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We develop a theory for the market impact of large trading orders, which we call

metaorders because they are typically split into small pieces and executed incremen-

tally. Market impact is empirically observed to be a concave function of metaorder

size, i.e. the impact per share of large metaorders is smaller than that of small

metaorders. Within a framework in which informed traders are competitive we de-

rive a fair pricing condition, which says that the average transaction price of the

metaorder is equal to the price after trading is completed. We show that at equilib-

rium the distribution of trading volume adjusts to reflect information, and dictates

the shape of the impact function. The resulting theory makes empirically testable

predictions for the functional form of both the temporary and permanent compo-

nents of market impact. Based on a commonly observed asymptotic distribution for

the volume of large trades, it says that market impact should increase asymptotically

roughly as the square root of size, with average permanent impact relaxing to about

two thirds of peak impact.
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I. INTRODUCTION

Market impact is the expected price change conditioned on initiating a trade of a given
size and a given sign. Understanding market impact is important for several reasons. One
motivation is practical: To know whether a trade will be profitable it is essential to be
able to estimate transaction costs, and in order to optimize a trading strategy to minimize
such costs, it is necessary to understand the functional form of market impact1. Another
motivation is ecological: Impact exerts selection pressure against a fund becoming too large,
and therefore is potentially important in determining the size distribution of funds2. Finally,
an important motivation is theoretical: Market impact reflects the shape of excess demand,
the understanding of which has been a central problem in economics since the time of Alfred
Marshall.

In this paper we present a theory for the market impact of large trading orders that are
split into pieces and executed incrementally. We call these metaorders3. The true size of
metaorders is typically not public information, a fact that plays a central role in our theory.
The strategic reasons for incremental execution of metaorders were originally analyzed by
Kyle (1985), who developed a model for an inside trader with information about future
prices. Kyle was able to show that such a trader will break her metaorder into pieces and
execute it incrementally at a uniform rate, gradually incorporating her information into the
price. In Kyle’s theory the price increases linearly with time as the trading takes place, and
all else being equal, the total impact is a linear function of size.

Real data, however, does not show linear impact. Empirical studies consistently find that
impact is concave, i.e. impact per share is a decreasing function of size4. It is possible to
reconcile the empirical findings and the Kyle model by making the additional hypothesis
that larger trades contain less information per share than smaller trades. This might be
true for behavioral or institutional reasons, e.g. because more informed traders prefer a
particular size trade for tactical reasons. A drawback of this approach is that it is neither
parsimonious nor easily testable, and as we will argue here, under the assumptions of our
model it violates market efficiency.

We derive how prices respond to metaorders by assuming two conditions. The first
condition is that transaction prices are a martingale with respect to information about the
number of trades a metaorder has so far executed (we assume this information is public

1 See Bertismas and Lo (1998), Almgren and Chriss (1999,2000), Almgren (2003), Almgren, Thum, and

Hauptmann (2005), and Obizhaeva and Wang (2005).
2 See for example Berk and Green (2004). Schwartzkopf and Farmer (2010) have shown that managers of

large funds offset increases in market impact by lowering fees, and diversifying assets.
3 Other names used in the literature are large trades, packages, or hidden orders.
4 An early study of institutional trades is Chan and Lakonishok (1993, 1995). Later studies by Torre (1997),

Almgren et al. 2005, and Moro et al. (2009) find concave impacts roughly consistent with a square root

functional form. These should be distinguished from the large number of studies that either look at the

market impact of individual trades or the sum of trades in a given period of time, that do not attempt to

link together the trades of a given institution. See Hasbrouck (1991), Hausman, Lo and MacKinlay (1992),

Keim and Madhavan (1996), Torre (1997), Kempf and Korn (1999), Plerou et al. (2002), Evans and Lyons

(2002), Lillo, Farmer, and Mantegna (2003), Potters and Bouchaud (2003), Gabaix et al. (2003, 2006),

Chordia and Subrahmanyam 2004, Farmer, Patelli and Zovko (2005), Weber and Rosenow (2006), and

Hopman (2006).
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knowledge). If the martingale condition did not hold, then profitable opportunities would
exist that could be exploited by market participants. The second condition is that the final
price after a metaorder completes must equal the average transaction price of the metaorder.
We call this condition fair pricing. This is “fair” in the sense that the transaction price of
the metaorder is equal to the price of the security given that the order was placed. When this
condition is violated, there is incentive for investors to seek other execution services where
they can obtain a fair price. Although we assume these conditions when deriving impact,
we also show they result from the equilibrium strategies of market participants. The key
difference with Kyle is that informed trading is competitive and multiple informed traders
act at the same time.

Our theory makes several strong predictions based on a simple set of hypotheses. For
a given metaorder size distribution it predicts impact as a function of time both during
and after execution. We thus make sharp predictions relating the functional form of two
observable quantities with no a priori relationship, making our theory falsifiable in a strong
sense. This is in contrast to theories that make assumptions about the functional form of
utility and/or behavioral or institutional assumptions about the informativeness of trades,
which typically leave room for interpretation and require auxiliary assumptions to make
empirical tests.

Gabaix et al. (2003, 2006) have also argued that the distribution of trading volume plays
a central role in determining impact, and have derived a formula for impact that is similar
to one of our results here. However, in contrast to our model, their prediction for market
impact depends on the functional form for risk aversion. They argue that if risk aversion
is proportional to σδ, where σ is the standard deviation of profits, the impact will increase
with the size N of the metaorder as N δ/2. The impact will be concave if δ < 2, whereas if
δ = 2 (risk proportional to variance) the impact is linear. Our theory, in contrast, is based
entirely on market efficiency and does not depend on the functional form of utility.

Another important point of comparison is Huberman and Stanzl (2004). They derive a
linear impact function based on the assumption that impact is permanent and time indepen-
dent, and that there is no arbitrage by splitting or combining orders. Like them, we assume
no-arbitrage. However we argue here that due to the long-memory of order flow, which is a
robust and well-established empirical fact5, impact must be either time dependent and/or
purely temporary, violating their assumptions, as also pointed out by Challet (2007). A
similar point has been made recently by Gatheral (2010) who showed that a non-permanent
(and non exponentially decaying) impact function does not violate the no-arbitrage condition
when the impact is a non linear function of the volume.

Our approach here was originally motivated by the discovery of long-memory order flow
by Bouchaud et al. (2004) and by Lillo and Farmer (2004). This led to the development
of efficiency-based theories for market impact of individual transactions6. However, these
theories are for the impact of individual transactions, and the answers they give for the time
and size dependence of impact are quite different than those we derive here for metaorders
that are typically composed of many individual transactions.

Finally, this work is related to several papers that study market design. Viswanathan and

5 See the discussion in Section VIA2.
6 See Bouchaud et al. (2006), Farmer et al. (2006), Wyart et al. (2006), and Bouchaud, Farmer and Lillo

(2008). For a precursor of the theory developed here see the PhD thesis of Gerig (2007). For an early

attempt to derive a theory yielding a square root market impact see Zhang (1999)
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Wang (2002), Glosten (2003), and Back and Baruch (2007) derive and compare the equi-
librium transaction prices of orders submitted to markets with uniform vs. discriminatory
pricing. Depending on the setup of the model, these prices can be different so that investors
will prefer one pricing structure to the other and can potentially be “cream-skimmed by a
competing exchange.7 The fair pricing condition we introduce here forces the average trans-
action price of a metaorder (which transacts at discriminatory prices) to be equal to the
price that would be set under uniform pricing. Fair pricing, therefore, means investors have
no preference between the two pricing structures, and they have no incentive to search out
arrangements for better execution. On the surface, this result is similar to the equivalence
of uniform and discriminatory pricing in Back and Baruch (2007). However, in their paper,
this equivalence results because orders are always allowed to be split, whereas ours is a true
equivalence between the pricing of a split vs. unsplit order.

In Section II we give a description of the model and present an outline of the approach we
use here. In Section III we give several useful preliminary results, deriving the persistence
of order flow from the metaorder size distribution and illustrating how we will decompose
profits. In Section IV we develop the consequences of the martingale condition and show
how this leads to zero overall profits and asymmetric price responses when order flow is
persistent. In Section V we show that any Nash equilibrium must satisfy the fair pricing
condition. In Section VI we derive in general terms what this implies about market impact.
In Section VII we introduce specific functional forms for the metaorder size distribution
and explicitly compute the impact for these cases. Finally, in Section VIII we discuss the
empirical implications of the model and make some concluding remarks.

II. MODEL DESCRIPTION

A. Framework

The three types of agents in the model are informed traders, market makers, and liquidity
traders. The informed traders can be thought of as long-term investors such as portfolio
managers. Their decisions are based on a perfect information signal α of the future price
S0 + α, where S0 is the initial price. The signal α is drawn from a distribution p(α), which
has nonzero support over a continuous interval 0 ≤ α < αmax, where 0 < αmax ≤ ∞. The
information distribution p(α) is given exogenously. For convenience we assume that α is
positive. The informed traders are rational, so they either buy or do nothing.

The orders of the informed traders are aggregated together and executed in a package.
The bundling process can be thought of as a broker or an algorithmic trading firm. There
are K informed traders, labeled by an index k = 1, 2, . . . ,K, where K is a large number. All
informed traders receive the same α. When the information is received each trader submits
an order of size nk(α) and the individual orders are bundled together into a metaorder of

size N =
∑K

i=1 nk. Each individual order nk(α) is made without knowing the other order
sizes.

The metaorder is split into pieces and executed in increments of one share at successive
times t = 1, . . . , N at transaction prices S̃t, where 1 < N < M . For any realistic application

7 For example, see Bernhardt, Hughson, and Naganathan (2002)
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FIG. 1: The tree of possible price paths for a buy metaorder for different sizes N . The price is

initially S0; after the first increment is executed it rises to S̃1 = S0 + R0. If N = 1 it is finished

and on average the price reverts to S2 = S̃1 −R1, but if N > 1 another increment is executed and

it rises to S̃2 = S̃1 + R̃1. This proceeds similarly until the execution of the metaorder is completed.

At any given point the probability that the metaorder has size N > t, and therefore that the

order continues, is Pt. The maximum size is N = M ; for reasons that we will explain later, the

martingale condition requires that RM = R̃M = 0. The immediate impact is It ≡ S̃t − S0, and the

permanent impact is IN ≡ SN+1 − S0.

we assume that M is very large8. The execution process is illustrated in Figure 1. The
counterparties of the trades are market makers9, who provide liquidity. At each time step
the market makers competitively make bids and offers in order to maximize their profits.
For convenience we assume that only one metaorder is executed at a time.

There is also an uninformed liquidity trader who places a single order10 without regard
to α. This order is bundled together with those of the informed traders. Thus, the overall
process is as follows: The informed traders and the liquidity trader place their orders, the
metaorder is executed over the subsequent N steps, and then there is another round of order
placement and metaorder execution.

We assume informational efficiency. When the execution of the metaorder is completed,

8 We have imposed a bound on M to avoid mathematical problems that occur in the limit M → ∞. For

simplicity assume the bound on M is enforced by placing a limit (M − 1)/K on the number of shares a

single informed trader can trade. For the typical situations we have in mind M , K, and (M − 1)/K are

all large numbers.
9 Note that we are not assuming any special institutional role for market makers, such as the specialists in

the NYSE. Also we are not making any assumptions about market microstructure, e.g. the use of limit

vs. market orders.
10 We could have more realistically allowed liquidity trades with random size but having a single background

order simplifies the derivation of the Nash equilibrium and is sufficient to illustrate the basic idea.
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at timestep t = N + 1 the price goes to the reversion price SN+1 ≡ S0 + α. The immediate
impact is It ≡ S̃t − S0, and the permanent impact is IN ≡ SN+1 − S0.

The market makers know the initial price S0, the distribution pN of metaorder sizes, and
the distribution p(α), but they do not know the informed traders signal α and hence do not
know the metaorder size N . We assume the number of informed traders K is fixed and is
common knowledge.

Our main result is to derive an equilibrium between the size distribution pN , and the im-
mediate and permanent impacts It and IN . The key new result is the fair pricing condition,
which states that the average transaction price is equal to the reversion price.

B. Simplifications and empirical interpretation

Although we have designed this model to make realistic predictions of market impact we
have made several simplifications that require some interpretation, particularly to under-
stand the empirical implications.

Real prices are noisy due to the background order flow. We are only interested in the
price effects due to a given metaorder, and so we assume there is only one active metaorder
at a time. To make a correspondence with real prices, the impacts It and IN should be
viewed as ensemble averages over the impact of many different metaorders of a given sign,
each of which generates a different price path11.

We have not specified the time period τ that elapses between each interval t, but from the
informational assumptions of the model τ is effectively defined as the time needed for the
market maker to detect the presence or absence of a given metaorder. The market maker
might infer this through analysis of order flow imbalance, or through idiosyncrasies of order
placement, such as a tendency to use a particular order size. The existence of algorithms for
detecting metaorders from order flow suggests that this is feasible, at least when brokerage
codes are known12. Detecting that a metaorder is finished might be more difficult than
detecting it is still present, so in real time the last interval (from N to N + 1) might be
considerably longer than the others. There is nothing in our analysis that requires that τ
be fixed in real time.

Another simplification we have made in the model is the assumption that M is finite. As
we discuss in Section 5, this avoids technical problems that occur when M is infinite. In
reality M is bounded by, for example, the market capitalization or the leveraged wealth of
the richest investor, and thus is usually a large number. In almost any realistic setting we
expect that N �M , and unless otherwise noted we will assume this throughout the paper.

11 To make the model more realistic we could have added noise traders, who generate random order flow,

then averaged over the random order flow to compute the impact. This would give the same solution we

have derived here, but just add one more element of clutter in the model. Thus we have not included

noise traders.
12 See Vaglica et al. (2008) and Toth et al. (2010).
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III. PRELIMINARIES

A. Expectations

The crux of our argument hinges around the market maker’s ignorance of the metaorder’s
true size N , which is the only source of uncertainty. If the market maker has already observed
t time intervals during which the metaorder was active then she knows that the size N of
the metaorder is larger or equal to t. The probability that the metaorder has size N ≥ t is
pN/

∑M
N=t pN . We will use the notation Et to represent an average over all metaorders of

size N ≥ t. More specifically, for a generic function fN this average is

Et[fN ] =

∑M
N=t pNfN∑M
N=t pN

=

∑M−t
i=0 pt+ift+i∑M−t
i=0 pt+i

, (1)

where in the last term we made the substitution N = t+ i.

B. Metaorder size and the persistence of order flow

The likelihood that a metaorder will persist depends on the distribution pN and the
number of executions t that it has already experienced. Let Pt be the probability that the
metaorder will continue given that it is still active at timestep t. This is equivalent to the
probability that it is at least of size t. This is

Pt =

∑M
i=t+1 pi∑M
i=t pi

. (2)

If pN is an exponential distribution, it is possible to show that for t � M , Pt is ap-
proximately independent of t. In the same approximation, if pN has heavier tails than an
exponential, then as t increases it becomes increasingly more likely to continue, whereas if
it has thinner tails than an exponential it becomes increasingly more likely to stop. This
plays an important role in determining the shape of market impact.

The incremental transactions caused by an active buy metaorder impart a positive bias
to order flow. As long as a metaorder is present, all else being equal, order flow will be
positively autocorrelated. As discussed in more detail in Section VII A 2, empirical data
from equity markets consistently shows that real order flow is a long-memory process, which
has been shown to be mainly due to order splitting of the type we are modeling here. This
suggests that the underlying pN is very heavy tailed.

IV. MARTINGALE CONDITION

In this section we discuss the relationship between the size distribution pN and the per-
sistence of order flow. We introduce a martingale condition, derive the implications of the
persistence of order flow on liquidity, and investigate the implications of the martingale
condition on the immediate profits.
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A. Asymmetric price response

Since the market maker does not know the metaorder size, from her point of view, or that
of any external observer other than the informed trader, at equilibrium the price process is
a martingale. This is necessary to prevent arbitrage by an uninformed trader.

The time varying persistence of order flow and the martingale condition combine to
induces time varying differences in the response to buy vs. sell orders. At each time step
there are two possibilities: The metaorder continues with probability Pt or it stops with
probability 1− Pt. Arbitrage efficiency implies the martingale property

Pt(S̃t+1 − S̃t) + (1− Pt)(St+1 − S̃t) = 0. (3)

This is true for t = 1, 2, ..,M − 1. If the metaorder has maximal length at the end of the
Mth interval by definition PM = 0, which implies that S̃M = SM+1.

Equation (3) can be trivially rewritten in the form

R̃t

Rt

=
1− Pt
Pt

, (4)

where Rt = S̃t − St+1 and R̃t = S̃t+1 − S̃t. Thus the martingale condition fixes the ratio of
the price responses Rt and R̃t, but does not fix their scale. If an order is likely to continue
then Pt is large, which makes R̃t/Rt small. This means that the price response if the order
continues is much less than if it stops.

To complete the calculation we need another condition to set the scale of the price re-
sponses Rt and R̃t, which may change as t varies13. Such a condition is introduced in
Section V.

B. Zero overall immediate profits

The martingale condition alone requires that the market maker has to break even overall,
i.e. that their total profits when added across all sizes must be zero.

Proposition 1. The martingale condition implies zero overall immediate profits, i.e.

Π = E1[πN ] ≡
M∑
N=1

NπNpN = 0, (5)

where

πN ≡
1

N

N∑
t=1

S̃t − SN+1 (6)

is the immediate profit per share of the market maker, who sells N shares at prices S̃t, under
the assumption that they are valued at the reversion price SN+1. The proof of proposition 1 is
given in Appendix A. The phrase “overall profits” emphasizes that the martingale condition

13 Various authors have used alternative conditions. For example, Gerig (2007) used a symmetry condition,

which can be derived from assumptions of linearity. The fair pricing condition that we derive here has

the advantage that it can be justified based on equilibrium arguments.
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only implies zero immediate profits when averaged over metaorders of all sizes: It allows for
the possibility that the market maker may make immediate profits on metaorders in a given
size range, as long as she takes corresponding losses in another size range.

Surprisingly, Proposition 1 is not necessarily true when M is infinite. The basic problem
is similar to the St. Petersburg paradox: As the metaorder size becomes infinite it is possible
to have infinitely rare but infinitely large losses. The conditions under which zero overall
immediate profits holds are more complicated, as discussed in Appendix A.

V. FAIR PRICING

We now derive the fair pricing condition, which states that for any N

πN =
1

N

N∑
i=1

S̃i − SN+1 = 0. (7)

This says that the average price is equal to the reversion price, or in other words, the average
price that the informed trader pays to execute the metaorder is equal to the final price after
it has been executed. We call this fair pricing for the obvious reason that one would naturally
regard this as “fair”: It means that the current value of the asset, as priced by the market,
is equal to the price that was paid.

A. Derivation of Nash equilibrium

.
Proposition 2. If the immediate impact It is concave, in the limit where the number

of informed traders K → ∞, any Nash equilibrium must satisfy the fair pricing condition
πN = 0 for 1 < N < M .

This result is driven by competition between informed traders. All informed traders
receive the same information signal α, and the strategy of informed trader k is simply the
choice of the order size nk(α). The orders are then bundled together (with the order of the

liquidity trader) to determine the combined metaorder size N =
∑K

k=1 nk(α). The decision
of each informed trader is made without knowing the decisions of others.

The derivation has two steps: first we examine the case πN 6= 0 for 1 < N < M , and show
that if others hold their strategies constant, providing the impact is concave, traders can
increase profits by changing strategy. Secondly we show that if πN = 0 there is no incentive
to change strategy. Then we return to examine the cases N = 1 and N = M , which must
be treated separately.

First consider a candidate equilibrium with πN < 0 for some value of N , where 1 < N <
M . Assume informed trader k buys nk shares at an average price (

∑N
t=1 S̃t)/N . Since we have

assumed informational efficiency, the shares are subsequently valued at price SN+1 = S0 +α.
Her profit is

Πk(α) = nk

(
S0 + α− 1

N

N∑
t=1

S̃t

)
= −nkπN > 0
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If she increases her order size by one share while all other traders hold their order size the
same, her profit becomes

Π′k(α) = (nk + 1)

(
S0 + α− 1

N + 1

N+1∑
t=1

S̃t

)
.

After some algebraic manipulation the change in profit can be written

∆Π = Π′k(α)− Πk(α) = −πN −
(
nk + 1

N + 1

)(
S̃N+1 −

1

N

N∑
t=1

S̃t

)
. (8)

The first term on the right (−πN) represents the additional profit if it were possible to trade
one extra share at the same average price, and the second term represents the reduction in
profit because the average price increases.

At an equilibrium, since there is nothing to distinguish the informed traders, they all
make the same decision. Thus if there are K traders buying nk shares, plus a liquidity
trader buying one share, at an equilibrium N = Knk + 1. Thus if K is large, N is also large.
In the limit as N is large the second term vanishes for fixed nk if

lim
N→∞

(
nk + 1

N + 1

)(
S̃N+1 −

1

N

N∑
t=1

S̃t

)
= 0.

This is true providing the function S̃t is concave. Thus in this limit ∆Π = −πN > 0 and
the candidate equilibrium fails because the informed trader has an incentive to deviate.
Similarly if πN > 0 the informed traders take a loss which can be reduced by trading less.

When πN = 0 (and as before 1 < N < M) no informed trader has an incentive to change
her order size. This is clear since in Eq. (8) with πN = 0 the change in profit is given by the
second term alone, which is always negative. A similar calculation shows that this is also
true for decreasing order size, i.e. when πN = 0, nk → nk − 1 causes ∆Π < 0 .

The cases N = 1 and N = M have to be examined separately because in these cases
the fair pricing condition is incompatible with the martingale condition and informational
efficiency. For N = 1 the market maker’s profit is

π1 = S̃1 − S2 = R1,

and from (Eq. 3) the martingale condition is

P1(S̃2 − S̃1) + (1− P1)(S2 − S̃1) = P1(S̃2 − S2) + S2 − S̃1 = 0.

Thus if P1 6= 0, satisfaction of both the martingale condition and the fair pricing condition14

requires that S̃1 = S̃2 = S2, or equivalently that R1 = R̃1 = 0. In other words, if both
conditions are satisfied then both the permanent and the temporary impact on the first step
are identically zero, which would violate informational efficiency since α > 0. In Section VI
we show by construction that this holds for all N , i.e. it is clear in Eq. (12) and (13) that

14 In different terms, the incompatibility of fair pricing and the martingale condition was pointed out by

Glosten (1994).
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the impacts It and IN are identically zero if R1 = 0. To have sensible impact functions we
must have R1 = π1 > 0, which means that market making is profitable on the first timestep.

Similarly if N = M the martingale condition implies S̃M = SM+1, i.e. no reversion, and
since S̃t is an increasing function the market maker takes a loss

MπM =
M∑
t=1

S̃t −MSM+1 =
M∑
i=1

(S̃i − S̃M) < 0.

Assuming πN = 0 for 1 < N < M , the market makers’ profit π1 and loss MπM are related
by Eq. (5) as

π1p1 +MπMpM = 0. (9)

For realistic size distributions we expect metaorders of size one to be much more common
than those of size M , i.e. p1 � pM . The ratio of the total profits is

−MπM
π1

=
p1

pM
� 1.

Thus the market maker receives frequent but small profits on metaorders of length one and
rare but large losses for metaorders of length M .

Informed traders will rationally abstain from taking a loss on metaorders of length N = 1
by simply not participating when they receive α signals that are too weak; thus, the trading
volume at N = 1 is due entirely to the liquidity trader. Similarly, although πM < 0, informed
traders are unable to improve their profits by trading more, since we have bounded the total
amount an individual can trade at (M − 1)/K so they are blocked from further increase.
Thus the violations of the fair pricing condition when N = 1 and N = M occur naturally due
to the institutional constraints that we have assumed and do not invalidate the equilibrium.

In conclusion, at the equilibrium informed traders make a small profit at the expense of the
liquidity traders, while market makers break even on average15, profiting from metaorders
of length one and taking occasional losses on metaorders of length M . The fair pricing
condition holds for 1 < N < M .

B. Discussion

The setup we have used is a bit contrived in order to simplify the proof of the Nash
equilibrium, but we think the basic idea will hold in a more general setting, e.g. with a more
realistic size distribution of liquidity trades. In a more realistic setting where the number
of informed traders is not so large, deviations from the Nash equilibrium might occur. In
this case πN is not necessarily zero, but it is still bounded by the same basic reasoning, and
should be a reasonable approximation.

In contrast to the martingale condition, which only implies that immediate profits are
zero when averaged over size, fair pricing means that they are identically zero for every

15 One might be tempted to naively conclude that market makers can defect from the equilibrium by simply

trading orders only of length 1, so that they always make a profit. This is false: The profit from a

metaorder of length one is π1 = S̃1− (S0 +α), where α is a small number. In contrast, if a market maker

participates only in the first trade of a large metaorder, her profit is π′
1 = S̃1 − (S0 + α′), where α′ is a

large number. Thus while π1 > 0, π′
1 < 0.
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size. It implies that no one pays any costs or makes any profits simply by trading in any
particular size range.

Although this derivation is based on rationality, the fair pricing condition potentially
stands on its own, even if other aspects of rationality and efficiency are violated. In modern
markets portfolio managers routinely receive trade cost analysis reports that compare their
execution prices relative to the close, which for a trade that takes place over one day is
a good proxy for SN+1. Such reports are typically broken down into size bins, making
persistent inconsistencies across sizes clear. Execution times for metaorders range from less
than a day to a few months (Vaglica et al., 2008), and are much shorter than typical holding
times, which for mutual funds are on average a year and are often much more (Schwartzkopf
and Farmer, 2010). Thus the statistical fluctuations for assessing whether fair pricing holds
are much smaller than those for assessing informational efficiency. Since πN is fairly well
determined, portfolio managers will exert pressure on their brokers to provide them with
good execution. As a result we expect the fair pricing condition to be obeyed to a higher
degree of accuracy than the informational efficiency condition.

VI. GENERAL EXPRESSIONS FOR IMPACT

Although we have derived the Nash equilibrium only in the case where the immediate
impact is concave, for the remainder of the paper we will simply assume that the martingale
condition holds for all N and the fair pricing condition holds for 1 < N < M . This allows
us to derive both the immediate impact IN and the permanent impact IN for any given
metaorder size distribution pN . We later argue that for realistic situations the metaorder size
distribution gives rise to a concave impact function, consistent with the Nash equilibrium.

The martingale condition (Eq. 3) and the fair pricing condition (Eq. 7) define a system
of linear equations for S̃t and St at each value of t, which we can alternatively express in
terms of the price differences R̃t = S̃t+1 − S̃t and Rt = S̃t − St+1, where t = 1, . . . ,M .
The martingale condition holds for t = 1, ...,M and the fair pricing condition holds for
t = 2, . . . ,M − 1. There are thus 2M − 2 homogeneous linear equations with 2M − 1
unknowns16. Because the number of unknowns is one greater than the number of conditions
there is necessarily an undetermined constant, which we choose to be R̃1.

Proposition 3. The system of martingale conditions (Eq. 3) and fair pricing conditions
(Eq. 7) has solution

R̃t =
1

t

pt∑M
i=t+1 pi

1− p1∑M
i=t pi

R̃1 t = 2, 3, ...,M − 1 (10)

Rt =
Pt

1− Pt
R̃t t = 1, 2, ...,M − 1 (11)

The proof is given in Appendix A.
Note that an important property of the solution is equivalence of the impact It as a

function of either time or size. That is, the immediate impact as a function of time is
It =

∑t
i=1 R̃i, and as a function of size is IN =

∑N
t=1 R̃t; in either case this is the same

function. This means that up until the execution of a metaorder is completed, the impact
from the first t steps of a metaorder of length N > t is the same, regardless of N .

16 The price S̃M+1 does not exist, so R̃M is not needed. This reduces the number of unknowns by one.
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A. General solution for immediate impact

Summing Eq. 10 implies that for N > 2 the immediate impact is

It = S̃t − S0 = R0 + R̃1

(
1 +

t−1∑
k=2

1

k

pk∑M
i=k+1 pi

1− p1∑M
i=k pi

)
, (12)

For t = 1 the immediate impact is I1 = S̃1−S0 = R̃0 = R0 and for t = 2 it is I2 = S̃2−S0 =
R0 +R̃1. (The meaning of the undetermined constants R̃1 and R0 is discussed in a moment).

B. General solution for permanent impact

The permanent impact SN+1 − S̃1 is easily obtained. Making some simple algebraic
manipulations

SN+1 = SN+1 − S̃N + S̃N = S̃N −RN = S̃N −
PN

1− PN
R̃N .

By combining Eqs. (12) and (2) we get

IN = SN+1 − S0 = R0 + R̃1

(
1 +

N−1∑
k=2

1

k

pk∑M
i=k+1 pi

1− p1∑M
i=k pi

− 1− p1

N
∑M−N

i=0 pN+i

)
. (13)

C. Setting the scale

We have expressed both the permanent and immediate impact purely in terms of pN and
the undetermined constants R0 and R̃1. The undetermined constants can in principle be
fixed based on the information at the equilibrium. At the equilibrium information signals in
the range α ∈ [0, α1] will be assigned to metaorders of size one, with an average size ᾱ1, and
signals in the range α ∈ (α1, α2] will be assigned to metaorders of size two, with an average
size ᾱ2. Thus the scale is set by the relations

R0 = I1 = ᾱ1 =

∫ α1

0

αp(α)dα

R0 + R̃1
P1

1− P1

= I2 = ᾱ2 =

∫ α2

α1

αp(α)dα

We have used the words “in principle” because, unlike metaorder sizes, information is not
easily observed.

The power of the theory developed here is that the impact is predicted in terms of pN ,
which is directly measurable (at least with the proper data). Barring the ability to inde-
pendently measure information, the constants R0 and R̃1 remain undetermined parameters.
R̃1 > 0 plays the important role of setting the scale of the impact. The constant R0, in
contrast, is unimportant – it is simply the impact of the first trade, before the metaorder
has been detected. It never enters the analysis, it is simply something that has to be added
to include the impact of the first trade.
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D. Relation between volume and information

There is a simple relationship between the distribution of information and the distribution
of volume. The relationship ᾱN = IN/q approximately maps the trading size N onto the
signal α. In the continuum limit the relationship takes on the simple form α(N) = I(N)/q,
with a unique inverse qN(α). The two distributions are related by conversation of probability
as

p(α) = qpN
dN

dα
. (14)

So for example, if pN is Pareto distributed, as studied in the next section, PN ∼ N−(β+1),
α = Nβ−1, and p(α) = α(1−2β)/(β−1). Based on the empirically estimated value β ≈ 1.5, this
gives p(α) = α−4, which means that the cumulative scales as P (α > x) ∼ x−3, which is
typically what is observed for price returns in American stock markets (Plerou et al., 1999).

VII. DEPENDENCE ON THE METAORDER SIZE DISTRIBUTION

We have so far left the metaorder size distribution pN unspecified. In this section we
compute the impact for two examples. The first of these is the Pareto distribution,

pN ∼
1

Nβ+1
. (15)

which we argue is well-supported by empirical data17. The second is the stretched exponen-
tial distribution, which is not supported by data, but provides a useful point of comparison.

A. Empirical evidence supporting the Pareto distribution

There is now considerable evidence that in the large size limit in most major equity
markets the metaorder size V is distributed as P (V > v) ∼ vβ, i.e. that it is a power law
with tail exponent β ≈ 1.5. This evidence takes several forms: (1) Direct observations of
trade size, (2) observations of long-memory in correlated order flow, and (3) reconstruction
of large metaorders using data with exchange membership codes. As discussed below, all
three of these indicate power law behavior and yield similar values of β.

1. Direct observation

A power law distribution for the trading volume V was originally observed for trades
in the American stock markets by Gopikrishnan et al. (2000), and also for the Paris and
London stock markets by Gabaix et al. (2006)18. There is a problem with these data,

17 The notation f(x) ∼ g(x) means that there exists a constant C 6= 0 such that in the limit x → ∞,

f(x)/g(x) → C. We use it to indicate that this relationship is only valid in the limit of large metaorder

size N .
18 The value of β is somewhat controversial, however: Eisler and Kertesz (2006) and Racz et al. (2009)

have argued that the correct value of β > 2.
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however, because they mix together order book trades and block trades, whereas block
trades are generally larger and are believed to be a better proxy for metaorders. Lillo et al.
(2005) analyzed block trade sizes in the London market and showed that they are consistent
with a power law, with a tail exponent β ≈ 1.6, in contrast to order book trades, whose tails
are much thinner.

2. Connection to long-memory in order flow

Positive serial autocorrelation of signed order flow has been observed by many authors
in many different markets, including the Paris Bourse by Biais, Hillion and Spratt (1995),
in foreign exchange markets by Danielsson and Payne (2001), and the NYSE by Ellul et
al. (2005) and Yeo (2006). (Signs of orders are based on the initiator of the trade, e.g.
trades initiated by buyers are given a positive sign). These papers all emphasized the first
autocorrelation, which is only a small part of the story. If one carefully examines the whole
autocorrelation function it becomes clear that all the coefficients of the autocorrelation
function are positive statistically significant out to large lags. In the London, Paris, New
York and Spanish stock exchanges it is empirically observed that the signs of trades in stock
markets obey a long-memory process19 [Bouchaud et al. (2004), Lillo and Farmer (2004),
Vaglica (2008)]. This means that the transaction sign autocorrelation function C(τ) decays
in time as C(τ) ∼ τ−γ, where 0 < γ < 1. The observation of long-memory in stock markets is
very robust; in London, for example, every stock examined shows long-memory under strict
statistical tests (Lillo and Farmer, 2004). Thus we believe that for these stock markets the
long-memory of order flow is a well established fact.

Lillo et al. (2005) have postulated that the long-memory of order flow comes from order
splitting and presented a model whose predictions appear to agree well with the data. Under
their model, in the limit τ →∞ the resulting autocorrelation C(τ) of the order signs of the
individual trades used to execute metaorders is a power law C(τ) ∼ τ−γ, with

β = 1 + γ. (16)

They tested this hypothesis for 20 stocks from the London Stock Exchange by comparing
their tail exponents β to their correlation scaling exponents γ and showed that it is well
satisfied.

A final piece of evidence that the source of long-memory in order flow is due to order
splitting comes from an empirical study by Gerig (2007) in the London Stock Exchange using
data with brokerage codes. Trades coming from the same brokerage have long-memory,
whereas trades from different brokerages do not (see also Bouchaud, Farmer, and Lillo
(2008)).

19 A standard example of a long-memory process is a fractionally integrated Brownian motion. We use

the term in its more general sense to mean any process whose autocorrelation function is non-integrable

(Beran, 1994). This can include processes with structure breaks, such as that studied by Ding, Engle and

Granger (1993).
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3. Reconstruction from membership codes

Further supporting evidence comes from a study of the Spanish stock exchange by Vaglica
et al. (2008), who have reconstructed metaorders using data with brokerage codes. They
find that N is distributed as a power law for large N with β ≈ 1.7, which is consistent with
the observations of the distribution of block market sizes to within statistical errors.

An interesting point that is relevant for the theory developed here is that the power law
behavior of metaorder size comes from the heterogeneity of market participants. Vaglica
et al. (2008) showed that metaorder size distribution for individual brokerages is roughly
a lognormal distribution, and that a power law only emerges when all the brokerages are
combined.

B. Market impact for Pareto metaorder size

In this section we derive the functional form of the impact for Pareto metaorder size,
which from the three types of evidence discussed in the previous section appears to be a
good assumption. We do this by using Eq. 12 in the limit as M → ∞, and return in
Section VII C and in Appendix B to discuss how this is modified when M is finite.

While we only care about the asymptotic form for large N , for convenience we assume
that it is exactly Pareto for all N , i.e.

pN =
1

ζ(β)

1

Nβ+1
, N ≥ 1 (17)

where the normalization constant ζ(β) is the Riemann zeta function. For the Pareto distri-
bution the probability Pt that an order of size t will continue is

Pt =
ζ(1 + β, t+ 1)

ζ(1 + β, t)
'
(

t

t+ 1

)β
∼ 1− β

t
. (18)

where ζ(s, a) is the generalized Riemann zeta function (also called the Hurwitz zeta func-
tion). The approximations are valid in the large t limit.

1. Immediate impact

The immediate impact can be easily calculated once the distribution of metaorder size is
known by using Eq. (12). For Pareto distributed metaorder sizes, using Eqs. (11) and (17),
R̃t is

R̃t =

(
1 +

1

t2+β

ζ(1 + β)− 1

ζ(1 + β, t)ζ(1 + β, t+ 1)

)
R̃1 ∼

1

t2−β
. (19)

Thus the immediate impact It = S̃t − S0 behaves asymptotically for large t as

It ∼
{

tβ−1 for β 6= 1
log(t+ 1) for β = 1

(20)

For Lorenzian distributed metaorder size (β = 1) the impact is logarithmic, for β = 1.5 it
increases as a square root, for β = 2 it is linear, and for β > 2 it is superlinear. Thus as we
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vary β the impact goes from concave to convex, with β = 2 as the borderline case20. Thus
the exponent β has a dramatic effect on the shape of the impact. Figure 2 illustrates the
reversion process for β = 1.5 and shows how the shape of the impact varies with β.

2. Permanent impact

The permanent impact under the Pareto assumption is easily computed using Eq. (13).
A direct calculation shows that21

IN ∼
1

N

∫ N

xβ−1dx =
1

β
Nβ−1. (21)

Eqs. (21) and (20) imply that the ratio of the permanent to the immediate impact is

IN
IN

=
1

β
. (22)

For example if β = 1.5 the model predicts that on average the permanent impact is equal to
two thirds of the maximum immediate impact, i.e., following the completion of a metaorder
the price should revert by one third from its peak value. Moreover the maximum fraction
of informed trades such that the informed trader trades at prices where she is taking a loss
is qN ≤ 1/β. For β = 1.5 less than two third of the trades must be informed.

C. Effect of maximum order size

In the previous section we have assumed that N �M , so that we can treat the problem
as if M were infinite. In real markets the maximum order size is probably quite large, a
significant fraction of the market capitalization of the asset. Thus we doubt that the finite
support of N has much practical importance, except perhaps for extremely large metaorders.

From a conceptual point of view, however, having an upper bound on metaorder size
creates some interesting effects. As we have already mentioned, Proposition 1 fails to hold
when M =∞, so this must be handled with some care. In Appendix C we illustrate how the
results change when N ≈M . What we observe is that when N < M/2 the impact is roughly
unchanged from its behavior in the limit M →∞, but when N >∼M/2 the impact becomes
highly convex. This is caused by the fact that the market maker knows the metaorder must
end when N = M . Since by definition PM = 0, the martingale condition requires that
SN+1 = S̃N , i.e. there is no reversion when the metaorder is completed. This propagates
backward and when N ≈M it significantly alters the impact, as seen in Figure 3.

Nonetheless, from a practical point of view we do not think this is an important issue,
which is why we have relegated the details of the discussion to Appendix C.

20 The reason β = 2 is special is that for β < 2 the second moment of the Pareto distribution is undefined.

Under the theory of Lillo et al. (2005), long-memory requires β < 2.
21 This is the same impact vs. size derived by Gabaix et al. (2006). Their derivation is based on quite

different reasoning, and requires mean-variance utility with a linear (rather than the usual quadratic) risk

aversion term. They also do not make a prediction about reversion.
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FIG. 2: An illustration of predicted market impact for Pareto distributed metaorder size. Top

panel: Immediate impact It (black circles) and permanent impact It (red squares) for β = 1.5.

(It here is the permanent impact if the order were to end at t = N). The dashed line is the

price profile of a metaorder of size N = 20, demonstrating how the price reverts from immediate

to permanent impact when metaorder execution is completed. The inset shows a similar plot in

double logarithmic scale for metaorder sizes from N = 1 to N = 1000. The blue dashed line

is a guide for the eye indicating the asymptotic square root behavior. Bottom panel: Expected

immediate impact It as a function of time t for Pareto distributed metaorder size for tail exponents

β = 1, 1.5, 2 and 2.5. This illustrates how the impact goes from concave to convex as β increases.
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D. Market impact for stretched exponential metaorder size

Changing the metaorder distribution has a dramatic effect on the impact. As we have
already shown, as we increase the tail exponent β of the Pareto distribution upward from
one, the impact function goes from a logarithm to a concave power law to a linear function
(at β = 2) to a convex power law for β > 2. While we believe that the Pareto distribution is
empirically the correct functional form for metaorder size, to get more insight into the role
of pN we compute the impact for an alternative functional form.

For this purpose we choose the stretched exponential, which can be tuned from thin
tailed to heavy tailed behavior, and contains the exponential distribution as a special case.
There is no simple expression for the normalization factor needed for a discrete stretched
exponential distribution, so we make a continuous approximation, in which the metaorder
size distribution is

pN =
λ

Γ(1/λ, 1)
e−N

λ

. (23)

The normalization factor Γ(a, z) is the incomplete Gamma function. The shape parameter
λ > 0 specifies whether the distribution decays faster or slower than an exponential. (λ > 1
implies faster decay and λ < 1 implies slower decay.) For short data sets, when λ is small
this functional form is easily confused with a power law. It can be shown that this leads to
an immediate impact function that for large t asymptotically behaves as

It ∼
et
λ

t2−λ
. (24)

Thus the power law scaling of the impact is multiplied by an exponential, which asymptot-
ically dominates. The permanent impact is

IN ∼
1

N

∫ N ex
λ

x2−λdx ∼
eN

λ
λ− E1+1/λ(−Nλ)

N2λ2
∼ eN

λ

N2λ
, (25)

where Eν(z) is the exponential integral function and in the last approximation we have used
its asymptotic expansion. The ratio of the permanent to the immediate impact of the last
transaction is

IN
IN

=
1

λNλ
. (26)

In contrast to the Pareto metaorder size distribution this is not constant. Instead the ratio
between permanent and immediate impact decreases with size, going to zero in the limit as
N → ∞. Thus the fixed ratio of permanent and immediate impact seems to be a rather
special property of the Pareto distribution.

VIII. DISCUSSION

A. Empirical implications

The theory presented here makes several strong predictions with clear empirical implica-
tions. In this section we summarize what these are and outline a few of the problems that
are likely to be encountered in empirical testing.
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• The fair pricing condition, Eq. 7, is directly testable, although it requires a somewhat
arbitrary choice about when enough time has elapsed since the metaorder has com-
pleted for reversion to occur. (One wants to minimize this time because of the diffusive
nature of prices, but one wants to allow enough time to make sure that reversion is
complete).

• The asymmetric price response predicted by Eq. 4 is testable. However, this only tests
the martingale condition.

• The equivalence of impact as a function of time and size is directly testable. Under our
theory, for N > t the immediate impact from the first t steps is the same, regardless
of N . This is in contrast to the Kyle model which predicts linear impact as a function
of time, but can explain concavity in size only by postulating variable informativeness
of trades vs. metaorder size.

• Prediction of immediate and permanent impact based on pN . Equations 12 and 13 are
directly testable.

• If the metaorder distribution is a power law (Pareto distribution), then for large N the
immediate impact scales as It ∼ tβ−1 and the ratio of the permanent to the immediate
impact of the last transaction is IN/IN = 1/β. See Section VII B.

Preliminary results seem to support, or at least not contradict, the prediction of the last
bullet. The only studies of which we are aware that attempted to fit functional form to
the impact of metaorders are by Torre (1997),Almgren et al. 2005, and Moro et al. (2009);
they both found permanent impact roughly consistent with a square root functional form.
Moro et al. also tested the ratio of permanent to immediate impact and found 0.51 for the
Spanish stock market and 0.69 for the London stock market, with large error bars. Better
tests are needed.

B. Information revelation

One of the key assumptions that we make here is that it is possible for market makers
to detect when the execution of a given metaorder begin and ends. The ability to do
this from imbalances in order flow using brokerage codes has been demonstrated [(Vaglica
et al. 2008), (Toth et al 2010)]. A recent study of metaorders based on brokerage code
information found average participation rates of 17% for the Spanish stock market (BME)
and 34% for the London Stock Market22, for metaorders whose average size was just under
100 in both markets, making such metaorders difficult to hide. Nonetheless, the detection
problem introduces uncertainties in starting and stopping times that may affect the price
impact.

C. Final thoughts

The traditional view in finance is that market impact is just a reflection of information.
This point of view often goes a step further and postulates that the functional form of impact

22 Participation rate is defined as the fraction of trades that a given agent participates in.
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is determined by behavioral and institutional factors, such as how informed the agents who
use a given trading size are. This hypothesis is difficult to test because information is difficult
to measure independently of impact. Furthermore, within the framework developed here,
this would violate market efficiency.

In this paper we embrace the view that impact reflects information, but we show how at
equilibrium the trading volume reflects the underlying information and makes it possible to
compute the impact. The metaorder size distribution determines the shape of the impact
but does not set its scale. Metaorder size has the important advantage of being a measurable
quantity, and thus predictions based on it are much more testable than those based directly
on information.

The fair pricing condition that we have derived here may well hold on its own, even
without informational efficiency. This could be true for purely behavioral reasons: The fair
pricing condition holds because it can be measured reliably, and both parties view it as fair.
Thus while the main results here are consistent with rationality, they do not necessarily
depend on it.

We provide an example solution for the Pareto distribution for metaorder size because
we believe that the evidence supports this hypothesis. This gives the simple result that the
impact is a power law of the form It ∼ tβ−1, and the ratio of permanent impact to the
temporary impact of the last transaction is IN/IN = 1/β. However, the bulk of our results
do not depend on this assumption. Thus the reader who is skeptical about power laws may
simply view the results for the Pareto distribution as a worked example.

The strength of our approach is its empirical predictions. Because these involve explicit
functional relationships between observable variables they are strongly falsifiable in the
Popperian sense. A preliminary empirical analysis seems to support the theory, but the
statistical analysis so far remains inconclusive. We look forward to more rigorous empirical
tests.
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Appendix A: Proofs of the propositions

Proposition 1. The martingale condition implies zero overall immediate profits, i.e.

E1[NπN ] ≡
M∑
N=1

pNNπN = 0. (A1)

Proof. Given the definition of R̃t and Rt we can write the prices as

S̃t = S0 +
t−1∑
i=0

R̃i (A2)

St+1 = S0 +
t−1∑
i=0

R̃i −Rt (A3)

With these expressions for N < M the profit per share πN can be rewritten as

πN =
1

N

N∑
t=1

S̃t − SN+1 = RN −
1

N

N−1∑
i=1

iR̃i =

=
1

pN
R̃N

M∑
i=N+1

pi −
1

N

N−1∑
i=1

iR̃i (A4)

where in the last equality we have used the martingale condition of Eq. (4). For N = M
the profit per share is

πM =
1

M

M∑
i=1

S̃i − SM+1 =
1

M

M∑
i=1

S̃i − S̃M =

= − 1

M

M−1∑
i=1

iR̃i (A5)

By substituting these two last expressions in Eq. (A1) we obtain

E1[NπN ] =
M−1∑
N=1

NR̃N

M∑
i=N+1

pi −
M−1∑
N=1

pN

N−1∑
i=1

iR̃i − pM
M−1∑
i=1

iR̃i =

=
M−1∑
N=1

NR̃N

M∑
j=N+1

pj −
M∑
N=1

pN

N−1∑
i=1

iR̃i (A6)

By computing explicitly the coefficients of each R̃i, it is direct to find that they vanish for
each i, i.e. E1[NπN ] = 0.

It is worth noticing that this proposition does not hold in the case of infinite support. in
order to show this let us consider the expected profit for orders of length between N = 1 and
N = N̄ . Independently on the finiteness of the support, it holds the following proposition.
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Proposition. The martingale condition for all intervals implies that for any integer
N̄ ≥ 1,

N̄∑
N=1

pNNπN =

 M∑
i=N̄+1

pi

( N̄∑
i=1

iR̃i

)
≥ 0. (A7)

. This equation holds both for finite and infinite support (i.e. M can be finite or infinite).
Proof. From the equation (A4) in the previous proposition, we know that martingale

condition allows us to write the profit per share as

πN =
1

pN
R̃N

M∑
i=N+1

pi −
1

N

N−1∑
i=1

iR̃i

Therefore the expected profit for orders shorter or equal to N̄ < M is

N̄∑
N=1

pNNπN =
N̄∑
N=1

NR̃N

M∑
i=N+1

pi −
N̄∑
N=1

pN

N−1∑
i=1

iR̃i = M∑
i=N̄+1

pi

( N̄∑
i=1

iR̃i

)
(A8)

This is equal to the quantity in Eq. (A7). Moreover it is clear that both terms in brackets
are non negative. The non negativity means that the market maker typically makes profits
on short metaorders.

If the support of pN is infinite then the martingale condition at all intervals implies that

E1[NπN ] ≡
∞∑
N=1

pNNπN = lim
N̄→∞

 ∞∑
i=N̄+1

pi

( N̄∑
i=1

iR̃i

)
. (A9)

In the infinite support case the behavior of the limit in the last term of the above expression
depends on the asymptotic behavior of pN and R̃N for large N . This is due to the fact
that for large N̄ the first term in brackets goes to zero while the second term diverges. It
is possible to construct examples where E1[NπN ] goes to zero, to a finite value, or diverges.
This result shows that in the infinite support case the martingale condition does not imply
zero overall immediate profits.

Proposition 3. The system of martingale conditions (Eq. 3) and fair pricing conditions
(Eq. 7) has solution

R̃t =
1

t

pt∑M
i=t+1 pi

1− p1∑M
i=t pi

R̃1 t = 2, 3, ...,M − 1 (A10)

Rt =
Pt

1− Pt
R̃t t = 1, 2, ...,M − 1 (A11)

Proof. The solution of Eq. (A11) is a direct consequence of the martingale conditions
(Eq. 3). The total profit of metaorders of length N < M can be rewritten as (see proof of
Proposition 1)

NπN = NRN −
N−1∑
i=1

iR̃i = N
PN

1− PN
R̃N −

N−1∑
i=1

iR̃i (A12)
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The fair pricing conditions (Eq. 7) state that for 1 < N < M it is NπN = 0, i.e.

R̃N =
1

N

1− PN
PN

N−1∑
i=1

iR̃i (A13)

This is a recursive equation which determines R̃N once R̃1 is given (note that this equation
does not hold for N = 1 because we do not have fair pricing for metaorders of length one).
The solution of this equation is

R̃t =
1

t

1− Pt
Pt

1

P1P2P3....Pt−1

R̃1 t > 1 (A14)

and we prove it by induction. We assume that the solution holds for N = 2, 3, ..., t− 1 and
we prove that it is true for N = t. If Eq. (A14) holds for N = 2, 3, .., t − 1 we can rewrite
Eq. (A13) for N = t as

R̃t =
1

t

1− Pt
Pt

t−1∑
i=1

iR̃i =
1

t

1− Pt
Pt

(
1 +

t−1∑
i=2

1− Pi
Pi

1

P1P2P3....Pi−1

)
R̃1 (A15)

Now by expanding the sum in brackets it is direct to show that(
1 +

t−1∑
i=2

1− Pi
Pi

1

P1P2P3....Pi−1

)
= 1− 1

P1

+
1

P1P2P3....Pt−1

(A16)

Since, by definition, P1 = 1 the first two terms in the right hand side cancel and thus one
obtains Eq. (A14). This equation is equivalent to Eq. (A10). In fact

R̃t =
1

t

1− Pt
Pt

1

P1P2P3....Pt−1

R̃1 =
1

t

pt∑M
i=t+1 pi

1∑M
i=3 pi∑M
i=2 pi

∑M
i=4 pi∑M
i=3 pi

.....
∑M
i=t pi∑M
i=t−1 pi

R̃1 =

=
1

t

pt∑M
i=t+1 pi

∑M
i=2 pi∑M
i=t pi

R̃1 =
1

t

pt∑M
i=t+1 pi

1− p1∑M
i=t pi

R̃1 (A17)

i.e. our thesis, Eq. (A10).

Appendix B: Effect of finite M on impact

As already discussed briefly in Section VII C, if the condition N � M is violated this
has an effect on the impact. In this section we consider the exact case of a finite support
Pareto distribution. We show that when N �M we obtain the same results of the previous
section and we discuss what happens when N ≈M .

We assume that the metaorder size distribution is a truncated Pareto distribution for all
N ≤M , i.e.

pN =
1

H
(1+β)
M

1

Nβ+1
N ≥ 1 (B1)
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where the normalization constant H
(1+β)
M is the harmonic number of order 1 + β. For the

truncated Pareto distribution the probability Pt that a metaorder of size t will continue is

Pt =
ζ(1 + β, t+ 1)− ζ(1 + β,M + 1)

ζ(1 + β, t)− ζ(1 + β, 1 +M)
(B2)

where ζ(s, a) is the generalized Riemann zeta function (also called the Hurwitz zeta func-
tion). For small t the function Pt increases meaning that it is more and more likely that
the order continues. In the regime of t � M , Pt is well approximated by the expression of
Eq. (18) for an infinite support Pareto distribution. However, around t ' M/2, Pt starts
to decrease meaning that it becomes more and more likely that the order is going to stop
soon, with a corresponding effect on the impact.

The immediate impact can be easily calculated once the distribution of metaorder size
is known by using Eq. (12). For truncated Pareto distributed metaorder sizes, R̃t is (for
t > 2) is

R̃t =

(
H

(1+β)
M − 1

(ζ(1 + β, t)− ζ(1 + β,M + 1))(ζ(1 + β, t+ 1)− ζ(1 + β,M + 1)

)
R̃1

t2+β
(B3)

For large t but t�M it is

R̃t ∼
R̃1

t2−β
(B4)

which is the same scaling as the infinite support Pareto distribution (see Eq. (20)). The
same holds true for the permanent impact. We have therefore shown that when t�M the
finite support of the metaorder size distribution is irrelevant and we obtain approximately
the same results as in Section VII B.

The finite size effects and the role of the finiteness of the support becomes relevant when
t >∼M/2. Figure 3 shows the total impact for M = 1000 and different values of β. It is clear
that the impact is initially described by a power law, but then it becomes strongly convex
when the order length becomes comparable with the maximal length.
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FIG. 3: Immediate impact when the metaorder size has finite support, i.e when N has a maximum

value M . Plot is in log log scale with M = 1000 and β = 1.5, 2, and 2.5.
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