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Abstract

The vulnerability of supply chains and their role in the propagation of shocks has been high-
lighted multiple times in recent years, including by the recent pandemic. However, while the
importance of micro data is increasingly recognised, data at the firm-to-firm level remains
scarcely available. In this study, we formulate supply chain networks’ reconstruction as a link
prediction problem and tackle it using machine learning, specifically Gradient Boosting. We
test our approach on three di↵erent supply chain datasets and show that it works very well and
outperforms three benchmarks. An analysis of features’ importance suggests that the key data
underlying our predictions are firms’ industry, location, and size. To evaluate the feasibility of
reconstructing a network when no production network data is available, we attempt to predict
a dataset using a model trained on another dataset, showing that the model’s performance,
while still better than a random predictor, deteriorates substantially.

Keywords: Supply chains, Network reconstruction, Link prediction, Machine learning.
JEL codes: C53, C67, C81.

1 Introduction

The literature on input-output economics is old and well-established, but the vulnerability of
just-in-time supply chains - recently under the spotlight (Goodman & Chokshi 2021) - has led to
a renewed interest in the study of shock propagation in production networks. While early research
has been mainly carried out at the industry level (Leontief 1986, Miller & Blair 2009, Acemoglu
et al. 2012), it is increasingly evident that more fine-grained data is needed to predict the impact
of shocks. Unfortunately, information on firm-to-firm relationships is by nature confidential and,
therefore, often hard to access and incomplete. In the US, public companies are required to dis-
close prominent customers (Atalay et al. 2011). In a few countries, such as Belgium or Hungary,
VAT reporting allows national statistical o�ces to provide production networks to researchers
(Tintelnot et al. 2018, Diem et al. 2022); in others, such as Japan, large commercial datasets are
available (Mizuno et al. 2014, Inoue & Todo 2019, Carvalho et al. 2021). In the Operations Re-
search and Supply Chain Management literature, rich datasets have been analyzed (Brintrup et al.
2018, Demirel et al. 2019, Chauhan et al. 2021, Dolgui et al. 2018, Schueller et al. 2022), but they
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are usually limited to a specific industry or assembled to study the supply network of a specific
firm.

In most countries and for most periods, however, the data on firm-to-firm relationships is un-
available, making it crucial to develop methods to reconstruct these networks based on available
data. In this work, we develop a method for predicting links in production networks using data
on firms’ financial statements, industry, and location. For simplicity and due to data limitations,
our focus is on reconstructing binary relationships (the existence of links) rather than their weight
(the value of transactions). We approach this as a classification problem and tackle it with stan-
dard modern machine learning techniques. Let u and v be two nodes of the network G, fu and fv

be vectors of u’s and v’s covariates (e.g., sales, industry, etc.), and f(u,v) be a vector of dyadic fea-
tures (e.g., the geographical distance between the two companies). We can write the probability
Pu,v of a link between u and v as

Pu,v =  
⇣
fu,fv,f(u,v)

⌘
,

where  is unknown and network-specific. This formulation encompasses a wide variety of mod-
els where  is defined explicitly or implicitly. For instance, the literature on the reconstruction
of financial networks uses explicit functional forms for  , or varying complexity, from simple
gravity models to more complicated fitness models (De Masi et al. 2006, Garlaschelli et al. 2005,
Garlaschelli & Lo↵redo 2004). In the production network growth literature (Atalay et al. 2011,
Carvalho & Voigtländer 2014),  is often implicit but could be derived from the knowledge of
the stochastic mechanisms generating the network. Here we propose to learn  using a typical
supervised learning framework. We train a machine learning model on a portion of the network
and study its capacity to predict links in the unobserved part. We validate the predictions of our
model through its Receiving Operator Characteristic (ROC) curve. Our method shows remark-
able results for all the tested datasets. In addition, these methods make it possible to understand
which features of the firms are key to predicting trade connections through an analysis of the
features’ importance. For our datasets, firms’ industrial sector, geographical location, and size are
the main performance drivers.

Literature. Our approach is related to two streams of research: network reconstruction and
link prediction. In general, network reconstruction tries to infer as much as possible about the
network from the available data (often nodes’ degrees and strengths) while limiting the number
of unsupported assumptions. These methods have been widely applied to financial networks
and systemic risk estimation (Squartini et al. 2018, Almog et al. 2019, Squartini & Garlaschelli
2011, Squartini et al. 2015), but their application to firm-to-firm production networks is still
in its infancy (Hooijmaaijers & Buiten 2019, Mattsson et al. 2021, Ialongo et al. 2022). Similar
techniques were also applied to the international trade literature (Squartini & Garlaschelli 2014,
Garlaschelli & Lo↵redo 2004, 2005, Garlaschelli et al. 2007, Almog et al. 2019) to reconstruct the
binary topology of the trade network between countries.

Link prediction instead only tries to infer whether two network nodes are connected. Some
of the most popular techniques in link prediction (Lü & Zhou 2011) are based on computing
similarity scores between nodes. These scores are then assumed to be a proxy for the likelihood of
a link. There are many methods to compute these scores. The most celebrated ones, like Jaccard
(Liben-Nowell & Kleinberg 2007), Katz (1953), LHN (Leicht et al. 2006), Preferential Attachment
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(Barabási & Albert 1999), Adamic-Adar (2003), and Resource Allocation (Zhou et al. 2009) are
derived knowing the neighbors of each node.

There is little work being done on link prediction for production networks specifically. Reisch
et al. (2022) used mobile phone data to reconstruct the production network of an undisclosed Eu-
ropean country. Ialongo et al. (2022) uses a maximum entropy approach to reconstruct the Dutch
firm-level interactions. In Hillman et al. (2021), the authors designed an algorithm that stochasti-
cally links customers and suppliers so that the production network matches the sectoral linkages
provided in the OECD Input-Output Tables. Brintrup et al. (2018) and Kosasih & Brintrup (2021)
pioneered the use of machine learning for link prediction in supply chains. An important di↵er-
ence between these studies and ours is that they use features derived from the network’s topology,
either manually, as in Brintrup et al. (2018), or automatically through Graph Neural Networks
as in Kosasih & Brintrup (2021). In contrast, here, we consider firms’ features. We believe this
to be eventually advantageous from an operational point of view, as, in countries where no sup-
ply chain data is available, firm-specific information (like sales or geographical position) is still
widely available.

The outline of this paper is as follows. Section 2 describes the data and the methods. Section 3
provides the results; We conclude in Section 4.

2 Data and methods

2.1 Data

Datasets. We test our methods on three datasets: Compustat, FactSet, and a firm-level admin-
istrative dataset from Ecuador1. Compustat is a financial, statistical, and market information
database on active and inactive publicly listed companies. It provides several company-level fun-
damentals (such as income statements and balance sheets) and information on firms’ commercial
relationships. Compustat primarily draws its data from Security and Exchange Commission (SEC)
filings, and standardized financial statements required from the US SEC. SEC filings require com-
panies to indicate those customers who account for 10% or more of their total revenues, allowing
the identification of supplier-customer relations between di↵erent companies. Like Compustat,
FactSet is a proprietary database of financial and market data. It also collects information on com-
panies’ trade partners from SEC filings but integrates them with press releases, news, and other
sources of business insights. The third dataset, which we call “Ecuador” for short, is assembled
by Ecuador’s Tax authorities from firms’ tax declarations. It contains information on companies’
legal status, sales, and location. Most importantly, it has detailed information on every firm’s
trading partners for virtually all the firms in Ecuador’s formal economy2.

We downloaded Compustat from Wharton Research Data Services. Firms’ annual fundamen-
tals can be found in the eponymous table in the Compustat directory. Supply Chain data can
be found in the “WRDS Supply Chain” table in the “Linking Suite by WRDS” folder. No pre-
processing was performed on this data. We accessed the FactSet data through FactSet’s proprietary

1These datasets include goods and services firms. Many important examples of supply chain disruptions concern
physical flows (e.g., the delays following the recent blockage of the Suez canal), so one could remove services firms for
specific research questions. Here we keep all the firms.

2The Ecuador dataset was assembled for research purposes. Consequently, the data is anonymized, and real firms
cannot be identified in the data.
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data feed. Firms’ fundamentals and supply chain information can be found in the folders with
the same names. The supply chain data was aggregated at the ultimate parent company level,
using FactSet’s ownership structures data, while the monetary variables in the fundamentals were
converted to USD (see Online Appendix A for details) 3.

The Ecuador dataset was provided by Ecuador’s government to one of the authors. Additional
details on this dataset can be found in Astudillo-Estevez (2021). Bacilieri et al. (2022) reviews
existing firm-level production networks datasets and their key properties, including Ecuador and
Factset, and contains further references to papers using these datasets.

Compustat and FactSet’s data are provided at a yearly frequency, but we only retain a one-
year snapshot, choosing the year with the highest number of links (2013 for Compustat, 2018 for
Factset). In each dataset, we remove firms with incomplete information and retain only firms with
at least one connection in the supply chain. For Ecuador, we restrict our analysis to the largest
10.000 private companies due to computational constraints. Table 1 reports the number of nodes
and links in each dataset.

Number of firms (N ) Number of links (E) (N (N � 1)�E)/E
Compustat 915 1,033 808
FactSet 6,714 40,861 1,102
Ecuador 10,000 587,693 169

Table 1: Number of nodes and links in the three datasets. The last column shows the dataset’s
imbalance, i.e., the ratio of the number of pairs that do not have a link to the number of pairs that
do have a link.

We now motivate and describe three sets of variables that we will use as features: financial
variables, geographical variables, and industry a�liation.

Financial variables. Larger firms are likely to have more links (Krichene et al. 2019, Bernard,
Dhyne, Magerman, Manova & Moxnes 2019, Bacilieri et al. 2022). As a result, firm sales are likely
to be an important feature. In FactSet and Compustat, we also retain two other indicators: labor
productivity (sales per worker) and R&D intensity (R&D expenses over sales). For Ecuadorean
companies, we include expenses among the features.4

Geographical variables. An extensive literature going back to Marshall (1890) in economic ge-
ography and Tinbergen (1962) in international trade has documented that firms tend to trade
with physically closer firms (see also Bernard, Moxnes & Saito (2019)). The three datasets contain
the addresses of firms’ headquarters. We merged this information with that in the GeoNames
database to compute the geographical distance between each pair of firms.5 Moreover, we used

3Compustat data was last downloaded in September 2021. Appendix A contains the specific version of FactSet used
to build our dataset.

4For Ecuador, we do not have access to total sales or total expenses, but only to sales to other companies (closer
to the concept of “intermediate sales”, i.e. excluding e.g. sales to households) and expenses paid to other companies
(closer to the concept of intermediate expenses, excluding e.g. labor costs).

5More precisely, Compustat, FactSet, and Ecuador all have information on companies’ addresses, specifically (city,
state, postal code, and ISO 3 country code). Geonames mantains a record of all the human settlements around the
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a firm’s country (for Compustat and FactSet) or province (for Ecuador) as a feature. Specifically,
we created a dyadic feature listing all the possible ordered combinations of countries (provinces),
and assigned to each possible link the corresponding value given the supplier’s and the customer’s
location. Note that we include only dyadic features (distance and location pair), and we do not
include location as an individual firm’s feature.

Industrial sector. The type of product that two firms produce should be a strong determinant of
their probability to trade. In the extreme case where a product has a fixed “recipe”, as in Leontief
production functions, a producer will buy only from firms producing the required inputs. All
the datasets contain information on companies’ industrial sector. We used 3-digit NAICS codes
for Compustat, 3-digit SIC codes for FactSet, and 3-digit ISIC codes for Ecuador. As for firms’
geographical location, we used the industrial sectors to create a dyadic feature for every possible
link. For instance, if firm 1 is in sector A and firm 2 is in sector B, the industrial sector feature for
the couple (1,2) will be AB; and if firm 1 is in sector B and firm 2 is in sector A, the industrial sector
feature for the couple (1,2) will be BA. As for geographical location, we include industry only as a
pairwise feature, that is, we do not include industry as a feature of an individual firm.

Compustat FactSet Ecuador Node-level Dyad-level
Sales X X X X
Productivity X X X
R&D intensity X X X
Expenses X X
Industrial sector X X X X
Geographical distance X X X X
Country X X X
Province X X

Table 2: Summary of the features used in our model for each dataset.

2.2 Setup

Structure of the dataset. We create a row for each possible (directed) pair of firms 6

. First, we fill the row with suppliers’ and customers’ individual features (sales, and labor pro-
ductivity, R&D intensity, total expenses). Second, we include dyadic features (geographical distance,
and the two categorical variables containing the industrial sector and the country/province of the
two firms). The column existence provides the classification target for prediction, that is, 1 if a link
is present in the dataset and 0 otherwise.

globe with a population > 500. The dataset contains the geographical coordinates of each settlement, and can be
downloaded from http://download.geonames.org/export/dump/. The two datasets can be merged on the cities’
name, the state and the country ( “State” is only available for US, Australia, Brazil, and a few other federal countries).
Once we have the geographical coordinate of each firm, the distance is computed as the geodesic distance between the
two sets of coordinates.

6Self-loops are excluded by default, despite being sometimes observed in the data.
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Dealing with sparsity using subsampling. Only a tiny fraction of all possible links exist, so the
existence column contains vastly more zeroes than ones. If untreated, this imbalance drives the
model always to predict a non-existing link. We tackle this issue by randomly undersampling the
datasets (He & Garcia 2009, More 2018); that is, we retain all the positive entries but we keep
only a small randomly selected fraction of zero entries. We call the undersampling ratio the ratio
between the number of elements in the two classes in the subsampled dataset. We choose an
undersampling ratio of 200 for Compustat and Factset and 50 for Ecuador (compare to the ratios
in the non-undersampled datasets, reported in Table 1) – these provide a good balance between
model performance and computational requirements. For each network, we generate five di↵erent
subsampled datasets. We then split each of these 5 datasets into a training and a testing set in a
70 : 30 ratio 7.

Randomly undersampling the data is not the only possible solution to learning on imbalanced
datasets, nor is it an inconsequential choice. By deleting a portion of the data, undersampling
might lead to an information loss and hinder a model’s performance. Several “informed” un-
dersampling algorithms have been proposed to delete links with minimal information loss (e.g.,
Zhang & Mani (2003)). However, these methods are computationally more demanding, as they
usually require computing some definition of distance between the di↵erent data points and, thus,
are harder to adopt when dealing with large datasets. Another approach, oversampling, consists in
making copies of the datapoints associated with existing links (in a possibly sophisticated way, see
e.g., Chawla et al. (2002)), but again this is computationally intensive andmight lead to overfitting
if implemented naively.

Algorithm. Ourmain approach is an ensemble method, specificallyGradient Boosting (Friedman
2001). Ensemble methods combine multiple algorithms (weak or base learners) to obtain predic-
tive performance that any constituent algorithms alone could not achieve alone. These are consid-
ered to be among the best algorithms for classification and predictions on tabular data (Grinsztajn
et al. 2022). They also have the advantage of being widely available in software packages, and are
fast enough for us, given the size of our datasets.

The idea at the core of boosting is to train several learners sequentially, each trying to com-
pensate for its predecessors’ shortcomings. Assume a given dataset of n examples and m features
D = {(xi, yi )} (|D| = n,xi 2 Rm

,yi 2 R), and a function � (xi ) = yi that maps inputs into outputs.

7The subsampling is performed before the splitting of the dataset into a training and a testing set, so that both are
undersampled. However, the results of the paper hold - with minor di↵erences - for a non-undersampled test set. This
is because the non-undersampled test set would have more entries for non-existing links, which are easy to predict.
See Appendix B. Our procedure implies that we perform the undersampling, which is stochastic, only once.
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Gradient Boosting tries to build an approximation �⇤
K
(xi ) as a sum of K functions,

ŷi = �K (xi ) =
KX

k=1

⇢kfk, (1)

where the functions fk = f (xi ,✓k) are the ensemble’s base learners, parametrized by ✓k . The
approximation �⇤

K
minimizes the expected value of a loss function L (yi , ŷi ) and is built in K steps.

First, a constant approximation is obtained as

�
⇤
0 = argmin

↵

nX

i=1

L (yi ,↵) . (2)

The following models are then built sequentially,

�m = �m�1 + ⇢mfm, (3)

where ⇢m and fm minimize

�
⇢m,fm

 
= argmin

⇢,✓

nX

i=1

L (yi ,�m�1 + ⇢f (xi ,✓)) . (4)

Ideally, to solve the minimization problem in equation 4, we would choose fm to be equal to the
negative gradient of the loss function,

fm (xi ) = �gm (xi ) = �
"
@L (yi ,� (xi ))
@� (xi )

#

�(xi )=�m�1(xi )
, (5)

and find the value of ⇢m with a line search,

⇢m = argmin
⇢

nX

i=1

L (yi ,�m�1 (xi ) + ⇢fm (xi )) . (6)

However, equation 5 can’t be always satisfied, and we settle for the learner fm (xi ) = f (xi ,✓m) that
mostly correlates with gm over the data distribution. This is the solution of the problem

✓m = argmin
�,✓

nX

i=1

[�gm (xi )� �f (xi ,✓)]2 . (7)

A common choice for base learners is using classification and regression trees (Breiman et al.
1984, Sutton 2005). Broadly speaking, trees are made of branches, starting at the same node.
Each branch is composed of a set of internal nodes and terminates with a leaf. Internal nodes host
decision rules; by starting at the tree’s root and following the decision rules, each data point can be
allocated to one of the leaves, or a set of scores can be assigned to each leaf, and later combined into
a single prediction. The goal is to create a model that predicts a target variable’s value by learning
the correct decision rules inferred from the data features. For this class of functions, finding the
optimal parametrization in equation 7 corresponds to finding the optimal tree structure and leaf
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weights. This is a very demanding computational task: a simple “greedy” approach requires to
enumerate all the possible split points for every feature of the training data. Recently, a series
of algorithms and engineering solutions have been proposed to train gradient boosting models
more e�ciently (see, e.g, Tyree et al. (2011), Chen & Guestrin (2016) and Ke et al. (2017)). Among
these, LightGBM (Ke et al. 2017) was developed with the goal of optimizing training time on large
datasets. According to Bentéjac et al. (2021), LightGBM significantly outperforms the other gra-
dient boosting implementations in terms of computational speed and memory consumption with
minor compromises on predictive performance. In line with LightGBM’s default recommenda-
tion, we treat categorical features as numeric (see Appendix C for a discussion). We mostly stick
to the default parameters; Appendix A reports what we use in details.

ROC curves. A model trained to distinguish between existing and non-existing links is an ex-
ample of a binary classifier. To test its performance, one can compute True Positives (TP), True
Negatives (TN), False Negatives (FN) and False Positives (FP) (see Fig. 1).

Figure 1: (A): True Positives, True Negatives, False Positives and False Negatives are often reported
in the confusion matrix. (B): TPR, FPR, and Precision can help us summarize the information in
the confusion matrix.

In practice, our classifier is predicting a probability p that a link exists. It is up to us to decide
the threshold ⌧, such that if p > ⌧, the link is predicted as existing; the model’s confusion matrix
(Fig. 1) ultimately depends on the threshold we adopt. To evaluate the model in a way that
does not depend on the threshold, we use the Receiving Operator Characteristic curve (ROC). The
ROC curve is created by plotting the True Positive Rate (TPR=TP/(TP+FN)), also called Recall or
Sensitivity, against the False Positive Rate (FPR=FP/(FP+TN)) at various values of the threshold
⌧. In our framework, the ROC curve can be thought of as the set of points in the FPR/TPR space
obtained by sequentially adding links in the network, from the most to the least probable.
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We can summarize the information in a ROC curve in a single metric, the Area Under the
Curve (AUC): the higher the AUC, the better themodel performance. AUC can take values between
0 and 1, and a “random” classifier, that is, a classifier that makes its prediction by drawing from a
Bernoulli distribution, achieves an AUC equal to 0.5.

In strongly unbalanced datasets, it is extremely easy to predict the negatives, so the di�culty
lies in making a small number of excellent predictions, that is, predicting only a fairly small
number of links and doing so accurately (having TP and few FP). AUROC does not measure this
ability very well, because even when many of our predicted links are non existing (many FP), the
FPR=FP/(FP+TN) remains relatively small due to the huge number of TN. Precision-Recall Curves
(PRCs) are interesting alternatives to ROC in this context (see, e.g., Brintrup et al. (2018)). Pre-
cision (TP/(TP+FP)) gives the number of correct guesses out of all guesses, and Recall is the TPR
defined above (TP/(TP+FN)), which gives the number of correct guesses out of all the positives
in the dataset. The area under the precision-recall curve (PR-AUC) can be used to summarize the
performance of the model. Nevertheless, here we present our results in terms of AUROC (AUC
for short) for two reasons (see Appendix B). First, when a model has a curve that dominates on
the TPR-FPR space, it dominates on the P-R space. Since these curves convey relatively similar
information, it makes sense to present the more commonly used metric. Second, PR-AUC, in con-
trast to AUROC, is highly sensitive to the undersampling ratio. Since the undersampling ratio is a
relatively arbitrary choice we make, and future researchers would likely make a di↵erent choice,
we prefer to establish our benchmark performance using AUROC and include Precision-Recall
Curves in Appendix D.

3 Results

We first show the performance of our approach and compare it with those of a few relevant bench-
marks. Next, we show which features substantially impact the model’s performance. Finally, we
train the model with data from a specific country and show its performance in predicting links in
other countries, mimicking a real-world application more closely.

3.1 Prediction performance

Fig. 2 shows the results of our machine learning model on the three di↵erent datasets. The model
provides very good results, with a value for the AUC always above 0.9, vastly outperforming the
0.5 AUC benchmark value of random classifiers. These results are in line with those obtained by
Kosasih & Brintrup (2021), who also get AUC values slightly above 0.9, although the comparison
is not straightforward because the two methods di↵er substantially in their inputs, the networks
analyzed, and the overall approach.

Fig. 3 shows the corresponding ROC curves. Recall that the ROC curve is built by ranking all
pairs of firms by their probability of being connected, and considering that a link exists only for
the n pairs with the highest probability. The steep ascent at the beginning of the curves in Fig. 3
tells us that if we increase n a little (i.e., if we move on the curve in the right direction), we will
correctly predict more and more links at the cost of misplacing a few.

What would these numbers imply for a real-world, truly out-of-sample test case? In such a
case, we would not be able to undersample the set where predictions are made, since, by defini-
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Figure 2: AUC values for the Gradient Boosting model on the three datasets. Average values
(bars) and standard deviations (error bars) are computed on the five di↵erent realizations of the
subsampled datasets. Each error bar shows ± one standard deviation from the average value.

tion, we wouldn’t know whether links exist or not. To get better understand what these numbers
would imply in practice, Appendix B provides an analysis of Compustat with no undersampling.
We found that if we predicted a number of links equal to the existing number of links in the test
set (310), 23% of the predicted links would be true links (and by definition, these predictions
would recover 23% of all the positive links).
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Figure 3: ROC curves of the Gradient Boosting model. For each dataset, we plot 5 ROC curves,
obtained on five di↵erent train-test splits of the datasets

3.2 Benchmarks

To further assess the performance of our model, we provide three relevant benchmarks: a sales-
driven maximum entropy model, a gravity model, and an exponential random graph model (ERGM).
All the benchmark models were tested on the same test sets used for the gradient boosting model.
However, the training procedure and the information used vary from benchmark to benchmark.

Sales-driven Maximum Entropy model. We use a model similar to the model used by Almog
et al. (2019), Squartini & Garlaschelli (2014), Garlaschelli & Lo↵redo (2004, 2005), Garlaschelli
et al. (2007) to predict the topology of the International Trade Network. In one of its simplest
forms, in the context of trade between countries, the model predicts that, if i and j have GDP Yi

and Yj respectively, the probability of trade between i and j (i.e., of goods flowing from i to j) is

pij =
zYiYj

1+ zYiYj

,

where z is a parameter to be estimated. We use the previous formula and substitute firms’ sales
for countries’ GDP to compute the probability of a link between two companies. Since pij is an
increasing monotonic function of YiYj , assuming z > 0, we can simplify the expression above and
compute a score sij as

sij = YiYj .

We build the ROC curves by using the score sij to rank the links from the most to the least likely
to exist.

The advantages of the sales-driven maximum entropy model is that it does not need training
(it can be used directly on the test data) and it requires very little data. A substantial drawback,
however, is that while reciprocity tends to be low in production networks (e.g. around 5% in the
Ecuador network and lower in FactSet and Compustat, Bacilieri et al. (2022)), this model predicts
perfect reciprocity, pij = pji .
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The next benchmark we introduce keeps a similar structure but allows for non symmetric
predictions and uses more information.

Gravity model. The gravity model owes its name to a loose analogy with Newton’s gravitational
law. First pioneered by Ravenstein (1889) in the study of migration patterns, it was later used by
Tinbergen (1962) to explain international trade flows. The model was immensely successful in
this field due to the good fit to observed trade flows, and its parsimonious and tractable repre-
sentation of economic interactions (Anderson 2010). In a generalized form, the Gravity Model of
international trade states that the expected amount of trade

D
wij

E
from country i to country j is

D
wij

E
= K

Y
↵

i
Y
�

j

d
�

ij

, (8)

where dij is the geographic distance between the countries and K , ↵, �, and � are free parameters.
We test whether

D
wij

E
can be used as a meaningful score for link prediction. Specifically, if we

define a score sij = log
⇣D
wij

E⌘
we can rewrite Eq. 8 as

sij = constant +↵ logYi + � logYj �� logdij . (9)

To estimate this model, we take the “existence” variable as the dependent variable, replacing
sij . Since it is binary, we estimate the model using logistic regression, which we perform on the
training samples8.

A limitation of this model is that it does not use the information on firms’ industrial sectors.
While we could, in principle, add a set of dummies, we had limited success doing this, partly
because many industry-pairs appear only once or, more rarely, appear in the test set but not in the
training set. We refrain from pursuing this further while noting that the transparency of the logit
(or linear probability) models may make them useful in practice.

The estimated values for the parameters ↵, �, and � are shown in Table 3. The logistic regres-
sion picks up a few relevant features of the network. In all three datasets, � takes positive values
- unsurprisingly, as distant firms are less likely to be connected than closer ones. The values of ↵
and � are more interesting, as they o↵er some insights about the di↵erences between the datasets.
Recall that Yi denotes the sales of the supplier, and Yj the sales of the customer. For Compustat,
the value of ↵ is negative, while � is positive. These values suggest that, holding customer size
constant, pairs with larger suppliers are less likely, and holding supplier size constant, pairs with
larger customers are more likely. This somewhat counterintuitive result is a consequence of Com-
pustat’s way of collecting supply chain data: it is hard to find large firms that sell more than 10%
of their production to a single customer. The ↵ value becomes positive again when this bias is
lower (FactSet) or absent (Ecuador).

Exponential RandomGraphModel (ERGM). An ERGM is a probability distribution Pe over the
set of possible networks G,

Pe (G) / exp
⇣
✓ · x (G)

⌘
,

8We also added a small quantity � = 10�2 to the sales and distance variables before taking the log.
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↵ � �

Compustat �0.059± 0.004 0.743± 0.006 0.170± 0.009
FactSet 0.294± 0.001 0.660± 0.001 0.158± 0.001
Ecuador 0.4854± 0.0004 0.4311± 0.0003 0.1377± 0.0002

Table 3: Average value and standard deviation of the three coe�cients (across the five subsampled
datasets).

where x (G) is a vector of network G’s statistics and the vector ✓ contains the model’s parameters.
The statistics can include individual, dyadic or global information of a network, such as the sales
of firms, the geographical distance between pairs of firms, and the average density of the network.

These parameters are estimated so that the expected network statistics match the observed
ones, EG [x] = x

⇣
Gempirical

⌘
. ERGMs are popular in the study of socio-economic networks, in part

because they can shed light on the mechanisms driving the network formation process. For in-
stance, looking at Japanese firms, Krichene et al. (2019) find that link formation is driven by ge-
ographical distance, industrial sector, size (although with dissasortative mixing), common main
bank, reciprocity, and transitivity with common partners.

Finally, ERGMs make link prediction tasks straightforward. Let G+ij and G�ij be two identical
networks, except that i is connected to j in G+ij but not in G�ij . Thus the odds ratio pij of an edge
from i to j being present rather than absent is

pij =
Pe

⇣
G+ij

⌘

Pe

⇣
G�ij

⌘ = exp
⇣
✓(̇x(G+ij )� x(G�ij ))

⌘
.

We provide a more thorough discussion on link prediction with ERGMs and explain how we
fit the model in Appendix B.

Results. Fig. 4 shows the results. The Gradient Boosting model substantially outperforms the
three benchmarks. An interesting result is that, on the Compustat dataset, the maximum entropy
model has weak performance and is vastly outperformed by the gravity model. This is again due
to the way Compustat collects information on the supply chain. The correlation between sales
and indegree (number of suppliers) is 0.76, but only -0.16 between sales and outdegree (number
of customers). As a result, good models should be able to assign greater probability to pairs in
which a large firm is the customer rather the supplier, something that the gravity and the gradient
boosting model are flexible enough to do, but the sales-driven maximum entropy model fails to
do because it predicts pij = pji .

3.3 Importance of di↵erent features

Computing features’ importance means - in general - quantifying the relative predictive power of
the features. Here we compute each feature’s permutation importance (Breiman 2001). A feature’s
permutation importance is the decline in the model’s performance when the values of the feature
are randomly shu✏ed. Shu✏ing breaks the relationship between the feature and the target and
helps us assess how strongly our predictions depend on that feature.
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Figure 4: Values of the AUC for the benchmark models. Average values (bars) and standard devia-
tions (error bars) are computed on the five di↵erent realizations of the subsampled datasets. Each
error bar shows ± one standard deviation from the average value.

The algorithm works as follows. Let m be a fitted predictive model, D be a dataset with units
in row and variables in columns (here D is the test set), and K be a given number of repetitions of
the randomization. We first compute the reference performance P of the modelm on D. Then, for
each repetition k = 1, . . . ,K , and for each feature j in D, we first randomly shu✏e the column j of
the dataset to generate a corrupted version of the data D̃k,j , and then compute the score Pk,j of m
on the corrupted data D̃k,j . Finally, we compute importance Ij for feature j as Ij = P � 1

K

P
K

k=1Pk,j .
Permutation feature importance can give misleading results in correlated features that need

to be permuted together and whose contribution is hard to disentangle. In our data, the features
“country pair” and “geographical distance” are highly correlated, so we permuted these jointly
(that is, we randomized both columns simultaneously).

In all the datasets, we observe that the industrial sector is the main driver for the performance
(see Fig. 5). This is a sensible result. Firms producing similar goods will buy similar inputs,
and, consequently, knowing the industrial sectors of a pair of firms helps us a lot in predicting
commercial partnerships.

It is hard to make an unambiguous ranking of the other features; however a few facts can
be highlighted. The combination of Geographical distance and Country pair (Province pair for

14



Figure 5: Features’ permutation importance. Average values (bars) and standard deviations (error
bars) are computed on ten random permutations of one of the subsampled dataset. Each error bar
shows ± 1 standard deviation from the average value.

the Ecuador dataset) is very relevant for Ecuador and FactSet. These features are less relevant in
Compustat. This could be because most Compustat firms are based in the U.S., so knowing a pair
of firms’ countries is not very informative.

Finally, features related to size, while less important, do appear significant. In Compustat, and
to a lesser degree in FactSet, the sales of the customer is an important feature; again, this makes
sense since Compustat and to a lower extent FactSet include data arising from the “disclosure
of large customers” rule; the sales of the supplier is also important, but less. In Ecuador, the
expenses variables appear more important than the sales variables.

R&D intensity and labor productivity appear to have some mild importance in Compustat,
but none in FactSet (these variables are not available for Ecuador). This is an interesting negative
result, suggesting that overall, most of the predictive ability comes from intuitive and widely
available data: industry pairs, distance, and firm sizes. Of course, we expect that future studies
should be able to identify and design better features, based on network and economic theory.

3.4 Unobserved countries

In many countries, including several large advanced economies, no production network data is
available. Can we predict the production network of these countries, using what we learn from
countries where the production network is available, coupled with standard data on firms’ indus-
tries, locations, and sizes?

In principle, yes. We can train a model on a country where network data is available and apply
this model using only firm-level data. Here we demonstrate that this is technically feasible (we
only need to renormalize the variables to make the model portable from one country to another),
and we establish two benchmark results.
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The first uses the fact that FactSet contains data on several di↵erent countries. We remove
a country from FactSet, train the model on the remaining data, and predict the network of the
country that has been removed. If we perform well, we could, in principle, predict the production
network of a country where no production network data exists “as if FactSet had collected it”.

We then attempt a harder prediction task: Can we train the model on Ecuador, and predict
FactSet? And vice-versa? Our results here will be much less promising, and we will explain why.

Normalizing variables. Given our results on features’ importance, we consider only the most
important features: firm sales, industrial sector, and geographical distance. Working with raw
quantities is sometimes not feasible (e.g. because the classification systems for industries are
di↵erent), sometimes non-sensical (e.g. if sales are expressed in a di↵erent currency), and some-
times sub-optimal (e.g. because the geography of the countries is very di↵erent; for instance, the
distance between any pair of Japanese firms is lower than the distance between Boston and Los
Angeles).

To make the features more homogeneous across countries so that learning in one can be used
in the other, we rescale each feature such that within a given country, it ranges between 0 and 1.
If xi represents the sales of firm i based in country c, and if ! is the set of all the firms based in c,
we compute the quantity Xi as

Xi =
logxi �minj2! logxj

maxj2! logxj �minj2! logxj
.

Similarly, we substitute for the distance dij between i and j the quantity9

Dij =
logdij �mink,l2! logdkl

maxk,l2! logdk,l �mink,l2! logdk,l
.

Finally, to homogenize the industry classification systems, we convert both FactSet’s and Ecuador’s
industrial sector code to NAICS classification10.

Di↵erent countries in FactSet. FactSet contains information on companies based all over the
world. However, most firms are based either in the US, China, or Japan: each of these countries
hosts roughly one third of the firms in the dataset. These countries are thus excellent candidates
test cross-country predictability, as taking 2 out 3 in the training set implies roughly the same
train-test ratio as in the main task (0.7/0.3). We build a dataset as described in Section 2.2, and
then filter it to retain only pairs of firms based in the same country.

9To avoid computing the logarithms of null values, we added a small quantity � = 10�2 to the sales and the distance
of each firms couple.
10SIC to NAICS crosswalk was provided by NAICS association https://www.naics.com/

sic-naics-crosswalk-search-results/. ISIC (Revision 4) to NAICS concordance table was downloaded from
https://unstats.un.org/unsd/classifications/Family/Detail/27. We take SIC, ISICs, and NAICS at the third-
digit aggregation level. When the mapping between codes is not 1-to-1, we choose the more common combination
(e.g., a SIC sector S1 might be mapped 75% of the times to a NAICS sector N1 and 25% of the times to a NAICS sector
N2. We consider S1 ! N1 as the correct mapping). If more than one combination of codes appear with the same
frequency (11% of the SIC codes and 10% of the ISIC codes), we select one at random.
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Figure 6: In the previous section, the links to predict (dahed lines in light blue) were randomly
picked from the network. Now, the network is split into disjoint parts. Note that in training set,
we remove inter-country (blue-to-orange) links.

More precisely, while previously we considered all links and split them into a testing and
training set at random (Fig 6, left), we now take all the within-country links in a specific set
of countries as training set, and all the links within a target country as a testing set (Fig. 6,
right). Note that all the between-country links are entirely discarded - they are part of neither the
training nor the testing set.

FactSet on Ecuador, and vice-versa. Aside from normalizing and harmonizing the variables, we
again remove from FactSet all the links between firms based in di↵erent countries. For both the
datasets, we kept the undersampling ratios of Sec. 3.1.

Results. Fig. 7 shows the results for the cross-country prediction tasks using FactSet. Our ap-
proach retains a decent predictive performance with an AUROC greater than 0.8; while the quality
of the prediction decreased compared to the previous section (Figs. 2 and 3), our approach is still
consistently better than the benchmarks. The simple maximum entropy model is a particularly
interesting benchmark for this task, because it requires no training, and is therefore a straightfor-
ward method already available in many countries to reconstruct production network data.

To understand why our approach is not as e↵ective as the previous cases, we look at the dis-
tribution of the rescaled quantities D (distances) and X (sales) for the three di↵erent countries
(Fig 8 and 9). The point here is that we cannot expect an algorithm to predict well on a dataset
that is very di↵erent from the training sample, so we explore basic statistical properties of each
dataset separately to see if they appear similar (i.e., as if they were drawn at random from the
same sample).

We see that Japan’s D distribution has a prominent peak for small values, which is not present
for the other countries, and another peak around D = 0.9, while the distributions for the US and
China peak around D = 0.95. The distribution of rescaled sales X also appear quite di↵erent:
while most of the mass of the distributions for China and the US is between X = 0.5 and X = 0.9,
that of Japan is between X = 0.4 and X = 0.7. These di↵erences are noticeable and likely to
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Figure 7: AUROCs for the Factset cross-country prediction task, for di↵erent dataset splits. Aver-
age values (bars) and standard deviations (error bars) are computed on the five di↵erent realiza-
tions of the subsampled datasets. Each error bar shows ± 1 standard deviation from the average
value.

contribute to the decline in performance, but overall, there is a good degree of homogeneity in
FactSet, making cross-country prediction possible.

By contrast, the results of the second experiment, where we predict FactSet using Ecuador and
the other way around, are not as encouraging. The performance of our model hardly surpasses
those of simpler classifiers (see Fig. 10; Maximum Entropy would have similar performance).
We again attribute this outcome to the considerable di↵erences between the two datasets. The
distributions of rescaled sales X and rescaled distances D, shown in Fig. 11 and 12, support this
intuition11. In particular, the distributions of firm sizes are very di↵erent in FactSet, which is
based on large, listed firms, and in Ecuador, which is an administrative dataset.

Aside from firm sizes and distances, the key features helping prediction are the industry pairs.
In Fig. 13, we ask, for each dataset and each sector-pair, “if we observe two firms with a spe-
cific sector-pair, what is the (empirical) probability that there is a link between them?”. In other
words, for each sector pair, we check the share of observations in the (undersampled) dataset that
correspond to existing links. The percentages di↵er dramatically between Ecuador and FactSet,
showing basically no correlation.

We think this is the result of di↵erences in structure of the economies, di↵erences in data
collection methods, and issues with matching classification systems.

Overall, the results suggest that our approach can predict links on an unobserved country
as long as the data on the production network of the target country is collected using similar
methods. We cannot be sure that the good results we have for cross-country predictions using

11The distributions are computed on the full datasets, i.e., before splitting them into test and train sets (but after the
pre-processing, removing international links and rescaling variables).
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Figure 8: Distribution of rescaled distances D for the US, China, and Japan

Figure 9: Distribution of rescaled sales X for the US, China, and Japan

19



Figure 10: AUROC values for all the combinations of training and test sets. For ease of compari-
son, we report in the first five rows the results of Fig. 2 and Fig. 7

FactSet would extend to cross-country predictions using administrative datasets, but we think
this should be tested and our work here provides a clear benchmark.

4 Conclusions

We used machine learning classifiers to infer the presence of commercial relationships between
companies. Our approach shows solid predictive performance. Given how parsimonious our
model is regarding training features and how consistent the results are across datasets, we believe
this is a striking result.

Our approach outperforms a few well known-benchmarks, although the comparison is dif-
ficult because the models have di↵erent data requirements. Nevertheless, the strength of our
model lies in the possibility of leveraging company-specific features, numerical and categorical.
For supply chains, these properties (sales, industry, and location) are often easier to find than
network-specific metrics that other methods require.

Our results also suggest that reconstructing the production network of country A, given the
production network of another country B, might be a feasible challenge. In this paper, we made
one first attempt to establish a benchmark that we expect can be beaten in the future, for example,
by including in the predictions some previous knowledge on the target production network. If
successful, this e↵ort would dramatically cut the e↵orts required to obtain production networks’
data and make fine-grained data much more widely available to researchers.

An obvious extension of our work would be to include and design of new features, company
and pair-specific, from both network and economic theory. A further step would be to include
network topology. Simple link prediction models based on local similarity indices (Zhou et al.
2009), or more sophisticated models based on topological information have proven to be e↵ective
in predicting links for a wide set of networks, including supply chains (Brintrup et al. 2018,
Kosasih & Brintrup 2021). In addition to this, as is well known in the forecasting community,
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Figure 11: Distribution of D for FactSet and Ecuador.

Figure 12: Distribution of X for FactSet and Ecuador.
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Figure 13: Percentage of existing links in each sector couple in the two datasets. The two quantities
are uncorrelated (the correlation coe�cient ⇢ is only 0.09), suggesting a significant di↵erence in
the economies’ structures and the data collection process.

forecasts combination often improves performance; this principle also applies in the context of
link prediction: optimal predictions are often obtained by stacking together the output of several
di↵erent models (Ghasemian et al. 2020). Combining the approach described in this work with
other topology-based link prediction methods is an interesting and important future direction for
research.

A related avenue for further research would be to find better metrics for evaluating perfor-
mance. Here we have used the classic AU-ROC, noting its limitations, but in the future, it would
be interesting to find performance metrics that focus on the ability to predict existing links, are
invariant to the undersampling ratio, evaluate the ability of the model to predict topological fea-
tures, and evaluate whether the reconstructed network is useful when plugged in economic mod-
els.
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Appendix

A Model details

The experiments were performed on an Amazon AWS EC2 c5 machine. The model we used is the
gradient boosting classifier provided in the LightGBM python library, which turned out to be the
best-performing across the di↵erent experiments. Table 4 reports the models’ parameters for the
di↵erent experiments. We performed a grid search around a few of the parameters’ default values
and the default values of another well-known gradient boosting implementation (XGBoost) on a
very coarse grid. The tweaking of these parameters did not appear to make a significant di↵erence
in our results, and we did not pursue a more fine-grained optimization.

Compustat FactSet Ecuador Factset cross-country Factset-Ecuador
num leaves 50 100 150 200 200
num estimators 100 200 600 300 300
max depth 6 6 -1 -1 -1

min child weight 1 1 0.001 0.001 0.001

reg lambda 1 1 0 0 0

Table 4: Model parameters across the di↵erent experiments. Values in bold font are LightGBM’s
default values.

B Undersampling and evaluation of model performance

As the main text explains, our primary metric for comparing models is the Area Under the Re-
ceiving Operating Curve (AUROC). This metric has a well-known drawback in the case of strongly
unbalanced datasets such as ours: The ROC curve uses the FPR=FP/(FP+TN), so a large change
in the number of FP leads to only a minor change in the FPR due to the vast number of TNs.
In other words, ROCs fail to put emphasis on the performance obtained when predicting only a
small number of existing links.

This issue is well-known, and the main alternative suggested in the literature is the Precision-
Recall Curve (PRC) (see Fig 1B for definitions). While PRCs are very intuitive and useful for link
prediction tasks, there are three reasons why we prefer to use AUROCs in the main body of the
paper. First, to a large extent, ROCs and PRCs convey the same information; in fact, it is not
di�cult to show that if a model has a ROC that strictly dominates that of another model, then its
PRCs also strictly dominates, although the ranking between models can change when their ROCs
cross (Davis & Goadrich 2006). Second and more importantly, in contrast to ROCs, PRCs depend
substantially on the undersampling ratio: if we construct datasets with many more positives, our
guesses of positives are more likely to be true. In this paper, we need to undersample the data to
create training and testing samples of manageable sizes, so the dependence of the performance
metric on the undersampling ratio is potentially problematic.

To explain the issue in more detail, we explore ROCs and PRCs for a large span of values
for the undersampling ratio for Compustat, which is small enough to allow us to estimate the
models even if we don’t undersample at all (see Table 1). Fig. 14 shows the results, which are in
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Recall Precision # Links Predicted
0.23± 0.02 0.23± 0.02 310
0.0645 0.8 67
0.5 0.0989 1446

Table 5: Precision and Recall at various points of the PRC, corresponding the darkest line in Fig.
14, right panel. The first row corresponds to the true number of links in the testing set.

line with Kosasih & Brintrup (2021, Figs. 5 & 6). While ROCs are fairly stable under di↵erent
undersampling ratios, the PRCs change dramatically.

Figure 14: Compustat’s Receiver-Operating (Left) and Precision-Recall (Right) curves, for di↵erent
values of the undersampling ratio (SSR), with Area Under the Curve (AUC) shown in the legend.

Essentially, if we remove many negatives, it becomes easier for any guess of a positive to be
correct. This observation also serves to note a trivial but important point: in a case where we really
do not know the labels (positive/negative), we cannot undersample the dataset. Therefore, to get a
sense of the performance of the model in a genuine out-of-sample task, we need to compute these
metrics in a non-undersampled test set. Since Compustat is small enough to do this, we provide a
few specific points along the PR-curve (Table 5). If we predict as many links as the true number of
links, we recover 23% of the true links, and 23% of our predicted links are indeed existing links.
If we wanted to be sure that 80% of our predictions are correct, we should only pick ⇡ 67 links,
thus identifying roughly 6% fo the links in the network. If instead we wanted to identify half of
the links in the network, we would have to make ⇡ 1446 guesses, of which only ⇡ 10% would
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correspond to an existing link.
We expect these numbers would be somewhat lower for Factset and Ecuador, but we have not

tested.
While we could have compared all the various models using AUPRCs throughout the paper

(see Online Appendix D for additional results), here we prefer to report AUROCs, which provide
a more robust benchmark for future researchers, who will use undersampling ratios appropriate
to their network density and computational capability.
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Online Appendix

A FactSet Data processing

For the purposes of this paper, we accessed three di↵erent FactSet products: Standard Datafeed
- Fundamentals V3 - Advanced - Global, Standard Datafeed - Supply Chain relationship, and APB -
Standard Datafeed - Suppply Chain Shipping Transaction. We parsed information on companies’
fundamentals (sales, R&D expenses, number of employees, industrial sector, and geographical
location) from the first dataset and used the other two to identify supply-chain relationship. The
link prediction code takes three datasets as inputs: a dataset with firms’ fundamentals (indexed by
firm-date), a dataset of links (indexed by supplier-customer-year), and a dataset of geographical
information (indexed by firm). We provide below a high-level summary of the construction of
these inputs and refer to the code (available upon request) for the details.

Fundamentals The fundamentals dataset is built from the following FactSet files:

1. Fundamentals

• ff basic eu v3 full 5315/ff basic af eu.txt

• ff advanced eu v3 full 4524/ff advanced af eu.txt

• ff basic ap v3 full 5276/ff basic af ap.txt

• ff advanced der ap v3 full 4460/ff advanced der af ap.txt

• ff basic am v3 full 5258/ff basic af am.txt

• ff advanced der am v3 full 4484/ff advanced der af am.txt

2. FX Rates

• fx rates usd.txt

3. Symbology

• sym hub v1 full 9915/sym coverage.txt

• sym hub v1 full 9915/sym entity sector.txt

• f sec hub v3 full 5299/ff sec entity hist.txt

The Fundamentals files contain the (yearly) information regarding companies sales, number of
employees, and R&D expenses, and a currency column that states the features’ currency. We can
convert all these features in USD throught the FX Rates table provided by FactSet. The original
fundamentals files are at the security level, not at the company’s one. To create a dataset at the
company level, FactSet provided us with the following example query,

Select a.factset entity id, c.fsym id,c.date,c.ff sales

from [sym v1].[sym sec entity] a

join [sym v1].[sym coverage] b on a.fsym id = b.fsym id
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join [ff v3].[ff basic qf] c on c.fsym id = b.fsym regional id

where a.factset entity id =’05HK0W-E’and a.fsym id = b.fsym primary equity id

,

that we “translated” to python. We used sym hub v1 full 9915/sym entity sector.txt to as-
sign the correct SIC code to each of the firms.

Supply Chain edgelist The Supply Chain’s edgelist is built from the following FactSet files:

1. Supply Chain

• ent supply chain v1 full 2354/ent scr supply chain.txt

2. Shipments

• sc ship trans current v1 full 1146/sc ship trans curr 1.txt

• sc ship trans current v1 full 1146/sc ship trans curr 2.txt

• sc ship trans current v1 full 1146/sc ship trans curr 3.txt

• sc ship trans current v1 full 1146/sc ship trans curr 4.txt

3. Mappings

• ent entity advanced v1 full 6896/factset entity structure.csv

• sc ship trans hub v1 full 1120/sc ship parent.txt

The Supply Chain and Shipment files both contain an edgelist (supplier-to-customer and
shipper-to-consignee respectively). The mapping files have two columns “FACTSET ENTITY ID”
and “FACTSET ULT PARENT ENTITY ID”. We assume that every FACTSET ENTITY ID that is
not present in the mapping is a ultimate parent company.

Coordinates The firms’ geographical coordinates were computed from the following files:

1. FactSet’s Addresses

• ent supply chain hub v1 full 2355/ent scr address.txt

• sc ship trans hub v1 full 1120/sc ship address coord.txt

• sym hub v1 full 9915/sym address.txt’

2. Geographical Coordinates

• cities1000.txt, (GeoNames)

The firms’ addresses and the geographical coordinates were merged on companies’ city, coun-
try, and state (in case of US). Some manual adjusting have been done to deal with non-ascii char-
acters and the di↵erent names of some cities (e.g., Geneva vs. Geneve). In the end, we were able
to assign a geographical coordinates to ⇠ 93% of the available addresses.
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B Exponential-Family Random Graph Models

An ERGM is a probability distribution over the set of possible networks connecting a collection of
N nodes. It takes the form:

P(X = x) = k(✓)�1 exp(✓ · z(x)) ,
where

• X =
h
Xij

i
is a random adjacency matrix,

• x is a specific realization of X,

• ✓ is a vector of model parameters,

• z(x) is a vector of network statistics,

• k(✓) is a normalization constant.

ERGMs are popular in the study of socio-economic networks because they can deal with nodes’
covariates (e.g., the sales of a firm), dyadic properties (e.g., the reciprocity of an edge), and the
features of the full network (e.g., the expected density); as a result they can shed light on the
mechanisms driving network formation (see Krichene et al. (2019)). We briefly discuss how we
fitted this model and used it for link prediction.

Fitting. The ergm R library is a standard for working with ERGMs. From a network and a list
of features to include, it provides estimates of the coe�cients of an ERGM through a (pseudo)
likelihood maximization procedure. ERGMs are hard to calibrate on large networks, and we have
only succeeded in making the calibration process converge for Compustat, the smallest of our net-
works. For FactSet and Ecuador we have adopted a di↵erent strategy. First, we have subsampled
ten di↵erent subnetworks for each of the two datasets. These smaller networks were sampled
by randomly choosing a node and then retaining all its tier-1 and tier-2 neighbors (a procedure
known as snowball sampling). We have calibrated an ERGM for each subnetwork and computed
the average of their coe�cients. We have used the average coe�cients to make predictions on the
larger network. The statistics used in the three datasets are reported in Table 6.

Link prediction. Once the distribution is fitted to the data (i.e., once we have an estimate for ✓),
using an ERGM for link prediction is straightforward. Consider predicting a link between firm i

and firm j , that is, predicting whether the adjacency matrix entry Xij is equal to one or equal to
zero. Let us define Xc as the rest of the network, Xc = {Xkl} 8 (k, l) , (i, j). For example, consider the
following network G, where we know the presence/absence of each link except the one between 2
and 3:

We may represent the adjacency matrix as

x =

2
666666666664

0 1 1 0
0 0 ? 1
0 0 0 1
0 0 0 0

3
777777777775
.
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Compustat FactSet Ecuador

edges number of edges X X X
transitive number of triangles / transitivity X
nodecov(f)

P
(i,j)2X+

⇣
fi + fj

⌘
X X X

nodeicov(f)
P

(i,j)2X+ fj X X X
absdiff(f)

P
(i,j)2X+

���fi � fj
��� X

Table 6: ERGM statistics. The first columns shows the R functions used, the second column their
explanation. X+ is equal to the set of the coordinates of existing links and f is either sales, produc-
tivity, R&D intensity. The first two functions have a straightforward interpretation: they measure
the expected number of edges and transitive triads inthe network. The following two measure
the e↵ect of the feature f (i.e., they answer questions like: is a link more likely to exist if the
suppliers’ sales are larger?). The last one computes the expected di↵erence between connected
firms’ features. For a complete description of these functions, see the ergm package documenta-
tion (Handcock et al. 2019).

1

2

34

We want to find the probability that x2,3 = 1, while the rest of the matrix xc is equal to

xc =

2
666666666664

0 1 1 0
0 0 · 1
0 0 0 1
0 0 0 0

3
777777777775
.

We can define two networks: G+23, where x23 = 1 (figure on the left), and G�23, x23 = 0 (figure
on the right); we call x+ and x

� their adjacency matrices.

1

2

34

1

2

34
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Now let us assume we know xc, so we can define

p
+ = P (x23 = 1|xc) ,

p
� = P (x23 = 0|xc) .

We have
p
+ + p

� = 1.

We also know that

p
+ = P (G+23) = k(✓)�1 exp(✓ · z (x+)) ,

p
� = P (G�23) = k(✓)�1 exp(✓ · z (x�)) .

If we now define �23 = z (x+)� z (x�), we can write

log
 
p
+

p�

!
= log

 
p
+

1� p+
!
= ✓ · �23,

and

p
+ =

e
✓·�23

1 + e✓·�23
.

This procedure can be generalized to any desired network and link. Note that throughout the
previous discussion, we assumed a fixed value for ✓,i.e., we assumed that - once calibrated - the
parameters of our model would not change. This assumption is coherent with our experimental
procedure: we first calibrate the model using the whole network data (thus obtaining a single
value for ✓) and later use this model for link prediction. The previous discussion would have
been in agreement with a di↵erent yet sensible approach: calibrate the model on the observed
portion of the network, again obtaining a single ✓, and then use this model for link prediction12.
A consequence of using a single ✓ is that, as can be seen in the last formula for p

+, one does
not need to go through the di�cult challenge of computing the normalizing constant k (✓) (also
known as the partition function) to find a link’s odds to exist. However, it is worth mentioning
that in the literature, one can encounter a di↵erent approach, where p+ and p

� are computed
using two di↵erent models, one fitted on G+ and the other fitted on G�. This procedure leads
to a slightly di↵erent formula (see Kumar et al. (2020)), which falls back to the one we showed,
assuming that, in a large network, the presence or absence of a single link would not generate a
significant di↵erence in the values of ✓.

C Categorical Features

As we saw in the main body of the paper, the industrial sector of firms plays a crucial role in
predicting supply connections, and it is represented as a categorical variable in our work. Con-
sequently, it is important to provide the most salient facts on how the LightGBM implementation
deals with categorical variables.

12While sensible, this approach is technically more challenging to implement with the standard libraries used to fit
ERGMs.
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Tree-based models can, in theory, deal gracefully with categorical variables. Given a variable
x that can take a set of N categorical values {A,B,C,D, . . .}, the model can find splitting points by
asking questions as ”is x = A?”, ”is x = B?”, etc. While intuitive, this approach is not straight-
forward to implement, as algorithms can usually only deal with numerical features; hence, some
transformation of categorical variables to numerical ones (a process known as encoding) is needed.
A common choice for encoding is the so-called One-Hot encoding. In one-hot encoding, the vari-
able x is replaced by the set of binary variables {xA,xB,xC,xD, . . .}13. One-Hot encoding is, however,
suboptimal for tree learners. Particularly for high-cardinality categorical features, a tree built on
one-hot features tends to be unbalanced and needs to grow very deep to achieve good accuracy.
One hot encoding is also generally less e�cient from a computational perspective, transforming
a series of m values in a m⇥ (N � 1) matrix.

Consequently, LightGBM implements a di↵erent encoding strategy to find the optimal split
between the categories, first described in Fisher (1958). The o�cial package documentation14,
nevertheless, recommends another approach in the presence of variables with a high number
of possible categories. The recommendation is that it often works best to treat the feature as
numeric, either by simply ignoring the categorical interpretation of the integers or by embedding
the categories in a low-dimensional numeric space. This corresponds to mapping the categories
{A,B,C,D . . .} into the numerical values {0,1,2,3, . . .}. Conditions such as “is x = A?” can then be
transformed as shown in Fig. 15. This simple numerical encoding is not inconsequential because
it assumes an order across the categories that usually does not exist. For small datasets or in the
presence of noise, this can easily lead to false splitting rules. However, we speculate that this way
of encoding categorical features is useful in the case of industrial sectors. Indeed, sector codes
are organized with an intrinsic order (at a coarse level, Agriculture, Manufacturing and Services),
and this order is preserved in the numerical encoding. We speculate that this is picked up by the
Gradient Boosting model in the training phase and exploited to find good splitting points.

Encoding sector pairs as numerical features provides the important advantage of making pre-
dictions for sector-pairs that have not been seen in training (as long as the encoding is done before
splitting the dataset). For instance, if the training set does not contain the industry-pair “C”, the
numerical rules learned in training can still be applied in testing and might in fact be e↵ective,
because the decision rules found by observing their “neighbor” sector codes might still apply to
them.

Because this treatment of categorical variables is arbitrary, we checked that the results do
not change if we shu✏e the ordering before converting to numeric. Performing one experiment
and using FactSet, we found a very slightly lower of AUROC 0.943 (against AUROC 0.943 when
preserving the original ordering).

D PR-AUCs results

Here we show some of our main results using AU-PRC as a performance metric.

13When x takes a given value K , the new variable xk is set equal to one, while all the others are set equal to zero.
Usually, if the total number of x’s possible values is N , only N � 1 binary variables are created. For example, if x
takes the values {A,B,C}, the corresponding encoding would be x! (xA,xB), where x = A! (xA = 1,xB = 0), x = B!
(xA = 0,xB = 1), and x = C! (xA = 0,xB = 0).
14
https://lightgbm.readthedocs.io/en/latest/Advanced-Topics.html, retrieved October 2022
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Category

A

B

C

D

Encoding

0

1

2

3

...

... x = B

... ...

...

... x > 0.5 and x < 1.5

... ...

Figure 15: Same decision rule implemented with a categorical variable or its ordinal encoding.

Fig. 16 shows the equivalent of Fig. 4. There is a somewhat higher variability in the per-
formances when evaluated using PR-AUCs compared to AUROCs. The performance on Factset is
now more clearly lower than on Compustat. The performance on Ecuador is higher, which is due
to the fact that PRCs are sensitive to undersampling ratios (Appendix B).

Fig. 17 shows the PR-AUC for the three di↵erent datasets and all their respective benchmarks.
Again, this confirms the higher performance of the GBM.

Fig. 18 shows the PR-AUCs for the Factset cross-country prediction task, for di↵erent models,
to be compared with Fig. 7, showing similar qualitative conclusions.
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Figure 16: Area under the Precision-Recall curves for the three di↵erent datasets for the subsam-
pling ratio specified in the main body of the paper.
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Figure 17: Area under the Precision-Recall curves for the three di↵erent datasets and the respec-
tive benchmarks.

Figure 18: Area under the Precision-Recall curves for the three di↵erent splits of FactSet into
di↵erent countries’ networks.
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