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In complex systems, external parameters often determine the phase in which the system operates,
i.e., its macroscopic behavior. For nearly a century, statistical physics has extensively studied
systems’ transitions across phases, (universal) critical exponents, and related dynamical properties.
Here we consider the functionality of systems, notably operations in socio-technical ones, production
in economic ones and possibly information-processing in biological ones, where timing is of crucial
importance. We introduce a stylized model on temporal networks with the magnitude of delay-
mitigating buffers as the control parameter. The model exhibits temporal criticality, a novel form
of critical behavior in time. We characterize fluctuations near criticality, commonly referred to as
“avalanches”, and identify the corresponding critical exponents. We show that real-world temporal
networks, too, exhibit temporal criticality. We also explore potential connections with the Mode-
Coupling Theory of glasses and the directed polymer problem.

I. INTRODUCTION

The value of timeliness — goods, services, or people
being in the right place at the right time — can hardly
be overstated. For example, the value of a train ride
or food greatly depreciates in the absence of timely pro-
vision. From the perspective of socio-technical systems
(STSs), where technological and human elements interact
to provide functional support to our societies, the user-
centric examples above translate into the timely avail-
ability of crew, infrastructure and material in transport
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systems, and into the timely production, processing and
distribution in food systems to match demand in a timely
manner. The concept of timeliness has been ubiquitously
and integrally adopted as a quality standard across STSs,
reaching beyond transport and food into energy systems
(where timeliness prevents blackouts), financial markets
(which need liquidity on time), and all other systems of
exchange and production that rely on the timely supply
of raw materials, goods, services, and offers to trade.

There exist a variety of incentives for STS operators,
often reinforced by competitive pressures, to increase
cost- and time-efficiencies in order to achieve superior
operational results [1]. For example, train operators may
have the goal to maximize the number of passengers to
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be transported by the network, i.e., to fit trains into ever
tighter schedules. This can be achieved by reducing the
temporal buffer that allows the system to absorb possi-
ble delays. Operators could, for example, shorten stop-
ping times of trains in stations or reduce the amount
of replacement crews on standby. In the extreme (hy-
pothetical) case of zero temporal buffers in the whole
system, the delay of an arriving train is directly copied
to the departing train: clearly, any delay, however small,
will reverberate through the entire system [2, 3]. The
purpose of this paper is to demonstrate, in terms of a
stylized model, that efficiency incentives, in combination
with maintaining timeliness as a quality standard for sys-
tem operations, give rise to the phenomenon of temporal
criticality, a critical phenomenon, but in the temporal
dimension.

Our model can easily be extended to other types of
STSs, including the propagation of supply fluctuations in
production networks, where firms reduce costs by keep-
ing the inventory of production inputs at a minimal level
[4, 5]. Any delay in such a “just in time” supply chain
can easily propagate down the production network [6],
with major disruptions, as exemplified by the Suez canal
obstruction by a single container ship in 2021 [7]. In
fact, inventories can help to significantly mitigate the
economic effects of natural disasters [8], but even in less
extreme conditions, low levels of inventories or of supplier
redundancy can cause strong output fluctuations of firm
networks (see e.g. [9, 10] and references cited therein).1

More generally, our model can characterize any net-
work of interacting elements operating over time, and
where the output of one stage becomes the input for the
next. The flows of these inputs and outputs in these tem-
poral networks can be disrupted and delayed, with effects
cascading down to other components. The key aspect of
our model is that the components of the system can inte-
grate temporal buffers that allow them to mitigate these
disruptions.

The aim of the present paper is to propose a minimal,
stylized model that reveals the existence of a temporal
critical point in these systems as the size of the mitigat-
ing buffers is reduced. More precisely, above a certain
critical buffer size, delays cannot propagate and system-
wide crises are avoided. On the contrary, when temporal
margins are not wide enough, delays accumulate without
bounds, leading to systemic failures.

Our model is closely related to the so-called “Bounded
Kardar-Parisi-Zhang” (B-KPZ) equation [11, 12], that
describes the motion of a driven interface in the pres-
ence of a hard wall preventing the interface to visit the

1 Other fields of applications of our model may be distributed com-
puting systems where the result of some computation must ar-
rive before another computation can start. Outside of STSs, our
model of temporal networks may be relevant for the understand-
ing of neural processes in clinical and behavioral neuroscience
and for other biological contexts.

lower half space. Depending on the driving field, the
interface is either localized around the hard wall, or un-
dergoes an unbinding transition and escapes to infinity.
Our model precisely describes such unbinding transition
in the mean-field limit, where we find unexpected (and
little understood at this stage) analogies with the Mode
Coupling Theory of the glass transition [13].
The structure of this paper is as follows. We describe

and analyze the stylized models, and identify the criti-
cal transitions in Sec. II. In Sec. III we characterize the
critical scalings in terms of diverging temporal correla-
tions, avalanche durations and sizes, and variograms of
fluctuation statistics. In Sec. IV we demonstrate the ex-
istence of criticality also in real-world temporal networks.
We then conclude the paper by a discussion in Sec. V.
Calculations supporting the results are in Supplementary
Information (SI) A through E.

II. TEMPORAL CRITICALITY

Although initially formulated to investigate the propa-
gation of delays in rail networks [2], our model is flexible
enough to be applied to a wide array of systems. It is
in fact a representation of any form of planning schedule
depicting temporal ordering of different events that (have
to) depend on each other, and therefore, best formulated
in terms of temporal networks [14, 15]. We describe the
mathematical structure of our model below.

A. Temporal networks

In general terms, the delay τi(t) suffered by a compo-
nent i ∈ J1, NK of the system at the t-th step of schedule,
t ∈ N, can be written as [2]

τi(t) = max
j

[
t−1∑

t′=0

Aij(t, t
′)τj(t

′)−Bij(t)

]+

+ εi(t), (1)

where A(t, t′) is the binary temporal adjacency matrix of
the network, indicating whether a delay of component
j at time t′ has an effect on the delay of component i
at time t, Bij(t) indicates the buffer that component i
has over component j at time t, and εi(t) is a random
process encoding fluctuations affecting component i at
time t, with [x]+ := max(0, x). Figure 1(a) provides a
succinct representation of this structure. For firm input-
output production systems the first term on the rhs can
be interpreted in terms of a firm i whose production is
affected at time t because of delays on shipments from its
clients j that were sent out at an earlier time t′. Further,
Bij is the temporal buffer : as explained in the introduc-
tion, it is a quantity of relevance in its own right for
transport systems, and for firm input-output networks it
is related to the amount of time firm i can continue pro-
ducing without being affected by a loss of inputs from
firm j.
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FIG. 1. Schematics of our model in terms of temporal networks. (a) How the (time-ordered) dependencies — shown by arrows
— among the system components (number of components N = 5) in a real-world situation may play out [Eq. (1)]. A mean-field
(MF) (b) and a synthetic temporal network (STN) (c) representation respectively of our stylized model (number of components
N = 4) in discretized time steps [Eq. (2)]. For both the MF and the STN cases, the number of arrows K entering every system
component is constant (e.g., K = 2); for the latter case the number of arrows leaving every system component is also K.

Equation (1) is very general, and should in principle
be accompanied by equations that specify the dynamics
of the buffers Bij (for example as the inventories of firms
get depleted) and of the adjacency matrix A (encoding
firms that switch suppliers or transport vehicles and per-
sonnel that are rerouted, for example; that is to say that,
in reality, a delay at time t can impact the topology of
the temporal network). Here we propose a much simpler
framework.

The first steps in simplifying Eq. (1) are as follows: (a)
assume that the dynamical evolution is “Markovian”2, in
the sense that the delay at layer t only depends on events
at t− 1, so that Aij(t, t

′) ≡ Aij(t− 1)δt′,t−1, (b) we take
Bij(t) = B to be constant and identical across all pairs of
components. Together these lead to the following stylized
equation

τi(t) =

[
max
j

[Aij(t− 1)τj(t− 1)]−B

]+
+ εi(t). (2)

The adjacency matrix Aij(t) also remains to be de-
fined. We work in the thermodynamic limit N → ∞
and introduce two variants: (1) mean-field (MF), where
a system component can be delayed by K randomly cho-
sen and statistically independent components that are re-
drawn at every time-step t, meaning

∑
j Aij(t− 1) = K

[Fig. 1(b)], and (2) synthetic temporal network (STN)
that imposes further constraints, such as

∑
j Aij(t−1) =∑

j Aji(t) = K [Fig. 1(c)].
Finally, the statistics of the noise εi need to be spec-

ified. In line with the Markovian assumption above, we
take them to be iid (independent both in the component

2 In the most general case, an event at time t can be delayed by
any event at a time t′ < t. We restrict ourselves to the case
where events can only affect events in the next time-step.

i and time-step t) realizations of the same random vari-
able. Only the MF case with exponentially-distributed
noise allows us to find an analytical solution.

For the sake of brevity, we keep the example of the
input-output network and use ‘firm’ to mean ‘system
component’ throughout the rest of the paper.

B. Criticality

An analytical solution of Eq. (2) in the mean-field
case can be provided if we take ε to be an exponen-
tially distributed random variable, with density P (ε) =
1ε>0ν exp(−νε). Without any loss of generality we take
ν = 1, choosing ν−1 as the unit for the buffer B and the
delays τ .

We analyze ψt(τ), the distribution of the delays
at time t in the following manner. Having defined

Ψt(τ) =

∫ ∞

τ

du ψt(u), the complementary cumu-

lative density function of the delays, and Qt(τ) =

Kψt(τ) [1−Ψt(τ)]
K−1

, the probability density of the
maximum of K randomly chosen delays, Eq. (2) becomes
(SI A)

ψt(τ)=

∫ τ

0

dε P (ε)Qt−1(τ +B− ε)+P (τ)
∫ B

0

du Qt−1(u),

(3)
which is readily obtained by considering splitting Eq. (2)
into two cases: the first contribution corresponds to the
maximal delay at the previous time-step being equal to
τ+B−ε (i.e., larger than B from which the buffer absorbs
B amount of delay), while the second one comes from the
case when the maximum of theK randomly chosen delays
is smaller than B. With P (ε) = 1ε>0 exp(−ε), Eq. (3)
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FIG. 2. (a-b) Temporal criticality in the stylized model obtained from direct simulations of Eq. (2) with exponentially distributed
noise for N = 10, 000 and K = 5: both the order parameter v and the exponent α for the exponentially decaying tail of the
delay distribution function ψ(τ). The critical value of the temporal buffer Bc(N) is found to be ≈ 3.674. (c-d) typical behavior
of the mean delay per firm

∑
i τi/N , as a function of the temporal depth t: when the buffer is smaller than the critical buffer

Bc(N) the mean delay per firm keeps accumulating without bound; in contrast, avalanches of all sizes appear spontaneously
in the mean delay per firm when the buffer is smaller than Bc(N), with no relation to the amplitude of the initial values of the
noise term. The dashed lines show a fit through the data over a long period of time.

can be simplified to derive (SI A)

Ψ′′
t (τ)+Ψ′

t(τ)=K[1−Ψt−1(τ+B)]K−1 Ψ′
t−1(τ+B).

(4)

In the limit of large temporal depth t→ ∞, we surmise
(and check a posteriori) that the distribution of τ must
have an exponential tail, leading to two different cases (SI
B). In the first case, ψt(τ) and Ψt(τ) reach a stationary
state asymptotically, with exponential tails ∝ exp(−ατ)
for some (inverse-time) parameter α.3 This type of so-
lution exists only when B is larger than a critical value
B∗

c , given by the condition (SI B)

B∗
c exp(1−B∗

c ) =
1

K
, (5)

with an analytical solution B∗
c = −W−1 (−1/(eK)), with

W−1(x) the branch of the Lambert function with values

3 This is a natural assumption, because the exponential distribu-
tion is in the Gumbel maximum universality class, and so the
maximum of a large number of exponential random variables has
a distribution with an exponential tail. Similarly, when B → ∞
one simply has τi(t) = εi(t), and the delays are exponentially
distributed with α = 1.

in [−1,−∞[ for x ∈ [−1/e, 0]. In particular, this implies
that B∗

c ∼ logK asymptotically when K → ∞.
In the second case, when B < B∗

c , the solution resem-
bles that of a propagating front with “velocity” v, where
asymptotically ψt(τ) ≡ ψ(τ−vt) with v = B∗

c −B. Thus,
v = E[τ(t)− τ(t− 1)] has the dimension a time and cor-
responds to the mean delay accumulated between two
successive iterations of the model.
These results imply that the order parameter for the

development of delays in time, v, undergoes a second-
order phase transition when the control parameter B
crosses B∗

c , with

v =

{
0 if B > B∗

c

B∗
c −B if B < B∗

c .
(6)

In particular, we obtain that v(B = 0) = B∗
c , implying

that the minimal buffer that must be applied to avoid
any accumulation of delays corresponds precisely to the
average delay accumulated in absence of buffers. Note
also that α also has a different behavior above and below
B∗

c , namely

α =




1− W0(−BKe−B)

B
if B > B∗

c

α∗
c ≡ 1− (B∗

c )
−1

if B < B∗
c ,

(7)

which has a square-root singularity (B −B∗
c )

1/2 as B →
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K B∗
c α∗

c

2 2.67835 0.626636
3 3.28938 0.695991
4 3.69263 0.729190
5 3.99431 0.749644
6 4.23519 0.763883
7 4.43557 0.774550
8 4.60702 0.782940
9 4.75680 0.789775
10 4.88972 0.795489

TABLE I. The values of B∗
c and α∗

c from Eq. (5) for a few
different values of K for the MF case.

B∗
c from above, suggesting that the transition of the same

kind as the K-core percolation transition, which itself is
akin to the Mode-Coupling Theory of glasses [13, 16].

We coin the term temporal criticality to describe this
transition behavior. It is a critical transition, which we
characterize below, but in the temporal dimension. The
values of B∗

c and α∗
c for a few different values of K are

shown in Table I.
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FIG. 3. Finite-N effects described by Eq. (8) for the crit-
ical buffer value Bc(N) at K = 5, obtained from the order
parameter analysis. The best linear fit values of (a, b) are
≈ (0.4723, 0.1432) (MF) and ≈ (0.4407, 0.1437) (STN). The
dependence on lnN implies slow convergence to the asymp-
totic value B∗

c .

We used direct simulations of Eq. (2) for various val-
ues of N and K, in order to verify the above analytical
results for the MF case. In Fig. 2(a) we show the be-
havior of the order parameter v as a function of the con-
trol parameter B using exponentially distributed noise
for N = 10, 000 and K = 5 (we note that the STN case

with exponential noise yields numerically indistinguish-
able results, although not shown here), from which we
identify the critical buffer value. Correspondingly, the
exponential tail behavior of ψ(τ) ≡ ψt→∞(τ) we show
in Fig. 2(b). In Fig. 2(c) we showcase the typical be-
havior of the mean delay per firm: when the buffer is
smaller than the critical buffer, the mean delay per firm
keeps accumulating without bound, while avalanches of
all sizes appear spontaneously in the mean delay per firm
when the buffer is smaller than the critical buffer, with
no relation to the amplitude of the initial values of the
noise term [i.e., εi(t = 0)]. Finally, in Fig. 2(d) we show
the behavior of the order parameter v as a function of B,
identify Bc from it.
We also note that changing the distribution of the

noise to, for example, a folded Gaussian with P (ε) =

1ε>0

√
2/π exp(−ε2/2), yields qualitatively similar re-

sults. We expect the presence of a heavy (power-law)
tail will change the nature of the transition but hence-
forth we limit ourselves only to exponentially distributed
noise in this paper.
In the language of interfaces and of the B-KPZ equa-

tion, the delay accumulating transition reported above
corresponds to a depinning transition [11, 12], which ap-
pear in many different contexts (domain walls in mag-
nets, fracture fronts, yielding, etc.), see e.g. [17–20] and
refs. therein.

C. Finite-N effects

It is clear from Fig. 2(c-d) that the values of Bc and αc

for N = 10, 000 and K = 5 do not match the analytical
solution provided in Table I. We reason in Fig 3 that
this is caused by finite-N effects. Indeed, we find that
the Bc(N) data for both the MF and the STN cases can
been fitted very well with a function of the type

Bc(N) = B∗
c − 1

(a+ b lnN)2
. (8)

One plausible explanation for the lnN -dependence can
be the “small-world phenomenon”: since the inputs of
every firm comes from K randomly chosen firms at ev-
ery time step for the MF case, on average the input-
output links among all possible firms have been estab-
lished within O(lnN) time steps, which is the diameter
of a sparse random graph [21, 22]. The same can be ar-
gued for STN as well, but additional constraints (such as
clustering within the supply chain, or any sector struc-
ture) can make this effect more pronounced. Remarkably,
Eq. (8) predicts a (lnN)−2 asymptotic convergence for
large N , which is strongly reminiscent of the classic result
of Brunet & Derrida [23] for the finite size correction to
the velocity of traveling fronts that appear in the analyt-
ical solution of our problem on a tree-like structures (SI
E and [24]). Although the precise mathematical connec-
tion is unclear to us at this stage, it is not unreasonable
to surmise that such a connection indeed exists.
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III. CHARACTERIZING TEMPORAL
CRITICALITY

A. Temporal correlations

In critical phenomena one expects (power-law) diverg-
ing correlation lengths as the control parameter gets
closer to the critical value in the disordered phase.
For temporal criticality, we expect diverging correlation
lengths in time as B → B∗

c from above. There is however
a subtlety: correlations in the delays of individual firms
decorrelate within times of O(1). For the MF case, to
which we confine ourselves in Sec. III, this should how-
ever not come as a surprise since the temporal adjacency
matrix A is composed randomly at every time step.
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FIG. 4. Autocorrelation function of mean delay per firm for
N = 10, 000 and K = 5 for the MF case. The data have been
collapsed to the reference curve (B ≈ 3.6799) by stretching
the x-axis by B-dependent scale factors. A stretched expo-
nential of the form exp[−(t/tref)

β ] in temporal depth t, with
best-fitted values tref ≈ 5835.6 and β ≈ 0.823 provides an
excellent fit to the collapsed data. Inset: these scale factors
are fitted by the function (9), showcasing that the correlation
length in the temporal domain diverges as a power-law when
B approached B∗

c from above. See text for details.

That said, from Figs. 2(c-d) we expect the signs of
diverging correlation lengths to be picked up by the mean
delay per firm, defined as

∑
i τi/N . This is explored in

Fig. 4 for N = 10, 000 and K = 5, where we collapse
the temporal autocorrelation function of the mean delay
per firm by stretching the x-axis by B-dependent scale
factors for five different B-values. These scale factors are
then plotted in the inset of Fig. 4 (symbols) and fitted

with a curve

B-dependent scale factor =
[B −Bc(N)]

γ

[Bref −Bc(N)]
γ , (9)

which we have (arbitrarily) normalized using Bref =
3.6799. From such a fit we obtain Bc(N) ≈ 3.6755 and
γ ≈ 1.6936. In other words, Fig. 4 showcases that the
correlation time indeed diverges as a power-law when B
approaches the critical value from above.
We note that such a data collapse is very sensitive

to the fitting parameters Bc(N) and γ — especially to
Bc(N) — this is a standard method used for identifying
critical exponents with a high degree of numerical preci-
sion [25]. We also note that the shape of the collapsed
curves in Fig. 4 suggests that the correlation functions
do not decay as a pure exponential: numerically, we find
that a stretched exponential, with a stretching exponent
β ≈ 0.823, produces an excellent fit to the collapsed
curve.
As we have seen above, exponent γ, governing the di-

vergence of the relaxation time as B∗
c is approached, is

very precisely determined by our numerical data. How-
ever, perhaps surprisingly in view of the usual univer-
sality property of critical exponents, we have found that
γ depends on, e.g., the connectivity of the network K.
For example, the data collapse of the autocorrelation of
mean delay per firm for N = 10, 000 and K = 7 is also
excellent and yields Bc(N) ≈ 4.0441 and γ ≈ 1.745, dis-
tinctly different from the value γ ≈ 1.6936 obtained for
K = 5. Other exponents, such as stretching exponent
β or the exponent governing the avalanche persistence
time reported in the next section, are universal. Such
a coexistence of universal and non universal exponents
is, as already suggested above, reminiscent of a similar
situation for the Mode-Coupling Theory of glasses [13].
There too, the exponent γ describing the divergence of
the relaxation time as the glass transition is approached
is non universal, whereas the Debye-Waller factor has a
universal square-root singularity in the glass phase.

B. Delay avalanches

Figures 2(c-d) suggest that we define and analyze delay
“avalanches”, in close analogy with avalanches appearing
at depinning, fracture or yielding transitions [17, 19, 20].
Since delays can never be negative, delays that are above
a certain threshold are of particular interest. In fact, the
buffer B is such a natural threshold, since delays below B
at a given time step gets absorbed by the buffer. Based
on Figs. 2(c-d) we therefore again consider mean delay
per firm, and define as avalanche those cases when the
mean delay per firm is > B. This brings two aspects
of avalanches in focus: (i) avalanche persistence times,
defined as the time the mean delay stays above B once it
becomes larger than B, and (ii) avalanche size, defined as
the area under the avalanche curve over the persistence
times above the threshold B.
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FIG. 5. Probability distribution of avalanche persistence times (a), and of avalanche sizes (b) for the MF case, with N = 10, 000
and K = 5. Panel (a): an excellent data collapse is obtained for the probability distribution of avalanche persistence times by

scaling the x- and the y-axes by [B −Bc(N)]−γ and [B −Bc(N)]−3γ/2 respectively, with the Bc(N) ≈ 3.6755 and β ≈ 1.6936,
determined from Fig. 4. Inset (a): mean persistence times for the five B-values shown in the main plot; the red line corresponds

to ≈ 2.355[B −Bc(N)]−γ/2, implying that the mean avalanche persistence time diverges ∼ [B −Bc(N)]−γ/2 (as it must given
the data collapse of the main plot) when B → Bc(N) from above. Panel (b): the probability distribution of avalanche sizes is
independent of B at the lower end of the avalanche size, but at the higher end it behaves with an (apparent) power-law with
exponent ≈ −0.32, with the power law lasting deeper into the avalanche size as B → Bc(N) from above. Inset (b): mean
avalanche sizes for the five B-values shown in the main plot; the red line ≈ 0.443[B − Bc(N)]−γ is a numerically obtained fit
to the data, implying that the mean avalanche size diverges ∼ [B −Bc(N)]−γ as B → Bc(N) from above. See also main text.

The probability distributions of persistence times and
avalanches sizes for N = 10, 000 and K = 5 for the MF
case are shown in Figs. 5(a) and (b) respectively. Us-
ing Bc(N) ≈ 3.6755 and γ ≈ 1.6936 as found in Fig. 4
we obtain an excellent collapse for the probability distri-
butions of the persistence times: Fig. 5(a) shows that
long persistence times become increasingly likely as a
power-law with an exponent ≈ −3/2, corresponding to
the return time probability density of an unbiased ran-
dom walk, while the typical time of avalanches diverges
as [B −Bc(N)]−γ . Note that this implies that the mean
avalanche time diverges more slowly, as [B−Bc(N)]−γ/2,
due to the explosion of the number of “small” avalanches.

Similarly, large avalanches also become increasingly
likely as a power-law with an (apparent) exponent ≈
−0.32, with the power-law behavior holding on for pro-
gressively larger avalanche sizes as B → Bc from above,
although the probability distribution of avalanche sizes
remains independent of the value of B [Fig. 5(b)].
Finally, using a numerical fit to the data the mean
avalanche size is seen to increase ∼ [B−Bc(N)]−γ [inset
of Fig. 5(b)]. We note that these results are in agreement
with the qualitative picture of Fig. 2(c-d).

C. Fluctuations in mean delay per firm

We also characterized the fluctuations in the mean de-
lay per firm close to criticality. For this, we introduced
the fluctuations for a run over the time interval J0, T K as

∆τ(t) ≡ 1

N

∑

i

[τi(t)− vt] for 0 ≤ t ≤ T , (10)

where v was computed from a linear regression on the
mean delay per firm

∑
i τi/N data over the time interval

J0, T K. We then computed the variogram of the fluctua-
tions, defined as

V(ℓ) ≡ Var [∆τ(t+ ℓ)−∆τ(t)] , (11)

where the variance is computed over t.
For purely diffusive processes, V(ℓ) ∝ ℓ. The vari-

ogram is plotted in Fig. 6 (main graph) for several B-
values above Bc(N), where we see that the variogram is
initially linear in ℓ, but departs from the linear trend at
larger ℓ-values. Moreover, the point of departure from
the linear trend occurs at progressively larger values of ℓ
as B approaches Bc(N). In other words, the mean delay
per firm follows a biased random-walk close to critical-
ity: on top of the average drift v, the mean delay per firm
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evolves completely randomly at each time step. This be-
havior is in line with the spectral density of fluctuations
S(f), defined as

S(f) ≡
∣∣∣∣∣
T∑

t=1

∆τ(t)e−2iπft/T

∣∣∣∣∣

2

, (12)

becoming closer to f−2 for progressively smaller values
of f as B approaches Bc(N) Fig. 6 (inset).
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FIG. 6. Main graph: Variogram of fluctuations in mean delay
per firm (the same B-values used in Fig. 5, using also the
same color scheme). Inset: corresponding spectral density of
fluctuations S(f). See text for details.

IV. CRITICALITY ON REAL-WORLD
TEMPORAL NETWORKS

In contrast to the stylized models we have analyzed
so far, in temporal networks describing real-world pro-
cesses [e.g., Fig. 1(a)], delays do not develop at discrete
time steps. Neither are the firms located on a “lattice”,
as shown in Figs. 1(b-c), nor are the buffers of the
same magnitude (= B) everywhere. Therefore, in or-
der to bridge the gap between stylized models and the
real world, we investigate the development of delays on
two real-world temporal networks and demonstrate the

proof-of-principle applicability of the concept temporal
criticality to the real world.

Many real-world operational data are often too coarse
or not easily accessible. Firm-to-firm input-output pro-
duction network data, for example, is often not available
at product level, with corresponding buffers, and/or pro-
prietary. We therefore choose temporally-resolved con-
tact data among pupils from a high school [26] and em-
ployees at a workplace [27], both of which are publicly
available from sociopatterns.org (data description in SI
C). The contacts are traced at discrete time steps (at
20 seconds interval), and the temporal network is highly
disordered, i.e., there are large variations in the temporal
adjacency matrix A(t), which are directly taken from the
empirical data.

We “event mapped” [28, 29] these temporal networks
to suit our purpose: an example is shown in Fig. 7(a),
wherein contacts among individual agents (pupils, em-
ployees; each agent with a unique alphanumeric tag) at
discrete time steps are shown by thick red lines. Ev-
ery connected component of the network is termed “an
event”; once the events at every time step is constructed,
in the temporal networks the agents can be seen as mov-
ing from one event to another across time steps. Note
that the number of agents entering a specific event must
also be equal to the number of agents leaving that event,
albeit, unlike the case of STNs, the number of agents per
event is not a constant (neither is the number of events
taking place per time step).

We simulated delay development [Eq. (2)] on these
temporal networks for uniform buffer B. Delays develop
in a manner analogous to Fig. 1(b): delays are carried
by agents, and the delay of an event i at time t is the
maximum of the delays of the agents entering that event
plus an exponentially distributed random noise term εi
with exponent unity. Note however the presence of single-
agent “events” [colored blue in Fig. 7(b)]: for such events
no noise term is added, as they are considered to be tem-
porarily outside the system (e.g., a transport crew having
a lunch break).

The corresponding v vs B plots, analog of Fig. 2(a) are
shown in Fig. 7(b) (main graph), and with a logarithmic
y-axis (inset). Evidently, there are critical transitions for
both data sets, as the v vs B curves exhibit a power-
law singularity (with a power larger than 1) in (Bc−B),
signified by d(log v)/d(logB) approaching infinity from
the left, allowing us to cleanly identify the corresponding
critical values Bc. We note that disorder increases the
order of transition has been found elsewhere [19, 30].



9

(a)
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Bc ≈ 2.008 Bc ≈ 2.496

FIG. 7. (a) An example event representation for a real-world temporal network, consisting of four agents, numbered 1 through
4. The contact links among the agents at any time step is denoted by a thick red line, and each connected component — such
as 1-2 and 3-4 at time step 0 constitutes an event. An event can consist of a single agent as well, denoted by a blue agent node
and blue outgoing connections. Single-agent events do not propagate delay according to Eq. 2, because they miss the noise
term ϵi(t). Once the events are constructed at all time steps, agents can be seen to move from one event to another across
time steps. (b) The v vs B graph for the two real-world temporal networks (TNs), the inset showing the same data as in the
main graph, but with double logarithmic axes. At the B-values noted in the inset by dashed lines, the slopes of log v sharply
approach infinity; these we identify as the critical buffer Bc. One can fit the singularity at Bc as a power-law (Bc − B)ζ with
ζ ≈ 5/2.

In contrast to Fig. 2(a), the transitions are however
not only smooth in v vs. B plots [e.g., v does not have
a discontinuous first derivative in B as in Fig. 2(a)], but
we also find them taking place at lower values of Bc than
expected for STNs with similar numbers of agents. In
SI D we argue that this is likely caused by the “spar-
sity” rather than by the “heterogeneity” in the temporal
network topology (the terms are defined in SI D).

V. CONCLUSION AND DISCUSSIONS

The value of goods and services depends on the time-
liness of their provisions; for example, the value of a ride
service is not only to go from A to B but to also do so
on time. Similarly, the economic value of energy or a
glass of water is also determined by whether they are
available on time. System operators that provide these
goods and services, on the one hand, have therefore in-
tegrally adopted timeliness as a quality standard, and
on the other hand, are continuously striving to improve
cost- and time-efficiencies in order to achieve superior
operational results. We have captured the competition
between achieving timeliness and the strive for efficiency
– and more generally between efficiency and resilience
[1] – in terms of a stylized model on temporal networks
with a delay-mitigating temporal buffer B: more buffer
translates to higher inefficiency, but more adherence to
timeliness and stability. With B as the control parame-
ter, the model exhibits temporal criticality, a novel form
of phase transition in time that occurs at a critical value
of B. Above this critical value, delay avalanches of all
sizes appear spontaneously. For the stylized model we

have characterized these avalanches and have identified
the corresponding critical exponents.

We have also shown that real-world temporal networks,
which are not a lattice, also exhibit temporal criticality.
Nevertheless, several challenges still exist for a meaning-
ful translation of temporal buffers in our model to the
real world. First, temporal buffers are an aggregate of
diverse measures in reality. For example, a production
planner in a firm can increase temporal buffers by pro-
ducing faster or in overtime, by increasing inventories,
securing more suppliers for the same input, improving
(electronic) procurement systems, changing product de-
signs to reduce exposure to critical inputs, and so on
[5]. Each of these measures comes with its own possibil-
ities and limitations in terms of efficiency and buffering
dynamics. Second, many firms have extensive produc-
tion planning and operations research departments that
tackle the trade-off between cost efficiency and delivery
security on time [9]. However, this research and plan-
ning is mostly limited to units within the firm, and to
other firms with direct contractual links (suppliers and
customers). The supplier of the supplier is already less
foreseeable, not to speak of a supplier three or four links
away on another continent [31]. Lastly, an important el-
ement that our simplified model does not capture is the
heterogeneity in time delays and inventory levels, a point
that was shown to be important in the model described
in [6]. The complex interactions among firms, simultane-
ously trying to anticipate the actions of other firms, can
lead to emergent system dynamics, as demonstrated by
the ‘bullwhip effect’, illustrated through the well-known
‘beer game‘ [32]. Hence, both the heterogeneous compo-
sition of temporal buffers and their myopic adjustment
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can have very different implications for emergent behav-
ior and temporal criticality.

Of particular interest for the applicability of our model
to real STSs is how relatively small and/or local events
can lead to avalanches and system-wide disruptions, such
as the cancellation of all train rides to reboot scheduling
[33], a worldwide supply chain blockage due to natural
disasters [34], or even a full-blown economic crisis, such
as the global financial crisis in 2008 that emanated from
the cracks in subprime loans, which represented a puny
fraction of the US economy [35]. Following the early
work of Bak et al. [36], one might argue that the ten-
dency of efficiency-driven operators to self-organize into
(temporal) criticality explains why financial markets and
economies are more volatile than expected based on eco-
nomic equilibrium models with rational expectations [37].
This well-known phenomenon is referred to as the “excess
volatility puzzle”, or the “small shocks, large business
cycle puzzle” [35, 38], the explanation of which, despite
numerous attempts, remains elusive (see e.g. [10, 39] and
[40] for a recent review). The “temporal criticality” de-
veloping on firm-to-firm networks may be a potent cause
for an imbalance in demand and supply, leading to large

scale volatility in economic output and in corresponding
prices of goods and services. This is in fact very visible
in agent-based economic models [8, 10, 41], and aligned
with empirical evidence of firms with low inventories be-
ing less resilient in a crisis [42]. Thus, when operating
close to temporal criticality, the network is highly sensi-
tive to delays, which may explain the well-documented
and persistent existence of bubbles and crashes in prices
(see, e.g., [43]).
Going beyond STSs, the concept of temporal critical-

ity may be a promising approach for other input-output
systems with temporal buffers and incentives for improv-
ing efficiency like, e.g. distributed computing systems or
task schedulers. In the tradition of physics contributing
to neuroscience [44], our model may also be a novel av-
enue for self-organizing neural networks with temporal
signal transmission along structural connections, critical
buffers in neural excitability and activity states, and effi-
ciency incentives for minimizing energy and/or surprises
(see, e.g., [45] and [46]).
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temporal criticality. J-PB, PLD, JM, DP, FPP and MR
analyzed temporal criticality. All authors contributed to
the manuscript.

[1] J. Moran, F. P. Pijpers, U. Weitzel, J.-P. Bouchaud, and
D. Panja, Temporal criticality in socio-technical systems,
arXiv:2307.03546 (2023).

[2] M. M. Dekker and D. Panja, Cascading dominates large-
scale disruptions in transport over complex networks,
PLOS One 16, e0246077 (2021).

[3] V. Giannikas, A. Ledwoch, G. Stojković, P. Costas,
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SI A: Evolution of delays for exponentially distributed noise

We assume that εi(t) is an i.i.d. random variable, taken from the distribution P (ε) = 1ε>0 exp(−ε). Let us denote
the probability distribution function (pdf) of the delays at the time step t by ψt(τ), with ψ0(τ) = P (τ).

The way to construct ψt+1 from ψt is by taking K samples from the pdf ψt. As explained in Eq. (3) at time step
t + 1 a firm can have an output delay τ in two distinct ways: (i) when the max of the K chosen samples from ψt
have a delay equal to τ + B − ε, and (ii) when the max of the K chosen samples from ψt have a delay < B. In the
first case, B amount of delay gets absorbed from the maximum and ε gets added to the delay of from the noise term.
Then we need to integrate the noise term ε from 0 to τ . In the second case, ψt+1(τ) ∼ exp(−τ), inherited from the
distribution of the noise itself. In other words,

ψt+1(τ) =

∫ τ

0

dε exp(−ε) [pdf of max of the K chosen samples has value (τ +B − ε)]︸ ︷︷ ︸
Q(τ+B−ε)

+exp(−τ)
∫ B

0

du [pdf of max of the K chosen samples has value u]︸ ︷︷ ︸
Q(u)

(A1)

We choose K samples from the probability distribution to satisfy that the maximum of them equals u. So we choose
one of them with a delay u, and the rest (K − 1) samples I choose with delays ≤ u. Moreover, the one with a delay
u can be chosen in K distinct ways, meaning that

Q(u) = K ψt(u) [1−Ψt(u)]
K−1, (A2)

where Ψt(u) given by

Ψt(u) =

∫ ∞

u

du′ ψt(u
′), (A3)

leading to

ψt(u) = − d

du
Ψt(u). (A4)

This means

Q(u) =
d

du
[1−Ψt(u)]

K and Q(τ +B − ε) = − d

dε
[1−Ψt(τ +B − ε)]K . (A5)

Using Eq. (A5) in Eq. (A1) we get

ψt+1(τ) = exp(−τ)
∫ B

0

du
d

du
[1−Ψt(u)]

K

︸ ︷︷ ︸
= [1−Ψt(B)]K , since Ψt(0) = 1

−
∫ d

0

dε exp(−ε) d

dε
[1−Ψt(τ +B − ε)]K . (A6)

We do an integration by parts of the second term to write

ψt+1(τ) = [1−Ψt(B)]K exp(−τ)− exp(−ε) [1−Ψt(τ +B − ε)]K
∣∣∣∣
ε=τ

ε=0

−
∫ τ

0

dε exp(−ε) [1−Ψt(τ +B − ε)]K

= [1−Ψt(τ +B)]K −
∫ τ

0

du exp[−(τ − u)] [1−Ψt(u+B)]K . (A7)

A first order derivative of Eq. (A7) wrt τ yields

ψ′
t+1(τ) = −K[1−Ψt(τ +B)]K−1 Ψ′

t(τ +B)−
[
[1−Ψt(τ +B)]K −

∫ τ

0

du exp[−(τ − u)] [1−Ψt(u+B)]K
]

︸ ︷︷ ︸
=ψt+1(τ) from Eq. (A7)

,(A8)
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or in surprisingly simple form,

ψ′
t+1(τ) + ψt+1(τ) = −K[1−Ψt(τ +B)]K−1 Ψ′

t(τ +B), (A9)

which reduces to, using Eq. (A4),

Ψ′′
t+1(τ) + Ψ′

t+1(τ) = K[1−Ψt(τ +B)]K−1 Ψ′
t(τ +B). (A10)

SI B: Asymptotic solution of delay evolution with exponential noise

1. Case I: B > B∗
c , time-independent stationary solution

Let us look for a stationary, i.e. time independent, solution of Eq. (A10) at large time. Such a function Ψ(τ) satisfies

Ψ′′(τ) + Ψ′(τ) = K[1−Ψ(τ +B)]K−1 Ψ′(τ +B). (B1)

Note that in the limit B → ∞ the right-hand side of this equation is equal to 0. This is trivial, as in that limit
the evolution given in Eq. (2) imposes τi(t) = εi(t), implying that Ψ(τ) = e−τ1τ>0 is the correct time-independent
solution.

Another way to see this is to rewrite Eq. (B1) as

0 = − ∂

∂τ

[
Ψ′ +Ψ+ [1−Ψ(τ +B)]

K
]
, (B2)

which means that:

Ψ′ +Ψ+ [1−Ψ(τ +B)]
K

= c. (B3)

Using that [1−Ψ(τ +B)] ≈ 1 for large values of the argument (i.e. large B), this reduces to:

Ψ′ +Ψ = c− 1 (B4)

defining for convenience u ≡ Ψ−Ψ(0) then we have an inhomogeneous initial value problem:

u′ + u = c− 1−Ψ(0) ≡ γ

u(0) = 0 (B5)

which has the unique solution:

u = Ψ−Ψ(0) = γ
[
1− e−τ

]
. (B6)

In order for Ψ → 0 for large values of its argument, the constant of integration must be γ = −Ψ(0) and therefore

Ψ = Ψ(0)e−τ . (B7)

We may then restore a finite B in Eq. (B3). Keeping the lowest-order terms, the correction to the differential equation
reads:

Ψ′ +
[
1−Ke−B

]
Ψ = c− 1. (B8)

This correction is important because it shows that this improved, but still approximate, solution behaves as Ψ ∝ e−ατ

with α < 1. Therefore, using Ψ ∝ e−ατ is a reasonable approximation which can be used to obtain further constraints
to our problem. Using Ψ ∝ e−ατ in Eq. (B3) and keeping only the lowest-order terms leads to

1− α = K exp(−Bα). (B9)

A solution of Eq. (B9) can only exist if α < 1 since the right-hand side of the equation, which we denote by
f(α) ≡ Ke−Bα on Fig. 8, is a positive quantity.

In order to solve Eq. (B9) we multiply each side by −B and, denoting w = −B(1−α), notice that it takes the form

wew = −BKe−B ⇔ B(1− α) =W (−BKe−B) (B10)
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which determines α. Here W (x) is the Lambert function, i.e. the solution of WeW = x. No solution exists for
x < −1/e, while for x ∈ [−1/e, 0] the Lambert function has two branches, shown on the left panel of Figure 8
W0(x) ∈ [0,−1] and W−1(x) ∈ [−1,−∞]. They meet at W0(−1/e) =W−1(−1/e) = −1. Hence, when BKe−B > 1/e
there are no solutions for α, while for BKe−B < 1/e two solutions appear.

−0.3 −0.2 −0.1 0.0
x

−10

−8

−6

−4

−2

0

W0(x)

W−1(x)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
α

0.0

0.2

0.4

0.6

0.8

1.0

1.2
y = 1− α
y = f(α) for B = 3.5

y = f(α) for B = B∗c ≈ 2.678

y = f(α) for B = 2

FIG. 8. Left: the two branches of the Lambert function. To recover the right limit α → 1 as B → ∞ for fixed K, the W0

branch should be used to find the value of α∗
c , while the other branch should be used to obtain the value of B∗

c . Right: Plots
of f(α) for K = 2 and several values of B. The corresponding critical values are B∗

c ≈ 2.678 and α∗
c ≈ 0.627.

Varying B at fixed K > 1, there is thus a transition at B = B∗
c , which satisfies

B∗
c e

−B∗
c =

1

eK
, (B11)

leading in turn to an unique solution for α, namely

1− α∗
c = 1/B∗

c . (B12)

Equation (B11) is itself solved using the Lambert function, as B∗
c = −W (−1/(eK)). Because K > 1, two roots are

possible, but for B ≫ 1 the solution should read ψ(τ) ≈ e−τ , meaning that we should decrease B until we reach the
transition. Hence, we must choose the largest root of (B11), so that the critical point is given by

B∗
c = −W−1(−1/(eK)) > 1 (B13)

as displayed in the main text.
For B ≥ B∗

c there is thus a time independent solution for ψ(τ). In that phase one has then BKe−B < 1/e and the
value of α is given by (B10) with W =W0 (which has the correct limit α = 1 for B → +∞, while W−1 gives α = 0).

a. Square-root singularity we may also see how α− α∗
c behaves compared with B −B∗

c . Writing α = α∗
c + η

and B = B∗
c + ϵ into Eq.(B9) and keeping terms of first order in ϵ and up to second order in η, we obtain

1− α∗
c − η ≈ 1

B∗
c

exp(−B∗
c η − α∗

cϵ)

≈ 1

B∗
c

[
1−B∗

c η − α∗
cϵ+

1

2

(
B∗2

c η2 + α∗2
c ϵ

2
)]

≈ 1− α∗
c − η − α∗

c

B∗
c

ϵ+
1

2
B∗

c η
2.

(B14)

which then becomes

η ≈
√

2α∗
c

2B∗2
c

ϵ. (B15)

Finally, this means that α− α∗
c ∼
B→B∗

c

(B −B∗
c )

1/2.
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2. Case II: B < B∗
c , travelling front solution

In addition to the previous case, there can also be a travelling front solution, for which we assume the asymptotic
form ψ(ξ) ≡ ψt→∞(ξ) ∼ exp(−αξ) for large ξ ≡ τ − vt. This assumption reduces Eq. (A9) to

−α exp(αv) + exp(αv) = K exp(−αB), (B16)

and then Eq. (B16) can be written as

1− α

K
exp(αv) = exp(−Bα). (B17)

The two types of asymptotic forms, together with the exponential decay assumption of ψ can be consistent with each
other if v = 0 when B > B∗

c .

Case B < B∗
c :

For B < B∗
c , we assume that for large ξ, ψ(ξ) ∼ exp(−α∗

cξ), leading to

1− α∗
c

K
exp(α∗

cv) = exp(−Bα∗
c). (B18)

Since α̃c is related to B∗
c through Eq. (B12), combining with (B18) leads to v = B∗

c −B.
We close SI B with the note that Eq. (B3) we have analytically solved for K = 2, 3, 4 and 5, and note that the

solutions become progressively complex with increasing values of K.

SI C: Real-world data statistics

The data sets for the high school and the workplace were taken from sociopatterns.org [26, 27]. In these datasets,
agents — pupils and employees respectively — were tracked by wearable sensors, and contacts among agents were
recorded at 20 second intervals (the time interval between two consecutive time steps is therefore 20 seconds). The
time series of the agents’ contacts at discrete time steps yielded the corresponding temporal networks, which provided
us with the temporal adjacency matrix A(t).

As described in the main text below Fig. 7, we constructed the “event representations” of these temporal networks,
with each disjoint network component at every time step defining an event. Because of the ways the sensors work,
an (example) event of agents a1, a2 and a3 at some time step may be registered as simultaneous contacts between
a1 and a2, and between a1 and a3, while a contact between a2 and a3 is not registered. In order to suit the current
purpose however, in the event representation we consider it as an event where all three agents are simultaneously in
contact with each other.

The statistics for the data sets that were used in Fig. shown in Table II. [Sparsity in Table II is defined as the
percentage of agents that participated in single-agent events, summed over all temporal layers. For example, in Fig.
7(b), the sparsity is obtained as (0 + 1

2 + 1
2 )/3 = 1/3 ≈ 33.33%.]

Quantity Highschool data Workplace data
Total time steps 8937 9679
Unique agents 328 208

Events 131251 33572
Events per timestep 14.68 ± 4.30 3.47 ± 2.13
Agents per event 11.70 ± 12.59 2.45 ± 0.72

Sparsity 47.63% 95.90%

TABLE II. Summary statistics of the temporal network data sets from a highschool [26] and a workplace [27].

SI D: Effects of heterogeneity and sparsity of STNs on criticality

In order to get an insight into what causes higher-order transitions for real-world temporal networks in contrast to
second order transitions for the MF or STN cases [as in Fig. 2(a)], we simulated delay developments on STNs upon
introducing sparsity and heterogeneity into them.

sociopatterns.org
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(a) (b) (c)

FIG. 9. Schematics for synthetic temporal networks (STNs) with heterogeneity and sparsity. (a) With heterogeneity, but no
sparsity: K is the same for all system components per time step, but is different across time steps (for example, K = 1 and 3
at t = 0 and 1 respectively. (b) With sparsity, but no heterogeneity. Sparse nodes (blue) are created by connecting the system
components only to itself between time steps t and t+1. (c) A temporal network with both heterogeneity and sparsity, as seen
in real-world temporal networks.

We define heterogeneity in STNs as the value of K being different at different time steps — albeit the same for
all firms at any given time step [a heterogeneous, but not sparse STN is shown in Fig. 9(a)]. Sparsity in a STN is
defined in line with SI C: it is determined by the average percentage of system components whose delay at any given
time step does not influence any other ones in the following time step [a sparse STN without heterogeneity is shown
in Fig. 9(b), the sparsity of this network is

(
1
4 + 1

4 + 0
)
/3 = 1/6 ≈ 16.67% ]. Defining them in this way means that

we can separately control heterogeneity and sparsity [and if needed, can also combine them, as shown in Fig. 9(c)]
while synthesizing temporal networks.
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(b)STN, sparsity = 0%
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Bc(N) ≈ 3.674

FIG. 10. Effect of heterogeneity alone (a) and sparsity alone (b) on criticality for N = 10, 000. In panel (a) the order parameter
for homogeneous STN with K = 5 is plotted alongside the one for a heterogeneous STN with K ∼ Uniform{2, 3, . . . , 8}.
Heterogeneity alone changes the magnitude of Bc(N), but does not change the order of transition. In contrast, panel (b) shows
that sparsity alone does not change the magnitude of Bc(N), but pushes the transition to be of higher order. See text for
details.

The results of our experiments with delay developments on (a) heterogeneous but not sparse and (b) sparse but
homogeneous temporal networks for N = 10, 000 are shown in Fig. 10(a) and (b) respectively. In panel (a) the value
of K per time step is chosen from a uniform distribution between 1 and 9; we choose this range in order to maintain
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the average K at 5, allowing us a comparison to Fig. 9(a) for which K = 5. Evidently, the transition is still second
order, but heterogeneity alone in K lowers the value of Bc(N) [c.f. 10(a)]. In contrast, sparsity alone does not change
the magnitude of Bc(N) but pushes the order of transition to be of higher order.

SI E: Finite temperatures, continuous tree

The aim of this section is to (a) make a more direct connection with the Directed Polymer problem and provide
a generalisation of our model to non-zero temperatures that reveals a full line of transition in the plane (buffer
amplitude, temperature) – see Fig. 11; and (b) give another exact calculation of the properties of the model on
continuous tree-like structures, rather than in the mean-field limit considered in the main text. Reassuringly, the
results obtained on trees are very similar to those obtained in the mean-field limit.

Finite temperature generalisation

To make apparent the connection with the directed polymer (DP) problem, it is interesting to define a “finite
temperature” extension of our model. Introducing the variable Zi(t) = eβτi(t), where β is the inverse temperature
parameter, the recursion is generalized as

Zi(t+ 1) = eβϵi(t)


1 + e−βB

∑

j∈∂i
Zj(t)


 (E1)

where ∂i denote the set of K sites connected to i. When β → +∞ one recovers the “zero temperature” recursion
considered in the main text:

τi(t+ 1) = ϵi(t) + max

(
0,max
j∈∂i

(τj(t)−B)

)
(E2)

The variable Zi(t) can be interpreted as a canonical partition function for polymers ending at i, t and the variable
τi(t) = logZi(t) as minus the free energy. Note that at finite temperature the variable τi(t) can become negative.

Cayley tree

We now study the model on the Cayley tree (CT) where each site at generation t + 1 is connected to K sites at
generation t. Since the ϵi(t) are i.i.d., assuming that the leaves at t = 0 to be identical and independent, those at
generation t are also i.i.d. and one can rewrite (E1) as a recursion for a single random variable Z(t)

Z(t+ 1) = eβϵ(t)


1 + e−βB

K∑

j=1

Z(j)(t)


 (E3)

where Z(j)(t) are K independent copies of the random variable Z(t). This is a variant of the DPCT problem studied
in [24]. Let us introduce, as in that work, the generating function, defined for τ ∈ R

Gt(τ) = ⟨e−e−βτZ(t)⟩ (E4)

with Gt(τ) ∈ [0, 1], Gt(−∞) = 0 and Gt(+∞) = 1. From (E3), and since the Z(j)(t) for different j are independent,
one immediately obtains the recursion

Gt+1(τ) =

∫ +∞

0

dϵ p(ϵ)e−e
−β(τ−ϵ)

[Gt(τ +B − ϵ)]K (E5)

where we denote p(ϵ) the PDF of ϵ(t). Since Gt(τ) = ⟨e−e−β(τ−τ(t))⟩ one has

lim
β→+∞

Gt(τ) = ⟨θ(τ − τ(t))⟩ = Prob(τ(t) < y) = P<t (τ) =

∫ τ

0

dτ ′ Pt(τ
′) = 1−Ψt(τ) (E6)
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Hence in the limit β → +∞ the recursion (E5) becomes

P<t+1(τ) =

∫ τ

0

dϵ p(ϵ)[P<t (τ +B − ϵ)]K (E7)

This relation is the primitive of the one in (3) which can be recovered by taking a derivative of (E7) w.r.t. τ and
using d

dτ P
<
t (τ) = Pt(τ) = ψt(τ). So we have checked that (3) is exact on the Cayley tree.

Continuous tree

As in [24] it is easier to study the continuum version of the tree. So now t is a continuum variable and the tree
branches in two with a rate φdt. We assume that the noise becomes Brownian in the limit, with a drift ϵ̄ (corresponding
to the average delay for individual events in the discrete case)

ϵ(t) → ϵ̄dt+ σdW (t) (E8)

where W (t) is a standard Brownian motion. Now Z(t) becomes a continuous process in time and its evolution on a
time interval dt is as follows

Z(t+ dt) =

{
Z(t)eβ(ϵ̄dt+σdW (t)) with prob. 1− φdt

1 + e−βB
∑K
j=1 Z

(j)(t) with prob. φdt
(E9)

With the same definition of the generating function Gt(τ) as in (E4) and using Ito’s rule we find that under the
evolution (E9) it satisfies the partial differential equation

∂tGt(τ) = −ϵ̄∂τGt(τ) +
σ2

2
∂2τGt(τ) + φ(e−e

−βτ

Gt(τ +B)K −Gt(τ)) (E10)

which is the continuum analog of (E5) (with the same boundary conditions).

Moving phases: high and low temperature phases. Let us look for a traveling wave solution. We insert

Gt(τ) = w(τ − vt) , w(−∞) = 0 , w(+∞) = 1 (E11)

One sees that if v > 0 the term e−e
−βτ ≈ e−e

−βvt ≈ 1 in the region of the front hence one obtains

σ2

2
w′′(y) + (v − ϵ̄)w′(y) + φ(w(y +B)K − w(y)) = 0 (E12)

Proceeding as in [24] we look for a tail at large y > 0

w(y) ≈ 1− e−Ay. (E13)

Collecting the terms proportional to e−Ay one obtains the condition which determines the velocity as a function of
A

v = v(A) := ϵ̄+
φ(Ke−AB − 1)

A
+
σ2

2
A (E14)

It remains to determine A. We will proceed as in [24]. First one notes from (E4) that for large positive τ , Gt(τ) ≈
1− e−βτ ⟨Z(t)⟩. On the other hand one easily finds from the recursion (E9), or equivalently from (E10), that ⟨Z(t)⟩ ≈
eβv(β)t (which is exact for any β, where the function v(A) is defined in (E14)). When this “first moment tail” is also
in the front region defines the high temperature phase. In this phase A = β (i.e. from the boundary condition at
y = +∞) and v = v(β).
On the other hand the function (A) defined in (E14) has (for K > 1) a unique minimum as a function of A, which

we denote A = Ac. As β increases from zero, the front velocity v = v(β) decreases in the high temperature phase and
eventually reaches its minimum value. As in [24] one obtains that it freezes at the temperature βc = Ac hence

v = vc = v(Ac) , β > βc = Ac (E15)
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which defines the low temperature (glass) phase. In that phase 1−Gt(τ) ≈ τe−βcτ at large τ (a much slower decay
than the one in the first moment tail, which is now valid only in the far forward region of the front). The value of
βc = Ac is determined by the root of

(1 +AcB)e−AcB =
1

K
+

σ2

2Kφ
A2

c (E16)

The r.h.s is an increasing function of Ac starting from 1/K for Ac = 0, whereas the l.h.s. is a decreasing function of

Ac (one has (1 + x)e−x = 1 − x2

2 + O(x3) at small x), hence there is a unique root. The corresponding value of the
velocity in the low temperature phase is

vc = ϵ̄+
σ2

2
Ac +

φ(Ke−AcB − 1)

Ac
(E17)

Note that for B = 0 (in the absence of buffers) one has

v(A) := ϵ̄+
φ(K − 1)

A
+
σ2

2
A , βc = Ac =

√
2φ

σ2
(K − 1) , vc = ϵ̄+ 2

√
φσ2

2
(K − 1). (E18)
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FIG. 11. Phase diagram of the model in the plane (inverse temperature βB, inverse buffer strength ϵ̄/B), in the limit where B
and ϵ̄ are both large, and φ = 1. Note that for low enough temperature, i.e. for β > βc = rc/B, the critical buffer strength B∗

c

is independent of temperature. For β < βc = rc/B, on the other hand, the critical buffer size is temperature dependent. For
βB < logK only the “depinned” phase v > 0 exists for ϵ̄ > 0. Here we have chosen K = 5 for which rc ≈ 3 and logK ≈ 1.61.

Pinned phase. The above analysis is correct only whenever the front velocity v > 0. When the velocities
determined above, i.e. v = v(β) for β < βc and v = vc for β > βc, vanish then one enters the “pinned” phase where
Gt(τ) reaches a stationary limit G∞(τ) for t→ +∞. This corresponds to the situation where delay do not accumulate
and requires that B increases beyond a threshold value B∗

c , which however has a different expression depending on
whether β < βc and β > βc. Hence there are now two phase boundaries to the pinned phase.
The expression of the phase transition boundary considerably simplifies in the limit ϵ̄ → ∞, B → ∞ and β → 0

with ϵ̄/B and βB remaining O(1). In that limit the terms containing the noise amplitude σ become subdominant.
We then get that AcB = rc with rc given by the solution of

(1 + rc)e
−rc =

1

K
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For K = 5, for example, the numerical value of rc is very close to 3. The phase boundary can the be computed to be:

{
ϵ̄
B = φ

1+rc
(r ≥ rc)

ϵ̄
B = φ

r (1−Ke−r)+ = φ
r

[
1−K1−r/rc(1 + rc)

−r/rc]+ (r ≤ rc)

where r := βB. Here we restrict to ϵ̄ > 0, in the spirit of the model in the main text. The corresponding phase
diagram in the plane r, ϵ̄/B is given in Fig. 11. One sees that the zero temperature phase transition found in the
main text survives at non zero temperatures, but disappears at high temperatures where only the “depinned” phase
v > 0 exists.

The phase diagram looks qualitatively similar values of B and ϵ̄ that are not infinitely large. Also, one can check
that the behaviour of v when B is close to B∗

c (when it exists) is always linear, i.e. v ∝ B∗
c −B.
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