle
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that a fixed and permanent market impact would lead to an highly predictable price change
at odds with what seen in markets. T'wo different solution to this puzzle has been proposed,
one due to Lillo and Farmer (2004) and the other due to Bouchaud et al. (2004). Lillo
and Farmer suggested that the efficiency puzzle is explained by permanent price impacts
that fluctuate in size. These fluctuations are liquidity fluctuations and are dependent on the
predictability of market order signs. To make a concrete example, if the recent past history
of signs suggests that the next market order is going to be a buy, then price impact for buy
market orders is decreased and for sell market orders is increased in such a way that the
expected return is zero Bouchaud et al. suggested that efficiency is recovered by having a
decaying price impact with fixed size. They state that impacts are on average fixed in size
e:.f(Jui|), but vary i time with the propagator G(7), where 7 is the time since transaction
1 occurred and it is measured in transaction time. The total price impact measured at the
time of transaction 7 is

ri = Go(Def(|oil) = Y [Golk + 1) + Go(k)]eif(Jvisl) + (34)

k>0

They find that Go(7) decays asymptotically as a power law, and it is tuned in such a way
that it cancels the effect of the autocorrelation of ¢; so that returns remain unpredictable.
They show that the model gives uncorrelated returns if Go(7) ~ 77 with A = (1 —v)/2.

The two theories for reconciling the long memory of order flow with market efficiency
gives in general different predictions for the aggregate impact. Although it can be shown
that also asymmetric liquidity theory leads to a decaying propagator (Farmer, Gerig, and
Lillo, in preparation), this does not imply that the two theories are equivalent. In the
following two sections we present two heuristic derivation of the scaling of the linear part
of the aggregate impact for the two theories. A complete theory for the aggregate impact
under the two theories is very difficult and it is outside the scope of this paper. We used
numerical simulation to test the heuristic arguments and to investigate the overall shape
of the aggregate impact. In Section V we present a comparison of heuristic arguments and
numerical simulations with real data.

D. Aggregation theory for the propagator model

The propagator model makes the calculation of the aggregate impact much more difficult
mainly due to the non-local character of the impact of individual transactions. Instead of
develop a theory for aggregate impact for the propagator model, we developed an heuristic
argument giving a prediction of the value of x and then we tested this argument by extensive
numerical simulations. The heuristic argument for computing x is the following. Due to
the propagator, a transaction at time u has an impact at a subsequent time ¢ > u given by
Go(t—u) ~ (t —u)~?, where, as said above, A = (1 —)/2 to ensure efficiency. By assuming
incremental trading and by taking the continuous limit we obtain that the return due to
transactions between 0 and ¢ is

t
R~ / (t —u) du ~
0

We now hypothesize that R(V, N) scales in the same way as in the IID theory, i.e. R ~
VN~". In order to determine x for this model we assume proportional trading, i.e. that
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V ~ N, which means R ~ N'=*. If we finally assume that the time interval is proportional
to the number of transactions we obtain 1 — k=1 — A, i.e.

k=A=H-1/2 (35)

We perform extensive numerical simulations to support this heuristic argument for the
relation between x and H. Specifically, we simulated long series of market order flows
by generating long memory correlated signs ¢; = sign(v;) with different values of H. We
generate uncorrelated volumes |v;| drawn from different distributions with finite variance.
In the following we show the results for the case in which volumes |v;| are taken from
a distribution asymptotically distributed as a power law with a tail exponent 3 (in the
cumulative). We then assume a deterministic price impact function of the form ¢;|v;|%, with
a value beta smaller than 1. Finally we applied the Bouchaud propagator. We proved
that the simulated returns are linearly efficient and we computed the aggregate volume for
different values of transactions V. Also for the propagator model the aggregate impact is
linear around V' = 0 and the region where the linear approximation holds increases with
N. For each value of N we performed a best linear fit of the slope of the aggregate impact
around V' = 0. Finally, we plotted the slope versus N and we estimate the exponent x. The
result of this analysis is summarized in Figure 5 where we considered 4 different values of
the Hurst exponent H of the sign time series. In all cases the slope scales as a power law of
N and the estimated value of the exponent k is plotted in the inset of Figure 5 as a function
of H. The relation Kk = H — 1/2 fits very well the simulated data supporting the heuristic
argument above.

E. Aggregation model for the asymmetric liquidity model

We have seen above that the IID theory is not suitable for describing the real data
because the order flow is not and IID process. We have also discussed the fact that in order
to maintain efficiency the impact of individual transaction cannot be a permanent and fixed
function of the transaction volume. Thus the IID theory developed in Section III seems to
be of little use for financial data. In this Section we show that one can reinterpret the IID
theory in order to make quantitative predictions of the scaling properties of impact.

The main idea for this reinterpretation is to use the theory for the origin of the long-
memory property of order flow developed in Lillo, Mike, and Farmer (2005) and described
in Section IV B. Given a series of IV revealed orders we can think to it as a series of N;, < N
hidden orders. The size of the hidden orders is drawn from a distribution with a power-law
tail with exponent a which is related to the Hurst exponent of the transaction sign as in
Eq. 33. As in the theory of Lillo, Mike, and Farmer (2005) we assume that the hidden order
sign is an IID process. Therefore a correlated revealed order flow is interpreted as an 11D
hidden order flow. In order to use the IID theory we need (i) a relation between the number
N of revealed orders and the number N, of hidden orders in the same interval and (ii) a
functional form f(V') describing the impact of an hidden order of size V.

The number N}, of hidden orders active in an interval of N revealed orders is a random
variable depending on the distribution of hidden order size. Here we make a “mean-field
approximation” consisting in assuming that N, ~ N/V, where V is the mean size of an
hidden orders. Here size means number of revealed transactions. For example if P(V) is
Pareto distributed as P(V) = a/Ve*! then V = a/(a — 1) and N, ~ (o — 1)N/a. In any
case the important point of this assumption is that N, and N are proportional.
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FIG. 5: Plot of simulated slope vs. N for several different H, and inset showing x vs. H.

The functional form of the impact of hidden orders has been investigated theoretically
and empirically in many papers. There is no consensus on the form and on the determinants
of it. Many studies have shown that the impact of hidden orders is a concave function of the
size, even if some theoretical studies conjecture that the impact should be a linear function
Farmer 2007, Farmer 2007b, Almgren-risk. Some studies have suggested a power
law function V7 with an exponent smaller than one whereas other studies conjectured a
logarithmic functional form.

Given the value of o and 3, it is possible to use the IID theory developed above and use
the result of Fig. 4 to compute the values of the scaling exponent k. In fact,

Vv Vv

R(V,N) ~ R(V, Ny) ~ —

~ 36
Np o N® (36)

where the last equality holds because of the proportionality between N and Nj,.

The long memory of order flow suggest that 1 < a < 2 and if we assume that 3 is small
enough, the scaling exponent x is (2 — «)/« because the parameters are those of region II
of Fig. 4. In this region the specific value of # does not affect the value of k. Since o can
be determined from Eq. 33 we get

2—a 2H-1
a  3—2H

This equation makes a quantitative prediction on the relation between two directly measur-
able quantities: the Hurst exponent H of the order flow and the scaling exponent x of the

R =

(37)
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aggregate impact.

V. COMPARISON OF THEORY TO EMPIRICAL DATA
A. Data

We study six stocks traded on the London Stock Exchange AZN (AstraZeneca), BSY
(British Sky Broadcasting Group), LLOY (Lloyds TSB Group), PRU (Prudential Plc), RTO
(Rentokil Initial), and VOD (Vodafone Group). The choice of these six stocks is somewhat
arbitrary, and is largely determined by the fact that we have carefully cleaned these data
and believe that we have a reliable record of almost every order placement). AZN, LLOY,
and VOD are among the most heavily traded names for the trading volume for each stock.
The number of transactions in the investigated period is 569,321 (AZN), 359,479 (BSY),
599,739 (LLOY), 392,020 (PRU), 213,474 (RTO), and 1,047,833 (VOD). The data is from
the on-book exchange (SETS) only, and is for the period from May 2000 to December 2002.
This data contains a complete record of all order placements, so we are able to determine
the signs of order unambiguously.

B. Testing the theory

In order to compare the empirical aggregate impact with the one predicted by the two
theories we consider two aspects. Specifically, we first investigate how the slope of the linear
part of the impact scales with V, i.e. we try to discriminate whether the empirical exponent
k scales as predicted by the Bouchaud model (Eq. 35) or as predicted by the model with
permanent impact and IID order flow (Eq. 37). Secondly, we perform numerical simulations
of the two models and we compare the aggregate impact of the simulations with that of the
real data. The comparison is qualitative and visual.

We consider the scaling of the exponent x with N. For the investigated stocks we com-
puted the aggregate impact at different values of N and we fit the region close to V' = 0 with
a straight line. In Figure 6 we show in a double logarithmic plot the slope of the linear part
as a function of NV for the six stocks. For each stocks the points corresponding to different
values of N stays on a straight line confirming that the slope of the linear part of aggregate
impact scales as N™" with k > 0. Regressing the points in Figure 6 we obtain for each stock
a value of k. In the inset of Figure 6 we show the scatter plot of the estimated x versus the
Hurst exponent of the transaction order sign. The inset also shows the two lines expected
under the Bouchaud theory (Eq. 35, dashed line) and under the permanent impact and 11D
order flow model (Eq. 37, solid line). For five of the six stocks the data are in agreement with
the permanent impact model whereas data for Vodafone are in agreement with Bouchaud
model. Even if this result indicates that permanent impact model fits better the data than
Bouchaud model we believe that this data should be taken with caution. First our empirical
analysis is based on a small set of stocks. Second it is not easy to assign proper error bars
to the estimated parameters. Finally, our theory is asymptotic and it is not obvious how
to take into account finite size effects, given also the small difference between the expected
exponent k under the two theories.

In order to have a more detailed view of how theories describe aggregate data we perform
numerical simulations of the models. To test how well Bouchaud theory described aggregate
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FIG. 6: Show some plots of slope vs. N.

impact we consider the actual order flow of real data and we apply the propagator for
generating a surrogate time series of prices. For the impact of individual transactions we used
the average impact computed unconditionally on all the transaction of the sample. Figure 7
shows the comparison between the aggregate impact of AstraZeneca and the impact obtained
from these surrogate return time series. We see that the agreement between simulations and
real data is reasonably good until N = 512. At this aggregation scale the surrogate impact
is slightly steeper close to V' = 0 and a little bit more concave than the real data.

C. Determinants of deviations from linearity in aggregate impact

Here we present the tests that Austin did to understand what influences the deviations
from nonlinearity in the impact curves. This is described on page 73 of Austin’s notes,
10.09.06 - 10.12.06. We identified seven different factors influencing the price impact curves,
and did some empirical tests to determine the importance of each factor. Austin, give me
the tex file for your notes and I will paste this in. Also, we need to discuss the right way to
present this.

VI. CONCLUSIONS
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FIG. 7: Aggregate impact vs. volume for theory and real data. Can present theory in two different
ways: First, we may want to use unconditional prediction from previous section (as Fabrizio has
simulated), second use propagators based on actual v; sequence (as Austin has computed).

in financial markets” and from the European Union STREP project n. 012911 “Human
behavior through dynamics of complex social networks: an interdisciplinary approach.”.

APPENDIX A: SADDLE POINT APPROXIMATION AND ASYMPTOTIC
EXPANSION

The key result of this notes is Eq. 18 where we need to calculate the integral

+oo
I, = / dre™Mg(\)

o)

because by applying saddle point approximation one can obtain the asymptotic behavior of
this integral for large n. Here I review the saddle point approximation by following F.W.J.
Olver, Asymptotics and Special Functions, page 80-81. First note that if (v) is even and the
individual impact function f(v) is an odd function, then G(A) is purely imaginary and odd.
Thus the only contribution to 7,, comes from the real part of g(A) which is G(\) [—isin(AV)]
which is even. Finally, under the assumption that 7(v) is even, also h(\) is even and then
we can write the integral as

“+o00 +oo
I,=—2i / dXe™NG(N) sin(\V) = / dAe™Mg(\) (A1)
0 0

For large values of n the asymptotic behavior of I, is determined by the regions of A where
h(A) has a maximum. Since h()) is the characteristic function of 7(v), it has a maximum
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for A = 0. Laplace’s method in asymptotics prescribes that if for A close to zero it is
h(\) o~ PX G(\) ~ QA (A2)

(and some other regularity conditions, see Olver) then

1 1
o~ Srleth (43)
Ch Ch (—P n) o
Finally note that, since g(A) = —2iG(\) sin(AV), for small A we have g(\) x V, i.e.

I, x @ < V independently on the details of the volume distribution and impact function.
Here I describe the asymptotic expansion of the integral

/b e~ PWq(t) dt (A4)

as described in F.W.J. Olver, Asymptotics and Special Functions, page 85-86 (Note that
I use v for the exponent of ¢(t) whereas Olver uses A, that in this notes has a different
meaning).

Assume that p(¢) has a minimum at ¢ = a and that one can expand

p(t) =pla) + > pa(t —a)™* (A5)

g(t) = qs(t —a)™! (AG)

then under some regularity condition

b oo
—ap(t) p——r) stv Gs
/a &0 (1) dt ~ e ZOF( )m(w)m (A7)

L

The coefficients a, can be calculated and Olver gives the explicit expression for the first
three,

o @i (v + Dpigo 1
o = — 7, 1= <_ N ( 2) : ) (v+1)/n (A8)
1Py M H=Po Do
@ (v+2)pq 2 (v +2)q0 !
ag = |— — —————+[(v+ p+2)p} — 2upops] (A9)
7 12po ' 20°p5 | py T




