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Recent empirical analyses have shown that liquidity fluctuations are important for under-
standing large price changes of financial assets. These liquidity fluctuations are quantified
by gaps in the order book, corresponding to blocks of adjacent price levels containing no
quotes. Here we study the statistical properties of the state of the limit order book for
16 stocks traded at the London Stock Exchange (LSE). We show that the time series of
the first three gaps are characterized by fat tails in the probability distribution and are
described by long memory processes.
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1. Introduction

One of the best known statistical regularities of financial time series is the fact that
the empirical distribution of asset price changes is fat tailed, i.e. there is a higher
probability of extreme events than in a Gaussian distribution [1–3]. Moreover, there
are strong indications that the part of the distribution describing large price changes
is a power-law [4]. Many mechanisms explaining this empirical fact have been
suggested, including subordinated stochastic processes [5] and volume fluctuations
[6]. By investigating the fine details of the process of price formation in the London
Stock Exchange, we have recently shown that large price fluctuations are driven by
liquidity fluctuations, i.e. variations in the markets ability to absorb new orders [7].
We have shown that even for the most liquid stocks there can be substantial gaps
in the limit order book, corresponding to a block of adjacent price levels containing
no quotes (see below for a definition). When such a gap exists next to the best
price, a new order can remove the best quote, triggering a large price change. Thus,
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Fig. 1. A schematic illustration of the continuous double auction mechanism. We adopt the
arbitrary convention that buy orders are negative and sell orders are positive.

the distribution of large price changes merely reflects the distribution of gaps in the
limit order book. This is a finite size effect, caused by the granularity of order flow:
in a market where participants place many small orders uniformly across prices,
such large price fluctuations would not happen.

In this paper we investigate the statistical properties of the first three gaps of 16
stocks traded at the LSE. Specifically we investigate whether the fat tail properties
of the first gap discovered in [7] are shared by other gaps. We then investigate the
time correlation properties of gaps and the synchronous cross correlation between
the size of different gaps. The analysis shows that the liquidity of the book as
described by the multidimensional stochastic process of the gap sizes has interesting
properties, such as power-law distribution, long memory and synchronous behavior.

In order to have a representative sample of high volume stocks we select 16 com-
panies traded on the London Stock Exchange (LSE) in the 4-year period 1999-2002.
The stocks we analyzed are Astrazeneca (AZN), Baa (BAA), BHP Billiton (BLT),
Boots Group (BOOT), British Sky Broadcasting Group (BSY), Diageo (DGE),
Gus (GUS), Hilton Group (HG.), Lloyds Tsb Group (LLOY), Prudential (PRU),
Pearson (PSON), Rio Tinto (RIO), Rentokil Initial (RTO), Reuters Group (RTR),
Sainsbury (SBRY), Shell Transport & Trading Co. (SHEL). These stocks were se-
lected because they have high volume and they are all continuously traded during
the full period. The number of transactions vary from 226, 000 for BAA to 723, 000
for LLOY. The total number of considered transactions is 6.5 million.

2. Market Mechanism

To understand our results it is essential that the reader understand the double
continuous auction, which is the standard mechanism for price formation in most
modern financial markets. Agents can place different types of orders, which can
be grouped into two categories: Impatient traders submit market orders, which are
requests to buy or sell a given number of shares immediately at the best available
price. More patient traders submit limit orders, or quotes which also state a limit
price π, corresponding to the worst allowable price for the transaction. Limit orders
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often fail to result in an immediate transaction, and are stored in a queue called the
limit order book. Buy limit orders are called bids, and sell limit orders are called
offers. At any given time there is a best (lowest) offer to sell with price a(t), and
a best (highest) bid to buy with price b(t). These are also called the best prices.
The price gap between them is called the spread s(t) = a(t) − b(t). Prices are not
continuous, but rather change in discrete quanta called ticks. The number of shares
in an order is called either its size or its volume. As market orders arrive they are
matched against limit orders of the opposite sign in order of first price and then
arrival time, as shown in Fig. 1. A high density of limit orders per price results in
high liquidity for market orders, i.e., it implies a small movement in the best price
when a market order is placed. When a market order arrives it can cause changes
in the best prices. This is called market impact or price impact. Buy market orders
can increase the midprice m(t) = (a(t) + b(t))/2, and sell orders can decrease it.
Price changes are typically characterized as returns ∆pτ (t) = logm(t)−logm(t−τ).

3. Importance of the Granularity of Limit Order Book

We investigate the unconditional probability density function of price changes at
the level of individual transactions. To be more precise, for each transaction at
time t we compute the price return, defined as ∆p(t) = log(m(t + ε)/m(t − ε)),
where m is the midprice and ε is an infinitesimal time. The quantity ∆p is termed
the price impact and its average and conditional properties have been extensively
investigated recently (see for example [8,9]). We have investigated the unconditional
statistical properties of the price impact [7]. In Fig. 2 we plot the unconditional
cumulative distribution of individual price changes for the stock AZN. The empirical
distribution is consistent with a power-law distribution, i.e a probability distribution
decaying asymptotically as P (x > z) ∼ z−α, where α is called the tail index. A
least squares fit on the tail of the distributions gives a value of the tail index equal
to α = 2.19 for the positive tail and α = 2.17 for the negative tail. These results
indicates that the stochastic process of the price impact has finite variance. At first
sight the large fluctuations of price impact are puzzling. How can price changes due
to individual transactions fluctuate so much?

A possible explanation is the role of the volume. Large individual price changes
could be triggered by large market orders that cause transactions with many limit
orders present in the book at different price levels. The effect of such a large market
order would be a large price change. We have shown [7] that this is not the most
frequent scenario. Specifically, the volume of the market order is important in
determining whether the midprice changes, but when the midprice changes, the
price return induced by the transaction is almost independent of the market order
size. Thus the role of the volume of the market order in determining the individual
price change is marginal. In other words, at the level of individual transactions, the
impact function is not deterministic and the fluctuations of price impact are very
large. These results show that the fluctuations in the state of the book have a key
role in determining price changes. But how can small volume transactions create
large price changes?

We have investigated this problem by studying the state of the limit order book
before a individual market order was able to trigger a large price change. We have
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Fig. 2. Distribution of large price returns triggered by individual transactions (price impact). The
continuous line is the best fit for the negative tail, whereas for illustrative purposes the dashed line
indicates the power law behavior separating the regime with finite variance from the Lévy regime
(infinite variance). The data refer to the stock Astrazeneca (AZN).

found [7] that an important way of describing the state of the book at a given time
is through the properties of the gaps. To understand what we mean by a gap, let
us consider the limit orders on the sell side of the book. By definition, the lowest
price where shares are offered for sale is the best ask π0(t) ≡ a(t). The next price
level occupied by (at least) one sell limit order will be denoted by π1(t) > π0(t).
In general the nth price level inside the book occupied by at least one limit order
is πn(t), n = 1, 2, ...Ns(t), where Ns(t) + 1 is the number of occupied offer price
levels at time t. The first gap is defined as g1(t) = log π1(t)− log a(t), and the nth
order gap is defined as gn(t) = log πn(t) − log πn−1(t). Likewise the gaps for the
side of the book occupied by buy limit orders is g−n(t) = log πn−1(t) − log πn(t)
and π0(t) = b(t). Thus gi is the ith gap starting from the best prices on the bid
side for i < 0 and on the offer side for i > 0.

The size of the gaps (and the number of occupied price levels) present in the
limit order book at a given time are a measure of the liquidity of the asset at that
time. In fact a book with few occupied price levels and large gaps, i.e. a sparse

book, is an indication of a lack of liquidity and reluctance to trade the asset by the
investors. On the other hand when many orders are present and the gaps are small
(a dense book) the amount of liquidity of the asset is high. The empirical analysis
shows that the first gap size is a highly fluctuating quantity. Specifically it has been
shown that the first gap size distribution p(g1) and p(g−1) are well approximated
in the tail by a power-law distribution with a small exponent. This implies that
it is not uncommon that the best available limit price beside the best is very far
from the best price. Although this is a clear indication of liquidity crisis, we still
have not determined what causes these crises. We have shown that the first gap
distribution is a key quantity to understand large individual price changes [7]. In
fact we have shown that the first gap distribution is very similar to the distribution
of nonvanishing price changes. The reason for that is that investors tend to place
market orders of size smaller or equal to the size of the order at the best available
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Fig. 3. Hill estimator of the tail index α of the tail of the distribution of the size of the first
three gaps on the bid size of the limit order book (g

−1, g
−2, and g

−3). On the x axis we sort
alphabetically the 16 stocks under investigation.

price (best bid or best ask). Thus when the size of the market order is smaller than
the volume at the corresponding best, the midprice does not change and the price
impact is zero. When the volume of the market order is equal to the volume at the
best the midprice changes of a quantity m(t + ε)− m(t − ε) = g±1(t)/2, where the
plus (minus) sign refers to buy (sell) market orders. This argument shows why the
distribution of first gap and individual price change are closely related.

In conclusion, our previous analysis has shown that the most important factor
determining large price changes is not the transaction volume. We have shown
instead that a liquidity crisis, characterized by a sparse state of the book, causes a
situation in which a small market order can trigger a large price change. Even if we
still do not have an explanation for what creates the conditions for the sparseness of
the book, we believe that this is an important factor determining the dynamics of
asset prices. In this sense it is important to investigate in more detail the statistical
properties of the granularity of the limit order book. In this paper we provide a
first empirical analysis of these properties.

A first remark to the above discussed explanation of the large price changes in
terms of the fat tail of the first gap distribution concerns whether the first gap is
in some sense special or whether the whole limit order book (i.e. also the second,
third, etc. gaps) is characterized by granularity and large fluctuations. To this
end we analyzed the probability distribution of the first three gaps both of sell
and of buy limit orders. Specifically we compute the empirical pdf of gap size and
we characterize the tail of the distribution using the Hill estimator [10]. This is a
semi-parametric statistical estimator of the tail index α of a power-law distribution.
Figure 3 shows the Hill estimator of the tail index α of the first three gaps of the buy
side of the limit order book of the 16 stocks investigated (similar results are observed
for gaps on the sell side). Figure 3 shows that the asymptotic statistical properties
of the distribution of the first three gaps of a given stock are quite similar. This
result supports the idea that the whole book follows a time dynamic in which the
balance between the flows of limit orders, market orders and cancellations makes
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Fig. 4. Autocorrelation function of the first gap size for bids (g
−1(t)) and offers (g1(t)) in a log-log

plot. The data refer to Astrazeneca.

the book more or less granular (or sparse). The error bars given in Fig. 3 are
95% confidence intervals of the estimator, under the assumption that the data are
IID. Unfortunately, these data are far from IID. The real error bars are certainly
larger than these, due to the long-memory property of the data discussed below. It
is difficult to assign proper error bars for long-memory processes, and doing so is
beyond the scope of this paper. However, it is worth noting that the variation of
the tail index across different stocks is much larger than the variation of the tail
index of different gaps in the same stock. It is our belief that the variations between
the tail exponents of gaps are not statistically significant.

The idea that the sparseness of the limit order book is not concentrated in
“space”, i.e. it is a property shared by the whole book, suggests that it is worth
investigating whether the sparseness of the book is also persistent in time. More
specifically, if the book is sparse at a given instant of time, will the sparseness persist
in time, or is a sparse book an event that is strongly localized in time? To answer
this question we have studied the time correlation properties of gap size. Figure 4
shows the autocorrelation function of the first buy and sell gap size of AZN in
double logarithmic scale. The figure indicates that the first gap size is a persistent
quantity. The autocorrelation function is well fit by a power-law ρ(τ) ∼ τ−β with
β = 0.24 for the first gap of buy limit orders (bids) and β = 0.34 for the first gap
of sell limit orders (offers). These values are consistent with long memory processes
characterized by an Hurst exponent H = 1 − β/2 larger than 1/2. Long memory
processes [11] are stochastic processes characterized by the lack of a typical time
scale and they seems to provide a good description of several financial quantities
such as the volatility [14] and the sign of orders [12,13]. It is known that the power-
law fit of the autocorrelation function is not a good statistical estimator of the Hurst
exponent. We have thus measured the Hurst exponent of the first three gaps for bids
and offers by making use of the Detrended Fluctuation Analysis (DFA) [15] which
is known to be a good estimator of long memory dependence. The result for AZN is
H(g−1) = 0.75, H(g−2) = 0.76, H(g−3) = 0.76 for gaps in bids and H(g1) = 0.78,
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Table 1. Correlation coefficient of the first three gap size gi on the buy side (i = −3,−2,−1) and
on the sell side (i = 1, 2, 3) of the limit order book. The data shown refer to the stock Astrazeneca.

ρ g−3 g−2 g−1 g1 g2 g3

g−3 1.00 0.35 0.24 0.10 0.08 0.08
g−2 0.35 1.00 0.27 0.11 0.08 0.08
g−1 0.24 0.27 1.00 0.15 0.15 0.13
g1 0.10 0.11 0.15 1.00 0.33 0.30
g2 0.08 0.08 0.15 0.33 1.00 0.41
g3 0.08 0.08 0.13 0.30 0.41 1.00

H(g2) = 0.77, H(g3) = 0.79 for gaps in offers. We have not attempted to compute
error bars for these values, but we would be very surprised if these differences are
statistically significant. All these values demonstrate that the gap size is described
by a long memory process, i.e. a stochastic process without a typical time scale.
The fact that the granularity of the limit order book is well described by a long
memory process indicates that the lack of liquidity in the market is not a temporary
state, but rather one that persists in time.

The slow dynamics of the book as described by the persistence of the sparseness
of the book and thus of the lack of liquidity suggests that when the first gap is large
also the other gaps (on the same or on different side) are large. In other words the
sparseness of the book is a property shared by the whole book at the same instant

of time. To test this idea quantitatively we have computed the cross-correlation
coefficient of the size of the first three gaps on both sides of the book. The result
of this analysis is the symmetric correlation matrix shown in Table 1. First of all
we note that all the correlation coefficients are positive, indicating a synchronous
behavior of all the gaps. The correlation coefficient is significantly larger (of the
order of 0.24 − 0.41) when it is computed between gaps on the same side of the
book. This is reasonable because it indicates that the sparseness of the book needs
not to be shared simultaneously by both sides of the book. In fact at a given time
the market can experience a liquidity crisis on the buy side, for example, but not on
the sell side. Moreover it is worth noting that the correlation coefficient is stronger
between the second and the third gap on both sides of the book. The data suggest
that there may be a statistically significant correlation between gaps on different
sides of the book. The 3σ level for the investigated sample is of the order of 0.004.
However, these are long-memory processes, implying much larger error bars. For
a long-memory process the error scale as N−(1−H). For a Hurst exponent of 0.75,
for example, the errors scale as N−0.25. Thus the standard error of 0.004 becomes
roughly 0.065. Thus if these values are significant they are only just barely so. If
real, this correlation indicates that a lack of liquidity on one side of the book makes
a lack of liquidity on the other side more likely.

In conclusion we have shown that the multidimensional stochastic process which
describes the state of the limit order book of a stock traded in a financial market
has remarkable statistical properties. We have shown that the gaps closer to the
best available prices are characterized by large fluctuations which are important
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to explain large price fluctuations in terms of liquidity fluctuations. We have also
shown that the liquidity availability described by the gaps size is a long memory
process, indicating that the book dynamics lacks a typical time scale. Finally we
have investigated the synchronous behavior of the size of different gaps showing
that significant cross correlations between different gaps are present. These findings
have relevant practical importance because they give some understanding of what
determines financial risks, and gives some clues about how to reduce them.
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