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Abstract

We introduce a novel method for studying liquidity spirals and use this method

to identify spirals before stock prices plummet and funding markets lock up. We

show that liquidity spirals may be underestimated or completely overlooked when

interactions between contagion channels are ignored, and find that financial stability

is greatly affected by how institutions choose to respond to liquidity shocks, with

some strategies yielding a “robust-yet-fragile” system. To demonstrate the method,

we apply it to a highly granular data set on the South African banking sector and

investment fund sector. We find that liquidity spirals are exacerbated when the

liquidity positions of institutions worsen, and that central bank-provided liquidity

can greatly dampen liquidity spirals. We also show that, depending on the market

conditions, a liquidity spirals is sometimes caused by the banking and fund sectors’

collective dynamics, but at other times by one sector’s individual impact. The ap-

proach developed here can be used to formulate interventions that specifically target

the sector(s) causing the liquidity spiral.
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1 Introduction

The progressive worsening of market and funding liquidity due to positive feedback loops

in the financial system is referred to as a liquidity spiral, and poses a significant risk to

financial stability by causing or exacerbating crises such as the Great Financial Crisis

of 2008 (Brunnermeier and Pedersen, 2009). These positive feedback loops are made up

of mechanisms that propagate financial shocks; so-called contagion channels (Allen and

Gale, 2000). Various contagion channels have been studied in the literature (see e.g. Allen

and Gale, 2000, Eisenberg and Noe, 2001, Gorton and Metrick, 2012) and the interactions

between different contagion channels have been observed to severely amplify instabilities.1

Furthermore, multiple types of institutions across various sectors may be involved in the

contagion process (see e.g. Farmer et al., 2020, Wiersema et al., 2021). We capture

liquidity spirals that consist of various interacting contagion channels and multiple types

of institutions.

We identify liquidity spirals before they progressively depress market and funding liq-

uidity using a shock transmission matrix (Wiersema et al., 2019). The matrix captures

the stability of various interacting contagion channels without relying on any specific,

subjective stress scenarios. When the largest eigenvalue of the matrix exceeds one, mar-

ket and funding liquidity progressively worsen and a liquidity spiral emerges. We find

that liquidity spirals may be severely underestimated or even completely overlooked when

interactions between different types of institutions or contagion channels are ignored, and

that the intensity of the spiral greatly depends on which assets institutions choose to liqui-

date in response to a liquidity shock. In particular, we identify liquidation strategies that

yield a “robust-yet-fragile” system, which is resilient to small shocks, but may become

highly unstable due to a single large shock to institutions’ liquidity. Gai and Kapadia

(2010) find a similar phenomenon for certain topologies of financial networks. The identi-

fication of the robust-yet-fragile tendency of financial systems across multiple dimensions

underscores the importance of stability measures that assess a system’s resilience to a

wide range of shocks, such as the eigenvalue-based approach developed here.

To demonstrate our method, we apply it to a highly granular data set on the South

African financial system. The South African financial system consists of a core of five

large banks and a periphery of smaller banks and a large number of investment funds. By

evaluating both the stability of the individual sectors as well as the combined system, we

find that, depending on the market conditions, a liquidity spiral may emerge either as the

result of the banking and fund sectors’ collective dynamics or due to an individual sector’s

instability. Interventions that target the investment fund sector when the banking sector

is the main cause of the spiral (and vice versa) have little effect. In particular, we find that

1See e.g. Caccioli et al. (2013), Poledna et al. (2015), Kok and Montagna (2013), Wiersema et al.
(2019), Cont et al. (2020), Detering et al. (2021).
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liquidity spirals are exacerbated when the liquidity of institutions falls and that central

bank-provided liquidity can greatly dampen the liquidity spiral, but only when provided

to the right sector. The approach developed here can be used to determine whether a

specific sector is driving the instability and to formulate interventions that specifically

target this sector.

1.1 Contributions

Our results complement the previous literature on market and funding liquidity crises.

Various mechanisms that may progressively worsen market and funding liquidity have

been studied in, e.g., Brunnermeier and Pedersen (2009), Gorton and Metrick (2012),

Thurner et al. (2012) and Ha laj (2018). However, such studies only include a subset of the

contagion channels that our model captures and therefore may underestimate the severity

of the liquidity spiral.2 Our approach of identifying liquidity spirals based on the contagion

dynamics’ largest eigenvalue rather than based on a specific, subjectively determined

stress scenario further strengthens the comprehensiveness of our analysis (Borio et al.,

2014, Wiersema et al., 2019).

Our main contribution is the insight that our method provides into the impact of

institutions’ choices on financial stability; which actions institutions choose to take in

response to liquidity shocks strongly affects the potential for liquidity spirals to emerge.

Institutions’ liquidation strategies have been empirically studied in Kim (1998), van den

End and Tabbae (2012), and Ma et al. (2020), but to the best of our knowledge, these

strategies’ impact on financial stability has not been explicitly studied previously. Fur-

thermore, our finding that certain liquidation strategies may yield a robust-yet-fragile

financial system complements the identification of robust-yet-fragile network topologies

by Gai and Kapadia (2010), and demonstrates that financial systems show this property

across multiple dimensions.

We also contribute to the literature on the interconnectedness of the South African

financial system (see e.g. Kemp, 2017, Wiersema et al., 2021). Using a similar data

set as we do here, Wiersema et al. (2021) study (counterparty) exposures in the South

African financial system and how they are affected by institutions’ solvency. The analysis

presented in this paper broadens the understanding of the stability of the South African

financial system by focusing on liquidity crises.

1.2 Structure

The remainder of this paper is organized as follows: Section 2 presents our method for

identifying liquidity spirals and the insights it offers. In section 3, we apply the framework

2Caccioli et al. (2013), Kok and Montagna (2013), Poledna et al. (2015), Wiersema et al. (2019),
Detering et al. (2021).
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to the South African financial system. We discuss our data on the South African banks

and investment funds, and present the results of the calibration of our method to the

South African financial system. Section 4 concludes by discussing the implications and

limitations of our results, and provides avenues for further research.

2 Identifying Liquidity Spirals

We use the framework developed in Wiersema et al. (2019) to study the conditions under

which liquidity spirals emerge in the South African financial system. This framework

allows us to capture many interacting contagion channels and sectors without relying on

any specific stress scenario, which are often subjectively defined (Borio et al., 2014). By

capturing the contagion dynamics in a linear framework, we can use the largest eigenvalue

to identify a liquidity spiral before a liquidity crisis develops.

2.1 The Solvency-Liquidity Nexus

A financial system’s contagion dynamics are driven by the Solvency-Liquidity Nexus. The

culmination of a severe financial crisis is usually the default of one or more institutions

(Brunnermeier, 2008, Roukny et al., 2013), where a default can be caused by insolvency

or illiquidity. Insolvency occurs when asset values drop to the point where equity be-

comes negative – that is, when the value of an institution’s liabilities exceeds that of its

assets (Amini et al., 2016). Default due to illiquidity, on the other hand, occurs when

an institution is unable to meet its payment obligations (Cont and Schaanning, 2017).

Insolvency and liquidity can be related, but are analytically distinct: an institution can

default due to a liquidity shock even when it is solvent, and vice versa. During financial

crises, liquidity tends to be the more direct threat; an institution may survive temporary

insolvency by maintaining liquidity and regaining its solvency at a later date. In normal

economic times, a solvent institution is expected to borrow to avert a liquidity shortage.

In times of economic crisis, however, this may not be possible because lending markets

malfunction due to uncertainty about asset values, escalating collateral requirements, liq-

uidity hoarding and capital flight, etc. (Rochet and Vives, 2004, Gorton and Metrick,

2012).

We can analyze the stability of the financial system in terms of its resilience to shocks,

which we can classify either as liquidity shocks or valuation shocks, depending on the type

of default they threaten to cause. For the purposes of this paper, we define a liquidity

shock as an unexpected outflux (or cancellation of an expected influx) of liquid assets

and a valuation shock as a drop in the value of an institution’s assets.3 Although we are

3We consider expected inflows and outflows of liquid assets as part of regular day-to-day liquidity
management, and therefore do not classify such flows as a liquidity shock. For simplicity, we assume
that shocks are non-negative. In principle, the framework could also capture negative shocks (i.e. liq-
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principally interested in how liquidity shocks depress market and funding liquidity, the

relevance of valuation shocks will become clear in the next section, where we show that

contagion channels may convert valuation shocks to liquidity shocks.

2.2 Contagion Channels

We now demonstrate how to capture contagion channels in terms of the propagation of

liquidity and valuation shocks and the conversion of one type of shock into the other. We

discuss the five contagion channels most likely to contribute to the emergence of liquidity

spirals. Note that this set of channels differs from the contagion channels included in

Wiersema et al. (2019), which highlights the flexibility of the framework.

Overlapping Portfolio Contagion

Overlapping portfolio contagion can materialize when two institutions hold common

securities and either institution sells securities, which drives prices down and lowers the

securities’ value4: If institution i suffers a liquidity shock it may be forced to sell securities

to raise liquidity. This depresses their price. If institution j also has a position in these

securities it experiences a valuation shock. Hence, overlapping portfolio contagion converts

liquidity shocks to valuation shocks. By increasing the demand for liquidity on trading

markets, overlapping portfolio contagion depresses market liquidity.

Funding Contagion

Funding contagion occurs when an institution depends on short-term funding to provide

liquidity and runs the risk that the investor might withdraw its funding5: If institution i

depends on a short-term funding from institution j, if j suddenly withdraws the funding

to meet a liquidity shock it receives, then this causes a liquidity shock to i. Hence,

funding contagion propagates liquidity shocks and reduces funding liquidity by decreasing

the supply of short-term funding.

Shareholder Contagion

Shareholder contagion occurs whenever an institution suffers losses, as those losses are

passed on to its shareholders: If a valuation shock causes institution i’s asset value to fall,

the value of its issued shares (which represent ownership of i’s assets) falls accordingly,

causing losses to the shareholders. Hence, shareholder contagion propagates valuation

shocks.

uidity and asset value gains), but this would cause the framework to lose some of the convenient prop-
erties guaranteed by the Perron Frobenius theorem.

4See e.g. Adrian and Shin (2010), Caccioli et al. (2013, 2014, 2015), Duarte and Eisenbach (2018),
Cont and Schaanning (2017, 2019).

5See e.g. Diamond and Dybvig (1983), Acharya and Skeie (2011), Caccioli et al. (2013), Brandi
et al. (2018).
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Share Redemption Contagion

When an institution such as an investment fund issues shares that are redeemable on a

short-term basis (typically daily), the institution is at risk of share redemption contagion;

when the institution suffers a loss and the value of its issued shares falls accordingly, share-

holders may decide to redeem shares as part of risk-management or performance-based

capital allocation schemes (Cont and Wagalath, 2013, Wiersema et al., 2021). Specifically,

if a valuation shock decreases institution i’s asset value and its shareholders decide to re-

deem (some of) their shares, institution i is forced to pay back the value of those shares

and thus suffers a liquidity shock. Hence, share redemption contagion converts valuation

shocks to liquidity shocks.

Deleveraging Contagion

Deleveraging contagion takes place when an institution uses borrowed funds to purchase

assets.6 Borrowing creates debt and the ratio of debt to equity is called the leverage λ. As

part of good risk-management practices, it is common for financial institutions to target

a particular leverage to control risk. If the value of assets drops, the debt burden remains

constant but the equity value decreases, so leverage increases. This forces a leverage-

targeting institution to pay off debt to maintain its leverage target, an action that drains

the institution’s liquidity.7 Specifically, if a valuation shock decreases bank i’s equity

and its leverage rises accordingly, the institution must raise cash to pay off its debt to

return to its target leverage. Hence, the institution essentially triggers a liquidity shock

to itself, so deleveraging contagion converts valuation shocks to liquidity shocks. Note

that institutions can also be forced to deleverage due to haircuts on collateralized debt

(Brunnermeier and Pedersen, 2009); when the value of the collateral falls, the institution

must pay back some of the debt (assuming that it cannot post additional collateral).

2.3 The Shock Transmission Matrix

We show how to characterize the collective stability of the five described contagion chan-

nels without relying on any specific, subjective stress scenarios. The interactions of these

contagion channels can be captured in a shock transmission matrix (Wiersema et al.,

2019). Assuming discrete dynamics, the shock transmission matrix At is defined with

respect to a specific time t as contagion equations may change along with institutions’

balance sheets. Furthermore, let xlt,i denote the liquidity shock suffered by institution i at

time t such that the N -dimensional vector xlt gives the liquidity shocks to all institutions

(where N is the number of financial institutions). Similarly, xvi,t denotes the valuation

6See e.g. Fostel and Geanakoplos (2008), Brunnermeier and Pedersen (2009), Adrian and Shin
(2010), Geanakoplos (2010), Adrian and Shin (2014), Aymanns et al. (2016).

7We do not consider slower mechanisms to raise equity-capital, such as issuing new shares or re-
taining earnings.
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shock to institution i at time t and xvt the N -dimensional vector of valuation shocks to

all institutions. The combined shock vector xt of length 2N is

xt =

[
xlt

xvt

]
. (1)

The shock transmission matrix At is the 2N × 2N matrix that acts on the shock vector

xt according to

xt+1 = Atxt. (2)

Given the distinction between the top and bottom half of xt, we decompose the shock

transmission matrix into its four quadrants,

At =

[
Allt Avlt

Alvt Avvt

]
, (3)

where each of the components Allt , A
lv
t , A

vl
t and Avvt are N ×N matrices, so that Eq. (2)

can be written in the form

xt+1 =

[
xlt+1

xvt+1

]
=

[
Allt x

l
t + Avlt x

l
t

Alvt x
l
t + Avvt xvt

]
. (4)

Eq. (4) makes explicit how the diagonal quadrant Allt describes the propagation of liquidity

shocks and Avvt the propagation of valuation shocks. The off-diagonal quadrant Alvt gives

the conversion of liquidity to valuation shocks and Avlt the conversion of valuation to

liquidity shocks. Hence, each of the five described contagion channels is associated with

a specific quadrant of the shock transmission matrix.

The shock transmission matrix can be used to study the system’s stability and re-

silience to shocks. Because all its elements are non-negative, the Perron-Frobenius theo-

rem guarantees that the matrix has a non-negative real eigenvalue greater than or equal

to (the magnitude of) the matrix’ other eigenvalues. This largest eigenvalue describes

the dominant dynamics of the financial system8: If the largest eigenvalue is greater than

one, shocks that are not orthogonal to the corresponding eigenvector are increasingly am-

plified, causing more and more funding and overlapping portfolio contagion. Hence, an

eigenvalue greater that one indicates a positive feedback loop that progressively depresses

market and funding liquidity, which we refer to as a liquidity spiral. When the largest

eigenvalue is smaller than one, contagious propagation of shocks may still worsen market

and funding liqiuidities beyond the impact of the initial shock, but liquidity eventually

stabilizes as the shock is damped out.

8See e.g. Caccioli et al. (2014), Bardoscia et al. (2017), Cont and Schaanning (2019), Wiersema
et al. (2019).
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2.4 Pecking Orders

What actions institutions choose to take in response to liquidity shocks determines the

contagion that institutions transmit and the corresponding entries of the shock transmis-

sion matrix. When a liquidity shock hits, an institution must liquidate assets to meet the

shock. We assume that each institution has a pecking order that specifies the sequence

in which it liquidates its assets (Kok and Montagna, 2013, Ha laj, 2018, Wiersema et al.,

2019). For example, once an institution has fully sold its position in a given security, it

may move on to selling another, less liquid, security. The assumption of a liquidity peck-

ing order underpins the design of regulatory measures like the Liquidity Coverage Ratio

and Net Stable Funding Ratio requirements (BIS, 2013, 2014) as well as many studies 9.

van den End and Tabbae (2012) observe Dutch banks to use a uniform pecking order

during crises while employing liquidity-differentiated pecking orders in benign times. An

institution with a uniform pecking order does not differentiate between liquid assets of

various types and uses all simultaneously by liquidating (part of) each asset to respond

to shocks. Institutions with liquidity-differentiated pecking orders, as the name suggests,

distinguish between assets of various liquidities. Institutions across multiple sectors have

been observed to liquidate assets in order of decreasing liquidity when responding to

shocks (Kim, 1998, van den End and Tabbae, 2012, Ma et al., 2020). This pecking order

typically minimizes liquidation costs as long as shocks remain small, so we refer to it as as

the optimistic pecking order. On the other hand, institutions with the conservative pecking

order liquidate assets in increasing order of liquidity so as to conserve their most liquid

assets for the worst circumstances. Institutions may employ the conservative pecking

order in anticipation of a flight to liquidity during crises (see e.g. De Haan and van den

End, 2013, De Santis, 2014) or to preemptively divest from illiquid securities to avoid

being forced to liquidate those securities during the worst of the crisis, when their price

is well below their fundamental value (see e.g. Bernardo and Welch, 2004).

An institution with a liquidity-differentiated pecking order only liquidates the asset at

the top of its pecking order in response to liquidity shocks until that asset is exhausted

and the institution is forced to move on to liquidating the asset that is next in line.

As long as the asset at the top of the institution’s pecking order is not exhausted, that

asset exclusively determines the contagion that the institution transmits in response to

liquidity shocks (and accordingly determines the corresponding entries of the shock trans-

mission matrix). Hence, for shocks small enough not to exhaust the assets at the tops of

institutions’ pecking orders, the contagion transmitted in response to liquidity shocks is

exclusively determined by institutions’ most liquid assets when all institutions have the

optimistic pecking order, and by institutions’ least liquid assets when all institutions have

the conservative pecking order.

9See e.g. Allen and Gale (2000), Kok and Montagna (2013), Ha laj (2018), Wiersema et al. (2019).
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Large shocks, on the other hand, exhaust the assets at the tops of institutions’ pecking

orders and force the institutions to liquidate assets lower on their pecking orders, which

changes the dynamics of the system; when the top asset is exhausted, the asset that is

next in line becomes the new asset at the top of the pecking order and the contagion

transmitted change accordingly, as do the corresponding entries of the shock transmission

matrix . As we will see below, pecking orders strongly affect the potential for liquidity

spirals to emerge.

2.5 Stylized Example

The framework that we have described allows us to study the impact of institutions’

pecking orders on the potential for liquidity spirals to emerge. As an example, consider

a simple banking system where all banks hold only two types of liquid assets; deposits

at the central bank and at other banks in the system, and (irredeemable) equity shares

in other banks in the system. The deposits can be withdrawn at no cost, which causes

funding contagion when withdrawn from other banks (but not when withdrawn from the

central bank), while the shares can only be sold at a discount due to the price impact of

the sale, and cause overlapping portfolio contagion when sold. Hence, deposits sit at the

top of optimistic pecking orders while shares sit at the top of conservative pecking orders.

Finally, assume that banks maintain their current levels of leverage.

The banks’ pecking orders determine whether funding or market liquidity falls first

during crises, as the contagion transmitted in response to a liquidity shock is determined

exclusively by the assets at the top of an institution’s pecking order until these assets are

exhausted by the liquidity demand. Hence, when all banks have the optimistic pecking

order, funding liquidity falls until some banks have withdrawn all their deposits and

start selling shares, causing market liquidity to be reduced too. On the other hand,

when all banks have the conservative pecking order, market liquidity declines until some

banks have sold all their shares and start withdrawing deposits, which depresses funding

liquidity. Finally, when institutions have the uniform pecking order, funding and market

liquidity fall in tandem.

Pecking orders have a strong impact on financial stability, which we can illustrate

using this simple setup; for example, when all banks have only deposits at the top of their

pecking orders, the lower-left quadrant of the shock transmission matrix, i.e the overlap-

ping portfolio contagion quadrant, is empty so the matrix is block-triangular which is not

the case for other pecking orders. Because the matrix is block-triangular, its largest eigen-

value is determined completely by the diagonal quadrants and hence is not affected by

the upper-right quadrant, i.e. the deleveraging contagion quadrant. Banks’ leverages are

typically on the order of ten in well-developed financial systems, and consequently delever-

aging strongly amplifies shocks and tends to raise the largest eigenvalue (Wiersema et al.,
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2019). This makes liquidity spirals more likely to occur when the deleveraging contagion

quadrant has an impact on the largest eigenvalue, i.e. when the shock transmission matrix

is not block-triangular. Hence, the system is generally more resilient to (small) shocks

when all banks have only deposits at the top of their pecking order, than when the banks

only have equity shares, or a mix of deposits and shares, at the top of their pecking orders.

Furthermore, the specific case of all banks having only deposits at the top of their

pecking orders also serves to illustrate how a large shock may destabilize the system:

When the shock is large enough to exhaust (some) banks’ deposits, these banks are forced

to liquidate shares to meet liquidity shocks. Hence, the shock transmission matrix is no

longer upper block-triangular, so its largest eigenvalue likely increases, as just explained.

Under certain conditions therefore, a large shock that exhausts the assets at the top of

institutions’ pecking orders may cause a liquidity spiral to emerge.

A financial system which is very resilient to small shocks but becomes unstable when

hit by a large shock, as may be the case when a sufficient number of institutions have the

optimistic pecking order, may be referred to as “robust-yet-fragile”. Gai and Kapadia

(2010) find a similar phenomenon for certain topologies of financial networks. The identi-

fication of this robust-yet-fragile tendency of financial systems across multiple dimensions

highlights the dangers of optimizing financial stability with respect to the small shocks

that are incurred on a frequent basis; such a system may turn out to be highly fragile

when a large shock eventually hits. It also underscores the risk of assessing the resilience

of a financial system only to specific stress scenarios, which may cause severe instabilities

to go unnoticed.

Finally, we derive two observations in section A.1 of the appendix that direct follow

from the shock transmission matrix and the properties of block matrices:

1. Out of all contagion channels considered in this analysis, the funding contagion

channel is the only channel that may cause a liquidity spiral to emerge in the absence

of other contagion channels.

2. For the funding contagion channel to cause a liquidity spiral on its own, banks must

hoard liquidity in response to shocks, i.e. they must recover liquidity in excess of

the shock incurred in order to build reserves against potential future shocks.

From observations 1 and 2 follows that, absent liquidity hoarding, all liquidity spirals

result from a combination of interacting contagion channels. Hence, one overlooks any

liquidity spiral in even the most unstable of systems when studying contagion channels

in isolation (and thus ignoring the channels’ interactions, as is often done).

9



3 Measuring the Potential for Liquidity Spirals in the

South African Financial System

We demonstrate our framework for identifying liquidity spirals by applying it to the

South African financial system. South Africa is a small open economy with a relatively

well-developed financial market compared to other African or emerging-market economies

(Kemp, 2017). The South African debt market is liquid and well-developed in terms of

the number of participants and their daily activity, and its equity market dominates the

region in terms of capitalisation (Andrianaivo and Yartey, 2010). Due to the relative lack

of well-developed peers in the region, South African institutions are very reliant on the

domestic financial market, making it highly interconnected (Kemp, 2017).

Banking sector assets exceed GDP in aggregate terms, but are smaller than the as-

sets held by the non-bank financial intermediation sector, which includes entities such

as insurers, pension funds and collective investment schemes (the latter are henceforth

referred to as “investment funds”). Since the Global Financial Crisis, the share of assets

held by banks has decreased, as the growth of assets held by the non-bank financial sector

– in particular investment funds - has outpaced that of banks (Kemp, 2017). Non-bank

financial intermediaries are an important source of funding for banks; banks’ funding pro-

vided directly by non-bank financial intermediaries other than pension funds and insurers

amounts to 15% of bank assets (FSB, 2018).

3.1 Institutions

In this study, we focus on banks and investment funds domiciled in South Africa. Pension

funds and insurers are not included due to data limitations, but we do not expect this

to affect our results substantially as pension funds and insurers typically do not cause

contagion through any of the channels included in our model. Non-financial corporates,

henceforth referred to as the corporate sector, and the South African government are

not modeled, but our data include the tradable securities corporates and the government

issue.

3.1.1 Banks

The South African banking sector comprises 34 registered banks, local branches of foreign

banks and mutual banks as of Q4 2016. The sector is concentrated, with the five largest

banks by assets holding more than 90% of the banking sectors’ assets (SARB, 2017),

as illustrated in Figure 1a. Overall, the banking sector is largely funded by deposits,

but banks also issue debt instruments, such as bonds and money market instruments,

and equity shares. The banks’ leverages (debt-to-equity ratio) vary, with a median of

7.4. The largest banks’ leverages are between 11 and 13, which is not uncommon is

10



well-developed financial systems, and the smaller banks typically have lower leverages.

3.1.2 Investment Funds

Investment funds pool investors’ money and purchase a portfolio of securities, thereby

offering investors the opportunity to obtain exposure to a diverse portfolio of underlying

securities, without having to purchase and trade securities directly. From the investor’s

perspective, investment funds provide investors with an opportunity to earn higher returns

than those offered by deposits, in return for taking on greater risk. There are over 1200

open-ended investment funds registered in South Africa with assets under management of

about 2 trillion South African Rand in 2016. The investment sector is highly concentrated,

as show in Figure 1b.

Investors invest in funds by buying fund shares, which represent ownership of a portion

of the underlying portfolio. These shares are typically redeemable on a daily basis. In

extreme circumstances, funds are susceptible to “runs” – i.e. large-scale redemption

requests, when investors anticipate or observe a substantial drop in their fund shares’

value. When a run is initiated, the investment fund may run out of liquid assets and

become unable to meet redemptions. As a result, the investment fund may have to resort

to fire-selling assets (Cont and Wagalath, 2013, Wiersema et al., 2021).

The value of a fund share is given by its Net Assset Value (NAV), which is equal

to the the investment fund’s total asset value, divided by the investment fund’s total

number of shares outstanding. Fund shares can be either Constant NAV-valued (CNAV)

or Variable NAV-valued (VNAV). When a investment fund makes a profit or loss, a

VNAV fund adjusts the shares’ NAV to reflect this while keeping the number of shares

that shareholders own constant, whereas a CNAV fund adjusts the number of shares that

each shareholder owns while keeping the NAV constant. While the mechanism through

which VNAV and CNAV funds pass on their profits and losses to their shareholders is

different, the impact on the value of an investor’s share portfolio is identical. Therefore,

we assume for simplicity that all fund shares in our model are VNAV-valued.
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(a) Banks ranked by total assets (b) Investment Funds ranked by total assets

Figure 1: Distribution of South African financial institutions by asset size.
The institutions are listed on the x-axis in decreasing order of total assets size and their
total assets in billions of South African Rand are on the y-axis (log-scale). Note that
the funds’ names are not listed because they are too numerous. The banking sector
consist of a core of five large banks and a periphery of 29 smaller banks. The invest-
ment fund sector includes over 1200 funds and also shows a strong concentration in
terms of asset size.

3.2 Assets

The data used are sourced from two publicly available data sets as of Q4 2016. Aggregate

balance sheet data (aggregate assets, liabilities and equity) on individual banks are sourced

from the BA900 data published by the South African Reserve Bank, or SARB (SARB,

2016). Balance sheet entries are aggregated by asset type and counterparty type (e.g.

“deposits at domestic banks”). The bank data distinguish between the various asset

types discussed in the next section, and between all counterparty types considered in our

model (i.e. banks, funds, non-financial corporates and the government). The bank data

also cover asset and counterparty types not included in our model, such as household

mortgages.

Data on investment funds’ assets were sourced from Morningstar Inc and are highly

granular. These data report investment funds’ investments per instrument type in indi-

vidual counterparties (e.g. “bonds issued by Standard Bank”). The great majority of the

funds’ assets are covered by our model, but a small fraction (less than 5%) is excluded, e.g.

because the counterparty or asset type is unknown. Note that neither the bank nor fund

data include short positions in tradable securities, so only long positions are considered.
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Figure 2: Aggregate asset holdings per category of the banking sector and
fund sector. Asset holdings are aggregated into the categories set out in section 3.2.1
for the banking sector and fund sector. Banks do not hold fund shares, while funds do
not hold South African Reserve Bank deposits or gold. Miscellaneous securities include
non-government bonds, money market instruments, and equity shares. Note that the
banks’ position in bonds issued by the South African government far exceeds the funds’
position, while the funds’ position in miscellaneous tradable securities far exceeds that
of the banks.

3.2.1 Balance Sheet Composition

We include the following assets: Gold, deposits, repurchase agreements, or repo, money

market instruments, or MMIs, bonds, equity shares, and fund shares. We refer to non-

government bonds, MMIs, and equity shares as miscellaneous securities. Figure 1 shows

where these assets appear on the stylized balance sheets of banks and investment funds.

Note that some investment funds may heavily invest in one type of asset while not investing

in other types.
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Assets Liabilities
Repurchase agreements Repurchase agreements

SARB and Bank Deposits Banks’ and Funds’ Deposits

Tradable securities

MMIs MMIs
Bonds Bonds
Gold Other liabilities

Equity Shares
Other assets Equity

(a) Stylised balance sheet of a bank.

Assets Liabilities
Bank Deposits

Fund shares
Tradable securities

MMIs
Bonds

Equity shares
Fund shares
Other assets

(b) Stylised balance sheet of an investment fund.

Table 1: Stylised balance sheets of South-African banks and investment
funds. (a) shows the stylized balance sheet of a bank and (b) of an investment fund.
Note that specific subsets of investment funds may heavily invest in one type of asset
while not investing in other types.

Central Bank Deposits & Gold

Banks invest in gold and make deposits at the SARB, whereas investment funds do

not. We assume that both are perfectly liquid and that neither causes contagion when

liquidated. This makes their dynamics in our model identical, so they are grouped together

for simplicity.

Bank Deposits & Repurchase Agreements

South African banks receive deposits and issue repo, while investment funds do not

(as they do not have debt). Furthermore, while both banks and funds make deposits

at (other) South African banks, only the banks buy repo. The banks and funds also

make deposits at foreign banks, but these make up a very small part of their portfolios.

Because we do not explicitly model collateral and assume that both repo and deposits

can be redeemed on a daily basis, their dynamics in our model are identical. As such, we

group repo and deposits at (commercial) banks together for simplicity.

Bonds

Domestic bonds are issued by banks, the corporate sector and the South African govern-

ment. Additionally, South African banks and investment funds own some bonds issued by

foreign parties but these positions are relatively small. The investment fund data distin-

guish between bonds issued by different banks, whereas the bank data do not. Contrary
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to repo and deposits, bonds are tradable.

Money market instruments

MMIs are defined in line with Board Notice 90 of the Financial Sector Conduct Au-

thority (Board, 2014), and include commercial paper, negotiable certificates of deposits,

bankers acceptances and promissory notes. The data do not distinguish between these

various types of MMIs so they are treated identically in our model. MMIs in our data

are exclusively issued by domestic banks and are bought by both banks and funds. Like

bonds, MMIs are tradable.

Equity shares

Funds invest in listed equity shares issued by the South African banks and corporate

sector, while banks invest in listed shares issued by the corporate sector and hold unlisted

shares in (other) South African banks. Furthermore, South African banks and investment

funds own some listed equity shares issued by foreign parties but the great majority of

shares held by the banks and investment funds are domestically issued. Listed equity

shares are tradable whereas unlisted shares are not, and neither are redeemable.

Fund Shares

Fund shares are issued by investment funds and are assumed to be redeemable on a

daily basis (as is almost always the case in reality). Therefore, fund shares are not traded.

South African investment funds buy other funds’ shares while banks do not. As explained,

we assume that all fund shares are VNAV-valued for simplicity, so the shares’ NAV is up-

dated to reflect any losses that the issuing investment fund may suffer.

3.2.2 Initialization Values

We do not have data on the market prices or NAVs of the securities that institutions hold,

nor the number of securities they hold, but only on the value of an institution’s position

in a security (i.e. the market value of a position in a tradable security, or the NAV times

the number of shares of a position in fund shares). For simplicity, we normalize the initial

NAV of each fund share and the initial market price of each tradable security to one South

African Rand. This normalization has no effect on our results and is only for simplicity.

Furthermore, we assume that the initial market price of a listed equity share is equal to

its book value (i.e. equity shares’ initial market values are assumed equal the issuer’s

accounting value of that share).
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3.2.3 Interbank Asset Allocation

The contagion channels that we model require reconstruction of the counterparties of in-

terbank deposits, repo, and unlisted equity shares as the bank data only provide banks’

aggregate assets and liabilities. Due to data limitations, we do not distinguish between

tradable securities of a specific type issued by different non-financial corporates, nor be-

tween tradable securities of a specific type issued by different domestic banks. Therefore,

we do not reconstruct counterparties of banks’ investments in these securities.

The technique used for the reconstruction of the banks’ investments is similar to

Kok and Montagna (2013) and Wiersema et al. (2021), and aims to reproduce the high

heterogeneity of interconnections observed in financial networks. We assume that the

initial market value of any security that a bank has issued is equal to the book value of

that liability or equity share on the banks’ balance sheets, and perform the following steps

for each of the asset types

β ∈ {deposits, repo, (unlisted) equity shares}:

1. We subtract from each bank’s aggregate liabilities (or equity) of type β the funds’

investments of type β in that bank.

2. We pick a random pair of banks y and z, where bank y is the investor and bank z

is the investee. Bank y is picked from the banks with nonzero aggregate assets of

type β and z is picked from the banks with nonzero aggregate liabilities (or equity)

of type β.

3. We pick a random number x ∈ U(0, 1) and generate an investment of type β of

bank y in bank z equal in size to the product of x and the minimum of y’s aggregate

assets of type β and z’s aggregate liabilities (or equity) of type β.10

4. The investment is added to the balance sheets of y and z, and the value of the invest-

ment is subtracted from y’s aggregate assets of type β and z’s aggregate liabilities

(or equity) of type β.

5. Steps 2-4 are repeated until all banks’ assets of type β are allocated.

After step 5, the counterparties of all (relevant) assets and liabilities are defined.

3.3 Contagion Equations

We now derive representative formulas for each of the contagion channels that acts on the

described asset classes. Note that these forms are chosen for simplicity. More elaborate

contagion models may be considered when studying individual contagion channels, but

10We set x = 1 when the minimum of y’s aggregate assets of type β and z’s aggregate liabilities (or
equity) of type β is less than or equal to 500 South African Rand.
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these forms suffice for our present purposes of capturing the collective stability of these

interacting contagion channels.

3.3.1 Valuation Shock-Induced Contagion

We discuss the contagion caused by valuation shocks first, as liquidity shock-induced

contagion requires a more elaborate discussion. We focus on valuation shocks that do not

exceed banks’ equity as we are interested in how liquidity spirals emerge, while (major)

institutions are not expected to default before the liquidity spiral has grown into a systemic

crisis.

Deleveraging Contagion

Suppose bank i maintains a leverage target λi (i.e. the ratio of debt to equity). If i

receives a valuation shock xvi,t and its equity is reduced, i must pay off debt to return to

its target. The amount by which it must reduce debt is λix
v
i,t, so i experiences a liquidity

shock Avlii,tx
v
i,t at time t+ 1, where

Avlii,t = λi, (5)

when i is a bank. The leverage target λi is given by the data and is assumed to be kept

constant by bank i.

Shareholder Contagion

Suppose institution i at time t holds a number sij,t shares in fund j of the total number

Sj,t of shares issued by j. A valuation shock suffered by j is distributed proportionally

across its shareholders through a markdown of the shares’ NAV, so

Avvji,t =
sij,t
Sj,t

, (6)

when j is a fund.

Let us now consider shareholder contagion for equity shares issued by banks. Un-

listed equity shares issued by banks are marked-to-book, i.e. they are valued based on

the accounting equity of the issuing bank. When bank j incurs a valuation shock, the

accounting equity of an unlisted share is reduced by xvj,t/Sj,t where Sj,t is the total number

of (listed and unlisted) shares issued by bank j. Hence, when i holds sij,t unlisted shares

in bank j, the shareholder contagion i suffers on these shares equals sij,tx
v
j,t/Sj,t and so

equation (6) also holds for unlisted equity shares issued by banks.

Since the listed equity shares issued by banks are traded, modern accounting prac-

tices require them to be marked-to-market rather than marked-to-book. Nevertheless, an

efficient market price reflects the issuer’s performance. We assume for simplicity that if

bank j incurs a valuation shock, the value of its issued listed shares falls by the same
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amount as its unlisted shares (i.e. the shares’ market value and book value fall by the

same amount) such that equation (6) also holds for listed shares.

Share Redemption Contagion

Suppose that fund i suffers a valuation shock xvi,t at time t, which depresses the NAV

of shares issued by i and may prompt i’s shareholders to withdraw liquidity from the

fund by redeeming shares. Funds’ shares are held by other investment funds in our data

and “external holders”, i.e. any party other than the banks and funds that we model.

We assume that other investment funds that hold shares in i do not withdraw liquidity

from i in response to the valuation shock xvi,t that i suffered (but these funds may decide

to withdraw liquidity from i when they themselves suffer a liquidity shock, i.e. through

funding contagion). Furthermore, we assume for simplicity that all external holders with-

draw liquidity from i proportionally to the loss i suffered at the same redemption rate

R11, which implies that

Avlii,t = εi,tR, (7)

where εi,t denotes the fraction of fund i’s shares held by external holders. As the aggregate

value of all i’s outstanding shares equals i’s total asset value, the fraction εi,t is found by

subtracting the aggregate value of shares in i held by other funds in our data from i’s total

asset value (and dividing the resulting difference by i’s total asset value). The redemption

rate R is a nondimensional constant of order one, which we assume for simplicity to be

the same across all funds i from which shares are withdrawn.

3.3.2 Liquidity Shock-Induced Contagion

The contagion that an institution transmits in response to a liquidity shock is determined

by its pecking order. To distinguish between various liquidity-differentiated pecking or-

ders, we group assets in decreasing order of liquidity as follows:

1. Central bank deposits and gold

2. Deposits at commercial banks, repo, and fund shares

3. Government bonds

4. Miscellaneous tradable securities (MMIs, listed equity, bank bonds, and corporate

bonds)

Hence, institutions with the optimistic pecking order liquidate assets in order from group

1. to 4., and the conservative pecking order is the reverse. Note that any institution

11We show in section A.2 in the appendix that this assumption implies that the number of shares
withdrawn is a convex function of the NAV loss, as one would reasonably expect (see e.g. Cont and
Wagalath, 2013, Wiersema et al., 2021).
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that does not own any assets of the types in the group at the top of the pecking order

liquidates assets from the group that is next in line.

Given the limited empirical research into the pecking orders that institutions employ

under various circumstances, we consider two more pecking orders for completeness. The

short-term funding pecking order is the optimistic pecking order but with group 1. moved

to the bottom and hence group 2. at the top, and the government bonds pecking order is

the optimistic pecking order both groups 1. and 2. moved to the bottom and hence group

3 at the top. Hence, institutions with the short-term funding pecking order use deposits,

repo and fund shares as their first line of defense against liquidity shocks, which in practice

are indeed a common source of liquidity for many institutions, and institutions with the

government bonds pecking order use their bonds for this purpose, which is also often

observed in practice. The main motivation for including these two additional pecking

orders is that each of the four groups of liquid assets we distinguish is now at the top of

one of the four liquidity differentiated pecking orders we consider. Table 2 summarizes

the various pecking orders that we consider.

Optimistic
pecking order

Short-term
funding

pecking order

Government
bonds

pecking order

Conservative
pecking order

Uniform
pecking
order

Top
Central bank
deposits and

gold

Deposits at
commercial
banks, repo,
fund shares

Government
bonds

Miscellaneous
tradable
securities

Deposits at
commercial
banks, repo,
fund shares

Government
bonds

Miscellaneous
tradable
securities

Government
bonds

All
liquid
assets

Government
bonds

Miscellaneous
tradable
securities

Central bank
deposits and

gold

Deposits at
commercial
banks, repo,
fund shares

Miscellaneous
tradable
securities

Central bank
deposits and

gold

Deposits at
commercial
banks, repo,
fund shares

Central bank
deposits and

gold

Bot-
tom

Table 2: Pecking orders

An institution may have multiple assets at the top of its pecking order. For example,

institutions with the uniform pecking order have all of their liquid assets at the tops of

their pecking orders simultaneously. Furthermore, an institution with e.g. the short-

term funding pecking order may have various deposits, repo and fund shares in multiple

institutions at the top of its pecking order. When an institution has multiple assets at

the top of its pecking order, we assume that the institution liquidates a vertical slice

across all these assets, i.e. the institution recovers an amount of liquidity from each

asset proportional to that asset’s total value. As a consequence, an institution with the
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uniform pecking order reduces each of its liquid assets by the same proportion in response

to a liquidity shock and hence the shock does not change the institution’s pecking order,

leaving the institution’s response to liquidity shocks unchanged. We assume for simplicity

that the vertical slice used to respond to the liquidity shock xlt is based on the asset values

at the start of round t (i.e. before the liquidity and valuation shocks xlt and xvt are taken

into account, which may reduce the value of some securities).

We now derive contagion equations for the liquidation of each type of asset that may

be at the top of the pecking order, under the assumption that the liquidity shock does

not exceed the top layer. Note that we do not consider liquidity hoarding, so institutions

recover liquidity equal to the shock incurred.

Funding Contagion

Suppose institution i has deposits at and/or has bought repo or fund shares issued

by institution j with a total value of dij,t. Let Tt,i denote the total asset value of the

top layer of i’s pecking order. When these deposits, repo and/or fund shares are part

of the top layer, on receiving a liquidity shock xli,t, institution i withdraws a total value

of xli,tdij,t/Tt,i of these deposits, repo and/or fund shares (i.e. i liquidates a vertical slice

across the assets in its top pecking order layer). This transmits a liquidity shock Allji,tx
l
i

to institution j, where

Allji,t =
dij,t
Ti,t

. (8)

We assume that the withdrawal of deposits from the SARB or foreign institutions does

not cause funding contagion and hence “dilutes” liquidity shock-induced contagion (as

less liquidity is required to be recovered from other sources).

Overlapping portfolio contagion

Suppose institution i holds nσi,t shares of security σ with price pσ,t, which are in i’s top

pecking order layer. When i experiences a liquidity shock xli,t, it sells shares in security σ

to raise an amount of liquity xli,tnσi,tpσ,t/Ti,t (i.e. a vertical slice). The sale depresses the

price of security σ by ∆pσ,t = pσ,t−pσ,t+1, which causes losses to all institutions that have

a position in the security. We assume that the price impact ∆pσ,t is linear in the amount

of liquidity to be raised by selling shares in security σ12 (so price impacts are additive

12We show in section A.3 in the appendix that this assumption implies that the price impact is a
concave function of the number of securities sold. Empirical evidence suggests that the price impact is
indeed a concave function although the particular shape may depend on the context (Gatheral, 2010).
We do not aim to perfectly replicate any of the empirically observed functional forms, as the current
approximation suffices for our present purposes. For more accurate modeling of the overlapping portfo-
lio contagion channel see e.g. Bouchaud and Cont (1998), Bouchaud et al. (2009).
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when multiple institutions i decide to sell shares in security σ at time t);

∆pσ,t =
∑
i∈St

xli,tnσi,tpσ,t

Ti,tDσ

. (9)

The market depth Dσ (discussed below) is a non-dimensional constant which gives the

liquidity recovered per unit drop in the securities’ market price. and St the set of in-

stitutions that sell security σ at time t. We also assume for simplicity that all shares

sold at time t are sold against the new price pσ,t+1, such that any institution, including

institutions i ∈ St, suffers a valuation shock of ∆pσ,tnσj,t
13. This implies that

Alvji =
∑
σ∈Ti,t

nσi,tpσ,tnσj,t
Ti,tDσ

, (10)

where Ti,t denotes the set of all tradable securities σ at the top of i’s pecking order at

time t.

Note that the market price of listed equity shares issued by South African banks

is depressed by both overlapping portfolio and shareholder contagion. We assume for

simplicity that the overlapping portfolio and shareholder contagion channels’ impact on

the market price is additive such that equation (10) also holds for listed shares issued

by banks. The combined impact of the overlapping portfolio and shareholder contagion

channels on listed shares should not drive their price below zero, as the shares are subject

to limited liability. This is guaranteed in our results, as explained in section A.4 in the

appendix.

Market depths: For each security class σ, we explore various market depths Dσ by

dividing the baseline estimate D̂σ by market depth divisor δσ,

Dσ =
D̂σ

δσ
. (11)

The baseline market depth D̂σ is a non-dimensional constant calibrated to the market

capitalization of security σ, as explained in appendix A.5, and the market depth divisor

δσ is a non-dimensional constant which we vary from one to four to explore the sensitivity

of our results to the market depth. Hence, when the market depth divisor δσ = 1, the

market depth of σ is equal to the baseline estimate, and when the market depth divisor

δσ = 0, the market depth of σ is infinite and the overlapping portfolio contagion channel

13In reality, some institutions may decide to sell shares incrementally, while others may under- or
overestimate the amount of liquidity they will recover from selling securities, and still others may in-
tentionally liquidate more than the required amount of securities out of conservatism (which is referred
to as “liquidity hoarding”). However, for our present purposes, it suffices to simply assume that each
institution liquidates the correct number of securities against the new price pσ,t+1 to recover the re-
quired liquidity. Note that the price impact suffered by institutions i ∈ St implies that the diagonal
component of Alvii,t for i ∈ St in equation (10) is positive.

21



is effectively turned off.

Note that our data include tradable securities issued by foreign institutions and gold.

Because these securities are predominantly held by foreign institutions, we do not model

the overlapping portfolio contagion caused by the sale of these securities, so we effec-

tively assume that these securities have infinite market depth. Consequently, overlapping

portfolio contagion only spreads across domestic securities. Hence, foreign securities and

gold “dilute” liquidity shock-induced contagion, because the liquidity recovered from for-

eign securities and gold does not cause contagion but reduces the liquidity required to be

recovered from other sources.

3.4 Results

Here, we study the contribution of the banking and investment fund sectors to the emer-

gence of liquidity spirals for various pecking orders. We do so by comparing the stability

of the full system to the stability of each sector individually, where the largest eigenvalue

of an individual sector is calculated from the shock transmission matrix that only includes

institutions belonging to that sector. The shock transmission matrices are calculated for

time t = 1, to which securities’ market prices, book values, as NAVs are normalized. Note

that all results present the means over 1000 random generations of the interbank assets

reconstruction. As these interbank assets form a small part of banks’ total balance sheets,

they do not affect our results significantly and therefore the standard errors of the means

are negligible and not visible in the plots.

3.5 Uniform Pecking Orders

To understand the stability of the uniform pecking order, we plot in Figure 3 the largest

eigenvalue of the full system, and of the banking sector and fund sector individually,

under the assumption that all institutions have the uniform pecking order. In Figure 3a

we set the market depth divisor to its baseline value of δσ = 1 for all securities and vary

the redemption rate R to explore the impact on stability, and find that a liquidity spiral

emerges for about R = 5. Note that the banking sector is not affected by the redemption

rate R, so increases in the redemption rate affect stability only through the fund sector.

In Figure 3b, we set the redemption rate to its baseline value of R = 1 and vary the

market depth divisor δσ for all securities. We find that the stability is greatly affected

by the market depth, and that a liquidity spiral emerges as soon as the market depth

divisor δσ increases beyond one. Hence, a liquidity spiral emerges almost as soon as

market depths fall below their baseline values, while only particularly high redemption

rates cause a liquidity spiral.

In Figure 3c and Figure 3d we consider how the South African Reserve Bank, acting

as a lender of last resort, may attempt to dampen the liquidity spiral by injecting cash
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into the banking sector. Because banks use the uniform pecking order and therefore

liquidate proportionally to asset values, raising the banks’ central bank deposits increases

the banks’ reliance on their central bank deposits to meet liquidity shocks and decreases

their reliance on other liquid assets. Withdrawing central bank deposits does not cause

contagion, while the liquidation of other assets typically does. Hence, increasing the

banks’ central bank deposits stabilizes the system.

In Figure 3c we set the market depth divisor to δσ = 2 for all securities and the

redemption rate to its baseline value of R = 1, such that the liquidity spiral is mainly

driven by the banking sector. Conversely, in Figure 3d we set the market depth divisor to

its baseline value of δσ = 1 for all securities and the redemption rate R = 5, such that the

liquidity spiral is mainly driven by the fund sector. The increase in banks’ central bank

deposits as a fraction of their total liquid assets is presented on the x-axis in both figures.

Although the liquidity spiral dissipates in both cases, Figure 3d shows that the stabilizing

effect of the cash injection into the banking sector is minimal when the fund sector is

the main driver of the liquidity spiral, while Figure 3c shows that the cash injection is

more effective when the banking sector is the main driver of the liquidity spiral. Hence,

to intervene effectively, the regulator must understand which sector is the main driver of

the spiral.

Finally, comparison of Figure 3b and Figure 3c suggests that, compared to the impact

of the market depth, the effect of the cash injection on the largest eigenvalue is modest

even when the banking sector is the main driver of the liquidity spiral. However, note that

the x-axis Figure 3b ranges from an infinitely deep market (δσ = 0), up to a reduction of

the baseline market depth by up to a factor of δσ = 4, while Figure 3c only covers up to

a doubling of banks’ liquid assets. This explains, at least partially, why the eigenvalue is

more strongly impacted in Figure 3b than in Figure 3c.
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(a) Eigenvalue vs. Redemption Rate R (b) Eigenvalue vs. Market Depth Divisor δσ

(c) Liquidity Provision for δσ = 2 (d) Liquidity Provision for R = 5

Figure 3: Eigenvalue Dependency for Uniform Pecking Orders. All institutions
are assumed to have the uniform pecking order. We explore when the largest eigenvalue
exceeds one and a liquidity spiral emerges for various redemption rates R in (a) and for
various market depth divisors δσ in (b). (c) shows the impact of a central bank cash
injection into the banking sector when δσ = 2 and R = 1, and (d) shows this impact
when R = 5 and δσ = 1.

3.6 Liquidity-Differentiated Pecking Orders

We now consider the stability of the four liquidity-differentiated pecking orders, under

the assumption that shocks do not exhaust the assets at the top of any institution’s

pecking order. As such, only the assets at the top of each institution’s pecking order

need to be considered when calculating the dynamics’ largest eigenvalue. As Figure 2

gives the aggregate values of all assets that may be at the top of institutions’ pecking

orders, the figure gives an indication of how large shocks may be before the assets at

the top of institutions’ pecking orders are exhausted. For example, Figure 2 shows that

the assets at the top of funds’ government bonds pecking orders are generally exhausted

quickly, while for banks this is the case for the assets at the top of conservative pecking

orders. The assets at the top of other pecking orders are considerably more substantial.

After understanding how the liquidation of each type of asset affects stability, we consider

shocks that exceed the assets at the top of institutions’ pecking orders (so institutions

must liquidate the assets that are next in line) in section 3.7.

In Figure 4, we plot the largest eigenvalue of the banking sector and fund sector, and

of the full system, for the four liquidity-differentiated pecking orders. We set the market

depth divisor to its baseline value of δσ = 1 for all securities and vary the redemption

rate R. In Figure 4a, all institutions are assumed to have the optimistic pecking order
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and in Figure 4d the conservative pecking order. In Figure 4b, all institutions have the

short-term funding pecking order, and in Figure 4c all institutions have the government

bonds pecking order.

The results show that the optimistic and short-term funding pecking orders are very

stable, because the liquidation of the assets that are at the top of these pecking orders

does not cause high levels of contagion; even for very high redemption rates no liquidity

spiral emerges. Conversely, when government bonds are at the top of the pecking order,

as shown in 4c, the banking sector is highly unstable. The main reason for this is that the

majority of the government bonds in our data are held by banks, so the price impact caused

by selling the bonds is predominantly suffered by the banks, and that the banks strongly

amplify any valuation shocks that they incur through their high leverages (Wiersema

et al., 2019). Furthermore, 4c shows that for high redemption rates the largest eigenvalue

of the full system is substantially higher than the largest eigenvalue of than either of the

individual sectors. Hence, the intensity of the liquidity spiral would be underestimated

when the interactions between the banking and fund sector are ignored, which highlights

the importance of capturing these sectors’ combined dynamics.

Figure 4d shows that the conservative pecking order is generally more stable than the

government bonds pecking order in Figure 4c, but is also more strongly affected by the

redemption rate R. The main reason for this is that the miscellaneous tradable securities

in our data are mainly held by investment funds, so the funds suffer most of the price

impact caused by selling the miscellaneous tradable securities, and contrary to banks,

funds only amplify valuation shocks when the redemption rate R is high.
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(a) Optimistic Pecking Order (b) Short-Term Funding Pecking Order

(c) Government Bonds Pecking Order (d) Conservative Pecking Order

Figure 4: Eigenvalue Dependency on Redemption rates for Liquidity-
Differentiated Pecking Orders. We explore when the largest eigenvalue exceeds
one and a liquidity spiral emerges for various redemption rates R and various liquidity-
differentiated pecking orders. The market depth divisor is set to its baseline value of
δσ = 1. In (a) all institutions are assumed to have the optimistic pecking order, in (b)
the short-term funding pecking order, in (c) the government bonds pecking order and in
(d) the conservative pecking order.

Figure 5 is analogous to Figure 4, but here we vary the market depth divisor δσ

(for all securities) rather than the redemption rate, which is set to its baseline value of

R = 1. The results again show the standard and short-term funding pecking orders to

be very stable as no liquidity spiral emerges in Figure 5a and Figure 5b even for very

illiquid markets (i.e. high δσ). When government bonds are at the top of the pecking

order, as shown in Figure 5c, the banking sector is again highly unstable, and is strongly

affected by the market depth. Similar to what we found in Figure 4, Figure 5d shows

that the conservative pecking order is generally more stable than the government bonds

pecking order. Furthermore, the eigenvalue of the full system in Figure 5d shows that

when markets are very illiquid (i.e. high δσ), a liquidity spiral emerges which is completely

overlooked when ignoring the interactions between the banking sector and fund sector (as

neither individual sector has an eigenvalue greater than one).
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(a) Optimistic Pecking Order (b) Short-Term Funding Pecking Order

(c) Government Bonds Pecking Order (d) Conservative Pecking Order

Figure 5: Eigenvalue Dependency on Market Depths for Liquidity-
Differentiated Pecking Orders. We explore when the largest eigenvalue exceeds
one and a liquidity spiral emerges for various market depth divisors δσ and various
liquidity-differentiated pecking orders. The redemption rate is set to its baseline value
of R = 1. In (a) all institutions are assumed to have the optimistic pecking order, in (b)
the short-term funding pecking order, in (c) the government bonds pecking order and in
(d) the conservative pecking order.

3.7 Liquidity Shocks

In Figure 6, we consider how the stability of the system is impacted by a large liquidity

shock when all institutions have the optimistic pecking order (which empirical evidence

suggests to be the most commonly employed pecking order14). As we have seen, the

system is very resilient to the liquidation of the assets at the top of the optimistic pecking

order, so when a liquidity shock exhausts these assets and forces institutions to liquidate

assets that are next in-line on their pecking orders, we can expect the system to become

less stable. Figures 6a and 6b show the sensitivity of the largest eigenvalue to the shock

size and Figure 6c and Figure 6d show which asset types are at the top of institutions’

pecking orders after the shock has exhausted part of their liquid assets.

We consider the marginal impact on stability of an increase in the shock size, by

calculating the largest eigenvalue of the system according each institution’s assets lowest

on its pecking order that it is forced to liquidate in response to the liquidity shock. For

simplicity, we assume that the liquidity shock reduces each institution’s total liquid asset

holdings by the same proportion. Although we can reasonably expect an institution’s

total liquid asset holdings to be (at least somewhat) calibrated to the magnitude of the

14See e.g. Kim (1998), van den End and Tabbae (2012), Ma et al. (2020).
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liquidity shocks that the institution expects to incur, liquiditiy shocks come in various

distributions and magnitudes in reality. Future research should therefore explore the

stability of financial systems across a wide range of liquidity shocks.

In Figure 6a, the redemption rate and market depth divisor are set to their baseline

values of R = 1 and δσ = 1. The reduction in institutions’ liquid assets due to the

liquidity shock is presented as a proportion of the institution’s total liquid asset holdings

on the x-axis. Note that the proportion cannot exceed one as we do not model illiquidity

defaults. Figure 6a shows that the liquidity shock has the potential to greatly destabilize

the system, as a liquidity spiral emerges when about half of institutions’ liquid assets are

exhausted and institutions are forced to liquidate assets lower on their pecking orders.

Figure 6a also shows that the liquidity spiral that emerges when institutions consume

their pecking orders is predominantly driven by the banking sector. Comparison with

Figure 6c allows us to understand how the gradual depletion of banks’ pecking orders

causes the liquidity spiral to emerge. Figure 6c shows that all but one bank initially have

central bank deposits and/or gold at the top of their pecking orders (as shown by the

blue line), and hence the system is initially very stable, but the number of banks with

these assets at the top of their pecking order drops off quickly as the shock size increases.

Nevertheless, this does not immediately cause instabilities as most of these banks start

liquidating interbank deposits and/or repo instead (as shown by the orange line), which

we have seen in previous sections to yield a relatively stable system too. The liquidity

spiral in 6a only emerges when the number of banks with interbank deposits and/or

repo at the top of their pecking orders starts falling too and more and more banks start

liquidating government bonds instead (as shown by the green line in 6c). Indeed, we have

seen in previous sections that the liquidation of government bonds drives the emergence

of liquidity spirals.

Figure 6a also shows that the liquidity spiral dissipates when the shock size approaches

the point of fully exhausting institutions’ pecking orders. Figure 6c shows that this dissi-

pation coincides with a strong drop in the number of institutions that liquidate interbank

deposits and/or repo and a steep rise in the number of institutions that sell miscella-

neous tradable securities (as shown by the red line). Interestingly, we previously showed

for R = 1 and δσ = 1 that the short-term funding pecking order (which has bank de-

posits, repo and fund shares at the top) is more stable than the conservative pecking order

(which has miscellaneous tradable securities at the top) in a system where all institutions

have the same pecking order. Conversely, Figure 6 suggests that in a system where a

substantial number of banks have government bonds at the top of their pecking order,

withdrawing interbank deposits and repo is more destabilizing than selling miscellaneous

tradable securities to meet a liquidity shock. This is a prime example of emergence, as

the interactions between institutions with different pecking orders yields dynamics the one

would not expect based on the individual pecking orders, and highlights the importance
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of capturing the complex nature of financial systems.

The dissipation of liquidity spirals when institutions’ pecking orders are close to ex-

haustion would be highly advantageous, as it could stabilize the system before institutions

default through illiquidity. However, this dissipation may not materialize during adverse

market conditions. To illustrate this in Figure 6b, we set the redemption rate to R = 5

and the market depth divisor to δm = 2 for miscellaneous tradable securities, but to

δg = 1 for government bonds (i.e. the market depth of miscellaneous tradable securities is

halved, while the market depth of government bonds remains at its baseline value). For

these market conditions, the liquidity spiral is predominantly driven by the fund sector,

rather than the banking sector.

Figure 6d shows that almost all funds initially have bank deposits and/or fund shares

at the top of their pecking orders (as shown by the orange line). However, this number falls

off sharply as the shock size reaches just 10% of institutions’ total liquid asset holdings.

This drop coincides with a strong increase in the number of funds that have miscellaneous

tradable securities at the top of their pecking orders (as shown by the red line), and with

the emergence of a liquidity spiral as show in Figure 6b. The number of funds with bank

deposits and/or fund shares at the top of their pecking orders continues to fall, and the

number of funds that sell miscellaneous tradable securities continues to rise, until the

shock size reaches 100%. The liquidity spiral, rather than dissipate, grows steadily in

intensity until the maximum shock size is reached.

Finally, let us compare the optimistic pecking order in 6a to the uniform pecking

order in Figure 3. Comparing largest eigenvalues for the same redemption rate R = 1

and market depth modifier δσ = 1, we find that the optimistic pecking order yields a

system more resilient to small shocks than the uniform pecking order. However, the

uniform pecking order is not affected by liquidity shocks, as explained in section 3.3.2,

while a liquidity spiral emerges in response to large shocks when institutions have the

optimistic pecking order. Relative to the uniform pecking order, the optimistic pecking

order therefore yields a “robust-yet-fragile” system, which is very resilient to small shocks

but may be greatly destabilized by a single, large shock. This is similar to the robust-

yet-fragile network topologies identified by Gai and Kapadia (2010), but manifests here

in terms of pecking order configurations, and highlights the importance of evaluating the

resilience of financial systems against a wide range of shocks.

Note that by focusing on time t = 1, we have only considered how a liquidity spiral

emerges but not how it evolves as shocks continue to propagate. Even when all institutions

have the uniform pecking order, which does not change in response to shocks, the dynamics

of the system evolve as shocks propagate and tradable securities change hands (which

changes how overlapping portfolio contagion is distributed), shares are redeemed (which

dampens the shareholder contagion channel), and additional cash flows enter or leave the

system (which may affects institutions’ pecking orders). However, modeling such changes
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to the system would require additional assumption and/or (empirical) research beyond

the scope of this paper.

Furthermore, Figure 6 shows that a large liquidity shock may raise the largest eigen-

value above one and cause a liquidity spiral to emerge. However, a smaller shock that

pushes the eigenvalue close to, but not outright above one, may continue to propagate

and drain institutions’ pecking orders until a spiral eventually emerges. Although Figure

6 indicates how the dynamics would evolve as liquidity losses accumulate and pecking

orders are progressively depleted by propagating shocks, this does not take into account

the changes to the system mentioned in the previous paragraph that are unrelated to

the pecking order. To accurately assess how the stability evolves as shocks continue to

propagate, more comprehensive modeling approaches are required.

(a) Eigenvalue vs. Liquidity Shock (R = 1) (b) Eigenvalue vs. Liquidity Shock (R = 5)

(c) Banks’ Top Layer of Pecking Order (d) Funds’ Top Layer of Pecking Order

Figure 6: Impact of Liquidity Shock on Largest Eigenvalue. We explore how a
large liquidity shock affects stability and may potentially cause the largest eigenvalue
to exceed one and a liquidity spiral to emerge. All institution are assumed to have the
optimistic pecking order and the reduction in institutions’ liquid assets due to the liq-
uidity shock is presented as a proportion of the institution’s total liquid assets pool on
the x-axis. In (a) the redemption rate is set to its baseline value of R = 1 an the mar-
ket depth divisor to its baseline value of δσ = 1 for all securities. In (b), the redemption
rate is set to R = 5. The market depth divisor is set to δg = 1 for government bonds
g and to δm = 1 for all miscellaneous tradable securities m. In (c) and (d) we show
the number of banks respectively funds per asset type at the top of their pecking orders
depending on the size of liquidity shock incurred. The blue line shows the number of in-
stitutions with gold and/or central bank deposits at the top of their pecking order, the
orange line the institutions with commercial bank deposits, repo, and/or fund shares at
the top of their pecking order, the green line government bonds, and the red line miscel-
laneous tradable securities.
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4 Discussion

Liquidity spirals progressively worsen market and funding liquidity (Brunnermeier and

Pedersen, 2009). We have studied liquidity spirals that consist of various interacting con-

tagion channels and/or multiple types of institutions. To accurately assess these spirals,

models are required that can take the interactions between multiple types of contagion

and institutions into account. We use the framework developed in Wiersema et al. (2019),

which allows us to identify liquidity spirals before market and funding liquidity fall pro-

gressively. Wiersema et al. (2019)) show in a general setting that financial stability may be

greatly overestimated when ignoring the interactions between contagion channels. Here,

we demonstrate that liquidity spirals may be completely overlooked when interactions

between different types of institutions or contagion channels are ignored.

The framework allows us to evaluate the impact of institutions’ pecking orders on the

potential for liquidity spirals to emerge without relying on any specific, subjective stress

scenario. We show that institutions’ pecking orders strongly affect finnacial stability,

with some pecking orders yielding a “robust-yet-fragile” system. The robust-yet-fragile

tendency of financial systems has been previously observed by Gai and Kapadia (2010)

for certain network topologies. Here, we have seen it manifested for specific pecking order

configurations. The identification of robust-yet-fragile tendencies of financial systems

across multiple dimensions highlights the dangers of optimizing stability with respect to

the small shocks that are incurred on a frequent basis; a financial system that has been

optimized to be highly resilient against small shocks may turn out to be highly fragile to

large shocks once one eventually materializes. Moreover, it underscores the importance

of stability measures that assess a system’s resilience to a wide range of shocks, such as

the eigenvalue-based approach developed here.

We demonstrate our method by applying it to a highly granular data set on the

South African financial system and capture the combined dynamics of the banking and

investment fund sector. Wiersema et al. (2021) show that exposures in the South African

financial system are underestimated when the interactions between the banking and fund

sector are ignored. Here, we identify market conditions for which a liquidity spiral emerges

that cannot be identified without taking the interactions between the banking and fund

sector into account. These results highlight that comprehensive modeling approaches such

as the one presented here are vital for understanding financial stability. We also identify

market conditions that yield a liquidity spiral which is predominantly driven by one of

the two sectors. This greatly affects the effectiveness of interventions such as liquidity

injections into the banking sector. Hence, policy makers may employ the model developed

here to decide on what strategies may be most effective at combating liquidity spirals.

We have explored how the system’s stability changes in response to a large liquidity

shock. We show that when institutions sell their most liquid assets first, the system
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is very resilient against small liquidity shocks. However, a liquidity spiral may emerge

as soon as a substantial part of institutions’ pecking orders are exhausted by a sizable

liquidity shock. This robust-yet-fragile tendency may appear in any financial system

where institutions liquidate assets in order of decreasing liquidity, as contagion typically

worsens as institutions are forced to liquidate assets of lesser and lesser liquidity. This

highlights the importance of exploring financial stability across all layers of institutions’

pecking orders.

The evolution of the system in response to the shock depends strongly on the distri-

bution and magnitude of the shock. As we have only considered liquidity shocks that are

distributed proportionally to institutions’ pecking order depths, future research should

aim to formulate realistic stress scenarios and investigate how the system evolves over

time in response to these. Furthermore, as we have established the important role that

pecking orders play in the potential for liquidity spirals emerge, further empirical inves-

tigation into the pecking orders that financial institutions employ under various market

conditions is warranted.
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A Appendix

A.1 Liquidity Spirals Driven by Funding Contagion

Here, we show that the funding contagion channel, given by the upper-left quadrant of

the shock transmission matrix, is the only contagion channel out of all channels consid-

ered in this analysis that can cause a liquidity spiral in the absence of other contagion

channels: From the properties of block matrices, we know that the largest eigenvalue is

zero when the only non-empty contagion quadrant is an off-diagonal quadrant. Hence,

neither deleveraging contagion (upper-left quadrant) nor overlapping portfolio contagion

(lower-right quadrant) can individually drive the emergence of a liquidity spiral. Further-

more, when the lower-right quadrant, i.e. the share redemption and shareholder contagion

quadrant, is the only non-empty quadrant, the largest eigenvalue is positive but only val-

uation shocks propagate (while liquidity shocks dissipate immediately, as can be seen

from eq. 4). Hence, the only quadrant of the shock transmission matrix that can cause

a liquidity spiral when all other quadrants are zero is the upper-left quadrant, i.e. the

funding contagion channel.

Furthermore, in the absence of other contagion channels, the funding contagion chan-

nel can only cause a liquidity spiral when banks hoard liquidity in response to shocks;

when a bank does not hoard liquidity, it only withdraws deposits to meet the liquidity

shock it incurred up to the magnitude of the shock. Hence, the aggregate liquidity that

the bank withdraws from other banks does not exceed the liquidity shock incurred, so the

bank does not amplify the propagating shock. The sum of a column in the funding conta-

gion quadrant of the shock transmission matrix gives the aggregate liquidity that a bank

withdraws from other banks as a fraction of the liquidity shock that the bank incurred

(see eq. 4). Hence, absent liquidity hoarding, column sums in the funding contagion quad-

rant cannot exceed one. Furthermore, the Perron-Frobenius theorem guarantees that the

largest eigenvalue of shock transmission matrix does not exceed the largest column sum.

Therefore, absent other contagion channels, i.e. the largest eigenvalue is given by the

funding contagion quadrant, and absent liquidity hoarding, i.e. the column sums in the

funding contagion quadrant cannot exceed one, the largest eigenvalue is upper-bounded

by one and no liquidity spiral can emerge. Hence, when banks do not hoard liquidity,

studying contagion channels in isolation, and thus ignoring their interactions, as is often

done, will overlook any liquidity spiral even in the most unstable of systems.

A.2 Withdrawal of Fund Shares

When we discussed the share redemption contagion channel in section 3.3, we assumed

that the amount of liquidity withdrawn by external investors from the investment fund is

linear in the NAV loss of the fund’s shares. Here, we show that this assumption implies
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that the number of shares withdrawn is a convex function of the fund’s NAV loss.

When investment fund i suffers a loss xvi,t, the NAV of the fund’s shares falls by

∆NAVi,t = xvi,t/Si,t, (12)

where Si,t denotes i total number of outstanding shares at time t. Furthermore, the

amount paid out per share that investors redeem is given by

NAVi,t+1 = NAVi,t −∆NAVi,t, (13)

and we denote the number of shares withdrawn by the external investors in response to

the NAV loss ∆NAVi,t as ∆Si,t. The amount paid out for the redeemed shares gives the

liquidity withdrawn from the fund;

(NAVi,t −∆NAVi,t) ∆Si,t = εi,tRx
v
i,t, (14)

where we have used the factor εi,tR from equation (7) to express the amount of liquidity

withdrawn in terms of the loss xvi,t. Using (12), we find that

∆Si,t = min

{
εi,tRSi,t∆NAVi,t
NAVi,t −∆NAVi,t

, εi,tSi,t

}
, (15)

where we have used that ∆Si,t ≤ εi,tSi,t (as only the fraction of i’s shares held by external

holders can be withdrawn through shareholder contagion). Hence, the number of shares

withdrawn in response to the NAV loss is linear for small NAV losses and convex for larger

NAV losses (until the upper bound of ∆Si,t is fixed).

A.3 Price Impact of Number of Shares Sold

When we discussed the overlapping portfolio contagion channel in section 3.3, we assumed

that the price impact ∆pσ,t is linear in the liquidity recovered from the sale. Here, we

show that this assumption implies that the price impact is concave in the number of shares

sold.

Let us assume for simplicity that institution i is the only institution that sells shares

in security σ. The derivation generalizes straightforwardly to the case when multiple

institutions sell shares in σ at the same time. For notational convenience, we assume that

security σ is the only asset at the top of institution i’s pecking order (and that the shock

xli,t does not exhaust the asset), such that the price impact (9) reduces to

∆pσ,t =
xli,t
Dσ

=
(pσ,t −∆pσ,t) ∆nσi,t

Dσ

, (16)
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where ∆nσi,t denotes the number of shares in security σ that i sells at time t to raise

liquidity xli,t and we have used the assumption that all shares are sold against the new

price pσ,t+1 = pσ,t−∆pσ,t. Rewriting equation (16), we find the price impact as a function

of the number of shares sold:

∆pσ,t =
pσ,t∆nσi,t
Dσ + ∆nσi,t

, (17)

which is linear in the number of shares sold when ∆nσi,t is small (similar to e.g. Cont

and Schaanning, 2019 and Wiersema et al., 2019) and concave in the number of shares

sold when ∆nσi,t is large (see e.g. Gatheral, 2010). Furthermore, note from equation (17)

that ∆pσ,t < pσ,t so the price cannot become negative.

A.4 Market Price of Listed Equity Shares

The overlapping portfolio and shareholder contagion mechanisms derived in section 3.3

should not drive the market price of a listed equity share below zero, as the shares are

subject to limited liability. This is guaranteed when the contagion mechanisms act in

isolation. Here, we show that the combined impact of the two contagion channels also

cannot the market price of listed equity shares issued by South African banks below zero.

Remember that we have assumed that the overlapping portfolio contagion channel and

shareholder contagion channels are additive. Therefore, the market price of a tradable

security σ evolves according to

pσ,t+1 = pσ,t −∆psσ,t −∆poσ,t, (18)

where ∆psσ,t denotes the drop in market price due to the shareholder contagion channel,

and ∆poσ,t denotes the drop in market price due to the overlapping portfolio contagion

channel. To demonstrate that neither channel can drive the market price below zero when

both channels interaction, we first show that ∆poσ,t ≤ pσ,t−∆psσ,t, i.e. overlapping portfolio

contagion does not drive the market price below zero even when it has already been

depressed by shareholder contagion. Second, we discuss why ∆psσ,t ≤ pσ,t, i.e. shareholder

contagion does not drive the market price below zero even when the market price has

been depressed by overlapping portfolio contagion at previous times.

Because we have assumed that all tradable securities σ sold at time t are sold against

the new price pσ,t+1, the liquidity recovered from the sale is reduced by the shareholder

contagion ∆psσ,t. Hence, equation (16) becomes

∆poσ,t =
pσ,t+1∆nσi,t

Dσ

=

(
pσ,t −∆psσ,t −∆poσ,t

)
∆nσi,t

Dσ

, (19)
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and rewriting yields

∆poσ,t =

(
pσ,t −∆psσ,t

)
∆nσi,t

Dσ + ∆nσi,t
, (20)

so we find that ∆poσ,t ≤ pσ,t −∆psσ,t. Hence, the shareholder contagion channel depresses

the overlapping portfolio contagion channel by reducing the price impact per share sold,

similar to Wiersema et al. (2021).

To guarantee that the shareholder contagion channel cannot drive the market price of

equity shares below zero when the price has already been depressed by the overlapping

contagion channel at a previous time, we should multiply equation (6) by the shares’

market-to-book ratio; let Eσ,t denote the equity at time t of the institution that issued the

shares, and Sσ,t the total number of shares that the institution issued, such that a share’s

book value is given by Eσ,t/Sσ,t and market-to-book ratio by pσ,tSσ,t/Eσ,t. Multiplying

equation (6) with the market-to-book ratio yields

Avvσi,t = siσ,t
pσ,t
Eσ,t

, (21)

such that when institution σ suffers a loss xvσ,t = Eσ,t, the shareholder contagion suffered

by i equals siσ,tpσ,t. Hence, when a shock exhausts institution σ’s equity, institution i

loses the current market value of its position in shares issued by σ.

The market-to-book ratio reflects that the overlapping portfolio contagion channel has

depressed the equity shares’ market value below their book value, such that the impact of

the shareholder contagion channel is reduced (Wiersema et al., 2021). However, the results

in this paper are derived for time t = 1, when the shares’ market values are assumed to

be equal to their book values, so the market-to-book ratio pσ,tSσ,t/Eσ,t = 1 and can be

omitted from equation (6) for simplicity.

A.5 Baseline Market Depth Estimates

We estimate baseline market depths D̂σ for six different classes σ of domestic tradable

securities: Government bonds, listed equity shares and bonds issued by the non-financial

corporate sector, and MMIs, listed equity shares and bonds issued by the banking sector.

Due to data limitations, we do not distinguish between tradable securities of a specific

type issued by different non-financial corporates, nor between tradable securities of a

specific type issued by different domestic banks. For example, all domestic bank bonds

are assumed to have the same market depth, and selling a bank bond is assumed to cause

the same price impact across all bonds issued by any domestic bank.

We set our baseline estimate of a security’s market depth equal to its market capital-

ization divided by its initial price (similar to e.g. Wiersema et al., 2019, 2021). As initial

prices are normalized, division by the initial price simply serves to make the baseline mar-

ket depth estimate dimensionless. For (domestic) government bonds, we use the market
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capitalization of South African government bonds at the end of 201615. Note that the

banks and funds own 21% of the market capitalization of the South African government

bonds. Due to data limitations, we estimate market capitalizations by assuming that

the banks and funds own the same fraction of 21% of other securities’ market capitaliza-

tions. Hence, the market capitalization of any security class is given by banks’ and funds’

aggregate holdings of the security class divided by 21%.

15The market capitalization of South African bonds as of Q4 2016 is sourced from the Q1 2017
SARB Quarterly Bulletin; https://www.resbank.co.za/content/dam/sarb/publications/quarterly-
bulletins/quarterly-bulletin-publications/2017/7718/07Statistical-tables—Public-Finance.pdf.
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