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Abstract

For many products, increases in cumulative production are associated with de-
creasing unit costs. However, a serious problem of reverse causality (lower prices
leading to increasing demand) makes it di�cult to use this relationship for pol-
icy. We study World War II, during which the demand for military products was
largely exogenous, and the correlation between production, cumulative produc-
tion and an exogenous time trend was limited. Our results indicate that decreases
in cost can be attributed roughly equally to the growth of experience and to an
exogenous time trend.
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1 Introduction
An old and well-established literature demonstrates empirically that for many prod-
ucts, unit cost drops as cumulative production increases (Thompson 2007). This re-
lationship has been called several di↵erent names, including the learning curve, the
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experience curve and Wright’s law. Wright’s law is named for Theodore Wright, who
conjectured that the cost of manufacture of a given model of airplane by a given plant
decreases as a power function of the cumulative number of planes produced (Wright
1936).

This observed relationship between costs and production has often been under-
stood as causal and used to set policy. Large-scale public support for a particular
industry is often justified by the argument that artificially increasing production will
“push it down its learning curve” until it becomes competitive in a global market.
Experience curves play a particularly important role in integrated assessment mod-
els for climate change mitigation, where they make it possible to model endogenous
technological progress (Nordhaus 2014, Witajewski-Baltvilks et al. 2015).

Nonetheless, there are three major related issues with using experience curves as
a justification for policy. First, there is the possibility of reverse causality. Experience
curves, at least when used to understand the e↵ects of policy, postulate a causal rela-
tion from cumulative production to costs. However, as long as demand is elastic and
costs are going down, lower prices can induce higher demand, and thus a rise in pro-
duction and experience. A simple regression of costs on experience therefore does not
identify the causal e↵ect of experience on cost, but also picks up the e↵ect of demand
elasticity.

A second issue is that experience curves are plagued by an omitted variables bias.
Productivity improvements take place for a variety of reasons. One of these is learning-
by-doing, which refers to the improvements in the manufacturing process that are
stimulated by production experience. We may think of experience as a proxy for all
relevant product-specific cumulated e↵orts, and – absent the reverse causality issue
mentioned above – identify their causal e↵ect on cost decrease. However, productivity
improvements can also occur independently of product-specific or industry-specific
experience or innovation, such as knowledge spillovers from other industries or the
general improvement in a country’s economic institutions.

Attempts to address this second problem of omitted variable bias lead to a third
problem. The simplest option to control for technological progress that is not related
to experience is to include a time trend, which is intended to capture all productiv-
ity improvements that are due to “exogenous” factors. In practice, however, adding
a time trend to a regression introduces a serious estimation problem. In most em-
pirical examples production grows exponentially, so that experience also grows expo-
nentially. Because experience is the sum of past production, fluctuations are damped.
This means that the log of experience is similar to a deterministic linear time trend,
and multicollinearity makes it impossible to distinguish the relative e↵ects of expe-
rience from those of the time trend. While multicollinearity is well understood, and
does not by itself bias the coe�cient of interest, standard errors become very large and
coe�cients are unstable under changes in specification, yielding ambiguous results.

Military production during World War II provides a unique natural experiment
that helps us solve all three of these issues. Demand was largely exogenous because
it was driven by battlefield needs. Because battlefield requirements quickly ramped
up, then eventually plateaued and decreased, production, experience and time are not
strongly correlated. This allows us to estimate their relative e↵ects more precisely.
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During World War II the U.S. Armed Forces transformed from the world’s eigh-
teenth largest military to by far the world’s largest (Herman 2012). The U.S. produced
war equipment not only for themselves, but for all the allies as well, manufacturing
roughly two thirds of the total equipment produced by both sides combined. This is
an enormous exogenous demand shock. While the relative allocations to specific types
of war equipment may have been somewhat cost sensitive, the overall build up was
clearly driven more by needs on the battlefront than by the price of weapons (Hall
2009, Ramey 2011). Moreover, capacity was often stretched to a maximum, further
limiting endogeneity concerns that may have arisen if fast learning producers were
able to obtain more future contracts.

Themassive build-up inmilitary productionwas then followed by a dramatic slow-
down. This makes the time series for production far from exponential and alleviates
the problem of multicollinearity. Fig. 1 illustrates a good example. Production of
Ford’s Armored Car, model M-20 GBK, began in May 1943 and increased to a peak
of 400 units per month by September 1943; it dropped dramatically by spring 1944,
rising later but never to the previous level. In contrast, costs came down more or less
continuously, and a plot of the logarithm of cost against the logarithm of experience
yields an approximately straight line. The key point here is that costs continued to
drop even as production decreased, lending evidence to the importance of cumulative
production (experience) rather than production itself as a key variable (Asher (1956),
p.87).
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Figure 1: Production, manhours per unit and experience curve (with linear fit) for Ford’s Ar-
mored Car M-20 GBK.

To take advantage of this unique demand shock, we have gathered novel and un-
precedentedly large amounts of data on U.S. military production during the war. First
we collected 152 monthly time series on labor productivity for ships and aircraft from
historical studies (Searle 1945, Alchian 1963), and for ground transport vehicles from
Ford Motor Company archives. Second, we constructed a new dataset for the over-
all unit cost decline for more than 500 military products by combining information
in the O�cial Munitions Production of the United States (OMPUS) Handbook (Civil-
ian Production Administration 1947) with information in the United States Munitions
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Handbook (USMH), which we discovered in the U.S. National Archives. Finally, we
analyze aggregate data on indices of contract prices broken down into ten di↵erent
categories. These three datasets di↵er in terms of the main variable available (labor
productivity vs unit cost), number of observations (complete time series or not), level
of aggregation (from plant to War Department level), and type of product. However,
in combination they provide an unprecedentedly comprehensive picture of industrial
military production during World War II.

To further bolster the value of this data, we have applied new corrections for es-
timating cumulative experience prior to the beginning of production observed in our
data. Generally, earlier studies have simply applied a correction based on the assump-
tion of exponential growth. Because exponential growth would be a poor assumption
in our case, and because our datasets cover highly heterogenous products, we devel-
oped an alternative method of estimating prior experience using available historical
statistics.

Our results make it clear that costs depend on both experience and an exogenous
time trend, in roughly equal amounts. Thus, experience does cause cost improve-
ments, lending strong support for arguments in favor of state-sponsored demand to
accelerate the development of critical technologies.

Unfortunately, our data does not allow us to evaluate deeper channels of causal-
ity. For instance, a higher productivity that follows a rise in experience can be due to
direct learning-by-doing, or to any productivity-enhancing factor that tends to scale
with experience, such as research and development. We refrain from commenting on
these specific channels, and simply conclude that endogenous e↵ects (as captured by
experience at producing a specific product) and exogenous e↵ects (as captured by a
time trend or time dummies) explain about as much of the average rate of cost de-
crease. As a result, a large demand shock is likely to accelerate declines in costs of
production.

An important caveat is that the relationship between experience and cost is very
heterogeneous: while for some products, costs decline sharply if experience increases,
other products are less sensitive to experience e↵ects. As a result, a policy stimulus is
only likely to be e↵ective for a particular product when there is a favorable historical
relationship.

The paper is organized as follows: Section 2 reviews the literature on experience
curves, in particular during World War II, and the broader conclusions and criticisms
of the relationship between experience and cost. Section 3 explains why theWorldWar
II environment provides us with a unique identification strategy. Section 4 introduces
the datasets used in this paper. Section 5 explains our identification strategy and
provides our empirical framework. Section 6 presents the results for each of three
datasets. Section 7 provides an overview of the results obtained in all datasets, and
the last section concludes. An extensive appendix provides more detailed information
about the data collection and cleaning, corrections for prior experience, and several
robustness checks.
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2 Literature review
There is large literature documenting the relation between increasing experience, de-
fined as cumulative production, and decreasing costs1. The literature has its roots in
Wright’s study of the aircraft industry but has now gone far beyond that, with studies
ranging in aggregation level from individual plants to total global output of individual
products.2

It is clear that experience is positively correlated with cost declines, but the rela-
tive importance of the di↵erent channels through which this happens is an unsettled
debate. Because Wright’s law was originally observed at the plant level, one likely
explanation is simply learning-by-doing: workers and managers learn while they are
on the job, improve the manufacturing process and thereby lower costs. In fact, there
is an established literature in psychology about the “power law of practice” for tasks
such as cigar rolling or reading inverted text, with performance often measured as
time taken to perform the task (see e.g. Newell & Rosenbloom (1981) and Heathcote
et al. (2000) for a review and an alternative functional form). Interestingly, at this
level and in experimental conditions, the direction of causality is clear.

Military products have played an important role in the development of the con-
cept of learning-by-doing in economics. According to Hirsch (1956), much of the early
impetus to study the evolution of costs came from the U.S. Air Force, which was in-
terested in cost decreases in airplane production. Theodore Wright himself was head
of U.S. aircraft production during WWII and is reputed to have used his own law to
forecast aircraft production costs. The Air Force commissioned a number of reports,
particularly from RAND in the late 1940’s and 50’s. These early reports suggested
strong learning-by-doing e↵ects in aircraft production (Asher 1956, Alchian 1963).
Using WWII U.S. shipbuilding data on the well-known Liberty Ships, Rapping (1965)
attributed the large decrease in manhours per unit to organizational and individual
learning from production experience.

Since the publication of these studies in the mid-twentieth century, scholars have
been challenging and complicating the simple learning-by-doing interpretation of the
e↵ects of cumulative production on costs. These follow-up studies have focused on
several areas: capital intensity, quality of management, knowledge spillovers, and
research and development.

A higher capital intensity has been identified as a particularly important driver of
reduction in labor needed per unit of production (Scott-Kemmis & Bell 2010, David
1974). Thompson (2001) collected better data on capital intensity in Liberty Ships
production, and found that learning-by-doing was largely overestimated, with labor
productivity improving mostly thanks to higher capital stock. Mishina (1999) stud-

1Preston & Keachie (1964) established a distinction between dynamic cost functions, which are se-
quential observations of costs over time and can follow Wright’s law, and traditional microeconomic
theoretical static cost functions, which are pictures of alternatives, representing what cost would be if
a firm decides to produce a certain level of output. Here we focus on the literature on the e↵ects of
experience, but of course our paper relates to a vast literature on scale elasticities and on the returns to
R&D.

2 Wright (1936), Rapping (1965), Sheshinski (1967), David (1974), Yelle (1979), Argote & Epple
(1990), Thompson (2001, 2007), Nagy et al. (2013), Lafond et al. (2018).
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ied the Boeing Seattle plant producing the B-17 Flying Fortress aircraft in detail and
was able to control for capital intensity. He found that productivity stopped growing
when production was scaled down, and rejected cumulative production as a source of
cost reduction, a finding that does not generalize in our dataset. Bahk & Gort (1993)
worked with plant-level data, measuring experience as cumulative production but
adding a variable for capital vintages. One of their conclusions is that when the capital
vintages variable is included, the e↵ect of calendar time disappears – or even reverses
–suggesting that “industry-wide” learning is actually capital embodied.

Looking at the production of ships duringWWII, Searle (1945) found that the rates
of cost reduction varied from one yard to anothermore than they did between di↵erent
types of vessels within a given yard. This lends support to the idea that the quality
of management within an organization has a significant e↵ect on costs of production,
as Argote & Epple (1990) have argued. In a classic paper about the cotton spinning
industry, Lazonick & Brush (1985) found evidence that management-worker relations
impacted work intensity and productivity improvements.

Another well studied source of cost improvement is experience in production of
another model or by another firm. Thornton & Thompson (2001) extended Thomp-
son’s (2001) dataset with 57 di↵erent types of ships and studied a variety of experience
spillovers, both between and across yards. They found that such spillovers could be
quite important, though this is sensitive to the indicator used. Intergenerational ex-
ternalities (between di↵erent generation of a product) have been identified by Irwin &
Klenow (1994) in 2 out of 7 DRAMmodels, and by Benkard (2000) for two generations
of Lockheed airliners. Irwin & Klenow (1994) found strong international interfirm ex-
teralities in the DRAM industry, and Argote et al. (1990) found only mild interyard
spillovers. Levitt et al. (2013) estimated the e↵ects of experience on labor productiv-
ity and defect rates in an automotive plant, and documented in exceptional detail how
learning by the workers of one shift was transmitted to workers of another shift.

More recent studies have focused on the e↵ects of research and development on
cost reduction. Sinclair et al. (2000) studied detailed product-level learning curves
in the chemical industry, and found that the products for which there was the tight-
est connection between cost improvement and production experience were also those
for which specific (process) R&D projects had been developed. They argue that be-
cause cumulative production conditions future returns to R&D, often cumulative pro-
duction will be associated to R&D and thus to cost decrease. Funk & Magee (2014)
have focused on the pre-commercial period of production. They showed that signif-
icant pre-commercial technological progress occurs. This suggests that technologi-
cal progress, at least in this period, is not mostly driven by production experience.
While production experience may then contribute to technological progress, it is pos-
sible that it remains mostly driven by other factors, such as in-house deliberate R&D
but also developments in fundamental research outside of a product’s direct knowl-
edge base. Looking at firm-level, non quality-adjusted unit costs in India, Dosi et al.
(2017) found that R&D intensive sectors tended to exhibit a “negative” learning rate,
pointing towards R& D as a source of improvement in quality, leading to higher costs
rather than cost savings. Another explanation for heterogeneous learning rates is de-
sign complexity: if engineers perform improvements by trial-and-error on parts of a
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more complex entity, more complex design require more coordinated improvement,
which is less likely (McNerney et al. 2011).

Despite detailed datasets and their focus on di↵erent channels that a↵ect produc-
tivity, many studies tend to su↵er from an issue that plagues experience curves: be-
cause experience is a cumulative variable and it tends to grow exponentially, the inclu-
sion of a time trend to correct for omitted variables results in serious multicollinearity
that prevents precise estimation of relative e↵ects. To give some examples from en-
ergy economics, where experience curves are well studied, Papineau (2006) considered
a panel of renewable energy technologies in di↵erent countries and found that intro-
ducing a time trend resulted in a large decrease of the experience coe�cient. Similar
dramatic e↵ects were observed and emphasized by Söderholm & Sundqvist (2007),
although not in all specifications. In particular, for specifications that included R&D,
they found that the time trend tends to pick up the e↵ect of R&D and leave the ex-
perience coe�cient relatively stable. Other studies where including a time trend led
to unstable results include Benkard (2000) and Bahk & Gort (1993). In their regres-
sions of defect rates on experience in an automotive plant, Levitt et al. (2013) report
opposite signs for the time trend and experience when using a small dataset (weekly
data), but not with a larger (daily) dataset. This may be expected, as more data points
compensate for the collinearity between the regressors.

In a simulation study, Thompson (2012) showed that if demand is elastic and
cost depends only on time and autocorrelated disturbances, experience curve regres-
sions will find a (spurious) e↵ect of experience. Nordhaus (2014) introduced a sim-
ple model, which we will describe in detail below, that clarifies how the issues of
simultaneity and exogenous technological progress interact. One approach to correct
for these problems has been to use instrumental variables (Söderholm & Sundqvist
2007).3

Our paper takes a di↵erent approach to solving these recurring problems in the lit-
erature. It exploits a unique natural experiment, to provide comprehensive evidence
on the relationship between unit costs and experience in a context where demand is
exogenous and the time trajectory of production is far from exponential, ameliorating
problems of collinearity. However, it is beyond the scope of this paper to engage in the
debates described above about which of the many channels of productivity improve-
ment is most important. As noted by Levitt et al. (2013), the relationship between
productivity and cumulative production may be incidental to a deeper causal mecha-
nism, involving direct accumulation of knowledge at the firm level, and possibly other
sources of increasing e�ciency when considering sector or product level experience
curves.

Instead, here we aim to provide a simpler distinction between causal factors that
are well proxied by product-specific accumulated experience, and causal factors that
are independent from this but are the same across all products. In the next section,
we explain in more detail why the World War II context allows us to use a unique
identification strategy to better isolate and estimate learning coe�cients.

3See also Witajewski-Baltvilks et al. (2015), who found explicit conditions under which using expe-
rience as a proxy for other ultimate causal factors would still result in the estimation of coe�cients that
can be used in Integrated Assessment Models.
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3 A unique historical context
The demand shock to military equipment production in the U.S. caused by WWII was
enormous. President Roosevelt made this clear in his “Arsenal of Democracy” fireside
chat on December 29, 1940, when he said,

I want to make it clear that it is the purpose of the nation to build now with
all possible speed every machine, every arsenal, every factory that we need
to manufacture our defense material (Roosevelt 1940).

When war broke out in Europe in September 1939, the U.S. Army had only 189,839
men (Herman 2012). By the time of Pearl Harbor it was more than 1.4 million men
strong (The National World War II Museum 2015). Defense spending increased al-
most 30 times between 1940 and 1942. The U.S. supplied the Soviet Union and the
United Kingdomwith war materiel, particularly the UK after enacting the Lend-Lease
policy Act in 1941. Qualitative evidence suggests that the period between the autumn
of 1939 and the American entry into World War II was important for preparing the
United States for war production. This ramp-up continued throughout the war. Be-
tween 1943 and the end of the war in 1945, the U.S. government spent four times as
much money on war production as it had spent in 1942 (Koistinen 2004).

However, these huge expenditures were not allocated to clear and consistent mu-
nitions orders. Instead, “munitions orders kept changing . . . as the project size of the
American Armed Forces increased as the American military strategy evolved” (Carew
2009). As documented in the Army’s own history of its role in economic mobiliza-
tion in World War II, “automatic supply gave way in large measure to supply on the
basis of specific requisitions from theatre commanders. This permitted procurement
and issue of supplies more closely tailored to specific theatre needs as indicated by
operation experience and changes in strategic plans” (Smith 1959).

Support for battlefield victory at all costs continued throughout the war. From
the highest o�ce to the internal operations of the responsible bureaucracies for mili-
tary production and procurement; battlefield victory - rather than cost savings - was
the priority. In August 1943, the War Department Procurement Review Board was
appointed to evaluate the composition, essentiality and balance of procurement pro-
grams. It noted that “a war cannot be run like an industry; the criterion is not low costs
but victory.” (Smith 1959, p. 159). In 1940 the War Production Board set forth 12
criteria for the placement of contracts including speed of delivery, quality and price.
In contrast, the War Production Board statement of March 1942 contained three or-
dered criteria: speed of delivery, conserving of superior facilities for the most di�cult
items of production, and placement of contracts with firms needing the least amount
of additional machinery and equipment (Smith 1959, p. 263). This clearly shows that
companies were operating at maximum capacity and that using available capacity,
rather than finding the cheapest supplier, was the key driver of procurement deci-
sions. There were no other major changes to the criteria until the defeat of Germany.

The procedures for managing costs and awarding contracts evolved during the
course of the war. For products whose structure and costs of production were well
known, Fixed-Price contracts were the government’s first preference. In situations
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where firms were creating new products with unknown costs the government instead
used Cost-Plus-a-Fixed-Fee (CPFF) contracts. In 1941 contracts began to include rene-
gotiation clauses which meant that at the conclusion of the contract a renegotiation
would take place between firms and the government to assess actual costs (Smith
1959). This practice was codified with the passage of the 1942 Renegotiation Act and
linked legislation that made renegotiation a condition of all contracts or subcontracts
greater than $100,000 (later revised up to $500,000). Producers were allowed to main-
tain a fluidly defined “fair profit” in renegotiation, which was typically between 5 and
13 percent. Renegotiation ultimately saved the government approximately $3 billion
on 118,000 contracts (Koistinen 2004). Furthermore, it provided an incentive to con-
duct the detailed cost accounting that generated the data central to this paper.

While this was the general structure of contracting, procurement generally became
more complex as a function of the complexity, novelty, and expense of the product
being procured. A clear example of this is the well-documented contracting process
for aircraft duringWorldWar II (Holley 1964). For the government to reach deals with
aircraft and airplane engine makers, there was a longer initial negotiation process and
then more comprehensive renegotiation than for less complex products. This allowed
both parties to adjust agreed-upon terms as they learned more about production costs
and predicted e�ciencies in production - including those predicted by Wrights law,
which the government frequently used as an analytical tool in negotiation. In short,
while there are commonalities across contracting for World War II, the process was
not completely homogenous.

The universal inclusion of renegotiation clauses meant that contractors had limited
incentive to decrease their costs of production, as they would only be compensated for
final demonstrated costs. As has been already noted in the WorldWar II learning liter-
ature (Bajari & Tadelis 2001), there is little incentive in a cost-plus contract to supply
a product more cost-e�ciently. That said, while the contracts themselves do not pro-
vide clear incentives for learning, the process of defense procurement does: a high-
performing supplier could expect more orders from the government (Rogerson 1994).
This possibility of repeat contracts as an incentive for learning and driving costs down
may limit our exogeneity argument - at least when seen at the firm-level. However,
the combination of the vast scale of the war e↵ort and the intense pressure to ramp
production up quickly made controlling costs di�cult and required manufacturers to
operate at near maximum capacity. The vast scale of the e↵ort was so large that the
majority of manufacturing firms in the United States were engaged in war-related pro-
duction, and, together with the accelerated contracting process, this limited the ability
of the government to select the most e�cient producers when awarding contracts.

At the sectoral level an argument can be made that cost played a role in deter-
mining which equipment was produced. The U.S. government intended to produce
the most deadly weaponry at the lowest cost4, so that the relative demand for products
that were substitutes was not independent of price. For instance, to the extent that two
types of planes could be substituted for one-another, the cheaper one may have been
favored. Nonetheless, this was balanced by the fact that military strategy requires a

4Rohlfs et al. (2016) use evidence of substitution between military personnel and weaponry to esti-
mate the statistical value of life.
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diverse portfolio of di↵erent types of military equipment deployed in unison. The
war could not be won by planes alone, but also required naval vessels, tanks, troop
carriers, bullets, and a host of di↵erent types of equipment. Even within a category
such as planes, military history suggests product complementarity, rather than sub-
stitutability, for instance between bombers and fighters. In any case, our data is quite
comprehensive, covering individual products (which may have been substitutes) and
aggregates (that are clearly not substitutes).

4 Data
Another key specific advantage of the historical context is that because many products
were bought by the government, prices were recorded at a fairly detailed level and are
now part of the public record5. We were not able to access time series of prices or
unit cost at a very detailed level, but we obtained datasets that are either at a very
detailed level, or are long time series, or are detailed level time series but only for
labour productivity.

We thus used a number of di↵erent sources to create three datasets, as summa-
rized in Table 1. The datasets are ordered from the most fine-grained to the most
aggregated. The first dataset comprises time series of production and labor produc-
tivity for 152 types of aircraft (or plant-aircraft pairs), ships, and motor vehicles, 23 of
which have never been published before. The second dataset consists of time series of
production for 523 products from all categories of war materiel, paired with “early”
and “late” unit costs. This dataset is new. The third dataset comprises time series
for indices of contract prices for several branches of the War Department. While this
last dataset was easy to collect, we are not aware of any study that has matched the
relevant tables to construct experience curves from it.

We now describe each dataset more precisely, leaving the full details of data col-
lection to Appendix A.

4.1 Labor productivity in aircraft, ships and motor vehicles
Our first dataset, which we will refer to as Labor productivity, includes time series
of labor productivity from three di↵erent sources (see Table 2). The first source is the
well-known time series of labor productivity for ships, extracted from Searle (1945). It
has been already widely extended and analyzed in Rapping (1965), Thompson (2001,
2007), and Argote et al. (1990).

The second source is an extension of the data used in the study of aircraft by
Alchian (1963), extracted from the source quoted in his paper, referred to as the Source
Book (Army Air Forces 1947) .

The third source is entirely original. We have collected a novel set of time se-
ries from Ford’s archive. This covers 23 products, mostly motor vehicles. Appendix

5The lack of availability of prices at the most granular level is a well-known problem for estimating
productivity (Klette & Griliches 1996, Foster et al. 2008).

10



Dataset Sources N Time span Cost data Aggregation
Labor
Produc-
tivity

Source Book,
Searle (1945),
and Ford
archives

152 01/1940
to
11/1945,
T 2 [2,64]

Manhours per
unit

Plant or
product

OMPUS-
USMH

USMH and
OMPUS

523 08/1942
to
08/1945,
T = 2

“Early” and
“Late” “Standard
Dollar Weight”
per unit

Product

Contract
Prices

Crawford &
Cook (1952)

10 01/1942
to
08/1945,
T = 44

Index of contract
prices

War (sub) de-
partments

Table 1: Summary of the three datasets. N is the number of time series and T is the number
of observations in each time series. Time span refers to cost data. In each dataset, we have
production data starting in January or July 1940.

A.1 further discusses data collection and transcription issues for each of these three
sources.

Source Type of products N Aggregation level
Searle (1945) Ships 5 Product
Source book Aircrafts 124 Plant
Ford’s archives Mostly motor vehicles 23 Product

Table 2: Sources of the Labour productivity data.

4.2 Total unit costs at the product level
Our second dataset, which we will refer to asOMPUS-USMH orOMPUS for short, was
created by combining two archival publications. The first publication, O�cial Muni-
tions Production of the United States, by Months, July 1, 1940 - August 31, 1945 (OMPUS)
Handbook (Civilian Production Administration 1947), provides information about the
monthly output of particular categories of munitions and specific products. The sec-
ond publication is the United States Munitions Handbook (USMH), which provides the
costs of production, in terms of “Standard Dollar Weights” at two moments–one at the
beginning of the war and one towards the end– for many of the products recorded in
the OMPUS. While the OMPUS is available online, the formerly classified USMH was
located in the National Archives by one of us (D.G.).

Matching OMPUS to the USMH was relatively easy because each product listed
in the USMH includes the page and column to which it should be matched in the
OMPUS. One of the nice features of these data is that they are nearly comprehensive.
The OMPUS publication was intended to record the “munitions figures of all of the
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procurement services” (our emphasis), and while the USMH does not report cost values
for the majority of products, the coverage appears reasonably representative.

The main issue we had with the dataset concerned the dates at which the costs
were recorded; the dates in the USMH are the same for every product category, but
some products started production after the “early” date, or ended production before
the “late” date – in this case we assumed, guided by the USMH explanatory notes, that
the early/late dates correspond to the start/end of production. Appendix A.2 provides
a more detailed discussion of our interpretation of early and late costs and Standard
Dollar Weights.

While the OMPUS provides production data, it does not provide data on experi-
ence, meaning cumulative production starting from a level of initial experience. It
is impossible to know what previous manufacturing experience was for each product
listed in the OMPUS. While other studies of experience curves have not corrected for
prior experience or have applied a correction based on the assumption of exponential
growth, we opted for an approach that corrects at the level of semi-aggregated cate-
gories, for which we could obtain rough estimates or introduce one ourselves. For each
product i, we estimated prior experience as a proportion of total war production ex-
perience. More precisely, we estimated initial experience as a category-specific factor
⇣i times the total amount of known production of product i during the war

P
T

⌧=1Qi,⌧ .
Denoting experience Zi,t , we have

Zi,t = ⇣i

TX

⌧=1

Qi,⌧ +
tX

⌧=1

Qi,⌧ , (1)

where T is the total number of months from January 1940 to August 1945. The first
term represents estimated initial experience, and the second term is the usual experi-
ence computed as observed cumulative production up to time t.

Because these products are too detailed, we attempted to estimate the factors ⇣i at a
more aggregated level, using the 81 most detailed levels of the table of contents of the
OMPUS. The ⇣i and the extensive discussion of how we estimated them are provided
in Appendix B. To give one example, consider fighter aircraft. We have 12 models of
fighters in the USMH-OMPUS data, and we cannot know initial experience in each
model. However, from other sources we were able to estimate that around 300,000
planes were produced duringWWII, and 60,000 before. Therefore, we applied a value
of ⇣ ⇡ 60,000/300,000 = 0.20 to all aircraft models. For example, 680 units of the P–61
BlackWidowmodel (OMPUS ref. 15/3) were produced during the war, so constructed
the experience variable as if 0.20⇥ 680 ⇡ 136 models had been produced before.

4.3 Contract prices at the war department level
Our last dataset, which we will refer to as Contracts, contains contract price indices
and is taken from the statistics on procurement in Crawford & Cook (1952). This data
allows us to construct experience curves for the period January 1942 - August 1945 at
several di↵erent levels of aggregation. The data is for the eight di↵erent branches of
the War department. The highest level of aggregation is the entire War department.
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It is then subdivided into Air Forces (AAF) and the Service Forces (ASF). The latter is
then subdivided into seven technical services, which “were the operating agencies of
the War Department in all its supply activities” (Smith (1959), p.114).

The data on production, while expressed in millions of dollars, can be taken as
indicative of production volume because it has been generated from a large sample of
physical quantities, evaluated at 1945 prices, rather than at the prices in force during
each month. The indices of contract price changes were computed from price changes
to contracts for individual products, representing about half of the total value of War
procurement. As for the OMPUS data, we estimated prior experience as a category-
specific factor times the total level of the wartime production. The detailed justifica-
tion for the correction factors applied to this data is also given in Appendix B.

5 Empirical framework
Our objective is to estimate the e↵ect of experience on cost. As discussed above, simply
regressing cost on experience, as is done in learning curve studies, su↵ers from several
related issues, all of which are absent in the context of WWII military production.

To restate the issues, because demand is generally elastic, the relationship between
price (or cost) and production (or experience) embodies both demand elasticity and
the causal e↵ect of experience on cost. However, while demand relates price/cost
and production, the e↵ect of experience is between cost and cumulative production.
It is common that production grows exponentially, so cumulative production grows
exponentially too. Because of this, if we use production and cumulative produc-
tion interchangeably, we can think of the issue as a problem of simultaneity between
cost/price and production/experience (Nordhaus 2014), even though the mechanisms
are in principle from experience to cost and from price to production.

Second, it is easy to argue that cost reductions cannot possibly come only from the
growth of product-specific experience, whatever this proxies. The simplest possible
way to acknowledge omitted variables is simply to allow for an exogenous exponential
time trend, to capture overall economy-wide trends. However, as discussed in the
previous paragraph, experience often grows exponentially and in a smooth manner
(Lafond et al. 2018), making it hard to distinguish the e↵ect of experience from the
e↵ect of an “exogenous” exponential time trend. Technically speaking this is just an
issue of imperfect multicollinearity. In the specifications in first-di↵erences, where the
exogenous time trend is simply the intercept of the regression, this is just an issue of
limited variance of the regressor. While in principle this does not bias the coe�cients,
including both experience and a time trend usually makes standard errors extremely
large and gives unstable results, as discussed in the literature review (Section 2). It is
therefore a serious issue.

5.1 Nordhaus’s model
Nordhaus (2014) introduced a very simple model that illuminates the issues above
and helps clarify why demand exogeneity makes the identification of the e↵ect of
experience on costs possible.
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Let Qt denote production at time t and let Zt denote cumulative production. As-
sume the unit cost function ct depends on both experience Zt and an exogenous time
trend, with the functional form

ct = c0Z
�b
t e
�at

. (2)

The parameters a and b are expected to be positive, since we generally observe techno-
logical progress. Assume that production is equal to demand and price is equal to unit
cost. Furthermore assume that demand has constant elasticity ✏ > 0 and that there is
an exogenous and growing demand e

dt . This gives6

Qt =Dt =D0c
�✏
t e

dt
. (3)

By letting � represent the time di↵erence operator �x = xt � xt�1, Eqs. 2 and 3 can be
written as

� logc = �a� b� logZ (4)

and
� logQ = �✏� logc + d. (5)

Now suppose that production grows exponentially. Then experience also grows expo-
nentially at the same rate, that is

� logQ ⇡ � logZ.

Using this in Eq. 5, the solution of the system Eqs. 4-5 is

� logc =
�a� bd
1� b✏ , (6)

� logZ = � logQ =
a✏ + d

1� b✏ . (7)

Nordhaus’s (2014) critique is that experience curve studies typically assume that
the logarithm of experience is the single explanatory factor for the logarithm of costs,
i.e. they assume that

� logc = �� logZ, (8)

and perform a regression of the logarithm of costs against the logarithm of experience
in order to measure the empirical parameter �. Inserting Eqs. 6 and 7 into Eq. 8, we
can write the parameter � as the ratio

� =
� logc
� logZ

=
�a� bd
a✏ + d

. (9)

It is clear that in general the empirically estimated parameter � not only depends on
the experience parameter �b, but it also depends on the exponential trend parameter
a for costs, the exponential trend parameter d for exogenous demand growth, and the

6Nordhaus (2014) also includes population growth in the exogenous demand term.
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demand elasticity ✏. The estimated � can be interpreted as being purely the e↵ect of
experience only when there is no exogenous time trend, i.e. if a = 0 then � = �b.

Let us now consider the case in which demand is completely exogenous (✏ = 0), but
for simplicity still growing exponentially. In this case Eqs. 6 and 7 become

� logc = �a� bd, (10)

and
� logZ ⇡ � logQ = d, (11)

so that putting Eq. 11 into 10 gives

� logc = �a� b� logZ, (12)

which is the same as Eq. 4. If demand is completely exogenous, we can estimate the
supply equation directly7. A simple first-di↵erence regressionmodel for the logarithm
of cost against the logarithm of experience with an additive constant is able to separate
the e↵ect of the exogenous trend parameter a and the “learning” parameter b.

While illustrative of the reverse causality issue, this model is not stochastic and
all variables grow exponentially, so it cannot do justice to the other important issue,
multicollinearity. If production grows exponentially with fluctuations, since comput-
ing experience from production involves integrating and therefore smoothing, Z will
increase exponentially but with much lower fluctuations, so the term � logZt will be
approximately equal to the constant d, for all t8.

Fortunately, we will find empirically that during WWII demand exogeneity led
to production patterns that are not exponential, making the correlations between the
regressors (time, production and experience) much lower than in other studies using
recent data.

5.2 Main specification
It is customary in the literature to motivate the main specification for learning curve
regressions by starting from the standard Cobb-Douglas production function. This
does not assume exponentially increasing production, it allows for economies of scale
and it can be used with data on labor productivity9. With constant technical parame-

7Pozzi & Schivardi (2016) used survey estimates of demand elasticity coupled with data on firm-
level prices to separate the e↵ects of demand and productivity on firm growth.

8To give a concrete example, if production follows a geometric randomwalk with drift r and noise � ,
then the change in the log of cumulative production has a variance approximately equal to �

2 tanh(r/2)
(Lafond et al. 2018), which is much smaller than �

2. For instance, if we consider the Air Force time
series from the Contract prices data, taking the period where we have monthly data and the growth is
roughly exponential (January 1942 to January 1944), we have � = 0.047 and g = 0.068. The measured
variance of the change in the log of cumulative production is an order of magnitude less than � , 0.0063,
fairly close to the prediction from the formula above, 0.0087.

9 In this model, optimal requirements for labor and capital grow at the same rate. This may not be an
appropriate assumption, especially during WWII where there was an important build-up of the capital
stock (Gordon 1969). However, a more general framework allowing for factor-biased technological
change would require more data for estimation, so we limit ourselves to the Cobb-Douglas case here.
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ters and a time-varying Hicks-neutral productivity factor At that depends on experi-
ence and an exogenous time trend, as in Rapping (1965), we have

Qt = AtK
✓k

t
L
✓l

t
,

At = Z
b

t e
at
, (13)

where Kt and Lt are capital and labor in period t and ✓k and ✓l are constants, with an
additional term for an exponential exogenous productivity improvement as in Nord-
haus (2014).

If firms minimize their total cost subject to the constraint of fixed exogenous de-
mand Qt = Q̄t , and factor prices are constant, the optimal labor demand per unit of
production can be written

log
L
⇤
t

Q̄t

⌘ log lt = BL � (a/s)t � (b/s) logZt + (1/s � 1)logQ̄t, (14)

where BL is a constant and where s = ✓k + ✓l represents economies of scale. Since we
have data on the unit labor requirements lt = L

⇤
t
/Q̄t in our Labor productivity dataset,

we can estimate this equation. In the two other datasets, we have data on total unit
costs ct = Ct/Q̄t . Inserting optimal factor requirements in the total cost function Ct =
wL
⇤
t
+ rK

⇤
t
gives

log
Ct

Q̄t

⌘ logct = BC � (a/s)t � (b/s) logZt + (1/s � 1)logQ̄t, (15)

where BC is another constant. Apart from the constants, the two equations (14 and 15)
are the same. They become exactly the same if we estimate a model in first di↵erences,
that is

� logc = � log l = �(a/s)� (b/s) logZt + (1/s � 1)logQ̄t. (16)

Our favored specification is to estimate Eq. 16 in a pooled panel. However, each
dataset presents specific patterns of missing data, and thus di↵erent opportunities for
robustness checks and alternative specifications - typically fixed e↵ects for the levels
(Eqs. 14 and 15), and separate regressions for each time series. Thus we present our
detailed econometric specifications separately for each dataset.

6 Empirical Results
We now present results from performing regressions on the three data sets here. A
point of prior optimism comes from examining the correlations between the indepen-
dent variables. As shown in Table 6, they range from about 50% to 90%. Although
this might seem high, they should be compared with a systematically higher correla-
tions in other contexts, such as the chemical industry numbers reported by Lieberman
(1984), which are all greater than 90%.
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6.1 Labor productivity in aircraft, ships and motor vehicles
A typical model specification (Lieberman 1984) for analyzing a panel of experience
curve time series is the fixed e↵ects model

log lit = i +↵t + � logZit +� logQit + ⌘it . (17)

Comparing to Eq.14, i = BL, ↵ = �a/s, � = �b/s and � = 1/s � 1. The results of this
model applied to the Labor productivity dataset are reported10 in Table 3. Includ-
ing only experience we find that � ⇡ �0.33, which implies a drop of cost of 20% for
each doubling of experience. This number coincides with the original observation
by Wright and is seen in many other studies of products such as airplanes. The es-
timated coe�cient for the exogenous time trend is not very statistically significant,
but its value is relatively high: given that the data is monthly, a negative coe�cient
of 0.004-0.006 implies an annual rate of exogenous technological progress of about 5
to 7 percent. Finally, including production indicates very mild and not very signifi-
cant economies of scale. Throughout the paper we will find no convincing evidence of
non-constant returns to scale 11.

Table 3: Panel regression results for Labor Productivity

Fixed E↵ects First Di↵erences
Experience -0.326⇤⇤⇤ -0.304⇤⇤⇤ -0.276⇤⇤⇤ -0.253⇤⇤⇤ -0.217⇤⇤⇤ -0.203⇤⇤⇤

(0.017) (0.020) (0.024) (0.020) (0.022) (0.025)

Time -0.004 -0.006 -0.022⇤⇤⇤ -0.024⇤⇤⇤

(0.003) (0.003) (0.004) (0.005)

Production -0.036⇤ -0.010
(0.015) (0.007)

N 3034 3034 2981 2830 2830 2740
R
2 0.75 0.75 0.75 0.13 0.13

A typical feature of experience curves regressions is that they have highly autocor-
related residuals (Thompson 2012). We ran the test of Wooldridge (2002) for AR(1)
residuals in short panels and find in all three cases very strong evidence against the
null of no first-order autocorrelation. This suggests estimating a model with autocor-
related disturbances, or a model with lags of the dependent variable, which we do
in Appendix D.1. But since we are not interested in the intercepts, and since from a
theoretical point of view we expect that it is the change in experience that induces a

10 Throughout the paper, we report significance at the 5, 1 and 0.1% levels. Standard errors are
clustered by product. For the fixed e↵ect models we report the “within” R2; for first-di↵erence models
with no intercept (no “time” variable), we do not report the R

2 because it cannot be interpreted as the
explained proportion of variance.

11The number of observations is lower because we removed months during which production was
null.
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change in cost, we favor a first-di↵erences specification12, i.e.

� log lit = ↵ + �� logZit +�� logQit + ⌘it . (18)

The role of experience is fairly consistent with the fixed e↵ects regression but it indi-
cates a larger role for the time trend. The coe�cient � now ranges from �0.25 when
only experience is included to �0.20 when all independent variables are included and
remains solidly statistically significant. However, the coe�cient ↵ for the exogenous
time trend now has a value of �0.024 when all variables are included, corresponding
to a much larger annual improvement rate of about 29%, and is now strongly statis-
tically significant. As we will discuss in Section 7, this represents a third of the rate
of cost decrease, with the other two thirds explained by experience. When including
production, the coe�cient � is now very small and statistically insignificant.

Finally, we present the results of independent regressions for each individual prod-
uct or plant, removing all time series with less than 10 available cost values (so 118 of
152 time series remain). Since the coe�cient for production is so small in the aggre-
gate regression we exclude the production variable here in the interest of parsimony.
The equation estimated is

� log lit = ↵i + �i� logZit + ⌘it . (19)

Fig. 2 compares the estimated coe�cient �̂ for the regression Eq.19 when the ex-
ogenous time trend is included to the case where it is not, that is, we restrict ↵i = 0
and Eq. 19 becomes a regression through the origin. We observe a great deal of hetero-
geneity in experience rates, but the results are broadly consistent with the aggregate
regression. The variation is a mixture of intrinsic di↵erences in real progress rates and
statistical fluctuations due to the fact that the individual regressions are based on short
time series. With some exceptions, most of the data is clustered along the identity line,
demonstrating that the coe�cient estimated for experience is not overly sensitive to
the restriction ↵ = 0. This stands in sharp contrast with the results reported by Nord-
haus (2014). Fig. 2 in Nordhaus (2014), which is analogous to our Fig. 2, shows
coe�cients that are often extremely far from the “reasonable” range � 2 (0,�0.5), and
which change by more than an order of magnitude when a time trend is included. We
believe that the main di↵erence is that in his data many of the production time series
(and thus experience time series) are close to following an exponential trend, creating
extreme problems of multicollinearity.

In summary, for the Labor productivity dataset we observe a strong and clear re-
lationship between declining labor costs and experience, with exponents � ⇡ �0.2.
We also show a significant role for the exogenous time trend, whose overall e↵ect is
comparable to that of experience (Section 7 will provide an estimate of the relative
importance of each variable for all the datasets).

12Unfortunately, our panel is strongly unbalanced and contains missing observations, limiting our
options for unit root and cointegration tests, but see Appendix D.1. Note also that since the dataset
contains missing values, we lose more observations than the number of products (152) when taking
first di↵erences.
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Figure 2: The coe�cient �i for experience when the time trend is included is plotted against
the same coe�cient when the time trend is not included, using Eq. 19. The grey line is the
identity. Three values of �i which were greater than 2 in absolute value have been excluded.
The Ford Armored Car discussed in the introduction (Fig. 1) is shown as a slightly larger red
triangle.

6.2 OMPUS-USMH: unit costs at the product level
We now turn to the OMPUS dataset, which gives total unit costs instead of labor pro-
ductivity and contains a more complete sampling of military products. A limitation is
that we observe the cost for each product at only two di↵erent dates, and these dates
di↵er across products. Nonetheless, because we assume that the parameters are the
same for all products, we can exploit cross-sectional heterogeneity. We do this in two
ways.

First, we are still able to estimate a fixed-e↵ects model, but we also interpret it
as a “di↵erences” estimator. As is well-known, when T = 2, the first-di↵erences and
the fixed-e↵ects estimators are the same. Appendix C shows that this result holds
when the di↵erences are heterogenous, in the sense that the span of time between the
two observations is di↵erent from one product to another. We perform inference and
report R2 from the fixed-e↵ects.

Table 4 shows the results of the regression, first including only experience, and
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Table 4: Panel regression results for OMPUS-USMH

Fixed-E↵ects/Heterog. Di↵erences Growth rates cross section
Experience -0.098⇤⇤⇤ -0.055⇤⇤ -0.058⇤⇤ -0.086⇤⇤ -0.079 -0.098

(0.015) (0.017) (0.019) (0.031) (0.040) (0.052)

Time -0.004⇤⇤⇤ -0.005⇤⇤⇤ -0.002 -0.002
(0.001) (0.001) (0.003) (0.003)

Production 0.008 0.024
(0.009) (0.044)

N 1046 1046 1002 523 523 482
R
2 0.13 0.17 0.19 0.06 0.06

then including an additional time trend and production. The coe�cients for experi-
ence are statistically significant, but are smaller than for the Labor productivity time
series, ranging from �10% when the other variables are not included to about �5.5%
when time is included. The coe�cients for the exogenous time trend are also sig-
nificant, and about 0.4% per month or 5% per year (about 60% of the rate of cost
decreases). As before the coe�cient for production is small and statistically insignifi-
cant.

Second, since with two observations we can compute an average growth rate, we
perform a cross sectional regression of the growth rates (columns 4-6, see Appendix C,
Eq. 25 for details). The results are similar, although with a sensibly higher coe�cient
for experience and lower statistical significance.

The upshot is that the results for theOMPUS-USMH dataset are broadly consistent
with those of the Labor productivity dataset, albeit with smaller experience exponents.

6.3 Contract prices at the war department level
Fig. 3 shows costs against experience in our last dataset on contract price indices at the
War Department level. “Total” (on the right) represents the entire War Department,
which is divided into Army Air Forces (AAF) and Army Service Forces (ASF); the latter
is subdivided into the other 7 services. Apart from Quartermaster, which saw its price
increase over the period,13 the other services have a relatively similar slope.

In Fig. 4 we show the experience coe�cient obtained from separate regressions for
each individual time series, with and without the exogenous time trend. Wemake four
observations that will be useful as a background to motivate the panel specification
and understand its result.

13 Quartermaster contains common goods such as clothing, which were produced extensively prior
to the war.
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Figure 3: Experience curves for the war departments and component agencies.
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First, in most cases, we see that standard errors are higher when the time trend
is included, again reflecting the multicollinearity problem. Second, for some sub-
services (Ordnance, Signal, Transport and Engineers), the coe�cient is only slightly
a↵ected by the inclusion of the time trend, which in this case confirms that the lack
of correlation allows us to pin down the relative e↵ects of the exogenous trend and
experience. However, for some other sub-services (Medical, Chemical), the estimated
coe�cient changes so much that its sign flips. Third, when the time trend is included,
all subservices have confidence intervals overlapping zero, indicating a lack of statis-
tical significance. Fourth, the confidence intervals of all subservices largely overlap,
suggesting that a panel regression assuming a unique slope could give sensible results.

Because Quartermaster has such an obviously di↵erent slope in Fig 3 (on the top
right), we remove it from the dataset and present panel regression results for 7 time
series (AAF and 6 sub-services of ASF).

Table 5: Panel regression results for Contracts

Fixed E↵ects First Di↵erences
Experience -0.206⇤⇤ -0.150⇤ -0.165⇤⇤ -0.189⇤⇤⇤ -0.106 -0.118⇤

(0.037) (0.051) (0.044) (0.024) (0.045) (0.040)

Time -0.003 -0.003 -0.004 -0.004
(0.003) (0.002) (0.003) (0.003)

Production 0.040⇤ 0.006⇤

(0.016) (0.002)
N 308 308 308 301 301 301
R
2 0.77 0.78 0.81 0.05 0.06

Table 5 shows the results. In line with previous estimates, we find an economi-
cally significant e↵ect for both experience and the time trend, and a weak e↵ect for
production14.

7 Discussion
In this section we take stock of the results obtained from the three datasets, and briefly
summarize our robustness checks.

7.1 Summary of the results
To provide an overview of our results we have gathered some key statistics in Table 6.
The first three columns show the average growth rates of the variables, computed as
the average one period change in their logarithm, pooling all observations for which

14Note that statistical significance levels are based on hypothesis testing using the Student distribu-
tion with G � 1 degrees of freedom, where G is the number of clusters, here equals to 7.
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both � logc and � logZ are available.15 The next three columns show the Pearson
correlations on pairwise complete observations between the “within” transformation
of the regressors. The next two columns report the coe�cients for the main regression
specification, which includes experience (coe�cient �) and time (coe�cient ↵) and is
estimated in first-di↵erences (fixed-e↵ects or equivalently “heterogenous di↵erences”
for the OMPUS, see Appendix C). The last column shows the ratio of ↵ to the average
growth rate of cost, which is the share of cost decrease accounted for by the exogenous
trend16.

Growth rates Correlations Coe�cients Share exo.
c Z Q Q,t Q,Z Z,t � ↵ ↵/g.r.(c)

Labor Productivity -6.6 20.1 4.4 46.9 78.2 80.8 -21.7 -2.2 33.3
OMPUS-USMH -0.8 7.4 5.2 72.3 70.5 59.2 -5.5 -0.4 60.4
Contract Prices -0.8 3.5 3.0 62.9 56.5 85.7 -10.6 -0.4 54.3

Table 6: Descriptive statistics and main results. All values are multiplied by 100. Growth rates
are monthly.

As is evident from the first column of the table, costs in the Labor productivity
dataset, which are unit labor requirements, decline more than seven times faster than
either of the two unit costs. One explanation is simply that improvement rates are
heterogenous and the Labor productivity data comes overwhelmingly from the rapidly
improving aircraft industry, while the other datasets on unit costs have a much wider
and balanced coverage. Another explanation could be that capital deepening during
the period improved labor productivity more than overall productivity.

The three columns giving correlations between the independent variables demon-
strate that multicollinearity is a limited issue in our data. Although many of these
correlations are high, they are still much lower than those reported in most previous
studies (see for instance Table 2 in Lieberman (1984)).

The following two columns provide an overview of our regression results. In every
case these results are consistent, and highlight the substantial role played by both
experience and an exogenous time trend. Given the larger rate at which cost declines
in the Labor productivity dataset, it is not surprising that both e↵ects are substantially
larger.

In the last column we divide the exogenous trend rate ↵ by the overall rate of cost
decline (the figures in the first column of the table). This ratio is roughly a third for the
Labor Productivity dataset but 60% for the OMPUS-USMH and a half for the Contract
Prices datasets.

The overall conclusion is that we see a substantial e↵ect for both experience and
an exogenous time trend, in roughly equal proportions. Once we control for time and

15 For the OMPUS, only two observations per product are available, at the starting and ending points
t0 and t1, so the growth rates shown are averages over all products of the monthly growth rates (logxt1�
logxt0 )/(t1 � t0). In the Labor productivity dataset, in contrast to other datasets, the growth rate for
experience is much larger than the growth rate of production, partly because in this dataset we did not
correct for initial experience.

16For the OMPUS, this is computed based on the fixed e↵ect equation, see Appendix C.
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experience, the e↵ect of monthly output is negligible. When multicollinearity is not
as severe as in other settings, and enough data are pooled together, the estimates are
relatively stable across specifications.

7.2 Robustness of the results
We discuss the robustness of the results to changes in econometric methodology, as-
sumptions on initial experience, and omitted variables. The details of the robustness
checks, when possible, are in Appendix D.

Time series analysis (Appendix D.1). Overall, we tend to find similar results to
those reported in the text if we a) include time fixed e↵ects instead of an exponential
trend, b) replace experience by its lagged value, c) test for times series properties and
estimate the models suggested by these tests.

Heterogenous coe�cients (Appendix D.2). We allowed for fixed e↵ects in the first
di↵erence regression, thereby allowing time trends to di↵er. This had no e↵ect on the
Labor Productivity dataset, but for the Contracts data the e↵ect of experience disap-
pears completely, although standard errors are large enough that we cannot reject a
value such as the one estimated in the main text. Estimating Swamy’s (1970) or Pe-
saran & Smith’s (1995) heterogenous coe�cient models gives the same outcome, with
robust results for Labor productivity but not for Contracts.

Instrumenting by lagged values (Appendix D.3). Our dependent variable is a total
(either manhours or cost), divided by output. Thus output appears on both sides of the
equation. We instrumented output and experience by their lagged value, and found
that this does not change the results.

Alternative assumptions on initial experience (Appendix D.4). We re-estimated
our models using di↵erent assumptions about initial experience. Overall, it is clear
that changing the levels of initial experience changes the results, often in the direction
of attributing a larger role to the exogenous time trend. Nonetheless, under a very
wide range of possible corrections, the signs remain negative. Without implausible
changes to our estimates of initial experience, the share of the exogenous time trend
cannot exceed about 70%.

Increasing quality and design changes. Technological progress may increase the
quality of a product rather than reduce its cost. This is a limited issue here, as many
qualitative accounts of war production describe it as mass production of fixed designs,
although not without tensions17. For instance, Best (2018) describes how mass pro-
duction techniques were implemented for producing aircraft, which then were sent

17Design changes requirements were cited by Ford as one of the reason for the delays in reaching
full speed production of the B-24 Liberator plane at the famous purpose-built large-scale Willow Run
plant in Detroit (Baime 2014). At General Motors, Keizer had to implement ”flexible mass production”
techniques (Herman 2012). Mishina (1999) reports 8 versions of the B-17 “Flying Fortress” since 1934,
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to Air Force depot and modification centers for fitting the weapons, which are more
susceptible to design changes. These overall limited design changes suggest that our
study may not su↵er too much from missing data on quality, but also somewhat limit
the external validity of our results, as many experience curves relevant to current-day
policies include the production of successive designs.

Research and development. We were not able to find monthly, product-level Re-
search and Development (R&D) data. R&D, and especially federal R&D, was impor-
tant during the war and grew very fast. For instance, the modification centers men-
tioned above were themselves linked to the O�ce for Scientific Research and Develop-
ment and to the National Advisory Committee for Aeronautics (ex NASA), the major
institutions organizing war-related R&D. If we consider that cumulative R&D capital
lowers costs, our estimates of both ↵ and � are very likely to be biased upwards, be-
cause one would expect the coe�cients of the auxiliary regression of R&D on time and
experience to be positive. However, military R&D was often oriented towards product
innovation. Thus, although it may have decreased the cost per quality-adjusted unit,
the non-adjusted unit cost may have been a↵ected upwards. As a result, we do not
believe that our estimates are driven by an omitted variable bias. However, because
we are silent on the role R&D or on ultimate causal factors more generally, our study
is unable to provide a more fine-grained policy recommendation.

Comparing USMH and Contracts (Appendix D.5). In principle, the raw data for
these two datasets largely overlaps, so they should give similar results if the USMH
data can be aggregated at the same level as the Contracts data. We used our own
concordance table to test whether estimating the time and experience parameters at
the war department level in each dataset would give similar results. We found only
moderate agreement, but the standard errors are large, so we cannot exclude that this
is due to low sample size.

Controlling for inflation (Appendix D.6). An obvious factor in determining cost is
the price of inputs, which we are unable to observe for each product. We used the pro-
ducer price index for all commodities as a control, as a single regressor or interacted
with individual dummies in an attempt to acknowledge that di↵erent products have
di↵erent input mixes. Our main results do not change.

External learning (Appendix D.7). We attempted to estimate spillover e↵ects by
adding the growth of aggregate production experience (total monthly war spending)
as a regressor. We did this for both production and cumulative production. The e↵ects
of these variables are not consistent and rarely significant, and leave our estimates for
the e↵ects of own experience unchanged.

but note that the design was frozen at model B-17E, after only 134 of a total of 6981 B-17 had been
built. Changes between the B-17E and the B-17 F&G were small changes intended to accommodate the
changing fitted weapons, which themselves featured continuous and important upgrading.
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Depreciation of experience (Appendix D.8). The literature has emphasized that
part of past experience may become irrelevant. We constructed experience variables
using a retention factor �, that is Zt = �Zt�1 +Qt . We found that allowing for � < 1
tends to increase the share of cost decrease due to exogenous factors. However, even
when this improves the fit (mostly for Labor Productivity), the improvement is not
important and the share of exogenous progress remains relatively close to our main
estimates.

8 Conclusion
Experience curves have been widely applied and remain an important tool for predict-
ing technological progress conditional on deployment. This makes them essential in
many applications where modeling endogenous technological progress is necessary,
such as economic models of climate change, where one needs to model the balance
between the benefits of investing now against the benefits of waiting for exogenously
improving backstop technologies.

A major issue in using experience curve models for policy purposes is that the es-
timation of causal partial e↵ects is plagued not only by problems of endogeneity, as
is widely acknowledged, but also by the fact that experience is the cumulative of a
variable that grows close to exponentially, and therefore is itself very close to a deter-
ministic exponential trend. This makes it very hard to distinguish “endogenous” tech-
nological progress as proxied by experience, and exogenous technological progress as
proxied by a deterministic trend.

In this paper we have shown that military production during WWII o↵ers a con-
text that solves both issues. Because the demand for weapons was driven by battlefield
needs, which grew and then shrank, not only was it exogenous, but production, expe-
rience and time were relatively uncorrelated. As a result, we found that, in contrast
to other studies, estimating the partial e↵ect of experience on cost was relatively ro-
bust to the inclusion of a time trend. Despite remaining issues of data quality, we
conclude that both experience and other e↵ects captured by an exogenous time trend
were quantitatively important during the War.

A point that deserves some emphasis is that the e↵ect of experience on cost di↵ers
among products. As a result, when assessing a policy intervention for a given product,
one must first determine whether there is historical evidence that increasing experi-
ence is associated with decreasing cost. With this caveat about heterogeneity in mind,
our study broadly confirms that investing in a specific product in order to stimulate
experience will cause production costs to decrease. However, our study also finds that
a large share of technological progress cannot be attributed to product-specific experi-
ence. This suggests that to make targeted investments in a particular technology fully
e↵ective, policies should also aim at fostering the broader innovation system.
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Appendix

A Data sources, data collection and data cleaning

A.1 The Labor Productivity dataset
The Labor Productivity data we assembled comes from three di↵erent sources, which
we describe here. Fig. 5 shows the times series (only the slopes are comparable, except
for the Source Book data which is all expressed inmanhours per pound for all aircraft.)

Searle 1945 We extracted the data from Tables 1, 2, 3, 6 and 7. Victory and Cargo
vessels are indices constructed from multiple models. A summary of the products we
have information about is in the table below.

Product Start date End date T Total prod.
Liberty Ships Dec-41 Dec-44 37 2458
Victory Ships Feb-44 Dec-44 11 199
Cargo Vessels Apr-43 Dec-44 21 160
Tankers Vessels Jun-43 Dec-44 19 308
Destroyer Escort Apr-43 Nov-44 20 351

Table 7: Ships data extracted from Searle (1945)

The Source Book. The report that provided Alchian with the data used in his study
is available in the form of a digitized PDF18. To create this dataset, we transcribed
Tables 3 and 4 in this report, Source Book of World War II Basic Data - Airframe In-
dustry, Volume 1: Direct Man-Hours - Progress Curves (Dayton, OH: Army Air Forces,
Air Materiel Command, January 1950) (Army Air Forces 1947) The Source Book pre-
sented significant transcription challenges. Some of the digits were illegible or had
been clearly switched during the transcription process with digits similar in appear-
ance, like an 8 for a 0. Luckily, Tables 3 and 4 represent the same data – man-hours
per airframe pound and cumulative production – about the same models of airplanes.
Table 3 organizes this data principally by manufacturer and plant, while Table 4 or-
ganizes it by airplane model. Therefore, the two tables could be compared to one an-
other to corroborate interpretations of certain entries that were hard to read or seemed
clearly wrong in one table or another. In the rare cases that it was impossible to tran-
scribe the data faithfully after consulting both tables, we dropped the observations.
In one case, the Consolidated Vultee San Diego B-24 August 1943 value for man-
hours was changed from a clear 0.07 to a much more plausible 0.77 (the series read
. . .0.88,0.84,0.84,0.07,0.67,0.65,0.65 . . . ).

The file gives value of cumulative production, from which we deduce production
as the di↵erence in cumulative production. In one case, the B-17 from Seattle, cumu-
lative production was available at the earliest date, January 1940. The series read 45,

18https://apps.dtic.mil/dtic/tr/fulltext/u2/a800199.pd
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49, 54. Clearly 45 was not the monthly production in January (see Mishina (1999)), so
we just assumed that production in January was the same as in February, 4 units.

Finally, there is a page from Table 3 missing in the available PDF. Unfortunately,
because of the organization of the PDF, it is impossible to knowwhat data about which
manufacturers was on this missing page.
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Figure 5: Time series of labor productivity from all included sources.

Table 8 shows some examples of aircraft-plant pairs from this source. We have cho-
sen the examples to show that some plants produced multiple aircrafts, some aircraft
were produced by multiple plants, and the total number of units produced and time
span of production varied widely.

Ford Archival Records. The Ford Motor Company’s archives are held in a dedicated
research center, The Benson Ford Research Center in Dearborn, MI. In the Charles
La Croix papers, there is a copy of a publication called Record of War E↵ort: Con-
tributions of the Ford Motor Company in the Development of Production for Victory
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Product Start date End date T Total prod.
B-17, Douglas, Long Beach Oct-42 Jul-45 34 3666
B-17, Lockheed, Burbank Jun-42 Jul-45 38 2750
C-69, Lockheed, Burbank May-44 Sep-45 17 16
A-20, Douglas, Tulsa Oct-44 Jun-45 9 1085
SB2A, Brewster, Johnsville and L.I.C. Jan-43 May-44 17 302
R-5, Sikorsky, Bridgeport Jan-45 Aug-45 8 11

Table 8: Examples of data extracted from the “Source Book”

(Detroit, MI: Ford Motor Company, n.d. 2 vol.). Volume 2 describes the monthly man-
hour-per-unit requirements for what appears to be all of the products Ford produced
throughout WorldWar II. As this seems to have been an internal publication, there are
no sources for this data beyond the implication that they are from extensive internal
auditing and record keeping during the war. Table 9 summarizes the data extracted
for Ford’s archives.

A.2 TheOMPUS-USMH dataset
This section presents detailed information about the two principal components of an
original data set we assembled for this research: the O�cial Munitions Production of
the United States and United States Munitions Handbook.

The PDF of the O�cial Munitions Production of the United States (OMPUS) is easily
available19, and contains data on production volume. This document is a Special Re-
lease, edited in 1947, covering each month from July 1940 (“the beginning of the war
program”) through August 1945 (“the last month of actual fighting against Japan”).
Footnotes often make references to data being only a partial coverage, often because
data from some component agencies was not available. In a few cases (experimental
aircraft), we also have data from January to June 1940. This source was easy to read.
We omitted Canadian data, and products with only one or two values of production.
For ships, we took the value in displacement tons instead of units. For a few products,
some of the data was available as aggregate for typically 6 months or a year. In these
cases we attributed to each month a pro rata value.

The United States Munitions Handbook (USMH) is a formerly classified publication
that was located in the Policy Documentation File (Record Group 179, Stack Group
570) by one of us (D.G.) on a research trip to the National Archives in College Park, MD
in April 2015. The transcription from photographs of the document did not present
any significant challenges. We note here that for airplanes, the cost data often appears
to refer to particular plants, whereas the reference OMPUS production is product-
level.

The USMH contains data on “early” and “late” cost for many products. These
products are named, and a reference to the OMPUS is provided in the form a page
and column number. This provided an uncontroversial match for the vast majority of
products, although in some cases the USMH seems to refer to more models than the

19http://cgsc.contentdm.oclc.org/cdm/ref/collection/p4013coll8/id/3332
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Product Start date End date T Total prod.
Universal Carrier GAU Mar-43 May-45 27 13893
Cargo Truck - OTBA Jul-43 Oct-44 16 2218
CG-13A - Glider (42Places) - GBG Jan-44 Dec-44 12 87
MX Engine Assembly Sep-44 Jul-45 11 2378
Aircraft Generators – GAL P-1 and R-1 Dec-42 Jul-45 32 87390
British Engine – GAE Jun-42 May-43 12 17593
British Axel – GAE Jun-42 May-43 12 17639
Bomb Service GTBB Apr-43 Sep-43 6 50
Bomb Service GTBC Sep-43 Oct-44 14 4701
Cargo Truck - GTB (Less Winch) Jun-42 Mar-43 10 5007
Stake Truck – G8T Mar-43 Mar-44 13 7198
Cargo Truck - G8T Sep-42 May-45 33 70420
Tank Engine GAA Jul-42 Aug-45 38 21478
Turbo Supercharger - B2 and B22 Aug-42 Oct-44 27 52281
Bomb Service GTBS Nov-42 Jul-44 21 4679
MX Field Assembly Sep-44 Aug-45 12 2579
Jeep GP and GPW Feb-41 Jul-45 54 283664
Tractor Truck G8T Dec-43 Jan-44 2 314
Armored Car M-8 - GAK Mar-43 May-45 27 8524
Cargo Truck - GTB (With Winch) Jul-42 Mar-43 9 995
Tank Engine GAF Nov-42 Sep-44 23 3908
Tank Engine GAN Aug-43 Dec-44 17 380
Armored Car M-20 GBK May-43 Jun-45 26 3773

Table 9: Data extracted from Ford’s archives

OMPUS. In a few cases, the match using the page and column number was erroneous,
and we used names instead. In a few other cases, product detail was higher in the
USMH than in the OMPUS, so that di↵erent cost changes were attributed to the same
production time series. We did not transcribe these cases.

One specific issue with the matched OMPUS-USMH data is that the USMH does
not provide a very clear definition of the cost data (“Standard Dollar Weight”). The
Foreword to the USMH states: “The cost figures shown for the separate items are the
standard costs which were used in computation of the War Production Board (WPB)
index of war production and the Production Statement. They are included in this re-
port to provide the reader with a proper perspective on themagnitude and relative sig-
nificance of the items involved. Both an “early” and a “late” cost are shown wherever
possible, comparison of the two costs oftentimes provides a clue to the tremendous
advances in manufacturing techniques which took place in some munitions areas, en-
abling costs to be cut sharply even during a period of generally rising prices.” In short,
we think the Standard Dollar Weight represents a nominal dollar amount reported to
understand product-level inflation over the course of the war. However, it could be
that this is already deflated, so we chose not to deflate the data further in our main
text analysis. We note that production in World War II was conducted in a climate
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of price controls and the rationing of materials and labor (Evans 1982). Despite this
inflation was 5% in 1941, 10% in 1942 and averaged 6% annually for the remainder
of the war (U.S. Bureau of Economic Analysis 2017).
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Figure 6: Distribution of the “early” month, “late” month, and number of months in between.

A second issue with the dataset is that we had to modify the dates with which the
“early” and “late” costs are associated. While the dates of the early and late costs
are reported for each product in the USMH, these dates are always the same in each
product category. However, in the explanatory notes (e.g. USMH p.104, explanatory
notes for Ordnance and Automotive Vehicles), an important clarification is that “the
cost of the item as of the last month of production has been shown as the final cost,
while for items produced after 1942, the dollar value shown for the earliest month of
production has been listed as the original cost”. Therefore, every time we found that a
product was not yet in production at the date of early cost, we corrected the date of the
early cost as the month in which production started. Every time we found a product
for which production had stopped before the date of the late cost, we corrected the
date of the late cost as the month in which production stopped20. Fig. 6 shows the
distribution of the corrected Early and Late dates, as well their di↵erence. For a large
number of products we have a start date in August 1942 and an end date in August
1945, 36 months later.

Fig. 7 shows the USMH-OMPUS data (only the slopes are comparable, and “unit”
costs may refer to units, pairs, thousands, or millions of units depending on the prod-
uct).

20For 46 Ordnance items (OMPUS ref. 177/2 to 188/7) the Early date reported was the implausible
April 1945, but the explanatory notes report that “The August 1942 cost was used as the original
production cost for both Army and Navy items” so we edited this subset accordingly. For 341 products,
the late date was September 1945 but our production data stops in August 1945, so we assumed that
the Late cost was for August. For 2 products, production starts on the month of the “Late” date, so we
removed them.
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Figure 7: Experience curves constructed by matching USMH and OMPUS.

A.3 The Contract Prices dataset
We collected the Contract Prices data from Crawford & Cook (1952) (tables PR-2, PR-3
and PR-20), who compiled the estimated value of procurement from various sources,
using a sample of products. “For many groups the sample covered more than 90
percent of the total values”.

The production index was computed as follows: “Quantities of the sample items
delivered each month were multiplied by a weighted unit cost for the item to de-
rive the dollar value of the sample. The unit cost figure for each item was based on
the contract or purchase price plus allowances for overhead, the cost of Government-
furnished equipment and materiel and any other costs incurred in connection with
the item by the War Department.” Most importantly, these time series represent phys-
ical volume, not the product of physical volume and prices. The relevant excerpt from
Crawford & Cook (1952) is footnote a on p. 20 “Data were computed from physi-
cal quantities delivered and standard dollar weights which for most items were unit
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costs as of 1945. The figures therefore reflect physical volume rather than cost to the
Government; they do not take into consideration price changes or contract renegoti-
ations.” The explanatory notes on p.86 further state that “The series was designed to
show relative magnitudes and trends in the physical volume of procurement deliver-
ies” Fig. 8 shows the data on production, clearly exhibiting a plateauing in 1943-44
and decrease in 1945.
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Figure 8: Estimated monthly rates of output between July 1st 1940 and July 31st 1945, total
and by main category, in millions of standard dollar weights. Source: War Production Board
(1945), p.105.

Themonthly data starts in January 1942 for all series. However, for theWar depart-
ment, the AAF and the aggregated ASF, quarterly data on production was available for
the previous 6 quarters (1940Q3-1941Q4). Because this information is useful for con-
structing experience, we used it as follows. For these three series, we constructed
monthly data for July 1940-December 1941 by attributing equally to each month the
quarterly production data. For the subservices, we computed the share of each subser-
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vice in the ASF total for the first 6 months of 1942, and used these shares to calculate
monthly production for the period July 1940-December 1941. Note that since price
data starts in January 1942, these assumptions are only useful for plotting Fig. 8, and
do not change our regression results. Similarly, the production data was not available
for the last four months for AAF. We computed the ratio of AAF to ASF in the previous
6 months (March to August 1945), and used this to estimate the values for AAF, and
thus for the Total War department as well, for September-December 1945.

The indices of contract price changes were computed as follows: “The items in-
cluded in these indices cover approximately 50 percent of the total value of War
Department procurement. They were selected to be representative of all principal
kinds of items purchased. The basic data employed were the contract prices for each
company supplying the item on the selected list. All successive prices in additional
contracts or revisions of existing contracts were recorded after necessary adjustments
were made for specification changes. The price data for all companies supplying a
given item were used to compute an index for that item after appropriate weights had
been assigned on the basis of relative importance in terms of physical volume”.

The explanatory notes also mention that “Individual item indices were combined
into group indices and, in turn, into technical service indices. These composites were
combined into a master Army Service Forces (ASF) Index, and a similar composite in-
dex on Army Air Forces (AAF) items was added to the Army Service Forces composite
to provide a War Department index. The indexes do not cover any items produced in
government-owned contractor operated plants, or, with the exception of the AAF in-
dex, items procured through cost-plus-a-fixed-fee contracts since such purchases were
to a degree noncompetitive and the contract terms were often such as to cause the
prices to be, incomparable with those of procurement through ordinary commercial
channels.” Fig. 9 shows the price indices for contract for various wartime agencies,
indicating an important decrease for almost every department, the exception being
the Quartermaster.

B Estimating prior experience
Estimating relevant prior experience for each of the product categories included in
our datasets was one of the greatest challenges we faced in writing this paper. In
order to create these estimates, we made a couple of assumptions about prior experi-
ence. First, we assumed that Americans gained most of their experience in producing
military-specific products (guns, munitions, etc.) during World War I. Therefore, we
were able to use the extensive statistical and primary sources available about WWI
output to create these estimates. Second, where a technology had both military and
civilian applications, we aggregated the WWI military output and rarer estimates of
civilian output, where possible. For civilian production, two sources were essential:
the Historical Statistics of the United States and history of science and technology books
about specific products such as radios and airplanes.

The OMPUS data is far more granular than the contract price data. Therefore, after
estimating initial experience for products included in the OMPUS data (Section B.1),
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Figure 9: Quarterly Index of Contract Price Changes: 1942 - 1945 for War Department and
Component Agencies (October 1942 = 100). Source: Smith (1959), p. 412.

we present a crosswalk that aggregates the OMPUS-level estimates and matched them
to the categories in the contract price data (Section B.2).

Main categ. Subcateg. ⇣ N War Dep.
Aircraft Bomber 0.21 15 Air Force
Aircraft Fighter 0.21 12 Air Force
Aircraft Reconnaissance (inc. Photographic) 0.21 1 Air Force
Aircraft Transport 0.21 8 Air Force
Aircraft Trainer 0.21 4 Air Force
Aircraft Communication 0.21 3 Air Force
Aircraft Special Purpose Aircraft 0.21 0 Air Force
Aircraft Gliders 0.21 0 Air Force
Aircraft Airships, Barrage Balloons, and Special De-

vices
0.21 0 Air Force

Aircraft Aircraft Engines 0.21 21 Air Force
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Aircraft Aircraft Propellers 0.21 12 Air Force
Ships Combatant 1.21 7 Ships
Ships Landing vessels 0.05 5 Ships
Ships Patrol 0.75 3 Ships
Ships Mine Craft 0.81 1 Ships
Ships Transports 0.05 0 Ships
Ships Dry Cargo 0.05 0 Ships
Ships Tankers 0.05 0 Ships
Ships Tender and Repair Vessels 0.05 1 Ships
Ships District Craft 0.05 1 Ships
Ships Other 0.05 3 Ships
Ships Maritime Commission Nonmilitary Vessels

Delivered to the Armed Forces
0.05 0 Ships

Ships Army Tugs and Barges 0.05 0 Ships
Ordnance Field Artillery 0.39 12 Ordnance
Ordnance Spare Canon, Tubes, and Recoil Mechanisms

for Field, Tank, and Self-Propelled Artillery
0.40 0 Ordnance

Ordnance Tank Guns and Howitzers 0.40 0 Ordnance
Ordnance Self-Propelled Guns and Howitzers 0.40 6 Ordnance
Ordnance Aircraft and Army Antiaircraft Guns 0.40 8 Ordnance
Ordnance Army Rocket Launchers 0.40 6 Ordnance
Ordnance Mortars 0.40 4 Ordnance
Ordnance Naval Surface Fire (Guns and Small Arms) 0.40 4 Ordnance
Ordnance Naval Antiaircraft and Dual-purpose (Guns

and Small Arms)
0.40 6 Ordnance

Ordnance Naval Rocket Launchers 0.40 0 Ordnance
Ordnance Small Arms 0.40 18 Ordnance
Ordnance Misc. Army Weapons and Ordnance Mat. 0.40 10 Quartermaster
Ordnance Misc. Navy Weapons and Ordnance Mat. 0.40 0 Ordnance
Ordnance Fire Control (excl. radar) 0.40 14 Ordnance
Ordnance Artillery and Tank Gun 0.35 61 Ordnance
Ordnance Aircraft (Ammunition) 0.35 7 Ordnance
Ordnance Army Antiaircraft 0.35 6 Ordnance
Ordnance Mortar Shells 0.35 13 Chemical
Ordnance Army Rockets 0.35 6 Ordnance
Ordnance Army Practice and Drill (All Types) 0.35 3 Ordnance
Ordnance Naval Surface Fire (Ammunition and Bombs) 0.35 8 Ordnance
Ordnance Naval Antiaircraft and Dual-purpose (Am-

munition and Bombs)
0.35 4 Ordnance

Ordnance Navy Rockets 0.35 0 Ordnance
Ordnance Small Arms Ammunition 0.35 15 Ordnance
Ordnance Land Mines 0.10 0 Ordnance
Ordnance Grenades 0.10 0 Ordnance
Ordnance Pyrotechnics 0.10 0 Chemical
Ordnance Explosives 0.10 0 Ordnance
Ordnance Propellants : Smokeless Powder 0.10 0 Ordnance
Ordnance Torpedos 0.10 1 Ordnance
Ordnance Naval Mines 0.10 1 Ordnance
Ordnance Depth Charges 0.10 1 Ordnance
Ordnance Aircraft Bombs 0.00 31 Ordnance
Ordnance Combat Vehicles (Tanks) 0.01 6 Ordnance
Ordnance Motor Carriages for Self-propelled Guns 1.00 1 Ordnance
Ordnance Heavy-heavy Trucks 1.99 17 Ordnance
Ordnance Light-heavy Trucks 1.99 10 Ordnance
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Ordnance Medium trucks 1.99 5 Ordnance
Ordnance Light Trucks 1.99 3 Ordnance
Ordnance Trailers, Semitrailers, and Motorcycles 1.99 2 Ordnance
Ordnance Remanufactured Automotive Vehicles 1.99 0 Ordnance
Ordnance Tractors 1.99 8 Ordnance
Comm. Army (Radio) 0.04 5 Signal
Comm. Navy (Radio) 0.04 0 Signal
Comm. Ship and Ship-and-Shore (Radio) 0.04 0 Signal
Comm. Ground (Radio) 0.04 7 Signal
Comm. Army (Radar) 0.00 4 Signal
Comm. Navy (Radar) 0.00 0 Signal
Comm. Ship and Ship-and-Shore (Radar) 0.00 0 Signal
Comm. Ground (Radar) 0.00 3 Signal
Comm. Underwater Sound Equipment 0.00 0 Signal
Comm. Wire Communication and Misc. Equipment 0.10 4 Signal
Other Petroleum Products: Aviation Gasoline 0.20 0 Air Force
Other Machinery 1.00 27 Engineers
Other Railroad Equipment 1.00 1 Transportation
Other Clothing 1.00 50 Quartermaster
Other Medical Supplies and Subsistence Rations 0.10 0 Medical
Other Misc. Equipment and Supplies 0.50 28 Quartermaster

Table 10: Estimated prior experience for OMPUS-USMH data. Main and Subcategory are the
main section and finest available section of the OMPUS table of contents (ToC); Product is the
most fine grained subsection of the OMPUS ToC available; N is the number of products; War
Department is from our hand-made crosswalk. Horizontal lines delineate the higher-level ToC
categories discussed in the text. Note that product types for which we have no data matched
with USMH (N = 0) are also reported.

B.1 Estimates of prior experience for theOMPUS-USMH data
This appendix provides an explanation for how we arrived at an estimate of prior
experience for each category of product in Table 10. The total wartime production
for each category was taken from the summary table “Production of Selected Muni-
tions Items” in War Production Board (1945). As discussed in Section 4.1, the OMPUS
dataset disaggregates many products into their component parts. The aggregate ta-
ble in War Production Board (1945) sums these components into larger product cate-
gories and then industry-level categories. We have used this table in lieu of summing
the OMPUS ourselves to avoid mismatching components of the same finished prod-
uct. This appendix explains how we gathered numbers about prior production and
wartime production to calculate the prior experience factor ⇣is presented in table 10.

Aircraft. Aircraft were not a novelty in World War II, but the scale and methods of
manufacture changed significantly during the war. Furthermore, significant changes
were made to their design. Much of this change was linked to improvements in en-
gines and propellers, which are a separate category in the OMPUS dataset and are
discussed below. However, the United States did have prior experience in manufac-
turing aircraft – major firms like Boeing and Curtiss (now Curtiss-Wright) were both
founded in 1916. Therefore, we estimated this prior experience by finding the number
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of individual civil and military airplanes produced in the United States before 1940.
Consulting Pattillo (1998) and Lorell (2003), we were able to determine that 62,401
aircraft were produced in the United States beforeWorldWar II. Many of these aircraft
were produced for World War I and for the postal service, which used planes to trans-
port mail over long distances. According to the War Production Board (1945), 296,429
aircraft were produced during World War II. We thus applied a value of ⇣i = 0.211 to
all types of aircraft.

Aircraft Engines and Propellers. As mentioned, the OMPUS often disaggregates
products into their components. Therefore, it provides cost and production informa-
tion not only for airframes and completed airplanes, but also separate information for
airplane engines and propellers. If we assume that each aircraft built prior and during
the war used two engines and two propellers, the estimate of ⇣i remains the same as
for aircrafts, ⇣i = 0.21. We note that it may be an overestimate, because unlike for the
construction of airframes and other components, there were design changes made to
aircraft engines during the war that made prior manufacturing experience less rele-
vant than it was to other areas of aviation. For example, automotive firms with no
prior aviation manufacturing experience were asked to adapt the Rolls Royce Merlin
piston engine for mass production (Hyde 2013). Other firms, notably Pratt &Whitney,
had extensive experience manufacturing piston engines (the type of engine used in the
majority of WWII planes) for aircraft. However, the most commonly used types of en-
gines in World War II like the Pratt & Whitney R-2800, were only designed in 1937
and flown for the first time in 1940. (Connors 2010). Other commonly used engines,
like the Wright R-3350 used for the famous B-29 bomber, were developed around the
same time (LeMay & Yenne 1988). Therefore, while engines were not totally novel at
the outbreak of war, they were not fully mature products; furthermore, new designs
and changes for mass production were common (White 1995).

Ships. There were two principal categories of ships produced in WWII: transport
vessels created for the Maritime Commission and warships made for the Navy.

The Liberty Ships created for the Maritime Commission have been much stud-
ied (Thornton & Thompson 2001, Thompson 2001, 2007, 2012). The War Production
Board (1945) table states that 53 million deadweight tons of cargo ships were manu-
factured in WWII. As Thompson documented, there was little pre-war experience in
the manufacture of transport ships. 2.7 million deadweight tons of cargo ships were
made during the First World War (Ayres 1919). We used ⇣i = 2.7/53 ⇡ 0.05 for all
ships except combatant ships.

We used several di↵erent sources for the warships. The first was George (n.d.),
which showed that the U.S. had 297 warships at the end of World War 1. The second
were the naval treaties agreed upon by the Great Powers during the 1920s and 30s
21. In addition, we used Roosevelt’s 1938 “Message to Congress Making Recommen-
dations for Defense” 22 to work out the number of larger ships built after the treaties

21These were the Washington Treaty and the First and Second Treaties of London
22https://www.mtholyoke.edu/acad/intrel/interwar/fdr11.htm
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lapsed, which showed the numbers of larger ships produced between World War I
and World War II. The third was the Dictionary of American Naval Fighting Ships 23,
which showed the number of smaller ships and submarines the US produced from the
end of World War 1 to the end of 1942. The fourth was the US Navy’s Naval Heritage
and History Command’s record of the size of the US Navy over time 24, which showed
the number of each class of ship produced over the course of WorldWar II. Combatant
ships are battleships, carriers, escort carriers, cruisers, destroyers, frigates (or ’escort
destroyers’ as they were called at that time), and submarines. From the sources, we
calculated that 889 combatant ships were produced before the war, and 733 during the
war. Hence, we used ⇣i = 889/733 ⇡ 1.21 for combatant ships. From the final source,
we calculated the number of landing vessels, patrol boats, and mine craft produced
before and after the war. There were 121 landing vessels produced before the war,
and 2426 produced during the war. Hence, we used ⇣i = 121/2426 ⇡ 0.05 for land-
ing vessels. There were 515 patrol boats produced before the war, and 689 produced
during the war. Hence, we used ⇣i = 515/689 ⇡ 0.75 for patrol boats. There were 263
minelayers and minesweepers produced before the war, and 323 produced during the
war. Hence, we used ⇣i = 263/323 ⇡ 0.81 for mine warfare.

Guns and Small Arms. While the production of planes continued for civilian con-
sumption during peacetime in the interwar period, the production of weaponry like
guns and small arms slowed significantly between the wars. As stated in Herman
(2012), the U.S. army shrunk to being only the 18th largest army in the world before
World War II. We exploit this fact to use weapons produced during World War I as our
proxy for prior experience manufacturing guns, small arms, ammunition and bombs.

Drawing on information from Broadberry & Harrison (2005) and primary source
material from Ayres (1919), we were able to estimate the production of a variety of ar-
tillery and guns during World War I. For example, there were 3,077 complete units of
artillery equipment manufactured, 226,557 machine guns, 3.43 million rifles and 1.7
million pistols and revolvers. The respective numbers for each of these categories pro-
duced during World War II were 7,803 artillery units (⇣ ⇡ 0.39), 2.68 million machine
guns (⇣ ⇡ 0.08), 6.5 million rifles (⇣ ⇡ 0.53) and 2.74 million pistols and revolvers
(⇣ ⇡ 0.621). Based these ratios, and for simplicity, we assume ⇣i = 0.4 for all items in
this category.

Ammunition and General Purpose Bombs. The numbers of ammunition and gen-
eral purpose bombs produced in World War I were available from the same sources.
In World War I 20.3 million artillery rounds were produced and 3.5 billion rounds of
ammunition for rifles, revolvers and other small arms. In World War II these numbers
were 33.5 million (⇣ ⇡ 0.61) and 41.5 billion (⇣ ⇡ 0.08) respectively. We used ⇣ ⇡ 0.35
in these categories.

It is slightly harder to match numbers for conventional bombs. However, we know
that 132 million pounds of “high explosives” – an essential component for all bombs –

23https://www.hazegray.org/danfs/
24https://www.history.navy.mil/research/histories/ship-histories/

us-ship-force-levels.html
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were produced during World War I. While it is hard to do a clear match of this explo-
sive component to the reported weight of bombs in the War Production Board (1945)
table, the closest category reported – “Aircraft bombs (Army and Navy), General Pur-
pose and Demolition” – states that 7.1 billion pounds of bombs were produced, sug-
gesting ⇣ ⇡ 0.02. Acknowledging that this seems very low, our choice of the prior
experience coe�cient for this category is 0.1.

Aircraft bombs, Not General Purpose. The secondary literature generally agrees
that there was almost no production of incendiary or fragmentation bombs during
World War I, and no testing of this materiel between the wars. Therefore, we can
assume prior experience of almost 0 for these models of explosives (Ross 2003, Hecks
1990). According to the War Production Board (1945) table, there were 2.26 million
incendiary, fragmentation and armor-piercing bombs produced. We used ⇣ = 0.001.

Combat and Motor Vehicles. This category unites products that were similar to
products that U.S. manufacturers were already producing, such as jeeps and trucks,
with others, like tanks, for which they had almost no prior experience. We were able
to find disaggregated numbers for many of these products. For example, we know
that prior to 1940 a cumulative number of 4.89 million trucks were registered in the
United States (Cain 2006). During the war, 2.45 million trucks were manufactured,
both for use on the front and for the armament e↵ort at home, suggesting a ⇣ ⇡ 1.99.
In contrast, prior experience in manufacturing tanks was very low. Only 799 tanks
were produced during World War I and there was no military demand for further pro-
duction in the interwar period (Ayres 1919). During World War II, 86,333 tanks were
produced. Since apart from tanks, all products in this category are similar to trucks,
we use a category-level ⇣ = 1.99, except for one product in the “Motor Carriages for
Self-propelled Guns” category, which is a light tank chassis, for which we used ⇣ = 1.

Communications and Electronics. Similar to Combat and Motor Vehicles, this cat-
egory groups together products that manufacturers had a wide range of experience
producing. In particular, there is a clear distinction between radios and radar. Ra-
dios were extensively manufactured prior to World War II, primarily for civilian and
commercial use. Approximately 86,400 radio sets had been produced by U.S. manu-
facturers by the end of 1940 (Cain 2006). In stark contrast, only 22 radars had ever
been made globally prior to 1940. Only the British “Chain Home” system was opera-
tional before 1940, with the first stations opening in 1938. Therefore, we apply prior
experience corrections at the product level. Furthermore the table in War Production
Achievements that we use for aggregate production numbers does not report communi-
cations and electronics output in terms of individual units, but rather in dollar values.
Therefore, exceptionally for this category, we have summed cumulative production
stated in Crawford & Cook (1952). According to this aggregation, 940,852 ground
radio sets were manufactured, including vehicular radios, plus 1.25 million air radios
were manufactured (⇣ ⇡ 0.04). Just over 66,000 radar sets were completed for ground
and airborne use, suggesting truly negligible prior experience. (This number excludes
the transponders and fuses that were attached to American materiel for friend-or-foe
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recognition.). We applied the above-mentioned experience factors for radar and ra-
dios, the same as radar for underwater sound equipment, and ⇣ = 0.1 for products in
the “Miscellaneous wire communication” category, mostly wires and cables.

Other Supplies. This is a broad category that unites products used to outfit, house,
feed and provide medical treatment for soldiers, as well as machinery and construc-
tion equipment. Prior experience varied greatly for these products,

In textiles and household-like goods, such as clothing, tents and cannisters, U.S.
manufacturers had extensive prior experience. A priori, WWII military production of
clothing compared to previous clothing produced should be small, suggesting a very
high ⇣. It was surprisingly di�cult to find estimates of prior production denoted in
units (rather than dollars) for these categories. Therefore, we have to use very rough
estimates of prior production from Carter et al. (2006) to estimate prior experience
in this category of products. This series allows us to estimate numbers for manu-
factured apparel, specifically men’s and boys suits and coats, back to 1927. In total,
178,496,000 of these items of clothing were produced from 1927 to 1940. This gives
a lower bound to be compared with the 428,316,000 items of clothing (not includ-
ing socks) manufactured for soldiers and sailors during the War, suggesting ⇣ = 0.41.
Since this is clearly lower bound, we assume ⇣ = 1.

For aviation gasoline, we used the same estimate as for aircraft, ⇣ = 0.2.
The Machinery category includes mostly construction equipments, such cranes,

showels, road rollers, and road scrapers, and railroad equipment includes one model
of locomotive. Assuming that prior experience was probably lower than for trucks
and automobile (2), but higher than for most other products, we chose ⇣ = 1.

Themiscellaneous equipment categories includes everything from sleeping bags to
airplane hangers, through insecticide and steel drums. Overall they tend to be items
for which there existed significant prior experience, and we chose ⇣ = 0.5.

Medical supplies andmedicines–likemorphine, penicillin, sulfa drugs and plasma–
were mass produced for the first time during World War II (Rostker 2013). Therefore,
we estimate prior experience for this sub-category to be very low–1% of WWII out-
put. The total output of these products during World War II was 6 billion ampules.
We assumed an experience correction factor of 10% because the category including
Medical Supplies also includes subsistence rations. Note that we have no product for
this category in the OMPUS data,but we will use this estimated prior experience in the
Contract Prices dataset,using a procedure which we now explain in details.

B.2 Estimates of prior experience for the Contract Prices data
To obtain estimates of prior experience at the level of War departments/Army Service
Forces, we take advantage of the fact that we have already justified prior experience
coe�cients at a lower aggregation level in the previous section. We manually con-
struct a concordance table between each sub-category of the OMPUS Table of Content
(ToC) and the War department services (see Table 10). We rely on Crawford & Cook
(1952), the source of the War department data, where for each War department there
is also a finer grained decomposition for the quantity of individual goods in each War
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Department. We compared the items in these finer grained data to the OMPUS cate-
gories, and assigned an OMPUS category to a War Department if the goods that War
Depatment procured matched the OMPUS category. In the cases where multiple de-
partment procured the same good, we assigned it to the department that procured
the most of the good. We also supplemented this by consulting extensive histories of
the divisions from the Army and military historians (Coates Jr 1959, Coker & Stokes
1991, Crawford & Cook 1952, Killblane 2012, Mauroni 2015, Risch 2014, Rubis 2012).
For example, we assigned the ’mortar shells’ category to ’Chemical’, as Crawford and
Cook list the ’Chemical’ department as procuring the majority of mortar shells.25

War department ⇣ Z0 Method
Total War Department 0.4472 52845 Sum of sub-departments
AAF Total 0.2096 9421 Average of corresponding OMPUS categ.
ASF Total 0.5931 43423 Sum of sub-services
ASF Chemical 0.2 353 Our assumption
ASF Engineers 0.75 3774 Our assumption
ASF Medical 0.1 81 Average of corresponding OMPUS categ.
ASF Ordnance 0.6158 22437 Average of corresponding OMPUS categ.
ASF Quartermaster 0.6333 14561 Average of corresponding OMPUS categ.
ASF Signal 0.0259 106 Average of corresponding OMPUS categ.
ASF Transportation 1 2112 Average of corresponding OMPUS categ.

Table 11: Estimated prior experience for the Contract Prices data

We computed the prior experience coe�cient of a War Department as the average
of the prior experience coe�cient of its associated OMPUS ToC sub-categories. We
thus obtained prior experience coe�cients for the AAF and for 5 of the ASF sub-
categories. For the categories ASF Chemical we put 0.2, and for Engineers 0.75.

To get an estimate of prior experience for the aggregate services ASF, we sum up the
estimated prior experience of the corresponding subservices. The bottom part of Table
11 reports the estimated values of prior experience Z0 for the ASF subservices. We sum
up these values to obtain Z0 for ASF Total. The table reports the corresponding value
of ⇣ for information only, we do not use it to estimate Z0. We proceed similarly for the
Total War department, which is the sum of ASF and AAF.

B.3 Estimates of prior experience for the Labor Productivity data
The Labor Productivity productivity data is mostly at the plant (Source Book) or com-
pany (Ford) level. There is an issue with correcting this data for prior experience

25Sometimes our mappings are unintuitive due to quirks in how the US procured goods. For example
the M2 mortars the US used were originally designed to only fire smoke shells as the US peace lobby
opposed the use of high explosives and chemical shells after WWI. Hence the Chemical department
dealt with the ammunition. But during WWII they adapted them to fire high-explosive ammunition.
Thus the Chemical department handled all types of ammunition, even though it was mainly high-
explosives and thus seems more likely to be handled by Ordnance.
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because if a plant enters in production late, it will not produce a lot and since the fac-
tor ⇣ is applied to total plant-level production, plants that arrive late and benefit most
from past experience actually get a lower estimated prior experience. We decided to
apply no correction to the data presented in the main text. See Appendix D.4 for the
results when we apply a correction for initial experience.

C Estimators for theOMPUS-USMH dataset
In the OMPUS-USMH dataset, there are two observations per product, but the dates
and span of these observations di↵er across products. Thus, we cannot estimate a
first-di↵erences model. In this appendix we discuss the “heterogenous-di↵erences”
(HD) model, in which we regress the di↵erences in log cost on the di↵erences in log
experience and the time span between the two observations (and where no constant is
allowed). We show that it results in the same regression coe�cients as the fixed-e↵ects
(FE) model used in section 6.2, but that it is di↵erent from the cross section regression
of the product’s average monthly growth rates. We also discuss how the share of cost
decrease due to the exogenous time trend is computed is Section 7.1.

Equivalence between the point estimates of the HD and FE estimators We define
the Heterogenous Di↵erences (HD) estimator as follows. For each individual i, there
are two periods t0i and t1i , and we denote the span of time between the two as

t1i � t0i = ⌧i .

We define the HD operator �⌧i on a variable V as the di↵erence of the two available
observations

�⌧iV = V (t1i)�V (t0i).

Obviously,
�⌧i t = t1i � t0i = ⌧i ,

and
�⌧iconstant = constant� constant = 0,

so that applying the operator �⌧i to our main equation

logci,t = constant +↵t + � logZi,t + ✏i,t

gives
�⌧i logci = ↵⌧i + ��⌧i logZi +�⌧i✏i (20)

Note that just like in first di↵erencing, applying the �⌧i operator leads to the loss of
one observation. Since there are two observations per individual to start with, there
is now only one observation per individual, so we have removed the subscript t. Note
also that there is no intercept in Eq. 20.

We define the HD estimator as the OLS estimator of Equation 20,

�̂HD = (XT
X)�1Xy, (21)
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where y = �⌧i logci and, denoting ⌧i as xi1 and �⌧i logZi as xi2,

X
n⇥2

=

2
6666666666664

x11 x12
x21 x22
...

...

xn1 xn2

3
7777777777775

To show that it is equivalent to the Fixed E↵ects estimator, we observe that when
there are only two observations, the “within” transformation is almost equivalent to
applying the �⌧i operator. The within transformation consists in substracting the
group-specific mean from each observation, that is, for a variable V with two observa-
tions in t1 and t0, the within transformation operatorW gives

W (V (t1i)) = V (t1i)�
V (t0i) +V (t1i)

2
=
V (t1i)�V (t0i)

2
=
�⌧iVi

2

and similarly

W (V (t0i) = �
�⌧iVi

2
,

so the within and HD transformations are very similar. But in contrast to the HD
transformation, the within transformation does not reduce the number of observa-
tions, so a direct comparison of the matrix of regressors is not possible. However, we
can write the within estimator as

�̂FE = (X̃T
X̃)X̃ỹ, (22)

where

X̃
2n⇥2

=
1
2

2
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�x21 �x22
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�xn1 �xn2
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77777777777777777777777775

.

Now, if we compute the entries of XT
X and X̃

T
X̃, we find X̃

T
X̃ = 1

2X
T
X and thus

(X̃T
X̃)�1 =

✓1
2
X

T
X

◆�1
= 2(XT

X)�1. (23)

Similarly, writing down explicitly the entries of X̃ỹ and simplifying shows that

X̃ỹ =
1
2
Xy (24)

Putting Eqs. 24 and 23 into 22, and comparing with Eq. 21, we see that

�̂FE =
✓
2(XT

X)�1
◆✓1
2
Xy

◆
= (XT

X)�1Xy = �̂HD.

⌅
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Non-equivalence between the HD and the growth rates cross-section estimator.
When faced with heterogenously spaced data with two observations per individual,
another option would simply be to calculate average growth rates, and perform a
cross-sectional regression, that is

�⌧i logci
⌧i

= ↵ + �
�⌧i logZi

⌧i

+noise. (25)

As can readily be seen by comparing the matrix of regressors, the coe�cients esti-
mated from Eq. 25 and the HD/FE estimator Eq. 20 are in general di↵erent, so Table
4 (columns 4-6) also reports the estimates based Eq. 25.

Share of cost decrease explained by the exogenous time trend To do a growth de-
composition for the OMPUS-USMH, we take expectations of Eq. 20

E[�⌧i logci] = ↵E[⌧i] + �E[�⌧i logZi],

so that the share of the change in cost that is explained by the exogenous time trend is

share exo =
↵

1
n

P
i
⌧i

1
n

P
i
�⌧i logci

(26)

D Robustness checks

D.1 Time series analysis
We can perform time series analysis only in the Labor productivity andContracts datasets,
and they have di↵erent structures (unbalanced and N > T for the first, but balanced
and T > N for the second).

Thus we first present results that relate to the time aspect of the models and that
can be computed on all three datasets: two-way fixed e↵ects, and using the lag (instead
of contemporaneous) experience as regressor. We then proceed to discuss time series
properties in the Labor productivity and Contracts datasets in turn.

We omit the specifications with production as a regressor.

Two-ways fixed e↵ects In the main specification, we constrain the e↵ect of the time
variable to be an exponential trend. Instead, we can estimate the fixed e↵ect results
when both individual and time dummies are included, that is

logcit = i +✓t + � logZit + ⌘it . (27)

This allows us to control for economy-wide (by contrast to product-specific) e↵ects
on costs that are not necessarily growing exponentially in time. Table 12 reports the
results26, showing that an estimate of the e↵ect of experience similar to that obtained
with the FE allowing only for individual dummies and an exogenous linear time trend.

26The models are estimated by performing a single transformation (removing individual means) and
adding time dummies, and the R2 are the R2 of this regression.
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Table 12: Panel regression results for Two-way fixed e↵ects

Labor Productivity USMH Contracts
Experience -0.300⇤⇤⇤ -0.059⇤⇤ -0.167⇤

(0.018) (0.020) (0.058)
Observations 3034 1046 308
R
2 0.789 0.250 0.803

First lag of experience We use the first lagged value of experience instead of con-
temporaneous experience as a regressor. The results, presented in Table 13, do not
change much as compared to the baseline results, except for the FD estimator in the
Labor Productivity dataset where the experience coe�cient drops by a half and the
exogenous time trend instead increases. The coe�cient for experience in the OMPUS-
USMH is also somewhat weaker than in the baseline results.

Table 13: Panel regression results for Experience lagged 1 period

Labor Productivity USMH Contracts
FE FD FE FE FD

Experience(t-1) -0.236⇤⇤⇤ -0.109⇤⇤⇤ -0.033⇤⇤ -0.149⇤ -0.120⇤

(0.019) (0.020) (0.013) (0.051) (0.045)

Time -0.008⇤⇤ -0.036⇤⇤⇤ -0.005⇤⇤⇤ -0.003 -0.004
(0.003) (0.004) (0.001) (0.003) (0.003)

N 2912 2719 1046 308 301
R
2 0.717 0.046 0.159 0.786 0.060

Labour productivity We first test the null of no first-order autocorrelation in the
Fixed E↵ects results using experience and time as regressors (Second column of Table
3), using Wooldridge’s (2002) (section 10.5.4) test, and strongly reject it (p < 0.001).

A possibility is that the variables exhibit unit roots, however because our panel is
unbalanced our options for testing are limited. We use Fisher-type tests (Choi 2001),
which consists in applying a standard test (Augmented Dickey-Fuller or Phillips-
Perron) to each time series, aggregating the p-values, and testing the null hypothe-
sis that all panels contain unit roots, against the alternative that at least one panel is
stationary. The Fisher-type tests are based on the T !1 asymptotic, with finite or in-
finite N depending on the statistics. All four statistics derived by Choi (2001) deliver
a near zero p-value for both the log of experience and the log of manhours per unit, so
we reject that all series contain a unit root.

Since there is autocorrelation but it is not as strong as to suggest a first-di↵erence
model, we follow two separate directions. First, we simply estimate a Fixed E↵ects
model with autocorrelated errors (Baltagi & Wu 1999), with two di↵erent estimators
for the autocorrelation parameter (Durbin Watson or the autocorrelation of residuals,
both computed on the within transformed data). These two methods of computing
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Table 14: Time Series models for Labor Productivity

AR1 Lagged Dep.Var.
DW Corr. OLS OLS Arellano-Bond

Experience -0.169⇤⇤⇤ -0.349⇤⇤⇤ -0.219⇤⇤⇤ -0.029⇤⇤ -0.026
(0.019) (0.016) (0.029) (0.009) (0.100)

Time 0.004⇤ 0.008⇤⇤⇤ -0.002⇤ -0.003⇤⇤⇤ -0.003
(0.002) (0.002) (0.001) (0.001) (0.010)

Manhours(t-1) 0.771⇤⇤⇤ 0.772⇤⇤⇤ 0.744⇤⇤⇤

(0.022) (0.022) (0.211)

Experience(t-1) 0.159⇤⇤⇤

(0.022)
Observations 2882 2882 2830 2830 2660
AR(1) 0.83 0.65
Experience, long-run -0.260 -0.126 -0.101

autocorrelations result in noticeably di↵erent results, yet in both cases the sign of the
exogenous time trend is reversed and the coe�cient of experience remains important
and strongly significant (first two columns of Table 14).

The second approach is to consider that residual autocorrelation is caused by mis-
specification, whereby the lagged values of the regressor and/or the regressand are
missing. The more complete model

logcit = i + a logci,t�1 + � logZi,t + �2 logZi,t�1 + ⌘it .

nests a large class of dynamic linear models (Hendry 1995). The results of estimating
this using OLS are in column 3, showing coe�cients of opposite signs for experience
and its lagged value. Removing the lag of experience (col 4), the autoregressive param-
eter remains the same, and the estimated long-run e↵ect27 decreases by half. Finally
(col. 5), although we have a fairly “long” panel whereby the Nickell bias is unlikely to
be large, we estimate the same equation using the two step Arellano & Bond’s (1991)
estimator with all possible instruments and robust (Windmeijer) standard errors, and
find similar results.

Contracts. We start again with Wooldridge’s test for AR(1) residuals and as for the
Labor productivity data, we strongly reject the null of no autocorrelation. However, in
contrast to the Labor productivity data, all the unit root tests we performed (Choi 2001,
Im et al. 2003, Levin et al. 2002, Hadri 2000, Breitung 2001, Harris & Tzavalis 1999)
systematically suggested that both the log of contract prices and the log of production
experience have unit roots.

27This is estimated as as the sum of the coe�cient(s) of experience divided by one minus the autore-
gressive parameter.
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Thus we tested for co-integration, using Pedroni’s (1999) test statistics. None of
the 7 test statistics suggested rejection of the null of no co-integration. This is not
too surprising, as we do not see a compelling reason for the existence of a strong
relationship between the levels of cost and experience, so that a departure from this
long term level relationship would imply an error-correction behavior and a return
to this trend28. Overall, these tests suggest that costs and experience are related in
di↵erence, that is, an change in experience is associated with a change in costs.

D.2 Coe�cient heterogeneity
In the main text, we have reported results with either both ↵ and � common across
all products, or separate regressions for each product. Here we investigate the results
when we constrain only one of the two parameters to be the same across products and
allow the other one di↵er.

Time trend heterogeneity only. We can investigate heterogenous time trends by es-
timating a fixed e↵ect regression on the first di↵erenced values, that is

� logcit = i + �� logZit + ⌘it . (28)

The results in Table 15 show results that are robust in the case of the Labor Produc-
tivity dataset, but evaporate entirely in the Contracts data. This is not too surprising
given what we had reported using individual-level regressions in Figs. 2 and 4.

Table 15: Fixed e↵ects on the first di↵erences

Labor Productivity Contracts
Experience -0.210⇤⇤⇤ 0.004

(0.020) (0.083)
Observations 2830 301
R
2 0.105 0.000

Experience e↵ect heterogeneity. We can estimate heterogeneous slopes for experi-
ence using Swamy’s (1970)’s random coe�cients model and the Mean Group estima-
tor of Pesaran & Smith (1995). We estimate these two models on the first di↵erenced
variables.

The results are in Table 16. The point estimates in the Labor Productivity dataset
suggest a stronger e↵ect of experience than in our main specification, while the reverse
is true in the Contracts dataset. In all cases, however, the standard errors are such that
the distributions for the coe�cients presented here and the coe�cients estimated in
the main text overlap significantly.

28Note also that experience cannot decrease, which would imply additional restrictions on the error-
correction model.
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Table 16: Heterogenous coe�cients models (Swamy and Mean group)

Labor Productivity Contracts
Swamy MG Swamy MG

Experience -0.272⇤⇤ -0.362⇤⇤⇤ -0.031 -0.035
(0.087) (0.082) (0.061) (0.047)

Constant -0.013 -0.015 -0.007⇤ -0.008⇤

(0.016) (0.015) (0.004) (0.003)
Observations 2817 2817 301 301

D.3 Instrumenting by lagged values
Because unit and labor costs are total costs divided by output, output appears on both
sides of the equations. Table 17 reports instrumental variable estimates for the main
specification (first-di↵erence) using the first lag of (log) production as instrument for
(log) production, and first lag of (log) experience as instrument for (log) experience.
We cannot perform this robustness check for the USMH data due its structure.

Table 17: Instrumental variable estimates

Labor productivity Contracts
Experience -0.209⇤⇤⇤ -0.219⇤⇤⇤ -0.123⇤⇤⇤ -0.124⇤⇤⇤

(0.021) (0.018) (0.033) (0.029)

Time -0.021⇤⇤⇤ -0.021⇤⇤⇤ -0.004 -0.004⇤⇤

(0.005) (0.004) (0.002) (0.001)

Production -0.025 -0.007
(0.014) (0.083)

N 2578 2719 301 301
R
2 within 0.70 0.70 0.76 0.77

R
2 overall 0.00 0.00 0.12 0.13

The results are very similar to those reported in the main text. We also performed
these regressions using the fixed e↵ect, rather than first-di↵erence, estimator, again
finding results very similar to those reported in the main text.

Using lagged regressors is not a fully convincing IV strategy. Reed (2015) shows
that it is e↵ective when the lagged regressors are themselves not regressors in the true
data generating process, and when the lagged regressors are su�ciently correlated
with the (instrumented) regressors.

We have considered other instrumental variable approaches. One approach is to
use demand side instruments, for instance battle-related variables, as one may have
thought that higher losses of materiel led to an increase in production, and was not
correlated with weapons costs decreases. However, as we argued from historical anal-
ysis, production operated at maximum capacity, guided by long-term (yearly) targets,
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and thus was not driven by battlefield losses. A second approach would have been
to use supply-side instruments, such as the provision of raw materials; because these
were in very short supply, they constrained production but their supply may have
been argued to be unrelated to cost decreases (but note that there is evidence of in-
duced technical change during the war to save on raw materials). Here we faced the
issue that it is virtually impossible to construct product-level instruments.

D.4 Initial experience
Contracts To evaluate the robustness of the results to a di↵erent evaluation of the
prior experience coe�cient, we re-construct experience using values of ⇣ multiplied
by a factor f , with f = 0 . . .5. Fig. 10 reports the results, showing that indeed the
results would change noticeably if we misestimated prior experience by an important
factor. The third panel, which shows the share of the decrease in cost attributed to the
exogenous time trend, shows that if the true ⇣s were all 20 times lower (f = 0.05), the
exogenous time trend would explain all cost decrease, and the “learning” parameter
would be close to zero. For even smaller values of f , the sign of �̂ would even change.
On the other hand, if we misestimated all the prior experience coe�cients by a factor
of 2 (f = 1/2 or f = 2), say, our main conclusion would not be fundamentally a↵ected.
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Figure 10: Estimated coe�cient of the first di↵erence regression of the log of contract prices
on the log of experience and an exogenous time trend, for di↵erent values of a factor f that
multiplies our baseline vector of estimates of prior experience ⇣. The rightmost panel shows
↵̂ divided by the average cost decrease µ̂ = �0.008 (as reported in Table 6).
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Figure 11: Estimated coe�cient of the fixed-e↵ect regression of the log of USMH unit costs
on the log of experience and an exogenous time trend, for di↵erent values of a factor f that
multiplies our baseline vector of estimates of prior experience ⇣. The rightmost panel shows
↵̂ divided by the average cost decrease µ̂ = �0.008 (as reported in Table 6).

OMPUS-USMH. Fig. 11 shows the robustness of the results to a change of the esti-
mates of initial experience by a factor f , as for the Contracts data. Again, the results do
change sensibly, but overall the results are fairly robust: it would take a very di↵erent,
implausible change to the estimates of initial experience to alter our conclusion that
experience and the exogenous time trend both explain an important share of the cost
trend.

Labor Productivity. In the main text, we did not use data corrected for prior ex-
perience (see Section B.3 for a discussion). If we apply the corrections suggested by
the discussion in Section B.1 for more aggregated categories, we would apply ⇣ = 0.2
for aircraft, ⇣ = 0.05 for ships, and, say, ⇣ = 1 for Ford. In this subsection we apply
this correction, and take it as a baseline on which we apply a factor f as above (for
f = 0.01, the coe�cients correpond almost exactly to the coe�cients reported in Ta-
ble 3, where f = 0). Again we observe some change in the results, but the overall
qualitative conclusion remains.

We also note that increasing prior experience tends to worsen the problem of
collinearity. The estimated e↵ect of experience on individual time series is less ro-
bust to the inclusion of a time trend. In Fig. 2, where there is no prior experience
correction (f = 0, i.e. ⇣ = 0), the points lie fairly well along the unit line and the corre-
lation between �̂i(↵i = 0) and �̂i(↵i , 0) is 0.37. In the baseline correction (f = 1), this
correlation falls to 0.16.
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Figure 12: Estimated coe�cient of the first di↵erence regression of the log of manhours on the
log of experience and an exogenous time trend, for di↵erent values of a factor f that multiplies
the vector of estimates of prior experience ⇣ described in this appendix. The rightmost panel
shows ↵̂ divided by the average cost decrease µ̂ = �0.066 (as reported in Table 6).

The robustness checks described here do not account for the fact that we may have
mis-estimated prior experience coe�cients much more in some categories than in oth-
ers. We do not report specific robustness checks for this, but during the process of re-
vising the estimates of the individual ⇣s, we have re-estimated our main specification
several times and while the results somewhat change, as above the main result is not
fundamentally a↵ected, with both experience and the exogenous time trend explain-
ing important shares of cost decrease.

D.5 Comparing the datasets
TheOMPUS-USMH and Contracts datasets contain, in principle, overlapping informa-
tion. Many detailed products in theOMPUS-USMH form part of the basis for the price
indices in the Contracts datasets. To give estimates of prior experience, in Section B.3,
we have built a concordance table between the OMPUS Table of Content (ToC) and
the War department services (Table 10). Here we exploit this concordance table to
compare the estimated coe�cients in Fig. 13.
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Figure 13: Comparison of the OMPUS-USMH and Contracts sector-level results.

The estimates of the exogenous technological progress ↵̂ first (left panel) are fairly
similar, with a correlation of 0.57. In contrast, the estimates of the e↵ect of experience
�̂ can be quite di↵erent, though the correlation remains around 0.33. The estimates
for Quartermaster, in particular, are very di↵erent. However, the standard errors are
very large, and often overlap the identity line, suggesting that the two datasets do not
necessarily provide significantly di↵erent estimates, and legitimizing our approach of
pooling the di↵erent war departments.

D.6 Controlling for inflation
During the war, the prices of inputs, including wages, tended to increase, although
moderately because of price controls. These input price changes bias our estimates of
the e↵ect of experience, which are likely to be higher than what we measure under the
assumption of constant input prices.

We cannot control for the price of inputs precisely, due to the lack of available
data at a granular level, so we have to resort to an aggregate price index. Of course,
even within each dataset the products are quite heterogeneous in terms of their input
mix. To control for input prices in this context, we also show a specification which
allows each product to have a separate coe�cient for the e↵ect of the price index,
that is, we interact the price index with the individual dummies (for OMPUS-USMH,
we used war departments instead of individual products as the basis for interaction
terms; for Labor productivity, 5 interacted dummies are removed because of perfect
multicollinearity).

We used the Producer Price Index for All Commodities (PPIACO), available from
FRED. Table 18 reports the results, showing that our main results do not change sub-
stantially.
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Table 18: Adding PPI as dependent variable

Labor Productivity USMH Contracts
Experience -0.219⇤⇤⇤ -0.222⇤⇤⇤ -0.061⇤⇤⇤ -0.043⇤ -0.110⇤ -0.104

(0.022) (0.022) (0.017) (0.018) (0.042) (0.054)

Time -0.024⇤⇤⇤ -0.023⇤⇤⇤ 0.003 -0.003 -0.005 -0.005
(0.004) (0.004) (0.003) (0.003) (0.003) (0.003)

PPI 0.899 -3.901⇤ 0.277⇤

(0.593) (1.752) (0.095)
PPI Interacted No Indiv. No War Dep. No Indiv.
N 2830 2830 1046 1046 301 301
R
2 0.126 0.177 0.174 0.224 0.057 0.072

D.7 External learning
A large literature has looked at experience spillovers explicitly, attempting to estimate
cross-plant or cross-product spillovers by regressing costs of product i on experience
producing i and experience producing j . Here we attempt to capture spillovers at
the larger level of the war economy, by constructing an aggregate time series of ”War
E↵ort”. A negative e↵ect on cost would indicate spillovers, whereas a positive ef-
fect would suggest that aggregate production negatively a↵ects individual products
productivity, perhaps due to scarce inputs, which was the case in the war economy.
We take the quantity index for the whole War Departments from the Contract Prices
dataset, that is, the solid black line in Fig. 8. Cumulative War e↵ort is the cumulative,
using the estimated prior experience from Table 11.

Table 19: Adding Total War e↵ort as dependent variable

Labor Productivity USMH Contracts
Experience -0.218⇤⇤⇤ -0.218⇤⇤⇤ -0.051⇤⇤ -0.058⇤⇤ -0.106 -0.117⇤

(0.022) (0.022) (0.017) (0.018) (0.043) (0.044)

Time -0.021⇤⇤⇤ -0.021⇤⇤⇤ -0.001 -0.005⇤⇤⇤ -0.004 -0.007
(0.004) (0.004) (0.002) (0.001) (0.003) (0.003)

War E↵ort 0.012 0.049⇤ -0.000
(0.010) (0.020) (0.008)

Cumul. War E↵ort 0.022 -0.033 0.129
(0.014) (0.041) (0.066)

N 2830 2830 1046 1046 301 301
R
2 0.126 0.126 0.174 0.167 0.047 0.050

The results are in Table 19. The estimated e↵ects of the “War e↵ort” variables are
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inconsistent across datasets, but the e↵ects of individual products’ experience do not
change as compared to our main estimates.

D.8 Depreciation of experience
An important issue in the literature is whether applying a depreciation to experience
improves the fit. Usually, one specifies a perpetual inventory method formula for
experience and attempts to estimate the depreciation rate. For instance, Levitt et al
use non-linear least squares.

A specific problem we have here is that assuming depreciation should logically
imply that we decrease the estimate of previous experience. Unfortunately, we were
able to give estimates of previous experience but not of how it unfolded over time -
thus we cannot easily apply a depreciation factor to it.

Here we simply omit this issue, and take the same estimates of initial experience
as in the main text29. We then cumulate production using a depreciation factor, as
follows

Zt = �Zt�1 + qt

Instead of estimating �, we fit the model for a range of values of � 2 (0.8,1) and pro-
vide the R2 of the regression (to show what Nonlinear Least Squares would estimate),
the estimated coe�cients for time and experience, and the implied share of exogenous
progress.

29Assuming a lower initial experience, e.g. depreciated initial experience = initial experience /6,
does not change the patterns in Fig. 14.
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Figure 14: Change of the main result as a function of the depreciation of experience parameter
�. Top: Labor productivity; Center: OMPUS-USMH; Bottom: Contracts

The results are in Fig. 14. The robust pattern that emerges is that allowing � < 1
would always make �̂ less negative and ↵̂ more negative, and the estimate of the share
of exogenous progress larger. However, the best fit models would imply no or only a
moderate increase of the estimated share of exogenous progress. For instance, in the
“worst” case, Labor productivity, �̂ = 0.91 implies a substantial annual depreciation of
0.9112 = 0.32, but the share of exogenous progress rises only from 0.33 to 0.46.
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