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Highlights 

● There is much optimism around the fact global renewable costs have declined 

rapidly 

● We explore country-level costs to understand differences and implications 

● We find rising inequality between countries in renewable energy installed costs 

● Investment costs faced by countries based on these disparities vary significantly 

● Countries with lower emissions and income, and in the global south face higher 

costs 

Abstract 

There is growing optimism that the energy transition will be strongly aided by the 

reduction in global renewable technology costs. We use trends in solar PV and onshore 

wind costs and related factors to explore differences between countries and consider 

how cost inequalities might affect the energy transition. We show that, despite average 

costs falling, technology cost inequality between countries is increasing over time. The 

impacts of this could be severe as certain countries and investors face higher costs to 

implement green technologies. Countries with historic developmental disadvantages, 

and lower emissions, face higher costs, reinforcing potential injustices in the energy 

transition. We also show that demand pull factors (e.g., income, ease of doing 

business), renewable industry competitiveness, and policy portfolios are significant 

explanatory factors for cost differences. 

Keywords: renewable energy, solar energy, wind energy, technology costs, just 

transition 
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1. Introduction 

In recent years, there has been growing optimism around the rapidly reducing 

costs of key green energy technologies (Timilsina, 2021; Way et al. 2022). Low-cost 

renewables such as solar and wind have the potential to accelerate the energy 

transition through market signals and commercial private sector behaviour, rather than 

relying on government policy. However, there are many practical constraints which 

might undermine this optimism. Many of these constraints are technical, economic, 

regulatory, or social (Moorthy, Patwa, and Gupta, 2019; Spiess and De Sousa, 2016). 

There also remains a large open question about how decreases in costs at the global 

level are felt by different countries, and what this means for distributional impacts of the 

transition between countries and their development. 

Costs of green technologies have implications for innovation, energy security, 

and economic inequality. Renewable energy technologies traditionally must compete on 

costs as the main indicator of innovation since all firms sell a nearly identical product - 

energy (Grubb, 2014). Costs are increasingly relevant in national energy security 

debates (Ang, Choong, and Ng, 2015). And, at the household level, solar PV is afforded 

by the rich (Rahut et al., 2018) while the poor are vulnerable to energy poverty (Halkos 

and Gkampoura, 2021). Internationally, green technology costs can affect development 

outcomes (Adom et al., 2021). 

This paper investigates how country-level solar PV and onshore wind costs are 

trending through time. We find that technology cost inequality (TCI)1, measured by the 

coefficient of variation, increases over time. When we adjust costs for national price 

level, the driving factors of disparities across countries (demand pull, policy, and 

1 We refer to the variation or the dispersion in installed costs (i.e., the full start-up costs) between 
countries for a technology as ‘Technology Cost Inequality’ (TCI). Similar studies such as Gillingham et al. 
(2016) and Nemet et al. (2021) use the term ‘price dispersion’ (which is mathematically equivalent to TCI), 
however, we believe this term is inadequate to capture the full gravity of cost disparities, particularly for 
crucial energy technologies. The term inequality alone would be misleading because it is conventionally 
used in the context of economic inequality. Instead, we use the term Technology Cost Inequality because 
it captures some justice elements and potential social science implications and is therefore more suitable 
for our research.
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renewable industry competitiveness) are clearly observed. We comment on these 

drivers and the just transition implications. 

1.1. Energy justice: the issue of distributional justice 

Our study of country-level differences means we implicitly focus on the 

distributional idea of justice – justice that is concerned with the asymmetric allocation of 

benefits and costs along spatial and temporal contexts. Distributional justice can be 

studied across multiple geographical levels (Walker, 2009; Carley and Konisky, 2020), 

and extended beyond the more dominant debates localised to sub-national scales 

(Bouzarovski and Simcock, 2017). We can conceptualise distributional justice at the 

level of nation-states. We are forced to ask ourselves questions about participation and 

responsibilities, and cost inequality leading to vulnerability or well-being (Walker, 2009).  

We acknowledge that there will be inherent differences in how the energy 

transition occurs for different countries as there are several factors including historical 

and choice-based factors (Markard, 2018). However, our goal is to highlight areas that 

might lead to the transitions occurring in a manner that exacerbates unequal outcomes 

and slows down the global transition unnecessarily and identify potential remedies.  

1.2. What influences technology costs? 

1.2.1. Learning-by-doing and learning-by-searching 

Several studies have postulated a strong relationship between declining costs of 

green technologies and learning-by-doing combined with research and development. 

There is an intuitive symbiotic relationship between cost reductions and deployment, 

however it is difficult to prove learning rates are based on a direct causal relationship, 

nonetheless it can be argued that causal relations can be inferred (Grubb et al., 2021).  

Learn-by-searching (R&D) effects have become less important than deployment-

induced innovation, particularly in the renewable energy sector. Initially cost reductions 

were driven by R&D (1980-2000, half of cost reductions were from R&D) but there was 

a shift from the early 2000s to costs being driven by economies of scale or learning-by-
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doing (R&D approximately 25%, deployment nearly 50%) (Kavlak, McNerney, and 

Trancik, 2018).  

In addition to module cost decreases, learning-by-doing effects can be seen in 

the support costs for renewables installation; these are balance-of-system costs 

(support hardware, installation, and inspection) and other costs such as the cost of 

capital, permitting, customer acquisition etc. Support costs can be as large as module 

costs and follow different trends over time (Barbose, Darghouth, and Wiser, 2010). 

Elshurafa et al. (2018) analysed learning rates across 20 nationalities for these 

supporting costs and solar PV modules noting that prices have declined over time for 

both, however, the rates of decrease for the modules have been faster than those of the 

support costs. It is also noted that the support costs vary across countries and have 

decreased at varying rates and learning rates have varied by installation type 

(residential vs utility-scale). Therefore, studying installation costs should include both 

technology and support costs as these might account for the variations across 

countries. 

1.2.2. Policy’s impact on costs 

Policy measures may greatly stimulate deployment of renewables. Liu et al. 

(2019) analysed fiscal and financial incentives (strong effect), market-based instruments 

(strong effect), direct investments (weak effect), policy support i.e., institution building 

and strategic planning (strong effect), regulation and information and education (weak 

effect) and R&D (strong effect). These results were similar to those identified by Polzin 

et al., (2015) who conducted a similar study to investigate the impact of policy on 

investments. Abolhosseini and Heshmati (2014) studied FiTs2, tax incentives, and 

tradeable green certificates as investment mechanisms that could stimulate private 

investment and increase deployment but only postulated that this might also decrease 

costs.

2 FiT=Feed in Tariff  
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There are three additional insights about policymaking that have potential 

relevance to costs. Firstly, it matters at which level policy mechanisms are set, for 

example in the US, local permitting procedures (Burkhardt et al., 2015) and city level 

policies (Dong and Wiser, 2013) impact solar PV costs. Secondly, general 

environmental policies may be complemented by technology-specific policies (Groba 

and Breitschopf, 2013), however, there are diminishing marginal returns from increased 

complexity and quantity of policies (Zhao, Tang, and Wang, 2013). Lastly, commitment 

to policies and stringency might be more crucial than the policy portfolio proposed (Lipp, 

2007; Johnstone et al. 2012). 

Policy instruments are crucial but the relationships between costs and policies 

are much less straightforward than with other variables. Peñasco, Anadón, and 

Verdolini (2021) reviewed the impact of ten individual types of decarbonization 

instruments and showed their cost, distributional, and other outcomes were varied e.g., 

there was a high level of disagreement in cost related outcomes of quotas whereas the 

opposite was true for R&D funding. Policy mixes affect green technology diffusion 

however, quantitative studies of these impacts are scant (Schmidt and Sewerin, 2019), 

and there are none that focus on technology costs.

1.2.3. Market dynamics and macroeconomic context 

Energy technology market’s competitiveness, structure, and maturity, the 

heterogeneity of consumers, and firm costs influence price variation (Baye et al., 2006). 

The technology type and innovative ability of firms are also relevant (Groba and 

Breitchopf, 2013). 

The macroeconomic environment shares a strong link with costs and deployment 

of green technologies and renewables in particular. GDP as a measure of overall 

economic strength, population as an indicator of demand, labour, and resource costs 

have been considered critical factors influencing the cost of renewables (Dai et al., 

2016; Yao et al., 2021).  
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The relationship between the renewables industries and the economy is 

symbiotic. As the macroeconomic environment influences renewables industries, the 

industries themselves impact the macroeconomic environment (e.g., employment 

Proença and Fortes (2020) or industrial goals Komor and Bazilian (2005) and Schmidt, 

Schmid and Sewerin (2019)). The result has been that cost reduction in renewables 

industries has been linked to several attempts by governments to bolster 

macroeconomic conditions. The potential link between the macroeconomic environment 

and installed cost disparities, therefore, deserves inquiry. 
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2. Methods and data 

We collected data from a series of sources, iteratively adding to separate time-

series and cross-sectional datasets. Time series data is used to show the trends in 

technology cost inequality. The cross-sectional data is for 2021/2, and made up of 

categorical classifications (i.e., income, renewable industry competitiveness, emissions, 

geographical location, and policy clusters) and continuous variables (i.e., GDP, 

Population, Patents, etc.) We use these for comparisons between country groups and 

regression analysis of the drivers of technology cost differences. 

2.1 Data collection and preparation 

A useful contribution of this study is the creation of a cross-sectional dataset 

containing a set of indicators obtained from theory on technology costs as explanatory 

variables for Installed cost differences between countries. We collected this data 

systematically from multiple sources in an iterative fashion. In particular, the collection 

of explanatory factors was driven by existing literature and theory on technology costs, 

as well as preliminary results. We then cleaned and merged the data and performed a 

statistical power analysis (see Appendix A for details). Missing variables, particularly for 

costs, were handled either by using previous year values, where available, or dropping 

the country from the dataset.  
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Table 1: List of data categories and sources 

Data category Source Citation/link 

Installed costs 

- Time series data 

- Disaggregated costs 

IRENA 2022 IRENA, 2022. Renewable Power Generation Costs 

in 2021, International Renewable Energy Agency 

(IRENA), Abu Dhabi. 

Renewable energy 

deployment 

IRENA 2022 IRENA, 2022. Renewable capacity statistics 2022, 

International Renewable Energy Agency (IRENA),

Abu Dhabi 

Policy and Incentives and 

Public Financing 

REN21 2021 

GSR Table 6

REN21, 2022. Renewables global status report. 

REN21. Available at: 

https://www.ren21.net/reports/global-status-report/

Economic complexity 

- Proximity 

- Revealed 

Competitive 

Advantage 

Green 

transition 

Navigator 

Andres, P and Mealy, P, 2021. Green Transition 

Navigator, Available at: www.green-transition-

navigator.org. 

Renewables patenting IRENA IRENA, 2021. INSPIRE Platform, Available at: 

www.irena.org/INSPIRE

GDP per capita, GDP, 

Population 

Our World in 

Data 

Ritchie, H., 2019. 12 key metrics to understand the 

state of the world. Our World in Data. Available at: 

https://ourworldindata.org/12-key-metrics 

(Accessed: 01 July 2022). 

Human Development Index 

(HDI) 

Our World in 

Data 

Our World in Data, 2022. Human Development 

Index, Available at: 

https://ourworldindata.org/grapher/human-

development-index (Accessed: 1 July 2022)  

Doing business score World Bank World Bank, 2022. Doing Business Scores,

Available at: 

https://archive.doingbusiness.org/en/scores

(Accessed: 1 July 2022) 

Price level Our World in 

Data 

Our World in Data, 2022. Price levels relative to the 

US, Available at: 

https://ourworldindata.org/grapher/gdp-price-levels-

relative-to-the-us (Accessed: 1 July 2022) 

https://www.ren21.net/reports/global-status-report/
https://green-transition-navigator.org/www.green-transition-navigator.org
https://green-transition-navigator.org/www.green-transition-navigator.org
http://www.irena.org/INSPIRE
https://ourworldindata.org/grapher/human-development-index
https://ourworldindata.org/grapher/human-development-index
https://archive.doingbusiness.org/en/scores
https://ourworldindata.org/grapher/gdp-price-levels-relative-to-the-us
https://ourworldindata.org/grapher/gdp-price-levels-relative-to-the-us
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We have a time-series dataset containing data for 40 countries for onshore wind 

and 17 countries for solar PV costs through 1984-2021 and 2010-2020 respectively. An 

additional cross-sectional dataset is used which contains costs in 2020/21 and 

explanatory variables for 37 solar PV and 36 onshore wind countries. There are several 

instances of missing data points for the onshore wind time series (measured from 1984) 

but is complete from 2010 (the start date for the solar PV time series). There are 27 

explanatory variables (including three categorical classification variables and 11 policy 

situations reducible to 1). The countries represented “broadly” span all continents and 

the data is sufficient for the classifications we aim to make and the Kruskal-Wallis tests 

to run. However, the state of the data does present some limitations to the research 

(see 4.2 for deeper analysis). 

Figure 1: Geographic representation of the cost data and the number of countries represented 

in the RIC (explained below in 2.3) and Income classifications. 
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2.2 Assessing Technology Cost Inequality (TCI) 

We chose the coefficient of variation (relative standard deviation) as a measure 

for TCI and the spread of costs across the different countries. The means are varying at 

each time interval where technology cost inequality in costs is measured, therefore, 

standard deviation alone would be insufficient. The coefficient of variation is a more 

suitable indicator as it determines the extent of variability in costs in relation to the 

mean. Coefficient of variation has been used as a measure of economic inequality 

(Champernowne and Cowell, 1998; Campano and Salvatore, 2006) and to highlight 

regional differences over time (Huang and Leung, 2009). Additionally, Nemet et al. 

(2021) used the coefficient of variation as a measure of price dispersion for residential 

solar PV installations in the US, showing that the metric is sufficient for this analysis. 

For computing Coefficient of variation 𝑐𝑣: 

𝑐𝑣 =
𝜎

𝜇

Where 𝜎 standard deviation and 𝜇 is the mean  

For our time-series analysis of technology cost inequality, we compute 𝑐𝑣 over 

time and fit an Ordinary Least Squares linear regression plot to the data. The slopes 

(i.e., larger slope means technology cost inequality is increasing faster) of the 

regression plots are then compared to analyse the change in costs.  

We also acknowledge that raw total costs are not a good indicator of the relative 

costs facing investors in each regional market – as investors need to factor in local cost 

and local revenues in their analysis. Therefore, in our analysis we control for the 

Balassa-Samuelson3 effect by adjusting total costs by price level (we indicate explicitly 

each time we make a price level adjustment). 

3 Countries with higher GDPs tend to have higher price levels – i.e., broader market basket (Balassa, 
1964; Samuelson, 1964; Costa et al., 2019). Adjusting for price level allows for analysis where we have 
purchasing power parity across countries. The true impact of costs felt by investment and consumers can 
be observed. 
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2.3 Determining Renewable Industry Competitiveness (RIC) 

We use three proxies for determining Renewable Industry Competitiveness: (1) 

innovation – patenting; (2) technology production – proximity; and (3) technology export 

– Revealed Comparative Advantage (RCA). We use IRENA data on patents filed in 

individual countries for solar and wind energy as indicators of R&D output. Proximity

and RCA are indicators of economic complexity and competitiveness of renewable 

energy production and dispersal capabilities of a country. Specifically, proximity for 

renewables can be thought of as a computation of the similarity of renewable products 

to a country's productive capabilities and as correlated with the probability of developing 

future competitiveness in renewables – it, therefore, makes sense as a measure of 

internal renewable energy market strength. RCA for renewables is an indicator of 

whether a country exports renewables technology competitively. A more detailed 

description of how RCA and proximity are calculated is available from Mealy, Farmer, 

and Teytelboym (2019). Together, cumulative patenting, proximity, and RCA work to 

highlight the competitive strength of a country’s renewables industry.  

We classify countries as technology creator/acceptor countries using RCA as our 

principal indicator. According to Mealy and Teytelboym (2020), if RCA>1 for a country 

then, “the country is assumed to be competitive in the product, as it exports more than 

its 'fair share'”. Therefore, our classification is as follows: RCA>1 tech-creator (green 

competitive strengths), RCA<1 tech-acceptor (green opportunities). A 5-year running 

average from 2016-2020 is used for the RCA and proximity data. 

2.4 Working with varying policy situations 

Analysing the policy data required several preliminary steps before it could be 

used to test our hypotheses on factors influencing installed cost differences. We work 

with a cross-sectional dataset that is coded for any one of 11 regulatory policy, financial 

incentives, and public financing categories (see supplementary data). We make two 

attempts at dealing with this data and dimensionally reduce it to a smaller set of 

variables that are more useful for our analysis, (1) a cluster analysis to determine “policy 
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families” and assessing the impact of being in one “family”; (2) using axiomatic policies 

i.e., Feed-in-Tariffs and Quotas to observe the effect of these policies.  

For our cluster analysis, we use K-modes clustering which is an alternative to K-

means clustering but for categorical variables, an extension developed by Huang 

(1998). Here, sets of categorical objects are matched to those that are most similar – 

which in our example are policy and incentives situation for each country (see appendix 

B for details). The clustered data is then used in the subsequent analysis (Kruskal-

Wallis tests for observing whether there are statistically significant differences due to 

each policy situation and a regression analysis when all variables are combined).  

2.5 Assessing potential drivers of Technology Cost Inequality 

The analysis of potential drivers occurs at two levels. First, analysis of 

differences related to categorical classifications of countries (i.e., as technology 

creator/acceptors for RIC, as high/upper-middle/lower-middle/low-income countries for 

income classification and policy and incentives clusters). Here, we use the Kruskal-

Wallis tests (a one-way Anova on ranks); the test data satisfies the assumptions for this 

non-parametric test. 

Second, analysis using a multiple regression with fixed effects. In this section, we 

select appropriate variables that are indicators of the theory on factors that influence 

technology price. For policies (a categorical variable) we use dummies. We validate the 

final model by analysing the residuals and conducting robustness checks e.g., removing 

variables, adjusting controls etc. 

𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑜𝑠𝑡2020/21 = (∑ 𝛽𝑖 ∗ 𝑉𝑖

i

) + 𝛿𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 + 𝜖

Where:  

● 𝑉𝑖 is the explanatory variable 𝑖

● 𝛽𝑖 is the coefficient of the explanatory variable 

● 𝛿𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 are technology specific fixed effects 
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● 𝜖 is an error term 
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3. Results 

3.1 Solar PV and onshore wind energy costs are declining over time  

Cost trends vary by country, and we plot the costs adjusted for price level to 

observe the costs experienced in a country (Figures 2-4). 

Figure 2: Average solar PV utility costs for 15 markets from 2010-2021. A mean line with +/- one 

standard deviation shading is shown4. CAGR5 for the mean is computed and shown with a grey 

arrow indicating cost increase/decrease6. 

4 Here we plot the mean +/- standard deviation to demonstrate the interval that most costs should fall into 
as time progresses. This should not be taken as a measure of cost inequality or true price dispersion 
since average costs vary over time. 
5 CAGR=Compound annual growth rate 
6 The mean average installed cost for Residential, Commercial and Utility scale solar PV has decreased 
by mean CAGR=-12%,-14.3%,-13.9% respectively since 2010 (residential and commercial costs are not 
shown - see Appendix C for solar PV residential and commercial plots.)
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For solar PV, we see a smooth downward cost trend for most countries, starting 

with more volatility early on e.g., Republic of Korea. The sharpest decrease can be seen 

in India, which has made significant strides in solar PV deployment. Vietnam was 

initially high and had a bump in 2017 but later joined the trend, whereas costs in Turkey 

remained relatively high from 2016. Broadly costs have gone down fast across solar PV 

segments. 

The utility/residential/commercial solar PV split has varied over the years. 

Globally, utility solar PV is forecasted to dominate future deployment with residential 

and commercial solar PV growing to relatively lower levels (IEA, 2021). As of 2020, on 

average the segments make up 61%, 19% and 21% cumulative deployment across 

different regions around the world; utility largest in Russia, Sub-Sahara Africa, the UK, 

and China (92%, 73%, 73% and 69% respectively), commercial largest in the EU and 

ASEAN (47% and 42% respectively), and residential dominant in Australia (55%) (see 

Appendix E). This means that, depending on the region of the world, different segments 

of solar PV costs will matter in the energy transition. 
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Figure 3: Average Onshore wind energy costs by country for 10 large wind energy markets from 

1990-2021. Pre-1990 wind is dominated by just 4 countries so is not useful for a cross-national 

comparison. A mean line with +/- one standard deviation shading is shown; CAGR for the mean 

is computed and shown with a grey arrow indicating cost increase/decrease. 
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Figure 4: Average Onshore wind energy costs by country for small wind energy markets at a 

utility-scale from 2010-2021. Small markets data is only collected from 2010 onward. A mean 

line with +/- one standard deviation shading is shown; CAGR for the mean is computed and 

shown with a grey arrow indicating cost increase/decrease. 

We can split onshore wind markets into large and small markets. For large 

markets, cost declines are small but continuous over time. There is more volatility as 

new countries enter the market (e.g. Mexico and Japan) with these countries eventually 

settling into the downward trend. Both India and China start as high-cost outliers. China 

succeeds in falling within the band by 2010, whereas India remains an outlier (though 

less so than at the start). Despite sizable renewable investments from both countries, 

there stills exists a disparity in outcomes.  In small markets, costs have increased. The 

trajectories are more sporadic than in the large markets case or the solar PV case.  
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3.2 Technology Cost Inequality is increasing over time with varying rates 

We use the trends in TCI (measured by coefficient of variation or relative 

standard deviation - 𝑐𝑣) to examine the differences in cost outcomes for countries by 

technology (Figure 5).  

Figure 5: Coefficient of variation over time across solar PV and onshore wind and at multiple levels 

of implementation for solar PV (utility, residential, commercial). Red arrow shows the trajectory of 

TCI over the time period (best-fit line). Each of the plot shows a slope when a regression line is fitted 

to the 𝑐𝑣 vs time, the 𝜇 - average for TCI over the time period, and the CAGR for 𝑐𝑣 from 2010-2020.
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For solar PV, TCI varies depending on the segment on which it is examined. 

Average TCI is highest in the residential segment, followed by utility scale then 

commercial solar PV (𝜇 = 0.75, 0.55, 0.29 respectively). TCI is increasing at 4.7% and 

9.5% per year in the residential and commercial segments while decreasing slightly by 

1.7% in the utility segment. This suggests that under a “business-as-usual” scenario TCI 

in the commercial segment will catch up to the utility and residential segments. TCI in 

the utility segment is decreasing, however, it is useful to note that solar PV data was 

only recorded in lower-middle to high-income countries. In 2020 Indonesia, the second 

lowest income country, had the second highest price level adjusted utility installed 

costs. This suggests that significant utility solar PV cost disparities likely exist, but they 

could not be shown due to lack of data.  

TCI for onshore wind varies depending on whether we consider large markets, 

small markets, or the combined case. In all three cases TCI increases. Across all 

markets CAGR = 2.8%, in large markets alone CAGR = 1.1%, small markets alone 

CAGR = 1.4%. This means countries that have recently entered the market are facing 

increasingly higher costs as a group, whereas incumbents have benefits from being in 

the market longer. Only rich countries such as Denmark, the United States, Germany, 

and Sweden had recorded onshore wind installed costs in earlier years. Other markets 

such as India, China, Brazil, and Mexico had onshore wind energy production only 

recorded in the 1990s, with much smaller markets only recorded from 2010. Over the 

last decade, TCI increase coupled with rising costs in small markets, increases the 

likelihood of unequal transition outcomes between countries. 

3.3 The impacts of cost inequality can be severe 

To understand the implications of these patterns in TCI on the potential costs 

countries will face in investing in these renewables, we explored several potential cost 

and investment measures (Figure 6).  

Countries with high costs will face higher investment expenditure and the 

difference between being a low and high cost installing country can be high. For 
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example, if Pakistan (a high-cost onshore wind country), installed at the lowest cost 

($1282/kW vs $7571/kW) under the same deployment, the total investment would be 

$155M vs $920M, investing 0.011% vs 0.065% of GDP. Similarly, India (medium-cost 

utility solar PV country) has a $28B gap between the lowest and highest costs. China, a 

low-cost commercial onshore wind country, saves 0.04% GDP. And in the residential 

solar PV segment if Australia (low-medium cost country), installed at highest costs, 

would be a staggering $103B vs $8.2B (6.5% vs 0.5% of GDP.) 

Figure 6: Average annual investment with best, worst, and actual cases for different 

technology/segment installation types. Average annual investment is taken as either the 

average over the last 5 years (2016-2021) or 2018/19 as an indicative year. Best cost - lowest in 

category, worst - highest in category. We show the difference between the best and worst case 

for each country and the proportion of GDP this represents. 
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3.4 Various country groupings further reveal installed costs patterns  

We compare the relationship of country classifications for income, RIC, policies, 

and geographical location with costs. First, we show how disaggregated solar PV costs 

vary across technology acceptor and creator countries. Second, we derive policy 

groups. Third, Kruskal Wallis tests are conducted to determine if categorical 

classifications explain costs. 

3.4.1 Disaggregated utility solar PV costs highlight TCI differently

Figure 7: Installed costs disaggregated into sub-costs for module and inverter hardware, BoS 

hardware, Installation and Soft costs. We adjust costs for price level. Mean sub costs are shown 

with the corresponding  𝑐𝑣 . These sub-costs are further disaggregated into 16 sub-sub-costs 

such that Modules and inverter hardware = Modules + Inverters; BoS7 hardware = Racking and 

mounting + Grid connection + Cabling/ wiring + Safety and security + Monitoring and control; 

Installation = Mechanical installation + Electrical installation + Inspection; Soft costs = Margin + 

7 BoS=Balance of Systems 
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Financing costs8 + System design + Permitting + Incentive application + customer acquisition 

(IRENA 2021).  

To understand where differences in costs may be coming from, we consider the 

disaggregated costs across countries. Historical installed costs are driven by module 

and inverter hardware costs (43%) which are relatively stable across countries (global 

commodities). The support costs are over half the total costs and tend to have greater 

dispersion across countries (i.e., higher 𝑐𝑣 ); BoS hardware (which might also be 

commoditized given that some countries may import many of the products) has the 

lowest TCI in support costs. These observations are consistent with Elshurafa et al. 

(2018) even though we adjust for price level. This variability is sufficient to warrant 

investigation into the driving factors. 

8 Financing costs included are the costs of capital acquisition not cost of capital. See a more detailed 
regional analysis of cost of capital acquisition and cost of capital in IRENA (2023) 
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3.4.2 Country policy portfolios fall into three categories 

Policy clusters (i.e., groups of countries with similar policy and incentives 

situations) are obtained using a K-modes analysis on our policies dataset. Our analysis 

of the clusters reveals patterns described in Table 2. The diversity of policy situations is 

large, although all countries appear to have at least some policy relating directly to 

renewables. Our goal here is not to highlight the superiority of any one policy, but to 

highlight the effect that a particular portfolio of types of policy scenarios might yield on 

installed cost differences. 

Table 2: Policy clusters obtained from policy situations (Regulatory Policy, Financial Incentives 

and Public financing). The proportion of countries that fit in each cluster is shown. Description of 

the policy cluster and a representative country is stated. Corresponding detail on policy analysis 

is available in Appendix B 

Cluster 

name 

% of 

countries 

in cluster Description 

Diverse 

set 
40% 

Regulation, market policies and incentives all used. We see RPS 

and quotas - regulation, FiTs, tradable Renewable Energy 

certificates (RECs) and Tendering - market, and Sales tax 

reductions - incentives. Policy options set at both national and 

sub-national levels. Representative country: United States

Market 

focussed 
32% 

Moderate policy diversity. Substantive use of financial incentives 

including sales tax credits and investment tax credits. Some 

tendering and regulatory policy occasionally employed e.g., 

through FiTs. Representative country: Denmark

Low use 28% 

Very little use of regulatory policies or financial incentives for 

stimulating renewables. Some use of FiTs for regulatory policy 

tendering or sales tax credits for financial incentives. 

Representative country: Turkey
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Figure 8: Geographical spread of the policy cluster classifications. 
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3.4.3 Cost differences exist across all country classifications 

We conducted Kruskal Wallis tests and made box plots of country costs for both 

technologies together by country classifications (Figure 9). We can see that across all 

categories countries with worse historical conditions face higher costs (i.e., countries 

with below average emissions, technology acceptors, lower incomes, in the global 

South, and with less policy, tend to face higher costs). 

Figure 9: Boxplots for several categorical variables and Kruskal Wallis (KW) tests conducted on 

the differences in total installed costs based on the chosen categorical variable (i.e. we take 

costs for both solar PV and onshore wind combined to see the impact of categorical variables 

on cost independent of the technology). Categorical variables: Emissions, RIC (tech 

acceptor/creator), Income, Continent, Policy cluster. Output variable is Total costs price level 

adjusted. KW tests p-values shown such that pvalue < 0.5 – significant difference in the 

medians (otherwise insignificant). For solar PV data only where we have disaggregated costs, 

we can conduct KW/box plot tests to see which parts of the costs are influenced by the drivers. 

The results are mixed (see Appendix G) 
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We find that RIC is a strong determinant of green technology cost outcomes. 

Tech creators tend to have lower technology costs. These trends are broadly consistent 

across technologies albeit less pronounced when each technology is examined 

individually for the classification (lower levels of statistical significance for KW tests). 

This is concerning given that RIC correlates strongly with income and historical 

emissions. 

Despite having only three income categories (low-income countries missing), we 

still observe cost inequalities across categories. Without adjusting for price level, total 

costs appear to be the same across income categories for countries. However, when 

we adjust for price level, we clearly see that high-income countries get a better deal. 

Total installed costs are lower in higher income countries and highest for lower-middle 

income countries. These results are consistent across technologies.  

Continent or geographical location follows the same trends as income. We note 

that the African and Asian continents tend to have higher price level adjusted costs. 

These are the continents with the greatest proportion of lower-middle income countries. 

Again, we see the effect of adjusting for price level as we note that countries that have 

above average historical emissions per capita also have cheaper access to green 

technologies. This raises questions regarding the “historical responsibility" aspect of the 

energy transition. 

The results show low statistical significance in cost differences across policy 

clusters when observed in isolation from other variables.  We do note that the “Low use” 

cluster does tend to have higher costs across technologies. We also test for whether 

axiomatic policies such as FiTs or quotas impact costs (as an alternate approach to 

understanding policy effects). These two policy mechanisms have been known to 

stimulate renewables development with FiTs being more useful when renewables are 

still nascent in a market (control the price) and Quotas (control the quantity) being more 

powerful when a technology becomes more mature (Polzin et al., 2015). We find that 
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these policies are also not statistically significant explanatory variables for cost 

differences. 

3.5 Multi-variate exploration of relationships between costs and potential drivers 

Here, we present a multivariate analysis to further unpick relationships between 

costs and potential technology cost drivers (Table 3). We use our insights from 

analysing the correlation between variables (see Appendix D) to reduce the variables so 

that we avoid collinearity in the regression. We use GDP per capita as the measure of 

income (demand pull) and the business/market environment, Patenting as a measure of 

R&D (learning by searching) and RCA/Proximity as measures of the renewables 

industry. Because RCA and Proximity are moderately correlated, we only use one of the 

variables in the regression at a time. The policy clusters are our policy variables. Nearly 

all the explanatory variables share a negative monotonic relationship with total costs 

adjusted for price level.  

We control for GDP and population (we are interested in more than just economy 

size or the size of the country as explanatory variables). We also add deployment per 

capita to our control variables because the relationship has been shown in prior 

research (e.g. Way et al., 2022) (also shown in correlation analysis) and we want to 

examine costs independent of total technology stock. 
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Table 3: Regression analysis of drivers of TCI. Dependent variable = Total price level adjusted 

installed costs. Variables are scaled by normalising across the countries - we can observe the 

size of the effects from each factor using the coefficients (if a variable changes by 1 std then we 

observe the corresponding change in total costs). Dummies used for technology and policy 

categorical variables. Intercept is specified for each result (policy, technology). Impact on costs 

of different variables can be calculated from the intercept. 

(1) 

RCA 

(2) 

Proximity 

(3) 

RCA no 

FE 

(4) 

Proximity 

no FE 

(5) 

RCA no 

Controls 

(6) 

Proximity 

no Controls 

Intercept

Low Use, 

SolarPV 

Low Use, 

SolarPV 
Low Use Low Use 

LowUse, 

SolarPV 

LowUse, 

SolarPV 

2336 *** 2291 *** 3174 *** 3113 *** 2387 *** 2332 *** 

GDPperCap -669 *** -686 *** -725 ** -755 ** -719 *** -737 *** 

RCA -168 -245 . -177 . 

Proximity -100 -182 -122

TotalRenewablePatents -141 -124 -145 -112 -130 -97

DiverseSet -749 ** -672 * -965 ** -843 * -777 ** -685 * 

MarketFocussed -960 ** -955 ** 
-

1285
** 

-

1262
** 

-

1024
** 

-

1006
** 

OnshoreWind 1301 *** 1320 *** 1263 *** 1282 *** 

Population -92 -83 -59 -41

GDP 92 94 108 114

DeploymentperCapita -138 -136 6 20

Full set of control 

variables
Yes Yes Yes Yes No No 

Technology FE Yes Yes No No Yes Yes 

R2 0.68 0.68 0.49 0.48 0.68 0.67 

Adj R2 0.64 0.63 0.43 0.41 0.65 0.64 

Significance levels: 0 ‘***’, 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Demand-pull and business environment variables have a strong relationship with 

TCI. GDP per capita has a negative coefficient and the second strongest relationship 

outside of policies even when we control for country size and cumulative deployment 

per deployment.  These results are consistent even when we vary the macroeconomic 

variable we use in the regression (GDP per capita, HDI, Doing Business Score etc.) and 

the demand-pull variable remains highly statistically significant.  

While there are no statistically significant differences in cost when policy clusters 

are examined in isolation (Figure 9), when we control for other variables, we note a 

significant increase in statistical significance (see all Table 3). Low-use policies cluster 

are associated with higher costs. When countries use a diverse set of policies, 

technology installation costs are roughly $700/kWh cheaper. And market-oriented 

policies tend to have the lowest installed costs being ≈$1000/kWh cheaper than the low-

use case. When we control for other variables, policies have the largest relationship 

with technology costs. 

RIC has a moderate association with TCI but varies depending on placement on 

the value chain; with activities higher up the chain being more significant. At the 

learning-by-searching level (R&D represented by patenting) we note that while patents 

are associated with lower costs, it is small (negative but small coefficient; the variable is 

also statistically insignificant). This is likely because 86% of renewable patents are 

produced by the top 5 countries China, USA, Japan, South Korea, and Germany. As we 

move up the chain, we see that proximity shares a weak monotonic relationship with 

costs but is insignificant in the regression (see Table 3 (2), (4) and (6)). RCA which is 

further up the chain shares a weak monotonic relationship but has a regression 

coefficient that is statistically significant at a 10% level (see Table 3 (1), (3) and (5)). 

Additionally, RCA which is our main measure for the RIC classification shows that costs 

are different for technology creators vs acceptors (see Figure 9).  
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4. DISCUSSION AND CONCLUSIONS 

4.1 Key findings  

The global energy transition has so far largely been driven by improvements in 

energy technologies and reductions in their costs. There is much optimism surrounding 

the large reductions in renewable costs that have been observed in recent years. This 

paper set out to explore the country-level trends in costs of solar PV and onshore wind, 

to better understand how different countries might be experiencing these global trends.   

We have shown that regional differences exist, and technology installed costs 

disparities influence a country’s experience of the transition. Technology Cost Inequality 

exists and is broadly increasing. Utility onshore wind and residential and utility solar PV 

segments have seen increasing TCI, whereas utility scale solar PV is on a slight 

downward trend (CAGR = 2.8%,4.7%,9.5% and -1.7% respectively). Currently, solar PV 

installations are dominated by utility scale (58%) installations, but some parts of the 

world are likely to continue increasing the proportion of residential and commercial 

installations. Therefore, rising cost inequality is concerning. The impacts of TCI can be 

severe. Differences between a country deploying technology at the lowest vs highest 

cost can be high e.g. $1.2B (0.08% of GDP) of GDP for Pakistan a high-cost utility wind 

installer and $96B (6% of GDP) for Australia a low/medium cost installer of residential 

solar PV.  

We also explored the association between a range of factors that have been 

theorised to impact technology costs. These also revealed several potential energy 

justice implications for the transition. Higher income countries with stronger demand-pull 

factors (e.g. Income, Doing Business Score etc.) tend to face lower costs. Countries 

with stronger renewable industries face lower costs though the relationship with 

renewable industry competitiveness is more pronounced further up the value chain. At 

the level of research and development, there are no significant cross-country 

differences, whereas when we examine the competitiveness of manufacturing and 

export capabilities, we see more advanced countries faring better. A country’s policy 

portfolio had the strongest association with cost differences. Countries with market-
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based policy mechanisms tend to have lowest costs, whereas countries with low policy 

use face higher costs (differences of over $900/kW). We also note that countries with 

lower historical emissions and in global south regions of the world i.e., Africa, Asia and 

South America face higher costs. These trends bring to question the agency that a 

country has to improve costs and whether cost differences might exacerbate the already 

low distributional justice in the energy transition. 

4.2 The truth about Technology Cost Inequality 

The coefficient of variation is a relative statistic for measuring dispersion which 

allows us to make comparisons across different datasets. In this case, we can compare 

TCI for each of our technologies (solar PV and onshore wind) across time, however, we 

can also use the statistic to compare across the technologies. It is unclear if we can 

derive any meaning from the coefficient of variation about TCI beyond using this metric 

to measure relative TCI across technologies and across time. Our values for solar PV 

𝑐𝑣 are in a similar range to those identified by Nemet et al. (2021) and broadly 

increasing over the last decade for 2 (out of 3) crucial solar PV segments. This suggests 

that TCI is increasing at multiple scales which raises larger questions about the drivers 

and impacts of this cost dispersion – if we continue this trend the world may continue to 

be more unequal.  

If we assume there is some generalisability of the trends for TCI we have found, 

we can foresee increasingly unequal outcomes in the energy transition across a range 

of country contexts. Further study could examine sets of countries that fit the profiles for 

either benefiting or suffering from the TCI trends and observe the trends for a greater 

set of technologies. The magnitude of the impact of TCI for forecasted transitions can 

be computed and compared to the relative sizes of the economies of these countries.  

4.3 The impact of variable data quality 

The impact of data quality on our ability to do this type of analysis cannot be 

understated. While most geographical locations were covered by our data (i.e., we had 

data from countries on all continents for both solar PV and onshore wind), there was 
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disproportionate representation. For example, only 1 (2%) and 3 (5%) countries from 

Africa were represented in solar PV and onshore wind data while 22 (42%) and 16 

(31%) of European countries were represented in the data (see Table 2). This places 

severe constraints on the generalisability of the insights that we generate in the 

research, for example a Kruskal-Wallis test conducted with too few data points in one 

category would be unreliable. Moreover, it is reasonable to assume that these countries 

will face the highest costs following our analysis. Additionally, because developing 

countries are perpetually underrepresented in studies such as these, the recognition 

and procedural elements of justice are violated (Sovacool and Dworkin, 2015; Jenkins 

et al., 2016). Because these geographical areas are underrepresented in the research, 

solutions to the problems they face may also remain undiscovered, further exacerbating 

inequalities.  

We also note that there were several missing data points for time series data 

across both solar PV and onshore wind datasets. The robustness of the coefficient of 

variation computation may be low for some years with very few data points, however, on 

the entire time series, the results were fairly reliable. Because wind energy costs were 

not disaggregated to sub-costs, we could not generalise the disaggregation insights 

from solar PV to onshore wind without postulating some inferences. Additionally, 

because the disaggregated data was unavailable for both solar PV and onshore wind on 

a time series, we could not observe how the various sub-costs have changed over time 

– such analyses would have been powerful.  

4.4 Future work 

Future research should include improved data collection, particularly from 

underrepresented countries and disaggregated installed costs for onshore wind energy. 

A fixed effects regression would have been possible if disaggregated cost data was 

available on a time series - we could note the stability of the explanatory variable 

coefficients over time. Further study of the agency that countries have to improve cost 

and deployment of renewables is needed. Such a study could focus on policy feasibility 

- understanding what policy portfolios are possible for some countries at a particular 
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time given the country’s attributes e.g., income, knowledge/skills capacity etc. By 

studying this we can further unpack the “justice” implications of the energy transition. 

Lastly, future work should unpack how TCI impacts forecasted energy transitions 

combining empirical cost forecasting (e.g., Way et al., 2022) and drivers of TCI. The 

“true” cost of the transition can be observed for different countries and compared to 

economy size to unpack new insights. 
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Data availability 

A supplementary datafile is available that contains: 

 Time series data 

 Cross-sectional data 

 Policy clustering data 

 Solar PV Deployment data by segment 

Tankwa, Brendon; Barbrook-Johnson, Pete (2023), “Data: Increasing inequality 

between countries in key renewable energy costs”, Mendeley Data, V1, doi: 

10.17632/stbmpm8kch.1 

https://data.mendeley.com/datasets/stbmpm8kch/1
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Appendix 

Appendix A - Data cleaning and preparation details 

Our final step after collecting IRENA Installed costs data and conducting 

regression tests was to verify data with statistical power analysis (a post hoc power 

analysis) to ensure that the tests will reject a false null hypothesis (not making a type II 

error). We use this to determine whether we have an adequate sample size for the 

analysis and to inform subsequent steps in our methodology. The significance criterion 

is maintained for the entirety of the analysis at 5% and with a Cohen’s effect size 

determined from the R2 and 8 independent variables (the most that we use at a time) 

we note that our sample size (≈73 countries) yields a statistical power of ≈1 (100% 

chance that a false null hypothesis will be rejected in regression testing). This is higher 

than the desired statistical power of 0.8 (that satisfies the standard 5-80 ratio used by 

most researchers) (Soper, 2022). 

Next, we cleaned the data and added it to the cross-sectional data used for the 

analysis of explanatory variables. This was done on an MS Excel workbook using a 

series of MS excel functions. Missing variables, particularly for costs (e.g. wind energy 

panel data had several missing cost values from the year 2021 for multiple countries), 

were handled either by using previous year values or dropping the country from the 

dataset.  

Appendix B: K-modes clustering 

Our steps in this analysis are as follows: (i) Determine the number of clusters 

using the elbow method (in our analysis we determine that there are 3 clusters). (ii) 

Cluster the policies for the combined solar PV and Onshore Wind countries since the 

policy dataset does not distinguish between the technologies. (iii) Review the results of 

the clustering analysis and create codes for each of the clusters based on the observed 

patterns in the policy and incentive situations. This step requires some subjective 

judgement on the part of the analyst.  
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Figure 10: Elbow curve used to show the number of clusters coming from the data. Policy data 

used is policy categories from REN21 GSR (see supplementary data). Elbow shown at n=3 – 

robust for when we remove “Renewable energy in INDC or NDC” which all countries have and 

when we remove “Public investment, loans, grants, capital subsidies or rebates” which in 

general contains more options for each country. 

B.1 Limitations of policy findings 

We also note the limitations in using thematic approaches to thinking about 

policies and incentives. Governments tend to apply strategic thinking to policy formation 

and the mere presence of a specific type of policy may not indicate much. For example, 

according to REN21 “India put forward an expedited manufacturing plan to incentivise 

domestic solar cell manufacturing capacity and planned to impose new tariffs of 40% on 

imports of solar modules and 25% on solar cells starting in April 2022. The Indian 

government also approved a “production-linked incentive” plan to enhance the country’s 

manufacturing capabilities and exports, including domestic high-efficiency solar PV 

module manufacturing and advanced chemistry cell batteries.” (REN21, 2021). This 

type of policy proposal might have the effect of increasing the costs of renewables in the 

short term as the nation builds up its manufacturing capabilities as the price would be 

higher due to the tariff and possibly shorten supply before the domestic manufacturing 

market builds up capacity. Such nuance would not be captured in our type of analysis. 
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Appendix C: Residential and Commercial solar PV installed costs 

Figure 11: Average Onshore wind energy costs by country for 17 residential solar PV energy 

markets from 2010-2020. A mean line with +/- one standard deviation shading is shown. CAGR 

for the mean is computed and shown with a grey arrow showing cost increase/decrease. 
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Figure 12: Average Onshore wind energy costs by country for 16 commercial solar PV energy 

markets from 2010-2020. A mean line with +/- one standard deviation shading is shown. CAGR 

for the mean is computed and shown with a grey arrow showing cost increase/decrease 
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Appendix D: Relationships between the variables 

Figure 13: Pearson correlation plot of all continuous variables for cost data combined solar PV 

and onshore wind. BoS hardware, Installation and Soft costs that exist only in the solar PV 

dataset are examined for this case 
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Economic indicators tend to track well with each other across countries, but 

relationships gradually get weaker as we compare with more focussed industry 

variables. Ease of doing business, GDP per capita, HDI, and Price levels all have strong 

monotonic relationships with each other (𝜌 >0.6). We also note that as we begin to 

become more industry specific, we still see strong relationships. Economic Complexity 

Index, which is a measure of economy strength from an industry perspective 

(stronger/more advanced economies have greater economic complexity) has moderate 

monotonic relationships with economic variables 0.45< 𝜌 <0.6. And as we focus on 

renewables industries (RCA and Proximity) we see much weaker correlation with 

economic strength (𝜌 <0.35 for all). Patenting, which is an indicator of innovation and 

R&D – which occurs much earlier in the lifecycle of a technology shares an even 

weaker monotonic relationship with economic variables.  

Cumulative deployment has varying relationships with variables depending on 

how we adjust it. Raw cumulative deployment shares strong associations with 

patenting, population, and GDP =0.96, 0.75, and 0.82 respectively. The strong 

relationship with patenting is consistent because the top 5 countries producing 

renewable patents (China, United States, Japan, Republic of Korea, Germany) are also 

the top countries in deploying green technologies (excluding Republic of Korea). If we 

adjust deployment by population, we note strong positive associations with economy 

related variables (0.4<𝜌<0.7) – meaning in rich countries each citizen has a higher 

chance of having renewables in their energy supply than their poorer counterparts. 

Surprisingly, RCA and Proximity share mostly weak associations with cumulative 

deployment adjusted by either population or GDP. We would expect that in countries 

with stronger renewable industries, there might be more deployment, however the 

relationship is only moderately positive monotonic relationship between raw cumulative 

deployment and proximity. This likely means that other variables other than the strength 

of the industry relative to peers explains cumulative deployment trends. 
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Appendix E: Solar PV segments by region 

Figure 14: Solar PV segments representation (utility, commercial, residential) by region 

(cumulative deployment - left; 2019 deployment - right). 11 Regions and a “World” case are 

plotted  

Appendix G: Box plots for the different sub costs 
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