

DEAD ON ARRIVAL? IMPLICIT STRANDED ASSETS IN LEADING IAM SCENARIOS

Alexander Pfeiffer, Adrien Vogt-Schilb, Daniel J. Tulloch and Cameron Hepburn

5th June 2018

INET Oxford Working Paper No. 2018-08

Economics of Sustainability

Dead on arrival? Implicit stranded assets in leading IAM scenarios

Alexander Pfeiffer,^{a,b,*} Adrien Vogt-Schilb,^c Daniel J. Tulloch,^b Cameron Hepburn,^{a,b}

^a Institute for New Economic Thinking (INET) at the Oxford Martin School, Oxford, UK ^b Smith School of Enterprise and the Environment (SSEE), University of Oxford, Oxford, UK ^c Inter-American Development Bank (IDB), Washington D.C., USA

Abstract

While it is acknowledged that asset stranding could jeopardize the political feasibility of climate policies, the amount of stranded assets is rarely made explicit in most decarbonization pathways. This paper introduces a novel method that extracts, for every given energy sector transition scenario, the implicit amount of new power generation capacity that is added every year, and the required amount of stranding if this scenario is to be in line with its projected generation mix. We show that most scenarios that stabilize warming to below 1.5-2°C require a high level of asset stranding, not only for future capacity additions, but also for already existing and currently planned generators. Such stranding affects China and the U.S. most. The amount of future fossil fuel capacity stranding required, in line with 1.5-2°C warming, has increased by 21% between 2005 and 2015. We discuss implications for investors and policy makers.

Keywords: climate change mitigation; stranded assets; electricity generation; climate policy; energy policy *JEL:* Q01; Q4; Q54; Q5

*Corresponding author.

Email addresses: alexander.pfeiffer@inet.ox.ac.uk (**Alexander Pfeiffer**), avogtschilb@iadb.org (**Adrien Vogt-Schilb**), daniel.tulloch@smithschool.ox.ac.uk (**Daniel J. Tulloch**), cameron.hepburn@inet.ox.ac.uk (**Cameron Hepburn**)

We thank all participants at the INET researcher seminars and especially Eric Beinhocker, Niall Farrell, and Linus Mattauch for their helpful comments. We also thank the Smith School for Enterprise and the Environment (SSEE) as well as the IEA for providing access to their databases. The views expressed in this paper are the sole responsibility of the authors. They do not necessarily reflect the views of the Inter-American Development Bank or the countries it represents.

INET Working Paper

October 31, 2017

1. Decarbonization and carbon lock-in

To stop climate change, and stabilize global temperatures below 2°C, and as close to 1.5°C as possible (UNFCCC, 2015), humanity needs to reach net-zero carbon emissions before the end of the century (IPCC, 2013; Fay *et al.*, 2015; Rogelj, Luderer, *et al.*, 2015; Rogelj, Schaeffer, *et al.*, 2015). In the future, electricity generation will thus have to be (net-) zero-carbon, relying on renewable energy, fossil-powered generation with carbon capture and storage (CCS), or nuclear power (Luderer *et al.*, 2012; Sugiyama, 2012; Williams *et al.*, 2012; Clarke *et al.*, 2014; IEA, 2014). Even under less stringent climate targets (such as 3°C) and even if some technologies, such as nuclear power or CCS, turn out to be unavailable or limited, all economies are expected to have to decarbonize their electricity sectors before the end of the century (Rozenberg *et al.*, 2015; Audoly *et al.*, 2017).

On the other hand, existing power generation is mainly based on fossil fuels that emit greenhouse gases (GHGs). Globally, in 2016 67% of electricity generation came from either coal- (41%), gas- (22%), or oil-powered (4%) generators, and this is responsible for one third of global total CO_2 emissions (IEA, 2016). While most of the global capacity additions (62% in 2016) are now renewable power plants (Sawin J., Seyboth K., 2017), the current pipeline of power generation projects would still add a significant amount of fossil fuel power generation to this capital stock over the coming decade. A recent report by the Carbon Tracker Initiative found that 205 GW of coal capacity is under construction in China with an additional 405 GW at some stage of the planning process, for a total cost of up to 500 bn. USD (CTI, 2016).¹

One problem with that development is that power generators, especially fossilfuels, tend to have a long lifetime. The median lifetimes of coal and gas generators have been estimated at 37 and 35 years respectively, with some coal generators already operating for more than 70 years (Davis and Socolow, 2014). This means

¹ For India these figures amount to 65 GW under construction and an additional 178 GW proposed (Shearer, Fofrich and Davis, 2017).

that the amount of *committed emissions* over this lifetime is comparatively high for fossil-fuel generators. These 'baked-in' carbon emissions from existing infrastructure are commonly referred to as carbon lock-in (Unruh, 2000; Davis, Caldeira and Matthews, 2010; Kalkuhl, Edenhofer and Lessmann, 2012; Bertram *et al.*, 2015; Erickson *et al.*, 2015; Pfeiffer *et al.*, 2016). Due to this long lifetime, cost-effective transition pathways towards a decarbonized electricity sector are likely to require some amount of stranded assets, i.e. the early retirement or underutilization of power generators without CCS. A growing body of academic research quantifies the extent of asset stranding in emission reduction pathways and investigate options to minimize stranding (Bertram *et al.*, 2015; Johnson *et al.*, 2015; Kriegler *et al.*, 2015; McJeon, 2015; Riahi, Kriegler, *et al.*, 2015; Luderer *et al.*, 2016).

This paper systematically explores the extent of stranded assets in the electricity generation sector implied by the Intergovernmental Panel on Climate Change, IPCC's global decarbonization scenarios and the findings of a recent Integrated Assessment Model (IAM) comparison study: AMPERE (Riahi, Kriegler, et al., 2015). It introduces a simple method that extracts the implicit amount of new fossil-fuel capacity that is added or stranded in every year in any given scenario, by comparing existing generation capacity, expected utilization, and electricity generation. In every year, in which scenario electricity generation would lead to a higher-than-expected utilization of existing capacity, new capacity is added and changes the capital stock going forward. In other years in which generation is lower than utilized capacity stranding occurs. This method itself is novel. It is simple to understand and replicate, works with only a few assumptions, and can be applied to any global or regional pathway (e.g. from the International Energy Agency IEA, the Energy Information Agency EIA, or the IPCC), and power generation technology (e.g. coal, gas, oil, and biomass, but also solar, wind, etc.). Importantly, this method does not require a fully-fledged IAM or similar energyeconomic model. It is therefore suitable for policy makers, investors and corporate decision makers, and other stakeholders who might not have access to or sufficient knowledge about IAMs.

Our application of this method to the output of a wide range of global and regional peer-reviewed scenarios enables us to analyze at an unprecedented level of detail where and when stranding will occur, and how it will vary under different climate policies. The timing of stranding is particularly relevant to policy makers since early and targeted social policies can help to reduce the adverse social effects of asset stranding and thus smooth the transition. We add to previous findings regarding the influence of weak near-term policies by analyzing how the weak policies of the last decade have increased the required amount of future capacity stranding. Finally, our findings on whether an extension in the lifetimes of existing generators could reduce stranded assets add further detail to this policy option by analyzing different technologies and lifetime extensions and how the impact of this policy option has changed in the past ten years.

We find that, in all analyzed climate stabilization scenarios, a high level of asset stranding will be required. This finding applies to the scenarios that permit a chance for global warming below 1.5-2°C (430-480 ppm²), but also to less stringent scenarios (480-530 and 530-580 ppm). Most stranding takes place between 2030 and 2050, such that future additions to the power generation capital stock will be affected, as well as already operating or currently planned generators. Coal and gas generators could see average utilization rates drop from current levels of 39% (Gas) and 60% (Coal) to 29% and 23% in 2030-2050, respectively. Such underutilization especially affects China and the U.S., while other regions, such as Brazil and Japan, are relatively unaffected.³ The amount of future global capacity stranding, in line with 1.5-2°C warming, has increased by 21% between 2005 and 2015, a period in which the global electricity generation capital stock has seen significant fossil-fuel additions. Finally, we find that extending the lifetimes of currently existing infrastructure could reduce the amount of future capacity stranding by reducing future additions to the capital stock in some regions and scenarios, but that the potential impact of this policy

 $^{^{\}rm 2}$ ppm scenarios refer to the 2100 concentration of CO_2eq. in the atmosphere (ppm = parts per million).

³ This can be explained by the fact that China and the U.S. generate much of their electricity from coal and gas while Brazil and Japan rely more on hydro and nuclear, respectively.

action has decreased during the last decade.

2. Findings

In our base case, we analyze the development of the global electricity generation capital stock under different climate scenarios starting in 2015, including generators that are currently under construction, and excluding generators that are currently in the planning process. Furthermore, for generators that are already 'overaged' in 2015, i.e. past their expected lifetime but still operating, we assume a phase-out period of five years. We only analyze carbon emitting generation capacity, i.e. coal, gas, and oil – all without CCS. These variables are extracted from scenarios in which the entire energy sector including all other technologies are modelled – namely fossil fuels with CCS, renewables, nuclear, and hydro. These other forms of generation are, however, not the subject of this analysis and hence are not mentioned in the following. Information regarding data and methods can be found in Appendices A and B, additional figures and tables in Appendices C and D.

2.1 Coal and gas see large-scale stranding after 2030

In the first step, we compare simulated utilization rates in the three climate stabilization scenarios (430-480 ppm, 480-530 ppm, and 530-580 ppm) to target utilization bands for each technology. The 430-480 ppm and 480-530 ppm scenarios are typically associated with pathways in which global warming below 2°C is likely (430-480 ppm) or at least about as likely as unlikely (480-530 ppm). The 530-580 ppm scenarios imply global warming between 2-3°C. Target utilization bands are defined by the historical minimum and maximum of the global average utilization rate of that technology between 2004 and 2014 (IEA, 2016).

The utilization rates of different fossil fuels in the base case develop differently. Figure 1 (panel a) shows the results for coal. Initially, high utilization rates (close to its target band) start decreasing shortly after 2020 and accelerate their downturn after around 2030 to near zero by 2060 (in the 430-480 ppm case) and 2080 (in the 480-530 ppm case), respectively.

(a) Coal generation utilization

(b) Gas generation utilization

Figure 1: Simulation results for coal- and gas-fired capacity utilization. (a) coal

utilization drops rapidly after 2030 in almost all analyzed climate scenarios. (b) gas utilization drops considerably after 2030 in the 430-480 ppm scenario but remains relatively stable in 480-530 and 530-580 ppm scenarios. Dashed lines represent historic minimum and maximum of 2004-2014 average global utilization rate of that technology. Utilization peaks in the 2060s and 2070s are misleading as, by then, capacity and generation will be on such low levels that even the retirement of individual generators can lead to a much higher utilization for the remaining ones.

For gas and oil generation, the results are similar but on a lesser scale (see Figure 1, panel b for gas and Appendix C.1.a for oil results). Gas and oil both start with much lower utilization (and utilization targets) than coal in 2015 and hence also experience less utilization decline. Both fuels, however, see their utilization drop to below 10% by the end of the century.

Figure 2 shows the amount of stranded generation for coal, gas, and oil for each of the analyzed climate scenarios.⁴ Coal will experience by far the most stranding of all analyzed technologies, and could see up to ~310 EJ (86,000 TWh⁵) of stranded generation between 2015 and 2100 if the world were to follow a path that leads to 1.5-2°C warming. Even under less stringent climate scenarios, coal would see significant stranding (220-260 EJ or 61,000-72,000 TWh). Gas and oil come second and third, respectively, with ~140 EJ (39,000 TWh) for gas and ~16 EJ (4,444 TWh) for oil in 1.5-2°C consistent scenarios.

⁴ See Appendix D.1 for results table.

⁵ One Exajoule (EJ) is equivalent to ~277.78 Terawatt hours (TWh).

Figure 2: Total stranded cumulative generation capacity, 2015-2100. In the base case, without including currently planned generators, and with a phase-out period of five years for 'overaged' generators, over 300 EJ would need to be stranded in the 430-480 ppm scenario for coal alone (~83,334 TWh).

The main stranding of coal, and almost all stranding of gas and oil happens after 2030 (Figure 3). Perhaps surprisingly, even in less stringent climate scenarios, such as the 530-580 ppm scenario, gas experiences significant stranding. Even though gas is less emission intensive than coal, it still emits significant amounts of CO₂ when burned in a generator. Even under scenarios that allow for 2-3°C warming by 2100, gas-fired electricity generation (without CCS) will eventually have to be phased-out.

Figure 3: Stranding over time. By far most the stranding for all fossil fuels would happen between 2030 and 2050.

In the base case, average utilization rates for coal capacity would fall from 60% currently to 48% in 2015-30 and 23% in 2030-50 (430-480 ppm), or to 51% in 2015-30 and 33% in 2030-50 (530-580 ppm). Gas would see an increase in utilization from 39% currently to 42% in 2015-30, which would then be followed by a subsequent drop to 29% in 2030-50 and 21% thereafter (430-480 ppm).

2.2 China and the U.S. would be affected most

We find that, on a regional level, most stranding of capacity between 2015 and 2100 will take place in coal-fired generation in non-OECD Asia and the OECD countries, followed by countries of the former Soviet Union (Figure 4). Non-OECD Latin America and the Middle-East & Africa region see much less overall stranding and more gas than coal stranding. In former Soviet Union countries, coal and gas stranding is relatively equal.

Figure 4: Regional stranding in the 430-480 ppm scenarios. Asia would be affected most, followed by the OECD countries.

Within these regions, China and the United States of America experience most stranding, both mostly driven by coal stranding (Figure 5). For coal stranding within Asia, China experiences ~65% and India only ~15%; for gas these numbers amount to ~40% (China) and ~25% (India). Within the OECD countries, the United States experiences ~70% of all coal stranding and ~60% of all gas stranding. For Europe, these figures amount to only ~20% (coal) and ~30% (gas).

Figure 5: Country-level stranding in the 430-480 ppm scenarios. On a country-level, China and the USA would be most affected while other countries, such as Japan and Brazil, would be mostly spared.

Other countries such as Brazil, Japan, and even Russia, experience low levels of coal stranding (2-8 EJ) and, besides Russia (~25 EJ of gas stranding, similar to the U.S.), also relatively low levels of gas stranding.

2.3 The current power plant pipeline would increase stranding

While our base case analysis does not consider potential future capacity additions from currently planned power generators, we move on to analyze how the added capacity of these generators over the next few years would change future asset stranding.⁶ Figure 6 shows how 2015-2100 capacity stranding would change if all the capacity came online that is currently some stage of the planning process.⁷

⁶ Based on an analysis of the Platt's UDI WEPP dataset.

⁷ See Appendix D.2 for results table.

Figure 6: Stranding and the current pipeline of planned power generators in the **430-480 ppm scenarios.** If currently planned power generators are in fact built, the amount of stranding required would increase dramatically, mostly for coal.

The largest increase in stranding can be observed for coal-fired power generation. The amount of future stranding increases by over 2.5 times, from ~310 to ~780 EJ. This development can be observed because a large share of the current generation pipeline consists of coal-fired power generation (mainly in Asian countries like India and China) and because coal-fired power generation will see the steepest decline in 1.5-2°C consistent scenarios.

While also gas and oil would see an increase in future stranding if all currently planned capacity is built, the increase is much smaller than for coal. Gas-fired generation would see an increase of future stranding in the 430-480 ppm scenario from ~140 to ~200 EJ (+43%) and oil would see the smallest increase from ~16 to ~19 EJ (+16%).

2.4 Future stranding has increased by 21% over the last decade

Over the past ten years, a large amount of capacity has been added to the global generation capital stock. While some of this was needed to satisfy rising energy

demand, (especially in Asia) these generators will run for many years, and sometimes many decades, and hence could add to future stranding. Running the simulation for the base year 2005 (unharmonized scenarios and 2005 operating capital stock) and for 2015 (harmonized scenarios and 2015 operating capital stock), respectively, reveals that the amount of potentially stranded assets has increased by 21% in this period.

Figure 7 shows that this increase comes mainly from newly built coal generators (+32%), while asset stranding in gas capital stock has decreased (-12%).⁸ This somewhat counter-intuitive finding can be interpreted such that over the past decade more gas was built than originally thought. The current gas operating capital stock will therefore already satisfy much of the demand over the next decades and less new capital stock must be built as a result. This will eventually reduce stranding. While stranding for oil increases by more than 100%, this occurs from a much lower initial base and hence only adds a little to the overall increase in stranding.

⁸ See Appendix D.3 for results table.

Figure 7: Development over the past decade in the 430-480 ppm scenarios. The required amount of stranding to achieve 430-480 ppm scenarios has increased considerably over the past decade, mostly for coal.

2.5 Longer lifetimes to reduce stranding are not an option (anymore)

One potential policy option to avoid the addition of new polluting capital stock is to extend the lifetimes of existing generators. Such a lifetime extension could help to satisfy energy demand without building new 'dirty' generators, thereby avoiding that these generators must be stranded in the future. To assess the impact of different lifetime extensions on future asset stranding, we vary the phase-out period for currently 'overaged' generators. We define an 'overaged' generator as one that should have been retired before 2015 but that is still in operation in 2015. In our simulation, such generators are being phased-out uniformly over a certain period starting with the oldest generators. To simulate the effect of lifetime extensions we vary this phase-out period between 5 and 30 years. Figure 8 shows the overall amount of cumulative asset stranding between 2015 and 2100 for coal and gas in the 430-480 ppm scenario and for different phase-out periods. Our findings differ significantly between technologies. For coal, the level of asset stranding does not differ much for lifetime extensions of 1-10 years but increases for longer extensions. This finding indicates that most of the coal generation over the next decade or so in the median 430-480 ppm scenario could be met by varying utilization rates of currently existing infrastructure, largely within its target utilization band. We find that additional coal capacity is required in the future in almost none of the analyzed climate scenarios (largely independent of lifetime extensions). Extending lifetimes beyond 10 years, however, would lead to more asset stranding as such large amounts of coal capacity are simply not needed anymore after 2025-30 in the analyzed scenarios.

For gas, a lifetime extension of 1-10 years would see an almost constant level of asset stranding while extensions of 10-30 years would see asset stranding fall. Extending the lifetimes of currently operating gas capacity would avoid some of the otherwise required further capacity additions between 2030 and 2050 and hence subsequent stranding. Should the current gas pipeline be built, however, asset stranding would increase, with lifetime extension beyond 20 years. This indicates that for gas, currently operating and planned capacity (assuming longer lifetimes for currently overaged generators) is almost sufficient to satisfy total future demand in the 430-480 ppm scenario.

(a) Lifetime extension for coal capacity

Figure 8: Lifetime extensions for operating 'overaged' capacity in the 430-480

ppm scenarios. (a) Lifetime extensions for coal (instead of new capacity) would have reduced asset stranding a decade ago but will no longer do so today. (b) Lifetime extensions for operating gas capacity, however, might still be helpful to reduce asset stranding.

For oil capital stock the results are clear (see Appendix C.2). For oil, a lifetime extension of up to 10 years would decrease, while anything beyond 10 years would then increase, future asset stranding. This result can be interpreted such that, over the next ten years, there will still be a certain amount of generation from oil in some regions. This will then decrease, however, such that the then existing capacity will become stranded. Avoiding new generators that replace phased-out generators over the coming ten years will reduce that amount of stranded capacity.

Comparing these results to the situation in 2005, we find that an extension of lifetimes would have significantly reduced asset stranding requirements for coal and gas capital stock. This indicates that much of the capacity that will see asset stranding in the future has been built over the last 10 years and could have been avoided by relying instead on longer lifetimes for coal and gas plants. This political choice, however, seems not to be on the table anymore.

3. Discussion of findings

Between 2005 and 2015, much fossil-fuel capacity has been installed. In some countries (e.g. India and China) this capacity mainly consists of coal, while in others (e.g. USA) it is to a large extent from gas. Either way, this has added a large amount of committed cumulative generation from fossil fuels to the global capital stock that is unlikely to be fully utilized if the global community follows through with the Paris climate goals or even only the current Nationally Determined Contributions (NDCs). Even in a world in which concerted climate action fails, the economics of renewable energies could lead to a total phase-out of fossil fuels by the end of this century (Audoly *et al.*, 2017) and hence to a certain level of asset stranding.

This paper details the findings of the existing literature, that weak near-term policies could increase future asset stranding, by showing that weak policies during the last decade have already increased the stranding required by one fifth. Moreover, while ten years ago an extension of the lifetimes of existing generators could have been an effective strategy to reduce new capacity and hence future stranded assets, this policy option today seems to have lost its effect for coal, and largely also for gas on a global level. Policy makers are now in a situation in which it is not enough anymore to 'simply' avoid additional coal capacity, meaning that existing capacity must be stranded, either by underutilization or by early retirement.

Our findings have important implications for policy makers and investors. Most of the already existing electricity generation capacity cannot be fully utilized, even in the less-stringent policy scenarios, where global warming is likely to exceed 1.5-2°C or even reaches closer to 3°C. This underutilization will be much higher if even a small share of currently planned fossil fuel capacity comes online. In early-2017 Asian (mostly coal) and the OECD countries (mostly gas) are planning significant additions to the 'polluting' generation capital stock, i.e. their fossil fuel powered generation capacity (Pfeiffer *et al.*, 2017; Shearer *et al.*, 2017). These countries are already strongly affected by future asset stranding, even without these future additions. Policy makers in these countries should re-assess their energy policies to avoid further carbon lock-in.

Any addition to the current fossil fuel generation capital stock, be it coal or gas, could increase the amount of assets that need to be stranded in the future. While this was already true for coal in 2005 it seems now to be true for gas as well. Additions to the global polluting capital stock in the last decade have increased the amount of coal stranding required by 32% while they decreased gas stranding by 12%. Adding even more *dirty* capacity would increase coal stranding 2.5-fold and gas stranding by 43%. These findings indicate that no additional generation capacity is needed, for coal or gas, to meet projected generation in the 1.5-2°C scenarios. A sensible energy and climate policy could therefore be to focus on avoiding any additional dirty capacity to the fossil fuel capital stock instead of retiring existing capacities early.

Moreover, policy makers should carefully assess their environmental strategies with respect to planned generating capacity. Despite the lack of penalty for breaching the Paris agreement, there remains a potential economic cost to the industry through inaction, as excess generating capacity reduces overall utilization rates for the industry. Policy makers could assess capacity building in their electricity markets to ensure that the decision to build additional capacity is congruent with the long-term interest of their citizens and their own CO₂ reduction pledges.

For investors and corporate decision makers, our results could be used to adjust hurdle rates and assess investment decisions. The significant asset stranding observed in most scenarios means that investments in almost all fossil fuel generators around the world are likely to suffer from falling utilization rates. While these declining utilization rates come at different times (as early as 2020-30 for coal and as late as 2030-50 for gas) they could have impacts on investment portfolios today once climate policies reveal the likely future pathways. Asset stranding can happen in different ways (e.g. via early retirement or underutilization). Stress testing investment projects and portfolios of fossil fuel generation with low utilization rates at different times could reveal meaningful new information for investment decisions. The transparency and ease of use of our proposed simulation method, and the fact that no IAM is needed, allows investors and managers to apply this analysis to a wide range of different global, national, or even local, energy scenarios to assess what these scenarios would mean for individual investments on asset level. It hence acknowledges that electricity systems are not global and, in many cases, not even transnational and therefore require a different approach to that which most IAMs can provide.

More research also needs to be undertaken on a regional and local level to assess the potential impact of lifetime extensions on asset stranding. We only analyze the impact of such extensions on asset stranding for 'overaged' generators, in the same fuel class and on a global level. Nevertheless, we find that, in some cases, an extension of the lifetimes of currently operating generators can reduce future asset stranding by reducing future additions to the capital stock. This result complements findings by Lecuyer & Vogt-Schilb (2014), who suggested that investing today in new gas power plants with shorter-than-normal lifetimes could be a way to reduce mid-term asset stranding. Here, we show that investments made to extend the lifetime of *existing* fossil fuelled power plants could be a way to achieve this result. Further research could apply our method to regional capital stocks and to sectors other than power generation. This could reveal in which regions, for which fuels, and under which assumptions, an extension of lifetimes is a sensible policy choice.

4. Conclusion

Using a simple and transparent method to simulate the development of the global electricity generation capital stock in several hundred global and regional scenarios, we analyze the amount of stranded capacity required in scenarios consistent with 1.5-2°C global warming by 2100. We find that, not only has this amount increased by 21% in the past decade, but that it also seems to have shut the door to some policy options that might have been pursued to reduce stranded assets. We hence derive four implications for policy makers and investors alike; (1) the focus of policy makers should be on avoiding additions to the global fossilfuelled electricity generation capital stock instead of retiring existing ('dirty') infrastructure early; (2) investors and managers alike may reassess investment decisions and stress-test portfolios of power generators with much lower capacity factors than is currently the case; (3) more focus should be put on local and differentiated assessments where an extension of lifetimes could reduce asset stranding by avoiding new fossil investments; and (4) a global moratorium on any further coal development (capacity and resources) is needed to avoid further investments that will almost certainly become stranded in the near- and medium term if the global community follows through with the Paris goals.

References

Arent, D. J., Tol, R. S. J., Faust, E., Hella, J. P., Kumar, S., Stzepek, K. M., Toth, F. L. and Yan, D. (2014) 'Chapter 10. Key Economic Sectors and Services', in *Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*, pp. 659–708.

Audoly, R., Vogt-Schilb, A., Pfeiffer, A. and Guivarch, C. (2017) *Pathways* toward zero-carbon electricity required for climate stabilization, IDB Working Paper Series.

Bertram, C., Johnson, N., Luderer, G., Riahi, K., Isaac, M. and Eom, J. (2015) 'Carbon lock-in through capital stock inertia associated with weak near-term climate policies', *Technological Forecasting and Social Change*. Elsevier Inc., 90(PA), pp. 62–72. doi: 10.1016/j.techfore.2013.10.001.

Burke, M., Dykema, J., Lobell, D. B., Miguel, E. and Satyanath, S. (2015) 'Incorporating climate uncertainty into estimates of climate change impacts', *Review of Economics and Statistics*, 97(2), pp. 461–471. doi: 10.1162/REST.

Clarke, L. E., Jiang, K., Akimoto, K., Babiker, M., Blanford, G., Fisher-Vanden, K., Hourcade, J.-C., Krey, V., Kriegler, E., Loschel, D., McCollum, S., Paltsev, S., Rose, S., Shukla, P. R., Tavoni, M., van der Zwaan, B. C. C. and van Vuuren, D. P. (2014) 'Assessing transformation pathways', in *Climate Change 2014: Mitigation of Climate Change. ontribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.*

Clarke, L., Edmonds, J., Krey, V., Richels, R., Rose, S. and Tavoni, M. (2009) 'International climate policy architectures: Overview of the EMF 22 international scenarios', *Energy Economics*, 31, pp. S64–S81. doi: 10.1016/j.eneco.2009.10.013.

Cooper, H. (2017) 'No more coal-fired power stations will be built in Australia,

Queensland provider CS Energy says', ABC News, February.

CTI (2016) Chasing the Dragon? China's coal overcapacity crisis and what it means for investors.

Davis, S. J., Caldeira, K. and Matthews, H. D. (2010) 'Future CO2 emissions and climate change from existing energy infrastructure', *Science*, 329(5997), pp. 1330–1333. doi: 10.1126/science.1188566.

Davis, S. J. and Socolow, R. H. (2014) 'Commitment accounting of CO2 emissions', *Environmental Research Letters*, 9(8), p. 84018. doi: 10.1088/1748-9326/9/8/084018.

Edenhofer, O., Knopf, B., Barker, T., Baumstark, L., Bellevrat, E., Chateau, B., Criqui, P., Isaac, M., Kitous, A., Kypreos, S. and others (2010) 'The economics of low stabilization: Model comparison of mitigation strategies and costs', *The Energy Journal*, 31(1), pp. 11–48.

Erickson, P., Kartha, S., Lazarus, M. and Tempest, K. (2015) 'Assessing carbon lock-in', *Environmental Research Letters*, 10(8), p. 84023. doi: 10.1088/1748-9326/10/8/084023.

Farmer, J. D., Hepburn, C., Mealy, P. and Teytelboym, A. (2015) 'A Third Wave in the Economics of Climate Change', *Environmental and Resource Economics*. Springer Netherlands, 62(2), pp. 329–357. doi: 10.1007/s10640-015-9965-2.

Farmer, J. D. and Lafond, F. (2016) 'How predictable is technological progress?', *Research Policy*, 45(3), pp. 647–665. doi: 10.1016/j.respol.2015.11.001.

Fay, M., Hallegatte, S., Vogt-Schilb, A., Rozenberg, J., Narloch, U. and Kerr, T.
(2015) *Decarbonizing Development*. *Three Steps to a Zero-Carbon Future*, *World Bank*. doi: 10.1017/CBO9781107415324.004.

Guivarch, C., Hallegatte, S. and Crassous, R. (2009) 'The resilience of the Indian economy to rising oil prices as a validation test for a global energy–

environment–economy {CGE} model', *Energy Policy*, 37(11), pp. 4259–4266. doi: 10.1016/j.enpol.2009.05.025.

IEA (2014) *Energy Technology Perspectives 2014: Harnessing electricity's potential.* Paris, France: {International Energy Agency} and {Organisation for Economic Co-operation and Development}.

IEA (2016) World Energy Outlook 2016. doi:

http://www.iea.org/publications/freepublications/publication/WEB_WorldEn ergyOutlook2015ExecutiveSummaryEnglishFinal.pdf.

IIASA (2014a) 'AMPERE Public Database. International Institute for Applied Systems Analysis.'

IIASA (2014b) *AR5 Scenario Database*, *About*. doi: 10.1142/S2010007813400083.

IPCC (2001) 'Climate Change 2001: The Scientific Basis', *Climate Change 2001: The Scientific Basis*, p. 881. doi: 10.1256/004316502320517344.

IPCC (2013) 'Summary for Policymakers', in *Climate Change 2013: The Physical Science Basis - Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.* Cambridge. Cambridge, United Kingdom and New York, {NY}, {USA}. ([Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]).

IPCC (2014) Climate Change 2014: Mitigation of Climate Change, Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. doi: 10.1017/CBO9781107415416.

Iyer, G. C., Clarke, L. E., Edmonds, J. a., Flannery, B. P., Hultman, N. E., McJeon, H. C. and Victor, D. G. (2015) 'Improved representation of investment decisions in assessments of CO2 mitigation', *Nature Climate Change*, (May), pp. 436–440. doi: 10.1038/nclimate2553. Iyer, G., Hultman, N., Eom, J., McJeon, H., Patel, P. and Clarke, L. (2014) 'Diffusion of low-carbon technologies and the feasibility of long-term climate targets', *Technological Forecasting and Social Change*. doi: 10.1016/j.techfore.2013.08.025.

Johnson, N., Krey, V., McCollum, D. L., Rao, S., Riahi, K. and Rogelj, J. (2015) 'Stranded on a low-carbon planet: Implications of climate policy for the phaseout of coal-based power plants', *Technological Forecasting and Social Change*. Elsevier B.V., 90(PA), pp. 89–102. doi: 10.1016/j.techfore.2014.02.028.

Kahneman, D. and Tversky, A. (1979) 'Prospect Theory: An Analysis of Decision under Risk', *Econometrica*. The Econometric Society, 47, pp. 263–292.

Kalkuhl, M., Edenhofer, O. and Lessmann, K. (2012) 'Learning or lock-in: Optimal technology policies to support mitigation', *Resource and Energy Economics*, 34(1), pp. 1–23. doi: 10.1016/j.reseneeco.2011.08.001.

Krey, V., Masera, O., Blanforde, G., Bruckner, T., Cooke, R., Fish-Vanden, K., Haberl, H., Hertwich, E., Kriegler, E., Müller, D., Paltsev, S., Price, L., Schlömer, S., Uerge-Vorsatz, D., Van Vuuren, D. and Zwickel, T. (2014) 'Annex II: Metrics & Methodology.', *Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*, pp. 1281–1328.

Kriegler, E., Riahi, K., Bauer, N., Schwanitz, V. J., Petermann, N., Bosetti, V.,
Marcucci, A., Otto, S., Paroussos, L., Rao-Skirbekk, S., Currás, T. A., Ashina, S.,
Bollen, J., Eom, J., Hamdi-Cherif, M., Longden, T., Kitous, A., Méjean, A., Sano,
F., Schaeffer, M., Wada, K., Capros, P., van Vuuren, D. P., Edenhofer, O.,
Bertram, C., Bibas, R., Edmonds, J., Johnson, N., Krey, V., Luderer, G.,
McCollum, D. and Jiang, K. (2015) 'A short note on integrated assessment
modeling approaches: Rejoinder to the review of "Making or breaking climate
targets - The AMPERE study on staged accession scenarios for climate policy", *Technological Forecasting and Social Change*. The Authors, 99, pp. 273–276.
doi: 10.1016/j.techfore.2015.07.011.

Kriegler, E., Weyant, J. P., Blanford, G. J., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S. K., Tavoni, M. and Vuuren, D. P. van (2014) 'The Role of Technology for Achieving Climate Policy Objectives: Overview of the EMF 27 study on global technology and climate policy strategies', *Climatic Change*, 123(3–4), pp. 353–367.

Lecuyer, O. and Vogt-Schilb, A. (2014) 'Optimal Transition from Coal to Gas and Renewable Power under Capacity Constraints and Adjustment Costs', *World Bank Policy Research Working Paper (6985)*, 6985(July), pp. 1–38. doi: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2475072.

Luderer, G., Bertram, C., Calvin, K., De Cian, E. and Kriegler, E. (2016) 'Implications of weak near-term climate policies on long-term mitigation pathways', *Climatic Change*, 136(1). doi: 10.1007/s10584-013-0899-9.

Luderer, G., Bosetti, V., Jakob, M., Leimbach, M., Steckel, J. C., Waisman, H. and Edenhofer, O. (2012) 'The Economics of Decarbonizing the Energy System: Results and insights from the RECIPE model intercomparison', *Climatic Change*, 114(1), pp. 9–37.

McJeon, G. C. I. and J. A. E. and A. A. F. and N. E. H. and J. A. and G. R. A. and K. V. C. and L. E. C. and J. C. and M. J. and P. K. and J. M. and A. M. and P. P. (2015) 'The contribution of Paris to limit global warming to 2°C', *Environmental Research Letters*. IOP Publishing, 10(12), p. 125002. doi: 10.1088/1748-9326/10/12/125002.

Murphy, K. (2017) 'Push for new coal-fired power station in Queensland "nonsense" – state minister', *The Guardian*, July.

Pfeiffer, A., Hepburn, C. J., Vogt-Schilb, A. and Caldecott, B. (2017) *Committed emissions from existing and planned power plants and consequent levels of asset stranding required to meet global warming goals*. Oxford, UK.

Pfeiffer, A., Millar, R., Hepburn, C. and Beinhocker, E. (2016) 'The 2-degree Celsius capital stock for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy', *Applied Energy*, 179, pp. 1395–1408. doi: 10.1016/j.apenergy.2016.02.093.

Pindyck, R. S. (2013) 'Climate Change Policy: What Do the Models Tell Us?', *Journal of Economic Literature*, 51(3), pp. 860–872.

Pindyck, R. S. (2015) The use and misuse of models for climate policy.

Revesz, R. L., Howard, P. H., Arrow, K., Kopp, L. H. G. R. E. and Michael A. Livermore Michael Oppenheimer Thomas Sterner (2014) 'Global warming: Improve economic models of climate change', *Nature*, 508, pp. 173–175.

Riahi, K., Kriegler, E., Johnson, N., Bertram, C., den Elzen, M., Eom, J., Schaeffer, M., Edmonds, J., Isaac, M., Krey, V., Longden, T., Luderer, G., Méjean, A., McCollum, D. L., Mima, S., Turton, H., van Vuuren, D. P., Wada, K., Bosetti, V., Capros, P., Criqui, P., Hamdi-Cherif, M., Kainuma, M. and Edenhofer, O. (2015) 'Locked into Copenhagen pledges - Implications of shortterm emission targets for the cost and feasibility of long-term climate goals', *Technological Forecasting and Social Change*. The Authors, 90(PA), pp. 8–23. doi: 10.1016/j.techfore.2013.09.016.

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori,
S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J.
C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K.,
Hasegawa, T., Havlik, P., Humpen??der, F., Da Silva, L. A., Smith, S., Stehfest,
E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L.,
Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J.
C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner,
M., Tabeau, A. and Tavoni, M. (2015) 'The Shared Socioeconomic Pathways and
their energy, land use, and greenhouse gas emissions implications: An
overview', *Global Environmental Change*. doi:
10.1016/j.gloenvcha.2016.05.009.

Rogelj, J., Hare, W., Chen, C. and Meinshausen, M. (2011) 'Discrepancies in historical emissions point to a wider 2020 gap between 2°C benchmarks and

aggregated national mitigation pledges', *Environmental Research Letters*, p. 24002. doi: 10.1088/1748-9326/6/2/024002.

Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K. (2015) 'Energy system transformations for limiting end-of-century warming to below 1.5°C', *Nature Climate Change*, 5(6). doi: 10.1038/nclimate2572.

Rogelj, J., Schaeffer, M., Meinshausen, M., Knutti, R., Alcamo, J., Riahi, K. and Hare, W. (2015) 'Zero emission targets as long-term global goals for climate protection', *Environmental Research Letters*, 10(10). doi: 10.1088/1748-9326/10/10/105007.

Rozenberg, J., Davis, S. J., Narloch, U. and Hallegatte, S. (2015) 'Climate constraints on the carbon intensity of economic growth', *Environmental Research Letters*. IOP Publishing, 10(9), p. 95006. doi: 10.1088/1748-9326/10/9/095006.

Sawin J., Seyboth K., W. F. (2017) Renewables 2017 Global Status Report.

Shearer, C., Fofrich, R. and Davis, S. J. (2017) 'Future CO2 emissions and electricity generation from proposed coal-fired power plants in India'. doi: 10.1002/eft2.201.

Shearer, C., Ghio, N., Myllyvirta, L., Yu, A. and Nace, T. (2017) *Boom and Bust* 2017.

Stern, N. (2013) 'The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models', *Journal of Economic Literature*, 51(3), pp. 838–859.

Sugiyama, M. (2012) 'Climate change mitigation and electrification', *Energy Policy*, 44, pp. 464–468.

Tversky, A. and Kahneman, D. (1974) 'Judgment under uncertainty: Heuristics and biases', *Science*, 185, pp. 1124–1131.

UNFCCC (2015) Adoption of the Paris Agreement. UNFCCC.

Unruh, G. (2000) 'Understanding carbon lock-in', *Energy policy*, 28(March), pp. 817–830. doi: 10.1016/S0301-4215(00)00070-7.

van Vuuren, D. P., Hoogwijk, M., Barker, T., Riahi, K., Boeters, S., Chateau, J., Scrieciu, S., van Vliet, J., Masui, T., Blok, K., Blomen, E. and Kram, T. (2009) 'Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials', *Energy Policy*, 37(12), pp. 5125– 5139. doi: 10.1016/j.enpol.2009.07.024.

Weitzman, M. L. (2013) 'Tail-Hedge Discounting and the Social Cost of Carbon.', *Journal of Economic Literature*, 51(3), pp. 873–882.

Williams, J. H., DeBenedictis, A., Ghanadan, R., Mahone, A., Moore, J., Morrow, W. R., Price, S. and Torn, M. S. (2012) 'The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The pivotal role of electricity', *Science*, 335(6064), pp. 53–59.

Wilson, C., Grubler, A., Bauer, N., Krey, V. and Riahi, K. (2013) 'Future Capacity Growth of Energy Technologies: Are scenarios consistent with historical evidence?', *Climatic Change*, 118(2), pp. 381–395. doi: 10.1007/s10584-012-0618-y.

Appendix

Appendix A: Data and Methods

We use a four-step approach to calculate the stranded capacity: (1) we simulate the depreciation of currently operating global generation capacity (existing capital stock) over the coming decades; (2) we compare the remaining portion of that capacity in any given year in the future with the generation in that year in the respective pathway; (3) by employing target utilization bands (based on historical utilization rates), we assess, for any given year, the amount of capacity that would need to be added to the capital stock; and finally (4) we calculate the amount of stranding that takes place in a given year as defined by the underutilization of operating capacity. Underutilization in this case is defined by utilization rates below their historical bands. Since we rely on several external databases, limitations apply, and our findings should be interpreted with caution (see Appendix A.3 for a discussion of the limitations).

A.1 The global electricity generation capital stock

We use two different sources of data for the calculation of committed CO₂ emissions: Platt's *UDI World Electric Power Producer* (WEPP) database, as of June 2016, and the International Energy Agency's (IEA) *World Energy Outlook 2016* (WEO). Platt's WEPP database is a proprietary database that contains generator-level data of electric power generating units. It contains data for plants of all sizes and technologies operated by regulated utilities, private power companies, and industrial auto-producers (captive power). The IEA's WEO is an annual publication providing regional insights in capacity, generation, investments and utilization rates.

In addition to these two sources, we use the IPCC's and AMPERE's definitions for generation technology (Coal, Gas, and Oil) and regions: Latin America (LAM), Middle East and Africa (MAF), the OECD countries (OECD90), the Reforming Economies (REF) of the former Soviet Union,⁹ and Asia.

A.2 Generation pathways

We use two different sets of pathways for electricity generation between 2005 and 2100, created by integrated assessment models (IAMs):¹⁰ the AMPERE database and the IPCC's AR5 database.¹¹ From each of the analyzed scenarios, the model output for power generation from different technologies is used (e.g. coal, with and without CCS, gas, with and without CCS, nuclear, etc.). The AMPERE database provides regional and, in some cases, even country-specific model outputs, while the IPCC's AR5 database provides only global results for the required outputs.

First, for insights on a global and local level, we use a set of ~400 pathways to 2100 generated by a variety of scenarios processed with eight different IAMs¹² for a recent IAM comparison study: AMPERE (Riahi, Kriegler, *et al.*, 2015). The different scenarios cover a wide range of different technology scenarios (e.g. 'No CCS', 'No new nuclear', etc.), long-term concentration targets (e.g. 450-ppm, 500-ppm, etc.), and short-term targets for 2030 (e.g. low or high short-term target vs. optimal policy short-term target).

Second, for further insights on a global and regional level, we analyze the full IPCC AR5 database, consisting of 1,184 pathways from a wide range of scenarios processed with 31 IAMs (Krey *et al.*, 2014). Scenarios processed in the AR5 database can be classified along five dimensions: (1) different climate targets,

⁹ Also known as 'Economies in Transition' (EIT).

¹⁰ See Appendix B.1 for more information about IAMs.

¹¹ These data sets are chosen since they are freely available online (IIASA, 2014a, 2014b). Other recent studies such as EMF27 (Kriegler *et al.*, 2014) or the SSP dataset (Riahi, van Vuuren, *et al.*, 2015) are of similar scope, use a broader variety of models and assumptions, and reach qualitatively and quantitatively similar results, but are unfortunately currently not publicly available online (at least not in the required granularity).

¹² GCAM, IMACLIM, IMAGE, MERGE-ETL, MESSAGE-MACRO, POLES, REMIND, and WITCH. The database also includes the DNE21+ model. This has been excluded, however, since it only models the period through to 2050.

determined by 2100 CO_2 -eq. concentrations (e.g. 450-ppm, 500-ppm, etc.); (2) overshoot of these 2100 levels between 2005 and 2100; (3) scale of deployment of carbon dioxide removal (CDR) or negative emissions technologies (NETs); (4) availability of mitigation technologies, especially CDR and NETs; and (5) policy category (e.g. immediate vs. delayed mitigation, etc.).

A.3 Simulation approach

In the first step, we simulate the development of currently operating global generation capacity. We calculate the expected lifetimes for each generator, and simulate their expected lifespan to derive the expected future annual generation profile of the total capital stock (see Appendix A.2 for more details). In cases where the simulated lifespan is shorter than the observed lifespan (i.e. overaged generators that 'should' have been retired but are observably still in operation today), we assume a phase-out period over the subsequent years (starting with the oldest generators in year 1 and so on). In section 3.5 we present our results for different phase-out times.

Second, we use the AR5 and AMPERE pathway databases (both harmonized to 2015¹³) to calculate the median generation profiles for different global warming scenarios. We then compare these scenarios with the annual remaining generation of today's capital stock.

Third, to assess the amount of fossil fuel capacity that would need to be added in any given year for it to match that scenario's generation profile, we compare the then operating capital stock with realistic utilization assumptions (historic 10year average utilization rates, 2004-14). If utilization would be higher than the historic average, new capacity is added to the capital stock.

Finally, we calculate the amount of stranding that takes place in each year. In many scenarios, the decrease of fossil-fuel powered generation in later years is

¹³ Pathways in the AR5 and AMPERE databases are based and harmonized on the years 2005 and 2000, respectively. We use historical generation data (IEA, 2016) and a peer-reviewed harmonization approach (Rogelj *et al.*, 2011) to harmonize scenarios with historic observations.

steeper than the 'natural' decrease of generation capacity (retirements). This leads to decreasing utilization rates. We define stranding as the difference between the historic minimum utilization rate (over the period 2004-2014) and actual utilization, and express it in Exajoule¹⁴ (EJ) of 'unproduced' electricity.

For illustrative purposes, Figure 9 provides an example of the global capital stock, utilization, and stranding of generation capacity. The installed capacity (dark blue area) continues to increase after 2015 as generators that are currently already under construction come online. The sharp decrease after 2018 (through 2020-21) is due to generators that are currently overaged being phased-out in the years after 2015. In other cases, in which a longer phase-out period is assumed, this decline is less steep. Generation¹⁵ (orange line) must be met without pushing the utilization of capacity (black line) beyond its target utilization (black dashed line). Therefore, additional capacity (green columns) is added to the capital stock over time (light blue area¹⁶) as old capacity retires. This new (and old) capacity then experiences underutilization after 2030 when generation starts to decline faster than the natural decline of capital stock without further additions. This leads to considerable amounts of stranded (i.e. underutilized) generation capacity between 2025 and 2060 (red columns).

¹⁴ One Exajoule is equal to 10¹⁸ (one quintillion) joules or ~278 terawatt hours (TWh).

¹⁵ Generation profile as modelled by IAM in this scenario (e.g. 430-480 ppm scenario).

¹⁶ Light blue area is the result of the inertia (lifetimes) of added new capacity (green columns).

Figure 9: Schematic diagram of the simulation approach. As currently operating capital stock retires (dark blue area) new capacity (green columns) is added to the total capital stock (light blue area). When annual generation (orange line) decreases, however, the utilization rate (black line) drops below target (dashed line) and stranding occurs (red columns).

Appendix B: Additional Information

B.1 Additional information about databases and sources

IAMs have been the key tools for the analysis of climate change impacts since the foundation of the IPCC (Clarke et al., 2009). They are now used for the economic assessment of climate change policies in the IPCC's ARs, and by governments around the world. IAMs can be classified either as policy optimization models (POMs) or policy evaluation models (PEMs) (IPCC, 2001). POMs include a 'damage function' and focus on a full cost-benefit analysis of climate change mitigation action and optimal policy. PEMs, on the other hand, look at the costeffectiveness of achieving an exogenous mitigation target by means of a specific policy (Farmer et al., 2015). The databases used in this paper focus on PEMs (IPCC, 2014), which compute cost-effective pathways and energy system transitions under different socio-economic and policy assumptions and constraints set by climate targets. They factor in a wide range of parameters, such as long-term demographic evolution, the availability of natural resources, and countries' participation in emission-reduction efforts. Technology costs and maximum penetration rates are calibrated using a mix of historical uptake rates and assumptions on learning by doing and autonomous technical progress (Wilson et al., 2013; Iver et al., 2014). IAMs are regularly peer-reviewed in comparison exercises (Clarke et al., 2009; van Vuuren et al., 2009; Edenhofer et al., 2010; Kriegler et al., 2014, 2015) and occasionally evaluated against historical data (Guivarch, Hallegatte and Crassous, 2009; Wilson et al., 2013).

B.2 Additional information about methodology

To calculate total and remaining capacity the described databases and sources are merged on a generator level. The remaining capacity of each generator in each year is calculated by multiplying the annual maximum generation with the expected or simulated lifetime of that generator. Missing information about online years and expected lifetimes of generators in the database can be estimated by using the information available from similar clusters within the database.¹⁷ Finally, lifetimes are simulated by applying random numbers from a *Poisson* distribution with the expected lifetime of that generator as the mean. The simulation accounts for the fact that generators are rarely retired exactly after their expected lifetime but are rather retired some years around their expected retirement date. Within the database, many of the generators are still in operation long after, while others retire long before, their expected retirement.¹⁸

B.3 Limitations

B.3.1 Technical limitations

The calculations and estimations throughout this paper depend on a variety of databases, sources and assumptions, most notably in respect to the asset-level database containing the generators (Platt's WEPP UDI), the IPCC AR5 and AMPERE scenario databases, and the historical data containing energy insights (IEA World Energy Outlooks). It should not be assumed that these databases and sources are 100% exhaustive or perfectly accurate. In some cases, important information is missing in the databases. For instance, the online years of many power generators, an important input to the calculation of committed emissions, are missing in the WEPP UDI database and must be estimated. The same applies to fuel-type, generator and turbine technology, and even the countries of some generators. Moreover, the status of generators in the database is often missing or must be presumed to be wrong: some generators that came online in the early 20th century, are still included as "operating" or "stand-by" in the database, while others, that came online just a few years ago, are already "retired". It remains possible, however, that the database does not contain all power generators, or contains some power generators that are not operating anymore.

The estimation of the current generator pipeline is based on the same sources.

¹⁷ E.g. median lifetime of generators from the same country, year, manufacturer, fuel, type, etc.

¹⁸ For generators that are still in operation in 2016 but have a simulated retirement year before 2016 a 10-year phase-out period is used in which every year the then oldest decile of generators is being retired.

Many of the generators included in the pipeline have the status "*delayed*", "*deferred*", "*under construction*", or "*planned*". Generators that are "*cancelled*" are explicitly excluded from this pipeline. It is possible, however, that our current estimate of the pipeline still includes generators that were once planned but are now not planned anymore. Often it is not even clear whether a plant is (still) planned or not. For instance, the database includes eight planned coal-generators (~2.5 GW in total) in Australia, five of which are in Queensland. Closer research, however, reveals that the local government strongly opposes the addition of new coal capacity while the national government proposes such move (Murphy, 2017). The company that would oversee the extension, CS Energy, is on record as being opposed to the idea but does not rule it out entirely (Cooper, 2017). It is often not clear what the likelihood is that some of the planned power generators in the database will ever operate, it is, however, clear that plans exist for each of these generators, and there is high probability that at least some will eventually be built.

In addition to these database limitations several other technical limitations can be identified: (a) online years and generator status are often estimated; (b) the total and remaining lifetimes of currently operating power generators are either estimated or simulated; (c) the future utilization of generators is estimated based on global historic average utilization rates of a certain fuel type; and finally (d) the decision to add or strand generators in the long-term simulation method does not include any foresight of the agents in the model.

B.3.2 Scenario limitations

The applied scenario databases (IPCC AR5 and AMPERE) also have several limitations. All the scenarios used in this paper are the outputs of integrated assessment models. IAMs have recently come under increasing criticism (Revesz *et al.*, 2014) among prominent mainstream economists (Pindyck, 2013; Stern, 2013; Weitzman, 2013) even going so far as to call their outputs "*close to useless*" (Pindyck, 2013). Criticism of IAMs can broadly be categorized into five categories (Farmer *et al.*, 2015): (1) the way they handle uncertainty and especially 'fat tail events' in economic and physical climate systems (Pindyck, 2013; Stern, 2013); (2) aggregation and distributional issues, i.e. the 'representative agent' (Stern,

2013; Iyer *et al.*, 2015); (3) technological change and how innovation is modelled (Farmer and Lafond, 2016); (4) the damage functions (Pindyck, 2013, 2015; Burke *et al.*, 2015); and (5) other issues such as behavioural assumptions (Tversky and Kahneman, 1974; Kahneman and Tversky, 1979) and the equilibrium assumption (Arent *et al.*, 2014). While these limitations play a decisive role when it comes to the evaluation of policy options, they affect the results of this paper to a lesser extent. The objective of this paper is not to evaluate policy options but rather to model how different climate goals and scenario assumptions will affect asset stranding. The model outputs of scenarios are therefore sufficient if they appropriately model the interaction of different generation technologies with each other, with overall energy demand, and with carbon budgets.

In addition to the inherent limitations of IAM scenario outputs, in the context of this paper, the main limitation is that they are mostly harmonized to either 2000 or 2005. Most model outputs (such as annual electricity generation or carbon emissions) start around 2005. Since then, over a decade has passed, however, and global emissions have so far developed along the upper end of scenarios, close to a business-as-usual paradigm, as modelled by RCP8.5. Several emission pathways that appeared realistic, or at least possible, just ten years ago appear now outlandish. On the other hand, the deployment of renewables has been much faster than deemed realistic in many scenarios in 2005. It is now much more realistic that renewables will provide a significant share of global electricity supply by 2020, 2030 or 2050. Using scenarios harmonized to 2000 or 2005 will therefore distort the pathways that are likely today.

Appendix C: Additional figures

Figure C.1: Simulation results for oil-fired capacity utilization. Oil utilization drops after 2020 but then has strong variability after 2050.

Figure C.2: Lifetime extensions for operating 'overaged' oil capacity in the 430-480 ppm scenarios. Lifetime extensions of up to ten years for oil (instead of new capacity) could reduce future asset stranding, even if the pipeline was to be built.

Appendix D: Additional tables

[Exajoule]	430-480 ppm	480-530 ppm	530-580 ppm
Coal	310	255	224
Gas	139	74	35
Oil	16	9	10
Total	509	381	306

Fable D.1: Total asset stranding	by scenario and	technology.
----------------------------------	-----------------	-------------

Table D.2: Total asset stranding for currently operating generators and including the current pipeline, by scenario and technology.

[Exajoule]		Only currently operating	Including pipeline	Change
430-480 ppm	Coal	310	780	+152%
	Gas	139	198	+43%
	Oil	16	19	+16%
480-530 ppm	Coal	255	680	+167%
	Gas	74	81	+9%
	Oil	9	13	+40%
530-580 ppm	Coal	224	603	+170%
	Gas	35	40	+14%
	Oil	10	15	+60%

Table D.3: Total asset stranding until 2100 in 2005 and 2015, by scenario and

technology.

[Exajoule]		2005	2015	Change
430-480 ppm	Coal	235	310	+32%
	Gas	159	139	-12%
	Oil	7	16	+114%
480-530 ppm	Coal	167	255	+53%
	Gas	80	74	-7%
	Oil	5	9	+68%
530-580 ppm	Coal	177	224	+26%
	Gas	39	35	-11%
	Oil	5	10	+87%

Author contributions

First author: Alexander Pfeiffer (INET, SSEE)

Co-authors:

- Adrien Vogt-Schilb (INET)
 - Feedback during development of the methodology
 - Provided substantial edits and comments to all sections
- Daniel J. Tulloch (SSEE)
 - Overall comments and small edits
 - Provided input to introduction, results, and discussion sections
 - Provided substantial input to literature review section
- Cameron Hepburn (INET, SSEE)
 - Overall comments and small edits
 - Provided input to introduction and discussion sections