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Abstract

We investigate a simple dynamical model for the systemic risk caused by the
use of Value-at-Risk, as mandated by Basel II. The model consists of a bank
with a leverage target and an unleveraged fundamentalist investor subject to
exogenous noise with clustered volatility. The parameter space has three re-
gions: (i) a stable region, where the system has a fixed point equilibrium; (ii) a
locally unstable region, characterized by cycles with chaotic behavior; and (iii)
a globally unstable region. A calibration of parameters to data puts the model
in region (ii). In this region there is a slowly building price bubble, resembling
the period prior to the Global Financial Crisis, followed by a crash resembling
the crisis, with a period of approximately 10-15 years. We dub this the Basel
leverage cycle. To search for an optimal leverage control policy we propose a
criterion based on the ability to minimize risk for a given average leverage. Our
model allows us to vary from the procyclical policies of Basel II or III, in which
leverage decreases when volatility increases, to countercyclical policies in which
leverage increases when volatility increases. We find the best policy depends on
the market impact of the bank. Basel II is optimal when the exogenous noise is
high, the bank is small and leverage is low; in the opposite limit where the bank
is large and leverage is high the optimal policy is closer to constant leverage. In
the latter regime systemic risk can be dramatically decreased by lowering the
leverage target adjustment speed of the banks. While our model does not show
that the financial crisis and the period leading up to it were due to VaR risk
management policies, it does suggest that it could have been caused by VaR
risk management, and that the housing bubble may have just been the spark
that triggered the crisis.
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1. Introduction

Borrowing in finance is often called “leverage”, which is inspired by the
fact that it increases returns, much as a mechanical lever increases force. But
leverage also increases risk, which naturally motivates lenders to limit its use.1

Because risk is time varying it is natural to let leverage limits adapt, making
them dynamic. But changing leverage has market impact, and as we show here,
this can cause systemic effects leading to booms and busts.

It is widely believed that high leverage caused or at least exacerbated the
recent financial crisis. The problems are not just excessive risk taking. Be-
cause leverage goes up when prices go down, a drop in prices tightens leverage
constraints, which may force investors to sell into falling markets, thereby ampli-
fying declines in prices.2 This triggers a positive feedback loop in which selling
drives prices down, which causes further selling, which further tightens leverage
constraints, etc. Similarly, positive news about prices causes a decline in per-
ceived risk, which loosens leverage constraints, driving prices up. Dynamics of
this general type were termed the leverage cycle by Geanakoplos.3

The crisis has focused a great deal of attention on leverage cycles. During
the period leading up to the financial crisis perceived volatility declined consis-
tently over several years while asset prices and leverage of financial institutions
consistently increased. We refer to this period as “Great Financial Moderation”
in analogy to the Great Moderation – a period of low business cycle volatility
starting in the 1980s coined by Ben Bernanke.

This is illustrated in Figure 1, where we show the behavior of the VIX
index, the S&P500 index and the leverage of US security broker dealers. These
trends came to a sudden halt in 2008 when leverage came plummeting down,

1Leverage constraints may arise in a number of ways. If the investor is using collateralized
loans it must maintain margin on its collateral. Alternatively, a regulator may impose a
risk contingent capital adequacy ratio. A third possibility is that internal risk management
considerations may lead the investor to adopt a Value-at-Risk constraint. (In simple terms
Value-at-Risk is a measure of how much the bank could lose with a given small probability).
All of these cases effectively impose a risk contingent leverage constraint.

2In principle, distressed banks can reduce their leverage in two ways: they can raise more
capital or sell assets. In practice most banks tend to do the latter, as documented in Adrian
and Shin (2008).

3Minsky (1992) was the first to describe leverage cycles in qualitative terms. An early
model discussing the destabilizing effects of leverage was presented by Gennotte and Leland
(1990); see also work by Shleifer and Vishny (1992) on fire sales debt capacity over the
business cycle; a literature review is given in Shleifer and Vishny (2011). The first quantitative
model of the leverage cycle per se is due to Geanakoplos (1997, 2003); See also Fostel and
Geanakoplos (2008) and Geanakoplos (2010). Brunnermeier and Pedersen (2008) investigate
the destabilizing feedback between funding liquidity and market liquidity, and the destabilizing
effects of margin are discussed in Gorton and Metrick (2010). Other mechanisms for leverage
cycles include Aikman et al. (2012), de Nicolo et al. (2012) and Gennaioli et al. (2012).
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Figure 1: The leverage of US Broker-Dealers (solid black line) compared to the
S&P500 index (dashed blue line) and the VIX S&P500 (red dash-dotted line.
Data is quarterly; see footnote 7.

dropping by almost a factor of two in the span of a quarter, while volatility rose
dramatically and prices decreased.

The cause of these events has been a matter of great debate, with many
theories being offered. Prior to the crisis, displaying remarkable prescience,
several authors worried that the Basel II regulations were dangerous because of
their potential to cause or at least exacerbate financial instability4, and since
the crisis several models have been developed that support this conclusion.5

Our paper adds to this literature by refining an earlier model by Aymanns
and Farmer (2014) and making it more quantitative. The model endogenously
generates a leverage cycle whose properties roughly match the Great Financial
Moderation and subsequent crisis, including the correct timescale, based on
simple assumptions.

Our model has only two representative investors, a bank and a fundamental-
ist fund, whose portfolios consist of a risky asset and cash. The fund buys the
risky asset when it is undervalued and sells it when it is overvalued. The bank
follows a leverage target based on a Value-at-Risk criterion, as recommended by
Basel II. Risk is estimated by a moving average of historical volatility. The risk
appetite of the bank is controlled by a parameter α. When α is small, lever-
age, prices and volatility converge to a stable fixed point equilibrium. But at a
critical value of α the equilibrium becomes unstable and the dynamics suddenly

4Authors who presaged the potential of Basel II to amplify financial instability include
Danielsson et al. (2001), Van den Heuvel (2002), Danielsson et al. (2004) and Estrella (2004).

5See for example Adrian and Shin (2008), Shin (2010), Zigrand et al. (2010), Thurner
et al. (2010), Adrian et al. (2012), Tasca and Battiston (2012), He and Krishnamurthy (2012),
Adrian and Boyarchenko (2012a, 2013), Poledna et al. (2013), Adrian and Shin (2014), and
Brummitt et al. (2014).
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become chaotic, making a finite amplitude oscillation. When this happens the
behavior resembles that shown in Figure 1: prices and leverage slowly rise while
volatility falls, as they did during the Great Financial Moderation, and then a
crisis occurs in which prices and leverage abruptly drop while volatility spikes
upward. This cycle repeats itself indefinitely, but with chaotic variations from
period to period.

Following Aymanns and Farmer we call this the Basel leverage cycle.6 Per-
haps the most surprising aspect is that it persists even in the limit where there
is no exogenous noise. A simple calibration based on reasonable values of the
parameters yields a period of oscillation of roughly 10 - 15 years. This suggests
that VaR as mandated by Basel II was sufficient to cause the Great Financial
Moderation and the subsequent crash, and the collapse of the housing bubble
might have just been one of several possible triggers for the crisis.

The Aymanns and Farmer model was inspired by the empirical findings of
Adrian and Shin (2008), who pointed out that investors such as investment
banks are actively procyclical, i.e. they lower leverage targets when prices fall
and raise them when prices rise. They argued that this is due to regulatory risk
management based on Value-at-Risk. In the following we use their terminology a
bit differently, and refer to a procyclical leverage control policy as one for which
banks are required to reduce their target leverage when volatility increases,
and are allowed to increase it when volatility decreases. Since volatility and
returns are negatively correlated (Black, 1976; Christie, 1982; Nelson, 1991;
Engle and Ng, 1993), leverage procyclicality induces a positive feedback between
the demand for an asset and its return, which is what we wish to capture here.

We refer to the opposite case in which leverage and volatility go up and down
together as a countercyclical leverage control policy. The leverage control policy
used in our model contains a parameter that makes it possible to move contin-
uously between these two extremes. Not surprisingly, countercyclical leverage
control policies can also generate instabilities. The challenge for policy makers
is to find a policy that avoids the Scylla and Charybdis of excessively procyclical
behavior on one side or excessively countercyclical behavior on the other.7

A key enhancement of the Aymanns and Farmer model that we make here
is that the exogenous noise affecting the risky asset has clustered volatility, i.e.
the amplitude of the noise varies in time. This allows us to study the tradeoff
between micro and macroprudential regulation. In the limit where the bank
is small the optimal policy is Basel II. As the bank becomes larger, however,

6An external regulator is not necessary – prudent risk managers may choose to use VaR
on their own, while failing to take the systemic consequences into account.

7It has to be stressed that the concept of cyclicality we refer to in this paper is with
respect to risk, not with respect to the behavior of macroeconomic indicators. For example,
Drehmann and Gambacorta (2012) provide counterfactual simulations showing how leverage
control policies that are countercyclical with respect to the difference between the credit-to-
GDP ratio and its long-run average can help making the economy more stable. The focus of
our paper, however, is on the circumstances in which risk control can cause financial instability,
and how to make an effective tradeoff between systemic vs. individual risk.
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there is the potential for the system to endogenously generate systemic risk, and
things become more complicated. The best policy depends on the parameters
of the system. We also make several others changes to their model, making
the noise trader a fundamentalist, and restructuring the model so that it has a
continuum limit and so the parameters are easier to interpret, allowing a better
match to real data.

We formulate a criterion for an optimal leverage control policy. Equity
capital is widely regarded by practitioners as expensive (see however Admati
and Hellwig (2014)). We assume that this leads banks to choose policies that
maximize leverage at a given level of overall risk. This is desirable because this
means that the capital of the financial system is put to full use in providing
credit to the real economy. In fact, for reasons of convenience it is more feasible
for us to minimize risk at a given leverage, which is essentially equivalent. We
measure risk in terms of realized shortfall, i.e. the average of large losses to the
financial system as a whole.

One of the main results of this paper is that the optimal policy depends
critically on three parameters: (1) the average leverage used by the bank, (2)
the relative size of the bank and the fundamentalist and (3) the amplitude of
the exogenous noise. A procyclical leverage control policy such as that of Basel
II is optimal when the exogenous noise is high and the volatility is strongly
clustered, the bank is small and leverage is low; in the opposite limit where
these conditions are not met the optimal policy is closer to constant leverage.

We explicitly assume bounded rationality, using assumptions that are simple,
plausible and supported by empirical evidence. In Section 6.2 we argue that this
is justifiable for several reasons, including the manifest failure of rationality in
the period leading up to the crisis of 2008.

This paper is organized as follows: In Section 2 we describe the model in
broad terms, leaving some of the details to the Appendix. In Section 3 we discuss
how the parameters affect the behavior of the model and present an overview
of its behavior. In Section 4 we perform a stability analysis. In Section 5 we
present our criterion for an optimal leverage policy and study how the best
policy depends on the circumstances. Finally in Section 6 we give a summary
and defend our choice of bounded rationality.

2. A simple model of leverage cycles

2.1. Sketch of the model

We consider a financial system composed of a leveraged investor, which we
call the bank, an unleveraged fund investor, which we call the fund, and a passive
outside lender that provides credit as required by the bank. The bank and the
fund make a choice between investing in a risky asset whose price is determined
endogenously vs. a risk free asset with fixed price, which we will call cash. The
market clearing price of the risky asset is determined by the excess demand of
the fund and the bank. Figure 2 shows a diagrammatic representation of the
model.
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Figure 2: Diagrammatic representation of the model: The bank and the fund in-
teract through price formation. The bank’s demand for the risky asset depends
on its estimated risk based on historical volatility and on its capital require-
ment. The demand of the fund consists of a mean reverting component that
tends to push the price towards its fundamental value; in addition there is a
random exogenous shock to the fund’s demand that has clustered volatility.
Price adjustments affect the bank’s estimation of risk and the mean reverting
behavior of the fund. The cash flow consistency in the model is enforced by
equity flowing between the bank and the fund in equal amounts. The driver of
the endogenous dynamics is the feedback loop between price changes, volatility
and demand for the risky asset.
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We focus on risk management by assuming the bank holds the relative weight
of the risky asset and cash fixed. The bank’s risk management consists of two
components. First, the bank estimates the future volatility of its investment
in the risky asset through an exponential moving average of historical returns.
Second, the bank uses the estimated volatility to set its desired leverage. If the
bank is below its desired leverage, it will borrow more and use the additional
funds to expand its balance sheet; if it is above its desired leverage, it will
liquidate part of its investments and pay back part of its debt. We call this
leverage targeting.

The fund is a proxy for the rest of the financial system. Leverage targeting
creates inherently unstable dynamics, as it implies buying into rising markets
and selling into falling markets. Thus, it is necessary to have at least one other
investor to stabilize the system. The fund plays this role, holding the risky
asset when it is underpriced and shorting it when it is overpriced. The fund’s
investment decisions are perturbed by exogenous random shocks with clustered
volatility, based on a GARCH model, reflecting information flow or decision
processes outside the scope of the model.

The bank tries to maintain a constant equity target. This is consistent with
the empirical observation that the equity of commercial and investment banks
is roughly constant over time; see Adrian and Shin (2008). In order to conserve
cash flow in our model, dividends paid out by the bank when the equity exceeds
the target are invested in the fund, while new capital invested in the bank when
the equity is below the target is withdrawn from the fund. This prevents wealth
from accumulating with either the bank or the fund and makes the asymptotic
dynamics stationary.

2.2. Leverage regulation

The most important ingredient of our model is the fact that the bank has a
capital requirement. The leverage ratio8 is defined as

λ(t) =
Total Assets

Equity
, (1)

and the capital requirement policy implies a constraint of the form λ(t) ≤ λ̄(t),
i.e. the bank is allowed a maximum leverage λ̄(t). For convenience, we assume
the bank always targets its maximum allowed leverage λ̄(t).9 This depends on

8We use this definition of leverage in analogy to the Tier 1 regulatory leverage ratio (Tier
1 capital over bank total assets).

9 A cap on leverage is equivalent to a minimum capital buffer. Conditional on the leverage
constraint the return on equity of the bank is maximized if λ(t) = λ̄(t) (see for instance Shin
(2010)). In reality banks usually keep more capital than required by regulation in order to
reduce the cost of recapitalization or portfolio adjustments associated with violation of the
minimal capital requirement. Using this perspective, Peura and Keppo (2006) explain the
pattern of capital buffers observed in a sample of US commercial banks. Our results remain
valid even if we assume that banks hold more capital than required by the regulator. We only
require that the resulting bank capital buffer responds to changes in perceived risk in a well
defined way, as changes in the capital buffer are more important than its level.
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the bank’s estimate of the volatility of the risky asset, i.e. λ̄(t) = F (σ2(t)),
where F is a function of the bank’s perceived risk at time t denoted as σ2(t).
Although nothing we do here depends on this, to gain intuition it is useful to
compute the function F under the special case of a Value-at-Risk constraint
with normally distributed log returns. In this case the bank’s target leverage is
given by (see for example Corsi et al. (2013)):

λ̄(t) = FVaR(σ2(t)) =
1

σ(t)Φ−1(a)
∝ 1

σ(t)
,

where Φ is the cumulative distribution of the standard normal, a is the VaR
quantile, and σ the volatility of the risky asset. Under this specification the
bank increases its leverage when the volatility of the risky asset diminishes
and decreases its leverage in the opposite case. Motivated by Adrian and Shin
(2014), we classify leverage policies as follows:

Definition 1. A leverage policy F (σ2(t)) is procyclical if dF/dσ2 < 0 and
countercyclical if dF/dσ2 > 0.10

A class of leverage control policies that allows us to interpolate between
procyclical and countercyclial leverage control policies is given by

λ̄(t) = F(α,σ2
0 ,b)

(σ(t)) := α(σ2(t) + σ2
0)b, (2)

where α > 0, σ2
0 > 0 and b ∈ [−0.5, 0.5]. We refer to α as the bank’s riskiness.

The larger α the larger the bank’s target leverage for a given level of perceived
risk σ2(t).11 We illustrate the range of leverage control policies in Figure 3.12

The parameter b is called the cyclicality parameter, due to the fact that
F(α,σ2

0 ,b)
is procyclical for b < 0 and countercyclical for b > 0 (see Definition 1).

For procyclical policies the leverage is inversely related to risk, i.e. leverage is
low when risk is high and vice versa. For countercyclical policies the opposite
is true; when risk is high leverage is also high, see Figure 3. It is important to
note that our definition of policy cyclicality does not refer to macroeconomic
measures such the credit-to-GDP ratio or asset prices. Instead, it is defined
solely by the bank’s response to changes in perceived risk. In this sense, the
countercyclical policies proposed in this model differ from the countercyclical
capital buffer proposed by the Bank of England, which keys off the credit-to-
GDP ratio (see FPC (2014)).

10 This definition could be generalized for any risk measure; we use the standard deviation
σ for simplicity.

11 Note that under standard Value-at-Risk the bank’s leverage depends on the variance of
its entire portfolio which in our model includes non-risky cash holdings. Usually the portfolio
variance is computed as the inner product of the covariance matrix with the portfolio weights.
In our case this implies that the portfolio variance is simply σ2(t) scaled by the bank’s in-
vestment weight in the risky asset wB. However, since we take wB constant throughout, the
resulting risk rescaling factor can be absorbed into α without loss of generality. Therefore, we
make F(α,σ2

0 ,b)
only a function of σ(t).

12 The additional scaling parameter σ2
0 > 0 is included to bound the cyclical variation in

target leverage when perceived risk is very low, giving an upper bound in the procyclical case
b < 0 and a lower bound in the countercyclical case b > 0.
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Figure 3: Illustration of target leverage as a function of perceived risk based
on Equation (2) with σ2

0 > 0. Continuous blue line: procyclical policy with
b = −0.5. Dashed green line: constant leverage policy with b = 0. Dotted red
line: countercyclical policy with b = 0.5. Continuous grey lines illustrate the
role of σ0, which acts as a upper bound on leverage when b < 0 and a lower
bound when b > 0.

2.3. Asset price dynamics

The bank’s target leverage λ̄(t) at time t defines a target portfolio value
ĀB(t) = λ̄(t)EB(t), where EB(t) is the equity of the bank. The difference be-
tween the target portfolio and the current portfolio then determines the change
of the balance sheet ∆B(t) required for the bank to achieve its target leverage:

• If ∆B(t) > 0, the bank will borrow ∆B(t) and invest this amount into
the risky and the risk free asset according the bank’s portfolio weights.

• If ∆B(t) < 0, the bank will liquidate part of its portfolio and pay back
∆B(t) of its liabilities.

The evolution of the fund’s portfolio weight in the risky asset depends on the
asset’s price relative to a constant fundamental value µ, and also on random in-
novations. The fund investor therefore combines two economic mechanisms: (1)
The price of the risky asset is weakly anchored by the performance of unmod-
eled macro-economic conditions, which we assume are effectively constant over
the length of one run of our model. To achieve this the fund invests a fraction
wF(t) of its total assets in the risky asset, where wF(t) follows a random process
that reverts to the fundamental value µ. (2) We allow random innovations in
the portfolio weight that reflect exogenous shocks. This is done by making the
noise term a GARCH(1,1) process. Thus, the fundamentalist investor provides
a source of time varying exogenous volatility to the model, to which the bank
reacts by adjusting its estimate of risk and consequently its leverage.
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Given the aggregate demand of the bank and the fund, and assuming for
simplicity that there is a supply of exactly one unit of the risky asset that is
infinitely divisible, the price of the risky asset is determined through market
clearing by equating demand and supply.

2.4. Time evolution

The model evolves in discrete time-steps of length τ . We make this a free
parameter so that the model has well-defined dynamics in the continuum limit
τ → 0, which is useful for calibration. At each time-step the bank and the fund
update their balance sheets as follows:

• The bank updates its historically-based estimate of future volatility and
computes its new target leverage accordingly. Volatility estimation is done
using an exponential moving average with an approach similar to Risk-
Metrics (see Longerstaey (1996));

• The bank pays dividends or raises capital to reach its target equity E;

• The bank determines how many shares of the risky asset it needs to trade
to reach its target leverage;

• At the same time, the fundamentalist fund submits its demand for the
risky asset;

• The market clearing price for the risky asset is computed and trades oc-
cur.13

2.5. The model as a dynamical system

The dynamics of our model can be described as an iterated map for the state
variable x(t), defined as

x(t) = [σ2(t), wF(t), p(t), n(t), LB(t), p′(t)]T. (3)

σ is the historical estimation of the volatility of the risky asset; wF is the fraction
of wealth invested by the fund in the risky asset; p is the current price of the
risky asset; n is the share of the risky asset owned by the bank; LB are the
liabilities of the bank; and p′ is the lagged price of the asset, i.e. the price at the
previous time-step. A detailed derivation of the model is presented in Appendix

13 It is important to note that the decision concerning equity and investment adjustments is
taken before the current trading price of the risky asset is revealed. We therefore assume that
the bank uses the price of the previous time-step as a proxy for the expected trading price,
and acts accordingly. This assumption of myopic expectations marks a significant departure
of our model from the general equilibrium setting of Adrian and Boyarchenko (2012b) and
Adrian and Boyarchenko (2013), but it is common in the literature on heterogeneous agents
in economics (see for instance Hommes (2006)).
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A. Here we simply present the model and provide some basic intuition. Let us
introduce the following definitions:

Bank assets: AB(t) = p(t)n(t)/wB,

Target leverage: λ̄(t) = α(σ2(t) + σ2
0)b,

Leverage adjustment: ∆B(t) = τθ(λ̄(t)(AB(t)− LB(t))−AB(t)),

Equity redistribution: κB(t) = −κF(t) = τη(E − (AB(t)− LB(t))),

Bank cash: cB(t) = (1− wB)n(t)p(t)/wB + κB(t),

Fund cash: cF(t) = (1− wF(t))(1− n(t))p(t)/wF(t) + κF(t).

AB is the assets of the bank, κB the equity adjustment of the bank on a given
time-step, κF the equity adjustment of the fund, wB the portfolio weight of the
bank, E the bank’s equity target, cB is the bank’s cash and cF the fund’s cash.
The parameters θ and η determine how aggressive the bank is in reaching its
targets for leverage and equity, i.e. the bank aims at reaching the targets on
time horizons of the order 1/θ and 1/η.

The model can be written as a dynamical system in the form

x(t+ τ) = g(x(t)), (4)

where the function g is the following 6-dimensional map:

σ2(t+ τ) = (1− τδ)σ2(t) + τδ

(
log

[
p(t)

p′(t)

]
tVaR

τ

)2

, (5a)

wF(t+ τ) = wF(t) +
wF(t)

p(t)

[
τρ(µ− p(t)) +

√
τsξ(t)

]
, (5b)

p(t+ τ) =
wB(cB(t) + ∆B(t)) + wF(t+ τ)cF(t)

1− wBn(t)− (1− n(t))wF(t+ τ)
, (5c)

n(t+ τ) =
wB(n(t)p(t+ τ) + cB(t) + ∆B(t))

p(t+ τ)
, (5d)

LB(t+ τ) = LB(t) + ∆B(t), (5e)

p′(t) = p(t+ τ). (5f)

Each of these equations can be understood as follows:

(a) The expected volatility σ2 of the risky asset is updated through an expo-
nential moving average. The parameter τδ ∈ (0, 1) defines the length of
the time-window over which the historical estimation is performed, while
the parameter tVaR represents the time-horizon used by the bank in the
calculation of VaR.

(b) The adjustment of the fund’s risky asset portfolio weight wF drives the price
towards the fundamental value µ, with an adjustment rate τρ ∈ (0, 1). The
demand of the fund also depends on exogenous noise, which is assumed to
be a normal random variable ξ(t) with amplitude s(t) ≥ 0. The amplitude
varies in time so that the variable χ(t) = s(t)ξ(t) follows a GARCH(1,1)
process. The factors of τ guarantee the correct scaling as τ → 0.

11



Symbol Description Default Unit

Bank τ Time-step 0.1 year
δ Memory for volatility estimation 0.5 year−1

tVaR Horizon for VaR calculation 0.1 year
θ Leverage adjustment speed 10 (v) year−1

η Equity redistribution speed 10 year−1

b Cyclicality of leverage control −0.5 (v) 1
σ2
0 Risk offset 10−6 1
α Risk level 0.075 (v) 1
E Bank’s equity target 2.27 (v) $
wB Bank’s weight for risky asset 0.3 (v) 1

Fund µ Fundamental value 25 $
ρ Mean reversion 0.1 year−1

GARCH a0 Baseline return variance 10−3 1
a1 Error autoregressive term 0.016 1
b1 Variance autoregressive term 0.87 1

Table 1: Overview of parameters for the numerical model solution. In the
default column, a “(v)” indicates that this is the default value, but that the
parameter is sometimes varied (as noted in the text); a unit of “1” indicates
that the parameter is dimensionless and $ that it has monetary units.

(c) The market clears.
(d) The bank ownership of the risky asset n(t+ 1) adjusts according to market

clearing.
(e) Bank liabilities are updated to account for the change ∆B(t) in the asset

side of the balance sheet.
(f) Due to the dependence of Equation (5d) on the lagged price p(t+τ), we must

define an additional variable p′(t) to make the map a first order dynamical
system.

3. Overview of model behavior

In order to explore the dynamical behavior of the model, we solve it numer-
ically. We begin by studying fully procyclical leverage control policies corre-
sponding to risk management under VaR, i.e. we choose b = −0.5 throughout
this section. A summary of the parameters is provided in Table 1.

3.1. How we chose parameters

While this model is too stylized to expect a perfect match to real data, it has
the advantage that its most important parameters can be estimated a priori,
and once these parameters are fixed its behavior is fairly robust for reasonable
values of the other parameters. In the following we briefly discuss how we choose
the key parameters and how they affect the behavior.

12



Timescale parameters

The first five parameters listed in Table 1 play a dominant role in determining
the timescale of the cycle that we observe. We have carefully constructed the
model so that it reaches a continuum limit as the elementary time-step τ → 0.
For computational efficiency we choose τ to be the largest possible value with
behavior similar to that in the continuum limit, which results in a time-step of
τ = 0.1 years. As long as τ is this size or smaller the results change very little.

The parameter δ sets the timescale for the exponential moving average used
to estimate volatility, and is the most important determinant of the overall
timescale of the dynamics. The characteristic time for the moving average is
tδ = 1/δ.14 According to the RiskMetrics approach Longerstaey (1996), the
typical timescale used by market practitioners is tδ ≈ 2 years. We therefore
set δ = 0.5 year−1, corresponding to a two year timescale, and keep it fixed
throughout.

The parameter tVaR is the time horizon over which returns are computed
for regulatory purposes. In practice this varies depending on the liquidity of
the asset portfolio and ranges from days to years. A good rule of thumb is
to choose tVaR roughly equal to the time needed to unwind the portfolio. We
assume tVaR = τ = 0.1 years, i.e. a little more than a month. Changing the
level of tVaR essentially scales the level of perceived risk. Therefore, via the
bank’s leverage, the effects of tVaR and α on the model dynamics are tightly
linked. An increase in tVaR is equivalent to a corresponding decrease in α.

The parameters θ and η define how aggressive the bank is in reaching its
targets for leverage and equity. Our default assumption is that the bank tries
to meet its target on a timescale of about one time-step of the dynamics, and so
unless otherwise stated, in the following we set θ = 10 year−1 and η = 10 year−1.
This ensures that the bank’s realized leverage is always close to its target. We
will vary the parameter θ and discuss how it affects the stability of the dynamics
in Section 4.3.

The mean reversion parameter ρ determines the aggressiveness with which
the fund responds to deviations in the price of the risky asset from its funda-
mental value µ. We take ρ = 0.1, i.e. an adjustment rate for the fund’s weight
wF of the risky asset of about 10% per time-step τ ; see Equation (5b). This
parameter does not affect the dynamics very much as long as ρ < 1. In the ex-
treme case when ρ becomes large and the fund has sufficient market power, price
deviations from the fundamental value will become small. Conversely, when ρ
is very small, price deviations from the fundamental value will be allowed to
become large and the system will become more unstable.

14 The contribution to the moving average of a squared return y(t) observed at time t
is y(t + ∆t) = (1 − τδ)∆t/τy(t) at time t + ∆t. We define the typical time tδ such that
y(t+ tδ)/y(t) = 1/e. Thus, tδ = −τ/ log[1 − τδ] ≈ 1/δ for τδ � 1.
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Market impact of the bank

The dynamics of this model depend on the competition between the stabi-
lizing properties of the fundamentalist and the destabilizing properties of the
bank. The market impact of the bank is roughly speaking the product of the
leverage λ and the relative size of the banking sector R.

The target leverage is proportional to α, with σ0 determining an upper bound
when b < 0, as given in Eq. (2). We take σ0 = 10−3, which means that the
upper bound is seldom met, and control the leverage by varying α. A typical
value of α that yields a leverage cycle is α = 0.075.

The relative size of the bank R is important in determining the stability of
the model. We show in Equation (A.10) in the Appendix that at the fixed point
equilibrium the parameters E, wB, µ, σ0, and α, as well as the initial condition
wF(0), jointly determine the fraction of the risky asset R owned by the bank.
The numerical values chosen for the target equity E and the fundamental price
µ are arbitrary – only the ratio between them is important. We choose the ratio
E/µ, the bank’s portfolio weight wB and the fund’s initial weight wF(0) in order
to get a sensible value for the relative size of the bank, and use E to vary this
as needed. Bear in mind that the bank represents all investors with leverage
targets.

Finally, we pick parameters for the fund GARCH process a0, a1 and b1 in
order to achieve a reasonable level of clustered volatility and to permit leverage
cycles even in the presence of noise as observed in Figure 1.

3.2. Overview of model dynamics

We now build some intuition about the model dynamics. First, consider
the extreme case where E → 0, i.e. where the market impact of the bank
is negligible so that the price dynamics are dominated by the fund. This is
the purely microprudential case where the bank’s actions have no significant
effect on the market. With s > 0 the exogenous volatility perturbs the system
away from its equilibrium and the price performs a mean reverting random walk
around the fundamental price µ. In the deterministic case, i.e. s = 0, the fund
quickly drives the dynamics to the fundamental price and the system settles to
a fixed point equilibrium.

When the bank’s equity target E is large enough that the bank has a sig-
nificant impact on the price process, the dynamics are less straightforward. We
refer to this scenario as the macroprudential case. The destabilizing market im-
pact of the bank can drive chaotic endogenous oscillations, as described below,
which introduce endogenous volatility on top of exogenous volatility.

We investigate the following four scenarios:

(i) Deterministic, microprudential: E = 10−5 and s = 0.

(ii) Deterministic, macroprudential: E = 2.27 and s = 0.

(iii) Stochastic, microprudential: E = 10−5 and s > 0.

(iv) Stochastic, macroprudential: E = 2.27 and s > 0.
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Figure 4: Time series of price and leverage in the deterministic case. Left panel:
scenario (i) – microprudential, the fund dominates the bank (E = 10−5), i.e.
the bank has no significant market impact. In this case, the system goes to a
fixed point equilibrium where the leverage and price of the risky asset remain
constant. Right panel: scenario (ii) – macroprudential, the bank has significant
market impact (E = 2.27). In this case, the bank’s risk management leads to
persistent oscillations in leverage and price of the risky asset with a time period
of roughly 15 years.

Unless otherwise stated, all parameters are as specified in Table 1. The first
two cases are for the deterministic limit with s = 0. Although the deterministic
limit is unrealistic, it is useful to gain intuition, and in particular to understand
the nature and origin of the endogenous oscillation observed in cases (ii) and
(iv). The last two cases are with more realistic levels of exogenous noise. We
summarize our results for scenarios (i) and (ii) in Figure 4 and for scenarios (iii)
and (iv) in Figure 5.

The microprudential scenarios (i) and (iii) behave as expected: In the de-
terministic limit the system simply settles into a fixed point with prices equal
to fundamental values. When there is exogenous noise the system makes ex-
cursions away from the fixed point but never drifts far away from it, and the
dynamics remain relatively simple.

In contrast, the macroprudential scenarios (ii) and (iv) display large oscilla-
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tions both in leverage and price. We refer to this oscillation as the Basel leverage
cycle. Notably, the oscillations occur even in the deterministic limit, i.e. with-
out any external shocks. During the cycle the price and leverage slowly rise and
then suddenly fall, with a period of about ∆t ≈ 15 years in the deterministic
case.

The oscillations have the following economic interpretation, which is easi-
est to understand in the deterministic limit: Suppose we begin at about t =
140 years in the right panels of Figure 4, with leverage low, perceived risk high,
and prices low but increasing.15 Going forward in time the perceived risk slowly
decreases as the memory of the past crisis fades. From a mechanical point of
view, this is due to the smoothing action of the exponential moving average
– as long as the change in price is lower than the current historical average
the volatility σ2 continues to drop. This causes the leverage to increase under
the procyclical leverage policy. The bank buys more shares to meet its new
leverage target, driving prices up. This process continues for many years, gen-
erating a gradual rise in both prices and leverage. The system slowly approaches
its equilibrium, but the equilibrium is now unstable due to the high leverage.
Eventually, the amplification of price due to leverage is sufficiently large that the
volatility begins to increase. This drives the leverage down, which causes selling,
driving prices down and volatility up. The strong positive feedback generates
a sharp crash that ultimately comes to an end due to the increasingly heavy
investment of the fundamentalist fund. After the crash volatility is high and
leverage is low, and the cycle repeats itself, except that because the dynamics
are chaotic the precise details of the subsequent “Great Financial Moderations”
and crashes vary from cycle to cycle.

From a dynamical systems point of view, the equilibrium is a hyperbolic fixed
point.16 During the “Great Financial Moderation”, when prices are steadily ris-
ing, the system approaches the equilibrium along its stable manifold. However,
because it never approaches it exactly, it eventually veers away and exits along
the unstable manifold, generating a crisis.

The behavior in the stochastic case is similar, except that, in addition to
generating an endogenous oscillation, the instabilities creating the chaotic be-
havior also strongly amplify the exogenous noise. This creates the possibility
that chance events may significantly modify the basic cycle.

We stress that this behavior is not due to a fine tuning of the model spec-
ifications, but rather appears to be a robust property that emerges from the
combination of a historical estimation of risk, and an active portfolio manage-
ment that is based on VaR. We have observed similar cycles in different models,
ranging from an extremely simple two dimensional map as given in Aymanns

15 We begin at a time where t is substantially greater than zero in order to let transients
die out so that the system has settled onto its attractor.

16 A hyperbolic fixed point is a fixed point that is unstable in some directions but stable
in others. Loosely speaking the stable manifold is the set of points that asymptotically reach
the fixed point and the unstable manifold is the set corresponding to iteration of the unstable
eigenvector.
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Figure 5: Time series of price and leverage in the stochastic case. Left panel:
scenario (iii) – microprudential, the fund dominates the bank (E = 10−5), i.e.
the bank has no significant market impact. In this case, the price is driven by
the fund’s trading activity and performs a mean reverting random walk around
the fundamental value µ = 25. Right panel: scenario (iv) – macroprudential,
the bank has significant market impact (E = 2.27). In this case, the bank’s
risk management leads to irregular oscillations in leverage and price of the risky
asset that are similar to the deterministic case.
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and Farmer (2014), to more complex settings involving multiple banks and as-
sets, cf. Aymanns and Farmer (2014).

The fragility that drives the crashes comes from the fact that at high levels
of leverage a small increase in risk is sufficient to cause a drastic tightening
of the leverage constraint. This intuition can be made precise by comparing
the derivative of the leverage control policy for high vs. low leverage. For
convenience, we take σ2

0 � 1, which under the assumption that b = −1/2
means that leverage is very large.17 The result is that

dF(α,σ2
0 ,−0.5)

dσ2(t)
(σ2(t)) =

{
−0.5/σ3

0 � 0 , for σ2(t)→ 0 ∧ σ2
0 � 1

0 , for σ2(t)→∞ ∧ σ2
0 � 1

.

In the high leverage limit, i.e. when σ is small, the sensitivity of the leverage
target F to variations in risk tends to infinity. In contrast, the sensitivity is
zero in the opposite limit where leverage is low and perceived risk is large.
Thus, when the leverage is high, only a small increase in volatility is needed to
cause a large change in leverage, causing a large effect on prices, which further
increases volatility, creating a feedback loop that suddenly drives leverage and
prices down. Therefore, increasing leverage of the banking system has a two-
fold destabilizing effect: It makes the dynamics unstable and leads to chaos, but
it also makes the system more sensitive to shocks, which can result in sudden
deleveraging triggered by external events (such as the collapse of a housing
bubble).

The leverage cycles are not strictly periodic due to the fact that the oscilla-
tions are chaotic. This becomes clearer by plotting the dynamics in phase space
and then taking a Poincaré section, as illustrated in Figure 6. The phase plot
makes the cyclical structure clearer. The 3D representation in the left panel
shows how the ownership of the risky asset n, the perceived risk σ and the
price p vary during the course of the leverage cycle. The Poincaré section in
the right panel is constructed by plotting ownership vs. perceived risk every
time the trajectory crosses the hyper-plane p(t) = 20 with the price increasing.
The Poincaré section shows the characteristic fractal structure, and shows the
stretching and folding that makes the dynamics chaotic. The fact that these
dynamics are chaotic is confirmed in the next section, where we do a stability
analysis and compute the Lyapunov exponent.

In summary, depending on the choice of parameters, the model either goes
to a fixed point (scenario (ii)) or shows chaotic irregular cycles (scenarios (i)
and (iii)). As expected, the dynamics become more complicated when noise is
added, but the essence of the Basel leverage cycle persists even in the zero noise
limit.

17 For b < 0 the parameter σ0 imposes a cap on the target leverage; larger values for σ2
0

would make this unrealistically low.
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Figure 6: Left panel: Three dimensional phase plot of the chaotic attractor
underlying the Basel leverage cycle for the deterministic case, plotting the price
p, the bank’s ownership of the asset n, and the perceived risk σ. Right panel:
A Poincaré section is constructed by recording values for the bank ownership
of the risky asset (y-axis) and the perceived risk (x-axis) whenever the price is
increasing as it crosses the plane defined by p(t) = 20. This is repeated for 106

time-steps. This exhibits the characteristic stretching and folding associated
with chaotic dynamics.

4. Determinants of model stability

4.1. Deterministic case

In the deterministic case the standard tools of linear stability analysis can
be used to characterize the boundary between the fixed point equilibrium and
leverage cycles. In this section we will use this to characterize the behavior of
the system as the risk parameter α and the cyclicality parameter b are varied.
We begin by studying the deterministic case, where we can draw analytical
insights, and then present numerical results for the stochastic case. The details
of the stability analysis are presented in Appendix A.

The dynamical system has a unique fixed point equilibrium x∗, given by

x∗ = (σ2∗, w∗F, p
∗, n∗, L∗B, p

′∗)

= (0, wF(0), µ,
1

µ
ασ2b

0 EwB, (ασ
2b
0 − 1)E,µ).

(6)

This corresponds to a leverage λ∗ and relative size of bank to fund Rc(x
∗), given

by
λ∗ = ασ2b

0 ,

R(x∗) =
A∗B
A∗F

=
λ∗E∗B

(1− n∗)p∗/w∗F
.

(7)

At the equilibrium x∗ the price is constant at its fundamental value and the
bank is at its target leverage. The stability of the equilibrium depends on the
parameters. Regime (i) observed in the numerical simulations of the previous
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section corresponds to the stable case. In this case, regardless of initial condi-
tions, the system will asymptotically settle into the fixed point x∗. In contrast,
when the fixed point x∗ is unstable there are two possibilities. One is that there
is a leverage cycle, in which the dynamics are locally unstable but exist on a
chaotic attractor that is globally stable; the other is that the system is globally
unstable, in which case the price either becomes infinite or goes to zero.

In Figure 7, we show the results of varying the risk parameter α and the
cyclicality parameter b. The risk parameter α provides the natural way to
vary the risk of the bank, but the realized risk for a given α depends on other
factors such as changes in volatility. For diagnostic purposes, leverage is a better
measure.18 Figure 7 shows each of the three regimes, corresponding to (i) stable
equilibrium, (ii) leverage cycles and (iii) global instability, as a function of the
leverage and the cyclicality parameter b.19

This diagram reveals several interesting results. As expected, for low leverage
the system is stable and for higher leverage it is unstable. Somewhat surpris-
ingly, the critical leverage λ∗c is independent of b, and consequently the size of
the regime with the stable equilibrium is unaffected by whether the leverage
control is procyclical or countercyclical. In the procyclical regime (b < 0), there
is a substantial region with leverage cycles. Note that this transition occurs
suddenly, i.e. if α is increased by a small amount which happens to cross the
threshold, the system suddenly moves from a fixed point to a large, finite am-
plitude oscillation. Thus, a small regulatory change can result in a dramatic
difference in outcomes.

For the countercyclical regime (b > 0), the system makes a direct transition
from the stable fixed point equilibrium to global instability throughout most of
the parameter range. The instability is not surprising: In the countercyclical
regime, there is an unstable feedback loop in which increasing leverage drives
increasing prices and increasing volatility, which further increases the leverage.
Thus, for high leverage there are unstable regimes for both pro- and coun-
tercyclical behavior, but when it occurs, the instability is more severe in the
countercyclical regime.

4.2. Stability when there is exogenous noise

When there is exogenous noise we can only measure the stability numeri-
cally. This is done by computing the largest Lyapunov exponent of the dynam-
ics. The Lyapunov exponents are a generalization of eigenvalues for limit cycles
and chaotic attractors. The leading Lyapunov exponent measures the average

18 While α tends to increase leverage, when the leverage control policy is procyclical the
behavior is not always monotonic. This is because increasing α tends to increase volatility,
but increasing volatility drives the target leverage down, so the two effects compete with each
other.

19 The boundary where the fixed point equilibrium becomes unstable is computed ana-
lytically based on the leverage λ∗c where the modulus of the leading eigenvalue is one. The
boundary for globally unstable behavior is more difficult to compute as it requires numerical
simulation.
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Figure 7: A bifurcation diagram showing the three regimes in the deterministic
case. The risk parameter α and the cyclicality parameter b are varied while
holding the other parameters constant at the value in Table 1. The white region
corresponds to a stable fixed point equilibrium, the light gray region to leverage
cycles and the dark gray region to global instability. The blue line corresponds
to the critical leverage λ∗c in Equation 7 at the critical value αc where the fixed
point becomes unstable.
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rate at which the separation between two nearby points changes in time. When
the dynamics are locally stable, nearby points converge exponentially and the
leading Lyapunov exponent is negative, and when they are locally unstable,
nearby points diverge exponentially and the leading Lyapunov exponent is pos-
itive. The Lyapunov exponent is a property of a trajectory, but for dissipative
systems such as ours, almost all trajectories on a given attractor have the same
Lyapunov exponents, so it is a property of the attractor. If the attractor is a
fixed point, the largest Lyapunov exponent is negative, and if it is a chaotic
attractor, the largest Lyapunov exponent is positive. As expected, in the deter-
ministic case we observe that leverage cycles have a positive leading Lyapunov
exponent, confirming that the dynamics are chaotic.

It is also possible to compute Lyapunov exponents for stochastic dynamics.
To understand the basic idea of how this is done, imagine two realizations of the
dynamics with the same sequence of random shocks, but starting at slightly dif-
ferent initial conditions (see Crutchfield et al. (1982)). Because the random noise
is the same in both cases, it is possible to follow two infinitesimally separated
points and measure the rate at which they separate. If the leading Lyapunov
exponent is positive this means that the dynamics will strongly amplify the
noise.

We compare the stability for the stochastic and deterministic cases in Figure
8. This is done for the procyclical case only, since the direct transition from a
fixed point to global instability in the countercyclical case complicates numerical
work (and the countercyclical case is less relevant for our analysis). In the
stochastic case, the critical leverage is computed as the time average of the
target leverage when the Lyapunov exponent becomes positive. Interestingly,
the critical leverage in the stochastic case first starts below the deterministic
critical leverage and then approaches it as b is increased. This indicates that for
strongly procyclical leverage control policies noise destabilizes the system. The
gray line in Figure 8 shows the average target leverage used for the evaluation
of the optimal leverage control policy in Section 5. In this exercise the average
target leverage was intentionally held fix across different values of b.

The most interesting conclusion from comparing the stochastic and deter-
ministic cases is that when the dynamics are strongly procyclical (i.e. for
−0.5 < b < −0.2) the noise significantly lowers the stability threshold. In
contrast, for larger values of b > −0.2 there is little difference in the stability
threshold in the two cases. This indicates that the dynamics becomes more sta-
ble when the leverage control policy is close to constant leverage. This, together
with the fact that in the countercyclical regime the system goes straight from
stability to global instability, suggests that intermediate values of cyclicality
(nearer to constant leverage) are likely to be most stable, at least when all the
parameters as chosen as in Table 1.

4.3. Slower adjustment leads to greater stability

The bank’s leverage adjustment speed θ has a strong effect on stability,
with interesting regulatory implications. Intuitively, in the macroprudential
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Figure 8: A comparison of stability when the dynamics are deterministic vs.
stochastic for the procyclical region (b < 0). As in the previous figure, the
critical leverage λ∗c for the deterministic case is shown as a blue line. The
dashed red line shows the parameter value where the dynamics become unstable
as measured by the leading Lyapunov exponent; note the transition to chaos
occurs at a much lower leverage. The gray line show the average target leverage
used for the evaluation of the optimal leverage control policy in Section 5.

regime, decreasing the adjustment speed means less aggressive selling during
deleveraging, which should make the system more stable.20

To test this we study how the critical leverage λ∗c and critical relative size
Rc(x

∗) depend on the adjustment speed θτ (we vary θ and hold τ constant).
The relationship is shown in Figure 9, where the critical leverage is shown on
the left vertical axis and the critical relative size on the right vertical axis.
As expected, both the critical leverage (left axis, continuous line) and critical
relative size of the bank (right axis, dashed line), decrease dramatically as θτ
increases. This suggests that it is possible to dramatically improve the stability
of the financial system if financial institutions adjust to their leverage targets
slowly. Similarly, this illustrates the dangers of mark-to-market accounting,
which can cause balance-sheet adjustments to be too rapid.

20We have considered the case where the bank increases its leverage quicker than it decreases
it. We have done this introducing an asymmetry in the parameter θ that controls the speed
of leverage adjustment, i.e. introducing a parameter θ+ for the speed of levering up and a
parameter θ− for the speed of deleveraging. By allowing such asymmetric specification, we
find that the dynamics becomes more stable as θ− is reduced. The qualitative behavior of
the system, namely the existence of stable, locally unstable and globally unstable regimes, is
preserved.
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Figure 9: Critical leverage λ∗c (solid blue line, left vertical axis) and the critical
value of the relative size of the bank to the fund Rc(x

∗) (dashed red line, right
vertical axis) as a function of the leverage adjustment speed θτ . Other parame-
ters are as in Table 1. The stability of the financial system can be dramatically
improved by lowering the adjustment speed.

4.4. Longer risk estimation horizon increases stability

Another important policy parameter is the horizon over which banks esti-
mate their perceived risk. The estimation horizon is given by the characteristic
time of the exponential moving average for the risk estimation tδ = 1/δ. The
larger tδ the slower the bank will update its perceived risk as it observes new
price movements. At the same time the memory of past crisis will persist longer.
Therefore, one could argue that a bank with a large risk estimation horizon tδ
follows a “long-term” risk management strategy while a bank with a small tδ
follows a “short-term” risk management policy.

In order to test how the risk estimation horizon affects the stability of the sys-
tem we compute the critical leverage λ∗c for different values of tδ in the stochastic
case (i.e. via determining when the leading stochastic Lyapunov exponent be-
comes positive). We find that the critical leverage increases monotonically in
the risk estimation horizon tδ. For small risk estimation horizons (tδ ≈ 1 year),
the critical leverage increases very quickly with a small change tδ. As tδ in-
creases the rate of increase of the critical leverage slows down such that for
tδ > 7 years the rate of increase in the critical leverage becomes insignificant.
This suggests that within our model, given sufficiently short initial risk estima-
tion horizons, a policy maker may significantly improve the financial system’s
stability by mandating long term risk management policies.
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5. Leverage control policies

What is the optimal leverage control policy? The mere fact that the endoge-
nous oscillations of prices and volatility depend on the cyclicality parameter b,
as shown in Figure 7, suggests that some policies are better than others. In
this section we introduce a procedure for scoring policies and search for the best
policy within the family that we have defined. We find that the optimal policy
depends on parameters of the model, and in particular on the market impact of
banks in relation to the rest of the financial system. For the parameters used
in Table 1, as the market impact of banks increases the optimal policy becomes
increasingly less procyclical, and in the limit where the banks play a large role
in determining prices it approaches constant leverage.

5.1. Criterion for optimality

We define an optimal leverage control policy as one that maximizes leverage
for a given level of risk. Maximizing leverage is desirable because it means that,
for a given level of capital, banks are able to lend more money. We don’t model
the real economy here, we simply take it as a given that the ability to obtain
credit if needed is desirable for the real economy.21 From a practical point of
view, it is difficult to control risk while searching the parameter space. It is
much easier to control the average leverage, systematically sweep parameters
and measure the resulting risk.

To measure risk we have the luxury of having a simple model, which we
can iterate numerically to generate as much data as we need for statistical
estimation. We can then observe the resulting time series of gains and losses for
the bank and measure the level of risk associated with this time series. Because
this is an ex post measurement of risk, we call this the observed risk.

We now compute the trading gains and losses for the bank. The change in
the bank’s equity due to fluctuations in the price of the risky asset at time t+ 1
is ∆EB(t) = n(t)∆p(t), where ∆p(t) = p(t+1)−p(t). We then define the equity
return as

`(t) = log

(
EB(t) + ∆EB(t)

EB(t)

)
. (8)

Note that this captures both the leverage of the bank and the market return of
the risky asset since

∆EB(t)

EB(t)
=
n(t)p(t)

EB(t)

∆p(t)

p(t)
= λ(t)wBr(t),

where r(t) is the market return on the risky asset. As expected, leverage am-
plifies the gains and losses. The total change in equity includes readjustments

21 There may be circumstances where the real economy might overheat as a result of too
much credit. Nonetheless, we assume that, at a given level of risk, all else equal, the option
of being able to obtain more credit is desirable for both borrowers and lenders. When this is
not the case they can simply abstain from giving or receiving credit, in which case risk will
automatically be lower.
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toward the equity target, but in fact these are small, and the trading losses
above are well approximated by the changes in the equity of the bank between
time steps. For consistency with standard risk estimation we use log-returns
rather than the simple return r(t).

This then leaves us with the question of how to measure risk. To do this
we follow current thinking as reflected in Basel III and use realized shortfall.
The realized shortfall measures the average tail loss of the bank equity beyond
a given quantile q. This is the analog to expected shortfall as used in Basel
III, except in this case it is based on the profits and losses realized ex post in
the simulation of the model. It is a measure of the average loss induced by
large market crashes, as shown in Figure 10. The choice of risk metric is not
important for the results presented here – we would get similar results with any
other reasonable measure of tail risk.
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Figure 10: Visual representation of realized shortfall. The solid black lines represents a
hypothetical return distribution. The red vertical dashed line is drawn in correspondence of
the q-quantile of the distribution. The realized shortfall is the average of the distribution in
the red region to the left of the vertical line.

For each set of parameters we estimate the realized shortfall using a time
average with T = 5000 time steps by empirically computing the average loss over
the worst qT time observations.22 Let Θ be the indicator function with Θ(x) = 1
if x > 0 and zero otherwise, and let `q be the threshold loss corresponding to

quantile 0 < q < 1, defined through the relation
∑T
t=1 Θ(`q − `(t)) = qT . The

realized shortfall at a confidence level q over a time horizon T is defined as

RSq = − 1

qT

T∑
t=1

`(t)Θ(`q − `(t)). (9)

22 For convenience we choose q and T so that their product is an integer.

26



5.2. Balancing microprudential and macroprudential regulation

To illustrate how the optimal tradeoff between microprudential and macro-
prudential regulation depends on the properties of the financial system, in this
section we investigate three representative scenarios. The two key properties
characterizing the scenarios are the strength of the exogenous clustered volatil-
ity and the market impact of the banking sector. The market impact of the
banking sector is determined by the product of the average relative size R̂ of
the banking sector, the average leverage λ̂ and the bank’s portfolio weight wB

for the risky asset. For convenience, to vary the market impact of the banking
sector we hold λ̂ and wB constant and vary R̂.

In each scenario we sweep the cyclicality parameter b in Equation (2). This
determines the degree of procyclicality or countercyclicality of the leverage con-
trol policy. As we do this we hold the average leverage and the relative size of
the banking sector constant at the stated targets, adjusting α and E as needed
in order to maintain these targets. We hold all the other parameters of the
system constant.23 We then measure the observed risk as a function of b and
look for a minimum, corresponding to the optimal policy. The results are shown
in Figure 11.

We investigate three scenarios, with the results described below:

1. Microprudential risk dominates. (Green diamonds) This occurs when
there is strong exogenous clustered volatility and weak bank market im-
pact. To illustrate this we set the GARCH parameters for strong clustered
volatility (a0 = 0.001, a1 = 0.04, b1 = 0.95) and make the banking sector
small (R̂ = 10−5). In this case there is essentially no systemic risk. The
dynamics are dominated by the exogenous volatility, which the historical
volatility estimator does a good job of predicting. Not surprisingly, the
best leverage control policy is very close to b = −0.5, i.e. it corresponds
to Basel II.24

2. Compromise between microprudential and macroprudential risk. (Red squares)
This occurs when there is weaker exogenous clustered volatility and inter-
mediate bank market impact. To illustrate this we set the GARCH param-
eters for weaker clustered volatility (a0 = 0.001, a1 = 0.016, b1 = 0.874)
and increase the relative size of the banking sector to R̂ = 0.1. The
larger size of the banking sector makes the financial system more prone
to endogenous oscillations and the risk is minimized for b∗ ≈ 0.2. This

23 Because the instantaneous leverage λ̄(t) and the relative size of the banking sector R(t)
are emergent properties that vary in time when there is a leverage cycle, controlling them
requires some care. For a given choice of cyclicality parameter b we vary α and E to match a
target for the average size of the banking sector, R̂ = 1

T

∑T
t=0 R(t), and the average leverage

λ̂ = 1
T

∑T
t=0 λ̄(t). The leverage is held constant at λ̂ = 5.8 for all scenarios but the size of

the banking sector R̂ varies as stated. All other parameters are as in Table 1 unless otherwise
noted.

24 Note that observations for this scenario only extend up to b ≈ 0.1 as for larger values of b
there exists no model solution with the required output targets for relative size and leverage.
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Figure 11: An illustration of how the proper balance between micro and macroprudential
regulation depends on the stability of the financial system. We plot the observed risk as a
function of the cyclicality parameter b, investigating three different scenarios corresponding
to different levels of clustered volatility and different sizes of the banking sector, with other
parameters held constant. Realized shortfall has been normalized by RSq(b = −0.5) for
ease of comparison. Green diamonds correspond to the case where microprudential risk
dominates, i.e. the banking system is relatively small and the exogenous volatility clustering
is high. Not surprisingly, the best policy is b∗ = −0.5, i.e. Basel II and is strongly procyclical.
Red squares correspond to a mixture of microprudential and macroprudential risk; the size
of the banking sector is increased to R̂ = 0.1, and the best policy now has b∗ ≈ −0.2, i.e. it
is only mildly procyclical. Blue circles correspond to the case where macroprudential risk
dominates; the size of the banking sector is increased still further to R̂ = 0.27, and the optimal
policy has b∗ ≈ 0, i.e. it is very close to constant leverage. See text for parameters.

corresponds to a leverage control policy that is still procyclical but is
nonetheless closer to constant leverage.

3. Macroprudential risk dominates (Blue circles). This occurs when there is
weaker exogenous clustered volatility and strong bank market impact. To
illustrate this we set the GARCH parameters as in the previous case but
increase the relative size of the banking sector still further to R̂ = 0.27.
In this case the system becomes very prone to endogenous oscillations and
the risk is minimized for b∗ ≈ 0, i.e. using a leverage control policy that
is very close to constant leverage.

These three scenarios show that the key determinant of the degree to which
micro vs. macroprudential regulation is required is the market impact of the
banking sector. As this increases the system becomes more prone to oscillation
and therefore more susceptible to systemic risk. The dynamics emerge because
of the tension between the stabilizing influence of the fundamentalist and the
destabilizing influence of the banking sector. As the latter increases in market
impact a higher degree of macroprudential regulation is required.

The balance between micro and macroprudential risk can be stated in simple
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terms as a competition between exogenous vs. endogenously generated volatil-
ity. Increasing the size of the banking sector increases the endogenous volatility
and means that the system requires a higher level of macroprudential regulation.
This is obvious in the model, but of course in the real world it is hard to tell who
is generating volatility and therefore difficult to distinguish the two. Nonethe-
less, the market impact of the banking sector can potentially be estimated by
regulators and provides an important systemic risk indicator.

6. Conclusion

6.1. Summary

In this paper we have investigated the effect of risk-based leverage policies on
financial stability, extending the dynamical model of leverage cycles introduced
by Aymanns and Farmer (2014), and roughly calibrating it to match basic
features of the S&P500 trajectory prior and following the 2007/2008 crash.

We considered in particular the effect of different leverage control policies
ranging between procyclical and countercyclical ones. Under a procyclical pol-
icy the bank decreases its leverage when perceived risk is high. In contrast,
under a countercyclical policy the bank is allowed to increase its leverage when
perceived risk is high. We study the stability of the model for different values
of bank leverage and the cyclicality of the leverage policy. We find three differ-
ent regimes: (1) For low leverage the system is stable and settles into a fixed
point. (2) As leverage is increased leverage cycles emerge. (3) As leverage is
increased further the system becomes globally unstable. Our main contribution
is the evaluation of different leverage control policies, and our result that the
optimal policy depends on the parameters of the financial system: In the mi-
croprudential limit when the bank is small and exogenous volatility is high, the
optimal policy is simply given by Basel II, i.e. Value-at-Risk (b = −0.5). As
the banking sector becomes larger (either through increasing equity or leverage)
the optimal policy becomes less procyclical. In the limit when the bank is very
large or highly leveraged, the optimal policy is constant leverage, b = 0.

Our paper clearly illustrates the interplay between exogenous and endoge-
nous volatility: the microprudential response to exogenous volatility can itself
cause endogenous volatility which may dominate over exogenous volatility. This
insight is crucial for the effective design of macroprudential policies. Such poli-
cies must critically evaluate systemic risks, and make an appropriate tradeoff
between micro and macroprudential risk.

The results of Section 4.3 give a clear prescription for improved risk manage-
ment. We show there that lowering the adjustment speed for leverage targets
exerts a strong stabilizing force and can have a dramatic effect on the critical
leverage.

6.2. Are our assumptions of bounded rationality reasonable?

The most interesting aspect of our model is the spontaneous emergence of a
leverage cycle, resembling the Great Financial Moderation and the subsequent

29



crisis, and persisting even in the deterministic limit. This suggests that the use
of Value-at-Risk, as recommended by Basel II, might have partially caused these
events. Of course there are many other possible causes and the real situation
is complicated. Nonetheless, our model indicates that the Basel II rules, when
combined with aggressive risk taking and the widely use practice of estimating
volatility using historically-based moving averages, were sufficient to have caused
the Great Financial Moderation and subsequent crisis by themselves.

This model has been criticized for its assumption of bounded rationality.
Shouldn’t intelligent investors recognize the simple pattern of booms and busts
and alter their behavior accordingly?

Perhaps the strongest rebuttal of this criticism is the contradiction with
historical facts. As already mentioned there were several prescient warnings
about the potential problems with Value-at-Risk, but these were largely ignored.
Instead some of the greatest minds in economics declared otherwise: In 2003
Robert Lucas said that “the central problem of depression prevention has been
solved”, in 2004 Ben Bernanke said “improvements in monetary policy, though
certainly not the only factor, have probably been an important source of the
Great Moderation”, and even in 2008 Oliver Blanchard declared that “the state
of macro is good”, not realizing the possible dangers from financial markets.
Our model did not exist then, and the warnings from the models that did exist
prior to the crash were not quantitative. Thus it seems that in general neither
investors nor regulators were able to anticipate this dynamics.

There are reasons why this was difficult even for intelligent investors. The
timescale of the cycle is long – a decade or more – and investors typically lack
incentives to anticipate events that in the far future. There are big incentives to
participate in bubbles and the timing of crashes is hard to predict. Evolutionary
pressure forces funds to take ever-increasing leverage in order to stay compet-
itive, as for example in the model of Thurner et al. (2010). It is difficult for
individual investors to fully understand systemic risks based on the incomplete
information that is available.

This is made even harder by the fact that these are recent innovations.
Value-at-Risk did not become widely used until the mid 1990’s and Basel II was
adopted in 2004. But perhaps there is hope to do better in the future. Basel
III contains countercyclical buffers that are intended to damp leverage cycles.
The reliability of this could be tested by constructing a more realistic version
of our model. Among other things, this might include allowing the bank’s port-
folio weights to vary, allowing for phenomena like flight to quality; allowing the
possibly of default; modeling the heterogeneity of the financial system; and im-
plementing a more realistic version of the Basel III rules, including risk weights,
an asset price-dependent capital buffer and counter cyclicality with respect to
macro-economic indicators. Such a model could be developed, and we believe
it could provide a useful tool for testing the effectiveness of Basel III and eval-
uating possible alternatives. One can hope that investors and regulators in the
future will be sufficiently rational that we do not have to make the same mistake
twice.
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Appendix A. Detailed description of the model

The model is set in discrete time indexed by t = {τ, 2τ, ..., T τ}, where τ is
the length of a time-step.

Appendix A.1. Assets

Let p(t) be the price of the risky asset at time t. We assume that there is
exactly one unit of the risky asset which is infinitely divisible. The return on
the price of the risky asset is r(t) = log[p(t)/p(t− τ)]. The fraction of the risky
asset held by the bank is n(t) ∈ [0, 1]. Since only the bank and the fund can
invest in the risky asset, the fraction of the risky asset held by the fund is simply
1−n(t). The risk free asset is analogous to cash. The price of the risk free asset
is constant and equal to one.

Appendix A.2. Agents

There are two representative agents. The first is a bank, denoted B, and the
second is a fund, denoted F.

Appendix A.3. Bank

Balance sheet. Assume the bank divides its assets AB(t) in a fixed ratio wB

between the risky asset and cash cB(t), so that the banks owns n(t) shares of
the risky asset with price p(t). The relevant accounting relations are:

Risky investment = n(t)p(t) = wBAB(t),

Risk free investment = cB(t) = (1− wB)AB(t),

Total assets = AB(t) = cB(t) + n(t)p(t).

The bank’s liabilities LB have a maturity of one time step and are freely rolled
over or expanded. There is no limit to the reduction in LB; in principle the
bank could pay back its entire liabilities in one time step.

The bank adjusts its equity toward a fixed target E. This guarantees that
neither the bank nor the fund asymptotically accumulates all the wealth and
makes the long-term dynamics stationary, with only a small effect on the short
term dynamics. The dividends paid out by the bank are invested in the fund
and new capital invested in the bank comes from the fund. If the bank deviates
from its equity target E it either pays out dividends or attracts new capital
from outside investors at a rate η to adjust its equity closer to the target, so
that its equity changes by

κB(t) = η(E − EB(t)). (A.1)

Taking both the changes in price and the active adjustments in equity into
account, the bank’s equity at time t+ τ is

EB(t+ τ) = n(t)p(t+ τ) + cB(t)− LB(t) + κB(t), (A.2)
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and the bank’s leverage is

λ(t+ τ) =
Total Assets

Equity
=
n(t)p(t+ τ)/wB

EB(t+ τ)
. (A.3)

We assume the bank enforces risk control through a target leverage λ̄(t), corre-
sponding to a target portfolio value ĀB(t)(t) = λ̄(t)EB(t).

Estimation of perceived risk. The bank relies on historical data to estimate
the perceived variance of the risky asset σ2(t). To do so the bank computes an
exponential moving average of squared returns of the risky asset. This approach
is similar to the RiskMetrics approach, see Longerstaey (1996). In particular

σ2(t+ τ) = (1− τδ)σ2(t) + τδr2(t)

= (1− τδ)σ2(t) + τδ

(
log

[
p(t)

p(t− τ)

]
tVaR

τ

)2

, (A.4)

where the term tVar/τ rescales the return over one time-step τ to the return
over the horizon tVaR used in the computation of the capital requirement. The
parameter τδ ∈ (0, 1) implicitly defines the length of the time window over
which the historical estimation is performed. We define the typical time tδ as
the time at which an observation made at t−tδ has decayed to 1/e of its original
contribution to the exponential moving average. Thus tδ = −τ/ log[1−τδ] ≈ 1/δ
for τδ � 1.

Appendix A.4. Fund investor

The fund investor represents the rest of the financial system and plays the
role of a fundamentalist noise trader. Since the fund is not leveraged its assets
AF(t) are equal to its equity, i.e. EF(t) = AF(t). Just as for the bank, the
fund invests wF(t) of its assets in the risky asset and 1 − wF(t) in cash; a key
difference is that the fund adjusts its portfolio weight wF(t) whereas the bank’s
weight is fixed. The relevant accounting relations are

Risky investment = (1− n(t))p(t) = wF(t)AF(t),

Risk free investment = cF(t) = (1− wF(t))AF(t),

Total assets = AF(t) = cF(t) + (1− n(t))p(t),

and the fund’s equity is

EF(t+ τ) = (1− n(t))p(t+ τ) + cF(t) + κF(t). (A.5)

The fund’s cash flow κF := −κB mirrors the dividend payments or capital
injections of the bank.

We have already explained the motivation for the fund’s demand function in
the main text. Here, we simply note that we rescale the deviation of the price
of the risky asset to the fundamental by the current price of the risky asset
in order to make portfolio weight adjustments independent of the scale of the
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price of the risky asset. Otherwise, the portfolio weight would likely exceed its
natural bounds, i.e. wF ∈ [0, 1]. In order to introduce heteroskedasticity we
make s2 time varying according to a simple GARCH(1,1) process of the form

s2(t) = a0 + a1χ
2(t− 1) + b1s

2(t− 1),

χ(t) = s(t)ξ(t).
(A.6)

When the parameters a1 and b1 are zero the returns r(t) of the risky asset are
normally distributed as n(t)→ 0, the price process is a mean reverting random
walk with constant volatility (i.e. an Ornstein-Uhlenbeck process).

Appendix A.5. Market mechanism

The price of the risky asset is determined by market clearing. For this we
construct the demand functions for the bank and fund (DB and DF respectively)
as follows:

DB(t+ τ) =
1

p(t+ τ)
wBAB(t+ τ)

=
1

p(t+ τ)
wB(n(t)p(t+ τ) + cB(t) + ∆B(t)),

DF(t+ τ) =
1

p(t+ τ)
wF(t+ τ)AB(t+ τ)

=
1

p(t+ τ)
wF(t+ τ)((1− n(t))p(t+ τ) + cF(t)).

Recall that there is a supply of exactly one unit of the risky asset that is infinitely
divisible. We can then compute the market clearing price by equating demand
and supply 1 = DB(t+ τ) +DF(t+ τ). Solving for the market clearing price we
obtain

p(t+ τ) =
wB(cB(t) + ∆B(t)) + wF(t+ τ)cF(t)

1− wBn(t)− wF(t+ τ)(1− n(t))
. (A.7)

Given the new price we can compute the fraction of the risky asset owned by
the bank as follows:

n(t+ τ) =
1

p(t+ τ)
wB(n(t)p(t+ τ) + cB(t) + ∆B(t)). (A.8)

Appendix A.6. Finding the fixed point

We begin by considering the conditions for a fixed point of the g(·) as defined
in Equation 5.25

25For the deterministic system it is simple to derive a set of differential equations for the
continuous-time limit. We have checked that the qualitative behavior of the system in con-
tinuous time is the same as that of the discrete system in this case. For simplicity, and for
consistency with Section 5 where numerical simulations for the discrete stochastic case are
considered, we present here results for the discrete dynamical system.
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1. The price is at the noise trader’s fundamental value:
p∗ = µ =⇒ wF(t+ τ) = wF(t).

2. The bank’s perceived risk is 0:
σ2∗ = 0 ∨ p(t) = p(t− τ) = µ =⇒ σ2(t) = σ2(t+ τ).

3. The bank is at its target leverage consistent with σ2∗ = 0:

λ∗ =
A∗

B

A∗
B−L∗

B
= λ̄(t) = α(σ2

0)b =⇒ ∆B(t) = 0.

4. The bank is at its target equity:
E∗B = A∗B − L∗B = E = =⇒ ∆EB(t) = 0.

5. The bank’s ownership of the risky asset is consistent with the price, lever-
age target and equity target at the fixed point:
n∗ = λ∗E∗BwB/µ.

The fixed point is therefore:

x∗ = (σ2∗, w∗F, p
∗, n∗, L∗B, p

′∗)

= (0, wF(0), µ,
1

µ
ασ2b

0 EwB, (ασ
2b
0 − 1)E,µ),

(A.9)

where we picked w∗F = wF(t = 0), the initial value of the fund’s investment
weight, since at p∗ = µ any wF will remain unchanged. Since w∗F is not specified
by the fixed point condition, there is essentially a set of fixed points for wF ∈
[0, 1]. As such it is useful to interpret w∗F as a parameter of the model determined
by an appropriate initial condition. We choose wF(0) = 0.5 throughout.

In the case studies in Figure 4 and Figure 5 in Section 3 we saw that the
properties of the system dynamics depended heavily on the relative proportions
of the fund versus the bank as this determines the impact of the bank on the
price of the risky asset. Therefore, before moving on we define the relative size
of the bank to the fund at the fixed point as:

R(x∗) =
A∗B
A∗F

=
λ∗E∗B

(1− n∗)p∗/w∗F
=

(
µ

E

1

ασ2b
0 wF(0)

− wB

wF(0)

)−1
. (A.10)

Clearly, as the equity of the bank goes up, its size relative to the noise trader
will increase. Similarly if the bank risk parameter α or the risk off set σ2

0 is
increased, the bank’s leverage at the fixed point will increase whereby its size
relative to the fund will increase.

Appendix A.7. Existence of critical leverage and bank riskiness

In order to assess the stability of the fixed point we compute the Jacobian
matrix Jij = ∂gi/∂xj . We then evaluate the Jacobian at the fixed point x∗

and compute the eigenvalues ei of the corresponding matrix. In this particular
case the eigenvalues cannot be found analytically. Instead, we compute the
eigenvalues numerically using the parameters specified in Table 1. With the
help of the eigenvalues we can distinguish between local stability and instability
of the fixed point. If the absolute value of the largest eigenvalue |e+| > 1 the
system exhibits chaotic oscillations, while it is locally stable if |e+| < 1. We
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Figure A.12: Numerical evaluation of the destabilizing eigenvalues (specific re-
sults will depend on parameter choice) for different values of α. The destabilizing
eigenvalues are the two largest eigenvalues that first cross the unit circle from
within.

assess the global stability of the system via numerical iteration of the map in
Equation 5.

Now, suppose we increase the bank risk parameter α and study how the
eigenvalues of the Jacobian change while keeping all other model parameters
constant. We summarize the evolution of the two largest eigenvalues of the
Jacobian in the complex plane in Figure A.12. The eigenvalues start out at a
point within the unit circle on the complex plane (i.e. |ei| < 1). Then as α is
increased the magnitude of the eigenvalues increases. The critical bank riskiness
αc at which the eigenvalues cross the unit circle, corresponds to the point at
which leverage cycles emerge. Since we keep all other parameters constant,
this critical bank riskiness also corresponds to a critical leverage and a critical
relative size of the bank to the fund. In particular

λ∗c = αcσ
2b
0 ,

Rc(x
∗) =

λ∗cE
∗
B

(1− n∗)p∗/w∗F
.

(A.11)
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