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Abstract
Previous research has highlighted a positive correlation between realised returns and
carbon emissions. This paper shows that this carbon premium might be partially
due to mispricing produced by climate policy uncertainty. For this reason, realised
returns may not be representative of expected returns. To show this, I develop
an asset pricing model with uncertain expectations about the future cash flows of
fossil-fuel firms; the price-dividend ratio increases with uncertainty about a climate
policy regime shift. I confirm this proposition empirically using data on analysts’
forecasts; I find that analysts’ forecast disagreement, as a proxy for climate policy
uncertainty, may explain part of the valuations of a large sample of fossil-fuel stocks.
Using my model, I show with forward-looking scenarios that cash flow expectations
implied in the valuations of fossil-fuel firms may be inconsistent with a net zero
carbon transition.
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1 Introduction

Countries, businesses, and non-profit organisations collectively accounting for almost the

entire world’s GDP have pledged to reach net zero carbon emissions by 2050 in line with

the objectives of the Paris Agreement1. If credible, these commitments represent an

unprecedented financial risk for high-carbon emitting firms. Yet, various surveys show

that investors believe stock markets may be mispricing climate-related transition risks

(Krueger, Sautner, & Starks, 2020; Stroebel & Wurgler, 2021). This mispricing could

be because the valuations of high-carbon emitting firms may not be pricing expected

cash flows consistently with the increasing likelihood of a future without carbon-intensive

energy sources. Extant literature has focused on realised returns, but if we were to prevent

global warming in line with the climate pledges, the main effect of risk may be on the

cash flows of these firms, which should arguably decline substantially by 2050 (Edmans,

2023).

Climate policy uncertainty may provide a first explanation for the current valuations

of high carbon-emitting firms despite the increasing number of climate pledges. The fi-

nancial economics literature concerned with climate change has highlighted that investors

may be pricing the uncertainty around a transition to net zero carbon emissions through

higher expected returns and lower valuations (Bolton & Kacperczyk, 2021, 2023; Hsu,

Li, & Tsou, 2023). However, in a present value framework, (idiosyncratic) uncertainty

may right-skew expected cash flows, leading to higher valuations (Pástor & Veronesi,

2003, 2006). Contrary to what is suggested in previous literature, the positive correlation

between realised returns and carbon emissions (or carbon premium) may not be a sign

of financial markets pricing the increasing likelihood of a transition to net zero carbon

emissions through higher expected returns, but a symptom of mispricing.

In this paper, I show that the relatively high realised returns of carbon-intensive

firms may be driven by climate policy uncertainty and they are unlikely to be purely

reflective of a risk premium. I show that the high uncertainty surrounding climate policy

may affect cash flow expectations and explain part of the valuations of some of the

most carbon-intensive energy producers: fossil-fuel firms. A climate policy regime shift
1Source: Oxford net zero tracker
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can influence the trend of the stochastic process governing high and low-carbon energy

demand, shifting the respective firms’ cash flows growth. A rational investor prices stocks,

discounting future expected cash flows by an expected rate of return, which increases for

more risky and uncertain assets. But uncertainty increases the expected value of future

cash flows. The investor discounts a state of the world wherein high-carbon energy will

continue to grow. The uncertain occurrence of a climate policy regime shift means that

the investor is unable to anticipate whether and when the prospective shift will occur

- that is, the sustained high levels of climate policy uncertainty affect the valuations of

fossil-fuel firms.

To conceptualise this effect, I develop a partial equilibrium asset pricing model with

uncertainty wherein the long-term growth of fossil-fuel firms depends on whether an

uncertain climate policy regime shift occurs. I show that the valuations of fossil-fuel

stocks are positively related to a rational investor’s expectations about the trend of future

cash flows and their variance. The latter describes the uncertainty faced by the investor

in the absence of learning about the prospective climate policy regime shift, which I refer

to as climate policy regime shift uncertainty. Moreover, I discuss how the different levels

of exposure to the regime shift could exacerbate or mitigate the effects of uncertainty on

assets’ valuations. Firms with an elasticity of dividends to energy expenditure less than

one are less exposed to the policy regime shift risk while values greater than one magnify

the impact of possible climate policies on valuations.

To discuss the magnitude of the effect of climate policy uncertainty on stock market

valuations, I test my proposition on a large sample of fossil-fuel firms with an empirical

analysis of analysts’ forecasts of dividends per share. I find that climate policy uncertainty

may have weighed significantly on the valuations and realised returns of carbon-intensive

firms. I report a positive and statistically significant relationship between analysts’ es-

timates of growth in future dividends and the valuations of fossil-fuel firms. In a panel

regression, using analysts’ forecast disagreement as a proxy for market uncertainty, I find

that the variance in dividends per share (DPS) forecasts - and similarly that for earnings

per share (EPS) forecasts - are positively correlated with the valuations of fossil-fuel com-

panies. This effect is generally higher for more carbon-intensive firms and is consistent

across the various dimensions explored in the robustness analysis.
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Employing forward-looking climate scenarios, I show that financial markets may be

mispricing a net zero carbon transition. I observe that the valuations of fossil-fuel stocks

may be more closely aligned with the right tail of the distribution of price-dividend

ratios conditional to a no climate policy regime shift estimated with my model. This

alignment suggests that either markets do not believe that policymakers will shift their

climate policy to meet their pledges to prevent global warming or that markets are over-

optimistic about possible technological breakthroughs that allow the continued use of

fossil-fuels, such as carbon capture and storage. These results show that the effect of

climate policy uncertainty on cash flow expectations may lead to a mispricing of the net

zero carbon transition. In turn, high realised returns may be a poor proxy for expected

returns, as investors may reprice their cash flow expectations.

This paper contributes to various strands of the recent climate finance literature (Ed-

mans & Kacperczyk, 2022; Gasparini & Tufano, 2023; Giglio, Kelly, & Stroebel, 2021;

Hong, Karolyi, & Scheinkman, 2020; Starks, 2023). Firstly, I provide a novel perspective

on the extent to which financial markets price a transition to net zero carbon emissions.

A growing strand of empirical literature has recently shown that market agents are pay-

ing increasing attention to global warming and this is reflected in stock market prices

(Bolton & Kacperczyk, 2021, 2023; Ramelli, Wagner, Zeckhauser, & Ziegler, 2021; Saut-

ner, Van Lent, Vilkov, & Zhang, 2023; Wagner, Zeckhauser, & Ziegler, 2018). Unlike

previous research that has focused on realised returns, this paper discusses some asset

pricing implications of the net zero carbon transition, focusing on a forward-looking cash

flow perspective2. In particular, I show that the valuations of fossil-fuel firms may not be

aligned with a transition to net zero carbon emissions. I also provide a first explanation

as to why surveys of professional investors indicate that financial markets are yet to suf-
2Similar evidence has also been found across various asset classes such as corporate and municipal

bonds (Baker, Bergstresser, Serafeim, & Wurgler, 2022; Flammer, 2021; Painter, Chaifetz, & Louis, 2020),

derivatives (Ilhan, Sautner, & Vilkov, 2021; Schlenker & Taylor, 2021), real estate (Bernstein, Gustafson,

& Lewis, 2019), and mortgages (Nguyen, Ongena, Qi, & Sila, 2022). However, some opposite evidence has

also emerged (Aswani, Raghunandan, & Rajgopal, 2023; Hong, Li, & Xu, 2019). Furthermore, it should

be noted that changes in expectations (or news) around cash flows may better explain the variability in

stock market prices of ’value’ stocks such as fossil-fuel firms than that of discount rate news (Campbell

& Vuolteenaho, 2004; La Porta, Lakonishock, Shleifer, & Vishny, 1997)
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ficiently reflect the risks emerging from a net zero carbon transition residing in climate

policy uncertainty.

Secondly, this paper contributes to the climate finance literature by reconsidering

the recent evidence on the presence of a carbon premium. I show that, even though the

realised returns of high-carbon emitting firms may have been higher than their low-carbon

counterparts in the past - disclosing a carbon premium (Bolton & Kacperczyk, 2021,

2023) - they may not be representative of higher expected returns. Instead, high realised

returns may be a product of mispricing generated by the effect of uncertainty on cash

flow expectations. If the uncertainty around the net zero carbon transition will resolve,

investors may revise their expectations about the growth of cash flows of carbon-intensive

firms leading to lower future returns. As also discussed by Atilgan, Demirtas, Edmans,

and Doruk (2023), this paper provides further evidence showing that the carbon premium

may be a symptom of mispricing rather than of pricing of climate-related transition risks

and that, in turn, realised returns may not be purely reflective of expected returns and

cost of capital3.

Finally, this study contributes to the financial economics literature on uncertainty.

The net zero transition may be analogous to the early 2000s, when there was high un-

certainty about the growth of the fundamentals of internet firms, which led to high

valuations (Pástor & Veronesi, 2003, 2006). Even though the subsequent literature on

policy uncertainty discusses how endogenous learning about political costs lowers uncer-

tainty over time and thus leads to a higher risk premium and lower prices (Kelly, Pástor,

& Veronesi, 2016; Pástor & Veronesi, 2012, 2013)4, I argue that the inability to learn

about the perspective climate policy maintains high levels of cash flows uncertainty for

carbon-intensive firms. With the simple model I developed, I show that uncertainty, in

turn, could contribute to maintaining high the valuations of fossil-fuel firms.

In the following section, I present a valuation framework of climate-sensitive firms

and discuss some asset pricing implications. In Section 3, I outline the empirical strategy
3Pástor, Stambaugh, and Taylor (2022) show that using past returns as a proxy of expected returns

for green stocks may not be appropriate.
4Similar results have also been found extending these models to the environmental policy (Hsu et al.,

2023)
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and the econometric specifications. In Section 4, I provide the results of the analysis

and discuss the empirical evidence. In Section 5, I provide numerical simulations of the

valuations of fossil-fuel stocks conditional to a set of possible climate scenarios.

2 Valuation framework

In this section, I describe a simple valuation framework of climate-sensitive firms exposed

to an uncertain policy regime shift to curb carbon emissions. I consider a closed economy

with two firms i ∈ [d, c], one producing carbon-intensive energy and one low-carbon

energy, a representative investor, and an infinite time horizon t ∈ [0,∞]. Let Ei,t denote

an exogenous level of energy expenditure from firm i at time t. Energy supply matches

energy demand. For all t ∈ [0,∞] energy expenditure for energy from firm i follows a

specific and independent geometric Brownian motion with drift µi and standard deviation

ωi, where dWt is a process with mean zero and unit variance dWt ∼ N (0, 1). The drift µi

remains constant for all t ∈ [0,∞] unless the policymaker takes an irreversible decision

to shift its climate policy.

dEi,t = µiEi,tdt+ ωiEi,tdWt (1)

At time 1 the policymaker can decide to maintain its current climate policy regime a

or to shift towards restricting energy expenditure in carbon-intensive energy b in order to

prevent global warming. If a climate policy regime shift occurs, the drift µi is shifted by

a known amount δi. This parameter for high-carbon energy δd is assumed to be strictly

less than zero, while for low-carbon energy δc it is assumed to be strictly higher than zero.

Loosely speaking, if the policymaker decides to take action to prevent global warming, he

can implement policies for curbing high-carbon energy (e.g., carbon tax) or fostering low-

carbon energy (e.g., stimulating innovation), thereby shifting the growth balance between

high and low-carbon energy. For simplicity, I assume that the future path of low and

high-carbon emitting energy expenditure only depends on the climate policy regime, but

this can be thought of as a proxy for many unknown factors surrounding the transition5.
5For example, the development of a new breakthrough energy technology, the possible continuation

6



I then assume that the representative investor’s expectations of µi are distributed

normally with mean gi and variance σ2
i . The latter term depends on the uncertainty

introduced by the policymaker about the climate policy regime shift. The more uncertain

is the signal from the policymaker about a possible shift in its climate policy regime from

a to b, the more uncertain the representative investor is about the drift of the stochastic

process governing carbon-intensive and low-carbon energy expenditure µi. I refer to σ2
i

as regime shift uncertainty as the value of µi is ultimately defined by the decision of

the policymaker. For simplicity, I assume that the magnitude of the possible policy is

known and the decision is irreversible, but I acknowledge that these components introduce

additional uncertainty and could be considered as a possible extension of the model.

I now want to use this framework in a simple present value asset pricing model. Let

Di,t denote the dividend paid by firm i at time t. I assume that for all t ∈ [0,∞] the

change in the level of dividends is proportional to the change in energy expenditure scaled

by a known and constant firm-specific factor dDi = γidEi. γi denotes the elasticity of

dividends to changes in energy expenditure and represents the exposure of each firm to

the regime shift. I therefore refer to γi as the exposure of each firm to the regime shift

risk. Consequently, if we set ωi = 0 in Equation (1) without loss of generality, dividends

grow at an exponential rate γiµi for all t ∈ [0,∞]6.

The investor has to price both firms at time 0 before the policy decision is taken. I

assume that the price of firm i is the expected present value of future dividends discounted

by an exogenous rate ri given by a known model of expected returns. Importantly,

differently from previous research that focuses on realised returns, I use my model to

discuss the asset pricing implications of climate policy uncertainty from a cash flows

perspective. I argue the effect of uncertainty on cash flow expectations in this context

could be considerable given that, if we were to reach net zero carbon emissions, high-

of the decline in the costs of renewable energy and storage
6The reader should note that the model can be generalised to values of ωi greater than zero. The

motivation for this assumption is that I am interested in considering the uncertainty that investors face

about the probability distribution of the drift (i.e., the long-term path of energy demand) rather than

the volatility around it. The reader should also note that the previous step is only a useful construct to

link climate policy with asset valuations, but from a theoretical standpoint, assuming uncertainty about

the drift of the diffusion process of dividends is equivalent.
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carbon energy may need to be almost entirely replaced by low-carbon energy.

Pi,t = E0

∫ ∞

0

Di,texp(−rit)dt (2)

Following some simple manipulations described in Appendix A, I find a convex rela-

tionship between four parameters and the price-dividend ratio. Substituting Di,t in the

present value Equation (2) with the growth process of dividends emerging from the en-

ergy expenditure path in Equation (1), the price of firm i at time t depends on a dividend

stream growing at a rate µiγi and discounted at a rate ri. If we take the expectations,

dividends Di,t are log-normally distributed, and µi has mean exp(gi + σ2
i /2). For ri > gi,

the price-dividend ratio of either low or carbon-intensive firm i at time t = 0 is positively

related to the energy growth expectations, described by its mean gi and variance σ2
i , a

known constant representing the elasticity of dividends to changes in energy expenditure

γi and negatively related to the required rate of return ri,t:

Pi/Di = 1/[ri − (gi + σ2
i /2)γi] (3)

This simple model shows that the uncertainty about climate policy action might have

an effect on the valuations of climate-sensitive assets through cash flow expectations.

The higher the uncertainty about the growth of the fundamentals of climate-sensitive

firms the higher the prices, everything else being equal. Contrary to the case where

learning is possible and uncertainty decreases with the passing of time (e.g., Pástor and

Veronesi (2012)), here uncertainty remains high until it is fully resolved7. Investors do not

know whether high-carbon energy will remain predominant (leading to global warming)

or whether, thanks to a policy regime shift, the world will move towards net zero carbon
7This situation is similar to the case of internet companies in the dot.com bubble (Pástor & Veronesi,

2006) or the uncertainty about the future profitability of newly listed firms (Pástor & Veronesi, 2003)

and more generally common in real option approaches (Mcdonald & Siegel, 1986; Paddock, Siegel, &

James, 1988). However, it should by noted that in this model, uncertainty emerges from the unknown

level of the drift rather than the volatility around it. See Pastor and Veronesi (2009) for a review of

learning in a context of uncertainty.
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emissions. In such a case, uncertainty around policy action may lead to higher valuations

by right-skewing expected cash flows. For a sufficiently high difference δi in the expected

values of µi conditional to either state of the world, this effect could possibly lead to

miscpricing due to the very different possible pathways of future cash flows. In particular,

mispricing may occur, whereas an event may lead to a substantially lower level of future

cash flows than the expected value (e.g., a climate policy regime shift).

A second observation is that the price-dividend ratio can be impacted by growth

expectations and uncertainty, depending on the level of exposure of firms to the policy

regime shift risk γi. The exposure of firms to the policy regime shift risk could be, in

the first instance, proportional to carbon emissions (intensity), as highlighted by extant

literature (e.g., Bolton and Kacperczyk (2023)). However, it may also be influenced by

a broader set of factors such as the capacity of firms to cost-effectively abate emissions,

the increasing or decreasing returns to scale of production, and the difference in efficiency

and profitability of companies. In general, the impact of a transition to net zero carbon

emissions on high carbon firms may vary greatly depending on a broader set of factors

than just carbon emissions. In turn, this implies that the heterogeneous exposure of

climate-sensitive firms to the policy regime shift risk may be a material driver of their

valuations.

Contrary to prior research that focuses only on the required rate of return, I show

that the uncertainty around cash flow expectations may right-skew the valuations of

fossil-fuel firms. This, in turn, may lead to mispricing compared to a state of the world

where a net zero carbon transition unfolds and hence lower future returns as investors

may reprice their cash flow expectations. This entails that past realised returns may

not be representative of expected returns, as cash flow expectations may have weighed

significantly on valuations. In order to study the magnitude of this effect, in the next

section, I turn to an empirical analysis.

3 Empirical specifications

In this section, I outline an empirical strategy to study the magnitude of the effect of

climate policy uncertainty on the valuations of fossil-fuel firms. Even though the theoret-
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ical framework described in the previous section allows for a more general assessment of

climate policy uncertainty on climate-sensitive firms, I focus on companies involved in the

extraction, refinement, and commercialisation of fossil-fuel. Fossil-fuel firms are arguably

some of the most exposed businesses to the risks of a net zero carbon transition given

that carbon-intensive energy would need to be almost entirely replaced by low-carbon

energy in the absence of technological breakthroughs on carbon capture and storage.

I use professional analysts’ forecasts of fossil-fuel firm’s fundamental value to proxy

investors’ expectations and their uncertainty. In line with previous literature, I measure

investors’ uncertainty using forecast disagreement and focus on its time-varying compo-

nent (Anderson, Ghysels, & Juergens, 2009; Diether, Malloy, & Scherbina, 2002; Johnson,

2004)8. Specifically, I am interested in testing whether investors’ expectations about fu-

ture cash flows and their time-varying uncertainty affect valuations. In the context of

climate change, the levels of uncertainty may vary when there is news about events that

affect, directly or indirectly, the likelihood of more stringent climate policy.

I use data from CRSP/Compustat to identify a set of fossil-fuel energy stocks. I select

sub-industries related to oil & gas consumable fuel companies according to the Global

Industry Classification Standard (GICS)9. This gives me a large set of stocks and their

respective market data, including prices, earnings, and dividends. I then merge this data

with Refinitiv’s IBES and Refinitiv’s carbon emissions. IBES reports data about analysts’

forecasts of financial indicators monthly (e.g., Dividends per share, Earnings per share).

I use the summary dataset, which reports the mean, standard deviation, high and low

of analysts’ estimates (including the number of underlying forecasts) as well as a set of

aggregated statistics about the detailed estimates. Joining IBES with CRSP gives me a

total of 480 fossil-fuel stocks, followed by stock market analysts. The data report analysts’
8Various methods have been used in the literature to proxy investors’ (climate) uncertainty: i. ARCH

conditional variance discussed by Engle (1983), ii. market-based methods (Bekaert & Hoerova, 2014;

Brenner & Izhakian, 2018), iii. text-mining methods (Baker, Bloom, & Davis, 2016; Bloom, 2009), of

which some applied to climate policy uncertainty (Berestycki, Carattini, Dechezleprêtre, & Kruse, 2022;

Gavriilidis, 2022; Noailly, Nowzohour, & Van Den Heuvel, 2022)
9GICS Sub-industries selected: Integrated Oil & Gas (10102010), Oil & Gas Exploration & Produc-

tion (10102020), Oil & Gas Refining & Marketing (10102030), Oil & Gas Storage & Transportation

(10102040), Oil & Coal & Consumable Fuels (10102050)
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forecasts for different forecast horizons (FH) in the future, from 1 to 3 years. For example,

estimates could be for the next fiscal year (FH 1) or for 3 years in the future (FH 3). This

data has monthly records (forecast date) corresponding to more than 800,000 underlying

estimates, which summarise analysts, and arguably investors’ beliefs, of a representative

sample of fossil-fuel companies. Table 1 shows some descriptive statistics.

I perform the following data cleaning and transformations to ensure the data is ade-

quate for the analysis. In line with previous literature, I set a threshold for the minimum

required number of analyst’s forecasts. I set the threshold at 10 to ensure enough esti-

mates are included without reducing substantially the number of records. I also remove

stocks with a price lower than 5 USD at the forecast date. Further, I select the decade

starting at the beginning of 2010 and ending in 2019 as it is particularly suitable for the

empirical analysis, but also because of data limitations and major global upheavals in

the surrounding years. Firstly, if we consider a minimum number of analysts’ forecasts

for each forecast date, the number of estimates before 2010 is low. Secondly, the pe-

riod between the global financial crisis and COVID-19 has been relatively stable from a

macroeconomic standpoint while various major climate policy events occurred (e.g., Paris

agreement in 2015, Trump’s election in 2016) without being overly influenced by other

exogenous events. This limits the concerns about the influence of other major economic

and policy developments on the valuations of the stocks in the sample that might bias

the results (e.g., global financial crisis).

I construct two metrics of analysts’ forecasts as a proxy for market’s expectations and

uncertainty. First, I define: i. mean earnings per share (EPS) growth forecasts relative

to the most recent earnings per share at forecast date (EPS_GFH
i,t ). Secondly, I define:

ii. the standard deviation of EPS growth forecast (or forecast disagreement about the

growth of earnings) relative to the most recent absolute value of earnings per share at

forecast date (EPS_STDFH
i,t ). I use the latter metric as a proxy of analyst’s uncertainty.

More formally, I define EPSFH
i,t,k as the EPS forecast for the forecast horizon FH for firm

i at time t of analyst k (where K is the total number of analyst estimates). Further, I

define EPSi,t as the most recent earnings per share at forecast date t and EPSFH
i,t as the

arithmetic average of the K analysts’ forecasts for firm i for each forecast horizon.
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EPS_GFH
i,t =

EPSi,t
FH

EPSi,t

− 1

EPS_STDFH
i,t =

√∑K
k=1(EPSFH

i,t,k − EPSi,t
FH

)2/K

|EPSi,t|

In the first specification, I estimate a panel regression model between the price-

earnings ratio and the two metrics. I control for firm-fixed effects because I am interested

in the time-varying level of uncertainty. Loosely speaking, I am interested in understand-

ing whether, during a period of higher climate policy uncertainty, the relative valuations

of climate-sensitive assets are higher, given a certain level of expected growth in earn-

ings, rather than understanding whether firms that are more exposed to uncertainty show

higher prices10. Moreover, I replicate the same specification for the price-dividend (P/D)

and dividends per share (DPS) forecasts in the dataset. Earnings per share allow us to

avoid concerns about non-dividend paying stocks and use a larger number of data points,

but results are generally equivalent11.

P/Ei,t = β1 ∗ EPS_GFH
i,t + β2 ∗ EPS_STDFH

i,t + Controlsi,t + ϵi,t (1)

In the second specification, I estimate a panel regression model between the price-

earnings ratio and the interaction of total carbon emissions (Scope 1,2,3), and the stan-

dard deviation of analysts’ forecasts (forecast disagreement). This allows for a better

identification of climate policy uncertainty. If forecast disagreement at least partially

represents climate policy uncertainty, firms with higher carbon emissions should have a

higher coefficient for the interaction term. I provide some reassurance about the correla-
10It is already postulated in the financial economics literature that firms more exposed to idiosyncratic

uncertainty tend to have higher stock market valuations all else being equal (Pástor & Veronesi, 2003)
11The reader should note that, in most cases, fossil-fuel stocks are not "growth" companies and gener-

ally pay dividends with a constant pay-out. Consequently, EPS and DPS results are expected to follow

a similar pattern
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tion between my metric and climate policy uncertainty for fossil-fuel firms by exploiting

this instrument. I corroborate this evidence with further identification analyses.

P/Ei,t = β1 ∗ EPS_STDFH
i,t + β2 ∗ TOTAL_EMISi,t

+β3 ∗ TOTAL_EMISi,t ∗ EPS_STDFH
i,t + Controlsi,t + ϵi,t

(2)

In Appendix B, I report some additional identification analyses. Firstly, I show the

two metrics described above are, in aggregate, sensitive to climate policy events. Secondly,

I show the metric of uncertainty broadly correlates with other climate policy uncertainty

measures in the literature but not substantially with general uncertainty metrics. Finally,

I show that forecast disagreement tracks the average implied option volatility of fossil-fuel

firms. These analyses, together with the empirical set-up described in this section, should

ensure that the results capture, at least to a certain extent, the effects of climate policy

uncertainty on investors’ expectations.

4 Empirical results

In the first part of this section, I investigate some of the determinants of uncertainty

around the fundamentals of fossil-fuel firms, particularly focusing on elements that may

increase climate policy uncertainty. In this part, I also investigate some of the drivers of

the changes in mean analysts’ expectations. In the second part, I turn to the main results

of my empirical analysis, reporting first the effects of uncertainty on the valuations of

fossil-fuel firms and then exploring the interaction between carbon emissions and climate

policy uncertainty. With this analysis, I show that the effect of climate policy uncertainty

on the valuations of fossil-fuel firms could be material.

4.1 Some determinants of analysts’ expectations and

climate policy uncertainty

To get a better understanding of the drivers of the valuations of fossil fuel firms, I

regress some possible factors of uncertainty on my measure of forecast disagreement
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(EPS_STD). The objective of this analysis is to first describe what may drive uncer-

tainty around fossil-fuel stocks’ fundamentals before turning to its effects on the valuations

of firms. In particular, I focus on three elements: climate policy events, climate disasters,

and political beliefs proxied using analysts’ locations in Democratic or Republican-leaning

states in the United States.

I first consider a set of climate policy events. In order to do that, I retrieve a list of

climate policy events collected by Barnett (2023). I then create a dummy variable that

equals one if, in the month the forecast was published, a climate policy event occurred,

and equals zero otherwise. In Table 2, I show that there seems to be a weak positive

correlation between my measure of uncertainty and climate policy events. The regression

is not significant for a one and two-years forecast horizons but it is significant and positive

for a three-years forecast horizon. This may indicate that during periods of climate policy

events, analysts are generally more uncertain about the medium- and long-term future

performance of fossil-fuel firms. The list of climate policy events is provided in Appendix

A10.

I then consider a set of climate disasters that may increase the salience of climate

change. I use data from Spatial Hazard Events and Losses Database for the United

States (SHELDUS)12 which reports historical property damages and fatalities of natural

hazards. I classify a major disaster as an occurrence that led to either fatalities or property

damages (expressed in terms of inflation adjusted Dollars at 2021 values) above the 90th

percentile of the decade 2010-2020. I consider Coastal Flood, Drought, Flooding, Heat,

Hurricane/Tropical Storm, Severe Storm/Thunder Storm, Tornado, and Wildfire. I focus

on the US as most analysts in my sample reside in this country. Similarly, for climate

policy events, I create a dummy variable tracking whether an event occurs in the month

the estimate was published. In Table 2, I show that there is a weak positive correlation

between my measure of uncertainty and the occurrence of physical climate events. The

coefficient is positive and significant for the one-year forecast horizon. The list of events

is provided in Appendix A11.

Thirdly, I consider whether analysts’ headquartered in states that are leaning towards

the Democratic or Republican party disclose differences in their uncertainty about the
12https://sheldus.asu.edu/SHELDUS/index.cfm?page=members
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future of fossil-fuel firms. I use this as a proxy for political beliefs, which may indicate

different views about climate change. I use data from Gerken and Painter (2023)13 about

analysts’ location and classify Democratic and Republican states depending on the out-

come of the previous four elections. I classify states as Democratic or Republican-leaning

where the respective party consistently won the election between 2004 and 2020. I do

not consider states where there have been mixed results in the past four elections. In Ta-

ble 2, I show that analysts headquartered in Democratic-leaning states (e.g., California)

tend to be more uncertain about the future performance of fossil-fuel firms than analy-

sis in Republican-leaning states (e.g., Texas). The classification of states is provided in

Appendix A12.

In Table 3, the analysis is extended to the mean earnings growth forecast (EPS_G).

I find that in months when climate policy events or climate related disasters occur, the

mean analysts’ forecast is generally lower than in other periods. The coefficients for the

variables in the regressions are negative and significant. Specifically, for policy events,

the coefficients are significant for a two and three-years forecast horizons. For climate

disasters, the only significant coefficient is for a forecast horizon of two years ahead. Turn-

ing to political beliefs, the results suggest that analysts located in Democratic-leaning

states are not only more uncertain about their forecasts but tend to have higher mean

estimates than their counterparts in Republican-leaning states. However, it should be

noted that more than two-thirds of analysts are located in Democratic-leaning states

(e.g., California) as opposed to Republican-leaning states (e.g., Texas).

These analyses show some of the drivers of analysts’ uncertainty about fossil-fuel

firms. When climate policy events and climate disasters occur, and arguably become more

salient, my measure of uncertainty is generally higher and mean earnings’ growth forecasts

lower. Even though analysts headquartered in Democratic or Republican states may not

share the predominant political belief of their geographical area, analysts in states where

the predominant political orientation is towards the more climate-conscious Democratic

party tend to be more uncertain about the future of fossil-fuel firms as opposed to states

with a predominant orientation towards the Republican party. Analysts seem also to pay

attention to climate policy and climate disasters in revising their mean forecasts, which
13I thank the authors for sharing the data
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are generally lower in the months such events occur.

4.2 The effects of uncertainty on the valuations of fossil-fuel firms

I now provide the results of the main empirical analysis. I start by averaging the forecasts

across the three forecast horizons in order to capture a stronger signal. Table 4 shows

a positive and statistically significant relationship between analysts’ forecast disagree-

ment and the price-earnings ratio (Specification 1). I show that given a mean forecast

growth, periods with higher forecast disagreement tend to have a higher price-earnings

ratio, consistent with my model’s prediction. This result seems to indicate that financial

markets discount climate policy uncertainty through their cash flow expectations with

higher average prices, everything else being equal (e.g., expected cash flows growth).

In Table 4, I show that in months when climate policy events or climate disasters

occurred, the valuations of fossil-fuel firms are generally lower. The coefficients of the

regressions are significant and negative. Introducing dummy variables on the date of the

occurrence of such events does not affect the results, which remain significant and in

line with expectations. Complementing these results with the findings in the previous

subsection, it seems that analysts revise their expectations and their levels of uncertainty

when climate policy or climate disasters occur, and, in turn, these beliefs have a significant

impact on the valuations of firms.

In Table 5, I break down analysts’ forecasts by different forecast horizons (FH 1,2,3).

The signs of the coefficients are consistently positive across the three forecast horizons

and highly significant. The coefficients are also economically significant: an expectation

of doubling of the EPS in a three-years forecast horizon leads to around 14-points increase

in the price-earnings ratio. A 50% standard deviation (i.e., EPS remaining constant or

doubling in the next three years) leads to around 5 points increase in the price-earnings

ratio. Similar results are also confirmed using the price-dividend ratio (P/D) in Table

A1. The only exception is the standard deviation of forecasts for a two-years forecast

horizon where the sign turns negative, although this model has a much lower explanatory

power compared to the regression with earnings per share.

In Table 5, I show a negative and statistically significant relationship between Scope 1
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emissions and the price-earnings ratio. I report that the coefficients for Scope 1 emissions

expressed as intensity of revenues, assets, and log absolute emissions are negative and

significant. The only exception is again for a two-years forecast horizon and log absolute

emissions where the coefficient is not significant. Without considering the effects of

uncertainty on cash flow expectations, higher carbon emissions entail lower price-earnings

ratio in line with other empirical studies (Bolton, Halem, & Kacperczyk, 2022)14.

In Table 6, I show the results are robust to a set of control variables representing firms’

characteristics. The relationships outlined above remain in line with expectations and

significant after introducing ROE, liquidity, profit margin, market to book, leverage, and

cash to debt ratio. The only exception is the EPS growth estimate (EPS_G) for one-year

forecast horizon (FH 1) where the coefficient turns negative. But the R2 also decreases

substantially in this case, to around 7%. Alternatively, the variance explained by the

regression models for the two and three-years forecast horizons remains high (around

30% and 70% respectively). Interestingly, after controlling for firms’ characteristics, the

longer the time horizon of the estimate, the higher the variance explained by the model.

The coefficients for Scope 1 emissions also remain generally negative and significant.

Similar results could be found for dividends per share in Table A215.

In Table A3, I show that the results hold after removing outliers. I winsorize to the

5th/95th percentile all variables in the sample and re-estimate the model to ensure my

results are not sensitive to outliers. The coefficients for earnings per share growth forecast

and earnings per share forecast disagreement remain positive and strongly significant.

The explanatory power of the model slightly decreases, but remains broadly in line with

the results based on a non-winsorized sample. Scope 1 emission coefficients also remain

negative and significant with the only exception of three-years forecast horizon and log

absolute emissions, which becomes not significant.

In Table A5, I show the results are robust to different thresholds of minimum number
14It should be noted that, this result is based on Scope 1 emissions that are relatively low for fossil-fuel

firms. The exposure of fossil-fuel firms to the risks of a transition could be better captured by the total

emissions of their products (i.e., including Scope 3). For this reason, in subsequent analyses, I consider

total emissions.
15The only exception in the DPS case are the coefficients of the standard deviation of analysts forecasts

which become non-significant for a three-years forecast horizon
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of analysts’ forecasts. To test the sensitivity of the results to the cut-off I use for the

minimum number of estimates. I increase it from 10 to 15 and decrease it to 5 to test

the sensitivity of the results to this parameter. The results generally persist in increasing

the minimum number of estimates, although with a few exceptions. The sample size

decreases substantially when considering only records with at least 15 estimates, thereby

decreasing the robustness of the model. Alternatively, decreasing the minimum number

of estimates increases the sample size, but the metrics are less robust. The results are

confirmed also in this case, with a few exceptions, but I am cautious when using my

metrics with fewer than 10 analysts’ forecasts because it may not be sufficiently robust.

These results are reported only for comparison with the baseline model. Nevertheless,

this robustness analysis shows that the results are not particularly sensitive to the cut-off

threshold above a certain level.

In Table 7, I find a positive and significant relationship between the interaction term

of total emissions (Scope 1, 2, and 3) and forecast disagreement and the price-earnings

ratio (Specification 2). This may indicate that the valuations of firms that are more

exposed to the policy regime shift risk (i.e., those with higher emissions) might be more

impacted by the effect of uncertainty. This result also shows that at least a portion of

forecast disagreement may be due to climate policy uncertainty. In line with the previous

finding, the coefficient of forecast disagreement remains generally positive and significant,

although the sign turns negative for absolute emissions.

In Table A7, I report on additional robustness analyses. I find that in some instances,

the relationship between the interaction term of total emissions and uncertainty and the

price-earnings ratio does not hold to the set of control variables. However, after including

firms’ characteristics, the R2 of the model decreases substantially, and in some instances,

the coefficients of the interaction term turn negative or not significant. Such results

suggest that there could be only a limited relationship between the interaction of emissions

and uncertainty. Broader political and economic uncertainty may also contribute to the

effects described in this paper. I am indeed aware that climate policy may only be one

source of uncertainty that may affect cash flow expectations of fossil-fuel stocks. But

I argue this analysis is sufficient to show it may, at least partially, contribute to this
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broader uncertainty16.

These results show that there may be a positive relationship between time-varying

uncertainty and the valuations of fossil-fuel stocks. Although some anomalies emerge in

the robustness analysis, my results suggest that this effect might be stronger for carbon-

intensive firms - indicating that, at least in part, it could be attributed to climate policy

uncertainty. Such findings highlight how climate policy uncertainty may have weighed

significantly on the valuations of fossil-fuel firms and on their realised returns. In turn,

this result suggests that realised returns may be a poor proxy for expected returns and

cost of capital.

In the next section, I discuss some of the implications of the effect of climate policy

uncertainty on cash flow expectations for the valuations of fossil-fuel firms. Particularly,

I discuss how uncertainty may lead to mispricing compared to a state of the world where

a net zero carbon transition unfolds.

5 The valuations of fossil-fuel firms and the net zero

carbon transition

To calculate some numerical results of the valuations of fossil-fuel stocks conditional to a

world with a climate policy regime shift and without, I calibrate the model described in

Section 2 with some climate scenarios. In order to find a representative basket of fossil-fuel

stocks, I run the model on a stock index representing high-carbon emitting energy sources:

the S&P 1200 Global Energy Index. This index represents investments in traditional

energy companies involved in the extraction, refinement, and commercialisation of fossil-

fuel. I follow an approach similar to Campbell and Shiller (1989) and use my model to

estimate a distribution of price-dividend ratios conditional to a set of climate scenarios.

Specifically, I use climate scenarios to generate projections of dividends rather than using

their historical realisations as proposed by Campbell and Shiller (1989). I use a set of

climate scenarios from the the Network for Greening the Financial System (NGFS, 2021)
16Previous literature has also shown that a part of uncertainty in the S&P 500 may be due to climate

change. Arguably, the share of climate policy uncertainty is even higher for fossil-fuel stocks (Rocciolo,

2022)
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to calculate the yearly growth rate of global energy expenditure on fossil-fuel energy

(projected energy demand multiplied by energy prices) gd and its standard deviation σ2
d

17. I then use a sensitivity parameter γd to link the change in carbon-intensive energy

expenditure to the change in dividends.

I calibrate the discount rate rd equal to 6.3%, the growth rate of carbon-intensive

energy expenditure conditional to no climate regime shift gd,a equal to 1.37% and the

standard deviation of the energy expenditure growth conditional to no climate regime shift

σ2
d,a equal to 1.13%. The growth rate of carbon-intensive energy expenditure conditional

to a climate regime shift gd,b equal to -0.92% and the standard deviation of the energy

expenditure growth conditional to a climate regime shift σ2
d,b equal to 1.41%18. In the

baseline model, I set the elasticity of dividends to energy expenditure γd=1. This is the

only parameter that is not possible to calibrate due to data limitations, but I use a range

of plausible parameters ranging from 0.5 to 1.5 to show that the results do not change19.

It should be noted that the calibration of my model conditional to a climate policy

regime shift is fairly conservative. A decrease in primary energy expenditure of around 1%

per year results in only around 30% lower levels of energy expenditure in 2050 compared to

2020. The total fossil-fuel expenditure in such a scenario decreases from around 4 trillion

USD in 2020 at 2010 prices to only around 3 in 2050 in real terms. This is because the

NGFS scenarios consider a sizeable use of carbon capture and storage (CCS) which allows

for an extended use of carbon-intensive energy. Arguably less conservative scenarios

would put the decline in high-carbon energy expenditure higher. Further, the estimates

consider a linear and smooth decline in dividends, but a sharper drop in high-carbon
17NGFS Scenarios used: Climate regime shift: Below 2°C, Net Zero 2050, Delayed transition, Divergent

Net Zero. No climate regime shift: Current Policies. Models used: GCAM 5.3+ NGFS, MESSAGEix-

GLOBIOM 1.1-M-R12, REMIND-MAgPIE 3.0-4.4.
18Consider that in the period between 2010 and end of 2019 this value increased by around 2% per

year in real terms
19Consider the total value of carbon-intensive energy expenditure (coal, oil and gas) between 2010

and end of 2019 increased around 20%, similarly to the total value of dividends of companies in the

index in the same period. This entails an elasticity of dividends to energy expenditure of around 1:1. It

seems reasonable to assume that firms dividends cannot increase substantially more than their revenues,

except for relatively limited economies of scale. It should also be noted that the relative comparison is

not affected by a changing r or γd, but purely by different levels of µ.
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emitting energy may be required to meet the ambitious goals of the Paris Agreement.

This implies that the estimates conditional to a climate policy regime shift are likely to be

on the high-end of possible values and conservative, but are already sufficiently different

to illustrate the results.

To examine the potential impact of climate policy uncertainty, I generate two prob-

ability distributions of the price-dividend ratio conditional to the two set of scenarios

(climate policy regime shift and no climate policy regime shift). I use the two condi-

tional probability distributions of µd to calibrate the model. In Figure 1, I show the

resulting probability distribution of yearly global energy expenditure growth µd and the

price-dividend ratio conditional to a no climate policy regime shift (brown curve) and

to a climate policy regime shift scenario (green curve). In line with expectations, the

price-dividend ratio distribution conditional to a climate policy regime shift scenario is

to the left of the one conditional to a no climate policy regime shift scenario. We would

expect that in a world with climate policy high-carbon emitting firms will grow slower or

decline, as opposed to scenarios where climate policies lead to a transition to low-carbon

energy. I also show the range of the price-dividend ratio in the period after the Paris

agreement (2016-2019) and the price-dividend ratio at the end of 2019. This ratio is fairly

stable for "value" stocks such as fossil-fuel with a standard deviation of around 2.5.

To control for model misspecification, I then generate the conditional probability

distributions of the price-dividend ratio by varying selectively some of the baseline pa-

rameters. This approach is useful because it allows me to make some observations on

actual prices as long as it covers a wide range of plausible calibration parameters. It is

possible that the baseline model might also be misspecified, but I argue at least one model

calibration might be plausible. I test various levels of discount rate rd, uncertainty around

the growth rate of carbon-intensive energy expenditure σ2
d, and elasticity of dividends to

energy expenditure γd. In Table 9, I show the mean and the standard deviation of the

distribution while in Figure A4 I show the respective probability distributions. Reassur-

ingly, the analysis shows that the mean values of the model are not substantially sensitive

to the only parameter not calibrated empirically, γd, but rather that the unknown level

of µd is the key driver of the results20.
20It should be noted that it is likely that the baseline calibration of the discount rate is in the lower
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In this analysis, the average valuations of fossil-fuel firms in the period 2016-2019 (after

the Paris Agreement) and at the end of 2019 have been at the right of the distribution

of the price-dividend ratio conditional to no climate policy regime shift. This result is

consistent across the set of plausible model calibrations. Loosely speaking, high-carbon

energy stocks have been broadly pricing a high likelihood of a no climate policy regime

shift scenario. Depending on the model calibration, the valuations of the S&P 1200

Global Energy Index moved historically either in the range of the probability distribution

conditional to no climate policy regime shift or to the right of it. If we assume that at

least one of these model calibrations is plausible, the results show that it is unlikely that

carbon-intensive stocks over the period following the Paris agreement priced dividends,

or cash flows, growth rates substantially different than a no climate policy regime shift

scenario.

The numerical simulations show that climate policy uncertainty may lead to mis-

pricing compared to a net zero carbon transition. It would be sensible to expect the

valuations of fossil-fuel firms to discount, at least to a certain extent, the possible ef-

fect of a net zero carbon transition on cash flows. Governments worldwide have made

various commitments to fighting climate change, and the NGFS estimates are quite con-

servative given they entail a world with only 30% less fossil-fuel energy expenditure in

2050. An alternative explanation for these results may be that markets discount the

low probability outcome of technological breakthroughs that could allow for an extended

use of fossil-fuels (e.g., carbon dioxide removal)21. Nevertheless, these results show that

investors’ uncertainty about climate policy may, at least partially, explain the valuations

of fossil-fuel stocks in light of the increasing number of climate pledges. But also that

it is unlikely that realised returns are reflective of expected returns as financial markets

range of possible values in light of the recent literature showing increasing levels of expected returns for

carbon-intensive firms (Bolton & Kacperczyk, 2023). In a context of higher climate related risks and

uncertainty, the required rate of return might arguably have a tendency to increase, moving both price-

dividend ratios distributions to the left. It is also more likely than not that the model is under-estimating

the required rate of return r.
21According to the latest IPCC assessment report the likelyhood of a possible future scenario where

fossil-fuel energy may be combined with Carbon Capture and Storage (CCS) has decreased substantially

due to the increasingly lower prices for renewable energy
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may be mispricing a net zero carbon transition.

6 Conclusion

This paper investigates the extent to which financial markets price a transition to net

zero carbon emissions. I reconsider the evidence around a correlation between realised

returns and carbon emissions (carbon premium) in the light of climate policy uncertainty.

In a present value framework, the main effect of transition risk on the valuations of high-

carbon emitting firms may be on the expected cash flows rather than on the discount

rate. Uncertainty may right-skew the expected value of future cash flows, maintaining

high the valuations of high-carbon emitting firms relative to a state of the world where

a transition to net zero carbon emissions unfolds. In turn, the carbon premium may be

a product of financial markets mispricing the net zero carbon transition rather than a

symptom of pricing of transition risk. This implies that past realised returns may not

be representative of expected returns, as uncertainty may have weighted significantly on

past valuations.

The results presented in this paper suggest that the effect of uncertainty on cash flow

expectations may be material, possibly limiting the extent to which financial markets re-

flect in their valuations a transition towards lower carbon emissions. The future growth of

high-carbon emitting firms may strongly depend on the occurrence or not of an uncertain

climate policy regime shift affecting cash flow expectations. I showed that uncertainty

may have weighed significantly on the valuations of some of the most carbon-intensive

businesses: fossil-fuel firms. I provided evidence showing that part of this uncertainty

may be due to climate policy. I then showed that it is unlikely that following the Paris

Agreement financial markets consistently priced expected cash flows in line with a tran-

sition to net zero carbon emissions. In conclusion, a better understanding of the reasons

underlying the carbon premium may be required in order to shed light on the extent to

which financial markets price the risk of a transition to net zero carbon emissions.
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7 Tables

FH P/E EPS_G EPS_STD

Mean
1 27.2895 0.0993 0.5778
2 31.8017 0.5507 1.1493
3 33.8423 0.5518 1.7515

Standard dev.
1 460.9999 10.0607 5.6415
2 855.1199 39.8871 15.1574
3 1073.6872 44.5025 16.1923

5th Percentile
1 -41.5 -1.6878 0.0199
2 -47.6731 -4.0534 0.0351
3 -58.8291 -6.1899 0.0373

95th Percentile
1 99.5296 1.4664 1.6207
2 101.737 3.6 2.9583
3 95.5333 5.45 4.4

N
1 68822 68809 60848
2 60092 60081 54053
3 39038 39028 29755

Table 1: Descriptive statistics Sample descriptive statistics. Values between January
2010 and December 2019. From top to bottom: mean, standard deviation, 5th percentile,
95th percentile and number of observations. FH refers to different forecast horizons from
1 fiscal year ahead up to 3 fiscal years ahead.
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(1) (2) (3)

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

Policy Event 0.0184 -0.0284 7.6375***
(0.1152) (0.3515) (2.5396)

Climate Disaster 0.3949*** 0.0638 1.9637
(0.156) (0.4844) (3.5334)

Democratic leaning 5.0871*** 10.8242*** 13.5304***
(0.6255) (1.0582) (2.8844)

Republican leaning 1.0901 0.558 0.8337
(3.0861) (5.1662) (27.4018)

R2 0.00 0.00 0.0031 0.0009 0.0000 0.0001 0.0333 0.0546 0.0572
N 7467 8145 2909 7467 8145 2909 1924 1811 363

Table 2: Panel regression of forecast disagreement. Panel regression of earnings per share forecast disagreement - defined as
the ratio between the standard deviation of analysts’ estimates and the absolute value of the latest earnings per share - (EPS_STD)
and a dummy variables representing: (1) if in the month of the forecast a major global policy event occurred (e.g., COP); (2) if in
the month of the forecast the US experienced a major climate disaster (Coastal Flood, Drought, Flooding, Heat, Hurricane/Tropical
Storm, Severe Storm/Thunder Storm, Tornado, Wildfire); (3) if the analyst publishing the forecast is headquartered in a Democratic
or Republican leaning state. From left to right: analysts’ estimates for 1 fiscal year ahead (FH+1) up to 3 fiscal years ahead (FH+3).
Monthly estimates between January 2010 and December 2019 for 480 fossil-fuel companies. *** significant at 5% confidence level,
** significant at 10% confidence level, * significant at 15% confidence level. Standard errors in brackets.
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(1) (2) (3)

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

Policy Event -0.035 -1.4015*** -18.5299***
(0.1818) (0.5119) (6.3945)

Climate Disaster 0.0469 -2.2958*** -0.3256
(0.2462) (0.7052) (8.8961)

Democratic leaning 36.1986*** 43.9854*** 46.7472***
(3.9326) (4.6419) (10.1583)

Republican leaning 17.9902 5.3912 3.9158
(19.4024) (22.6627) (96.5035)

R2 0.0000 0.0013 0.0000 0.0000 0.0009 0.0029 0.0426 0.0473 0.0551
N 7467 8145 2909 7467 8145 2909 1924 1811 363

Table 3: Panel regression of mean earnings growth forecast. Panel regression of earnings per share growth mean forecast
(EPS_G) and a dummy variables representing: (1) if in the month of the forecast a major global policy event occurred (e.g., COP);
(2) if in the month of the forecast the US experienced a major climate disaster (Coastal Flood, Drought, Flooding, Heat, Hurri-
cane/Tropical Storm, Severe Storm/Thunder Storm, Tornado, Wildfire); (3) if the analyst publishing the forecast is headquartered
in a Democratic or Republican leaning state. From left to right: analysts’ estimates for 1 fiscal year ahead (FH+1) up to 3 fiscal
years ahead (FH+3). Monthly estimates between January 2010 and December 2019 for 480 fossil-fuel companies. Controlling for
firm fixed effect. *** significant at 5% confidence level, ** significant at 10% confidence level, * significant at 15% confidence level.
Standard errors in brackets.
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(1) (2) (3) (4) (5)
Emission intensity revenues Emission intensity assets Log absolute emission

EPS_G 10.9458*** 11.2541*** 11.519*** 0.8627***
(0.2847) (0.2807) (0.2767) (0.0296)

EPS_STD 17.7839*** 16.8048*** 15.987*** 1.6472***
(0.7799) (0.7674) (0.7565) (0.0711)

SCOPE_1 -0.0024*** -0.0024*** -3.887***
(0.0003) (0.001) (1.1323)

SCOPE_2 0.0362*** 0.1014*** 3.4302*
(0.0082) (0.055) (2.497)

SCOPE_3 -0.0002*** -0.0007 0.7659
(0.0001) (0.0008) (1.0117)

Policy Event D -8.7912*** -7.6727**
(4.0842) (3.9767)

Physical Event D -10.5935*** -10.6058**
(5.5972) (5.4478)

R2 0.9374 0.9366 0.9359 0.0002 0.0533
N 4269 4314 4395 18524 18524
Firm FE Yes Yes Yes Yes Yes

Table 4: Panel regression of price-earnings ratio. From 1 to 3, panel regression of price-earnings ratio, earnings per share
growth mean forecast (EPS_G), earnings per share forecast disagreement - defined as the ratio between the standard deviation of
analysts’ estimates and the absolute value of the latest earnings per share - (EPS_STD), Scope 1,2,3 GHG emissions expressed in
absolute and relative term (revenue and asset intensity). From 4 to 5, panel regression of price-earnings ratio on dummy variables
indicating whether in the month of the forecast was published policy events (e.g., COP) or climate disasters occurred. Mean values
across three forecast horizons from 1 fiscal year ahead up to 3 fiscal years ahead. Controlling for firm fixed effect. Monthly estimates
between January 2010 and December 2019 for 480 fossil-fuel companies. *** significant at 5% confidence level, ** significant at
10% confidence level, * significant at 15% confidence level. Standard errors in brackets.
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Emission intensity revenues Emission intensity assets Log absolute emissions

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

EPS_G 17.2967*** 12.98*** 13.7058*** 16.6831*** 13.0224*** 14.1021*** 17.8769*** 13.2896*** 14.2496***
(0.6355) (0.1166) (0.136) (0.6346) (0.1151) (0.1261) (0.5862) (0.1193) (0.1196)

EPS_STD 26.6804*** 6.5801*** 10.8526*** 27.2408*** 6.454*** 11.37*** 24.2669*** 5.7001*** 11.7554***
(1.4345) (0.3245) (0.37) (1.4405) (0.3187) (0.3833) (1.3306) (0.3298) (0.3799)

SCOPE_1 -0.0026*** -0.0006*** -0.004*** -0.0063*** -0.0013*** -0.0458*** 4.4049*** -0.6993 -4.2443***
(0.0006) (0.0002) (0.0006) (0.0023) (0.0006) (0.0079) (1.8606) (0.6258) (1.0644)

SCOPE_2 -0.1652*** -0.0015 -0.036*** -0.6457*** -0.0207 0.0742 -15.008*** -0.5093 5.3516***
(0.0129) (0.0045) (0.0096) (0.091) (0.0295) (0.0576) (4.0411) (1.3719) (2.2089)

SCOPE_3 0.0017*** 0.0001 -0.0003*** 0.0028*** 0.0003 -0.0021*** 5.5713*** 0.8104 -1.2405
(0.0002) (0.0001) (0.0001) (0.0013) (0.0004) (0.001) (1.611) (0.5528) (0.8759)

R2 0.8945 0.9828 0.9418 0.889 0.9828 0.9386 0.8842 0.9815 0.9389
N 3419 4004 1346 3438 4043 1348 3508 4116 1366
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 5: Panel regression of price-earnings ratio by forecast horizon. Panel regression of price-earnings ratio, earnings
per share growth mean forecast (EPS_G), earnings per share forecast disagreement - defined as the ratio between the standard
deviation of analysts’ estimates and the absolute value of the latest earnings per share - (EPS_STD), Scope 1,2,3 GHG emissions
expressed in absolute and relative term (revenue and asset intensity). Controlling for firm fixed effect. From left to right: analysts’
estimates for 1 fiscal year ahead (FH+1) up to 3 fiscal years ahead (FH+3). Monthly estimates between January 2010 and December
2019 for 480 fossil-fuel companies. *** significant at 5% confidence level, ** significant at 10% confidence level, * significant at 15%
confidence level. Standard errors in brackets.
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Emission intensity revenues Emission intensity assets Log absolute emissions

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

EPS_G -5.9818*** 9.156*** 10.0781*** -5.9823*** 9.1595*** 10.0377*** -5.6565*** 9.1349*** 9.9935***
(1.1138) (0.2746) (0.2055) (1.1115) (0.2745) (0.2072) (1.0935) (0.2716) (0.205)

EPS_STD 9.7193*** 2.8072*** 7.7574*** 9.3767*** 2.7101*** 7.7124*** 8.5685*** 2.628*** 7.7015***
(1.7533) (0.6202) (0.3773) (1.7438) (0.6195) (0.3814) (1.7162) (0.6149) (0.3767)

SCOPE_1 -0.0011*** -0.0006*** -0.0025*** -0.0105*** -0.0077*** -0.0093 0.0621 0.9973 -3.617***
(0.0003) (0.0003) (0.0006) (0.0035) (0.0038) (0.0096) (1.1531) (1.0902) (1.3278)

SCOPE_2 0.0063 0.0104 0.0138 -0.0042 0.0009 0.0588 -2.2137 -2.3698 4.1329***
(0.0092) (0.0089) (0.01) (0.0456) (0.0422) (0.0558) (1.7632) (1.7122) (1.9595)

SCOPE_3 0.0001 0.0001** 0.000 0.0023*** 0.0017*** 0.0002 2.6191*** 1.5062*** -0.8795
(0.0001) (0.0001) (0.0001) (0.0007) (0.0007) (0.0009) (0.643) (0.6362) (0.7416)

ROE 13.159** -13.7406** 9.1733 11.5323* -15.1511*** 11.4629 13.7655*** -11.4116** 12.6821
(7.0958) (7.1305) (9.9804) (7.2646) (7.353) (10.7163) (6.8544) (6.8847) (10.0069)

Liquidity -0.6898*** 0.6429*** 0.0955 -0.7145*** 0.6118*** 0.1126 -0.7719*** 0.586*** 0.1293
(0.1019) (0.1) (0.0946) (0.102) (0.1003) (0.0937) (0.1022) (0.1008) (0.0934)

Profit Margin -0.3498 23.0589*** -23.5791*** 1.1262 24.3493*** -24.0866*** -0.3925 22.1099*** -22.2324***
(4.4942) (4.5884) (5.4822) (4.5518) (4.6522) (5.7136) (4.4237) (4.5331) (5.5078)

M/B 0.9747 0.4465 2.4517* 0.8564 0.4259 2.8574** 0.6531 0.5024 2.5215*
(0.6852) (0.7097) (1.6169) (0.6877) (0.7119) (1.6796) (0.6751) (0.7021) (1.6377)

Leverage -86.478*** 19.2268** -20.5334 -91.5516*** 17.7566** -28.4941** -96.6882*** 8.0353 7.8166
(10.356) (10.1505) (14.7254) (10.5015) (10.4688) (15.6561) (15.9301) (15.1902) (20.6833)

Cash to Debt 105.3083*** -115.3787*** -10.0038 105.0166*** -112.0413*** -13.6987 81.9258*** -126.5316*** 23.6891
(12.948) (12.603) (14.9239) (13.4048) (13.1935) (15.6913) (17.2169) (16.6157) (21.1556)

R2 0.0671 0.3398 0.7116 0.0704 0.3401 0.7074 0.0751 0.3383 0.707
N 2366 2479 1043 2366 2479 1043 2418 2532 1060
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 6: Robustness analysis of price-earnings ratio on forecast disagreement regression. Panel regression of earnings
per share growth mean forecast (EPS_G), earnings per share forecast disagreement - defined as the ratio between the standard
deviation of analysts’ estimates and the absolute value of the latest earnings per share - (EPS_STD) and the price-earnings ratio.
Including as control variables: Return on Equity (ROE), Interest coverage rate (Liquidity), Profit Margin, Market to Book (M/B),
Assets to debt ratio (Leverage), and Cash to Debt. Controlling for firm fixed effects. From left to right: analysts’ estimates for 1
fiscal year ahead (FH+1) up to 3 fiscal years ahead (FH+3). Monthly estimates between January 2010 and December 2019 for 480
fossil-fuel companies. *** significant at 5% confidence level, ** significant at 10% confidence level, * significant at 15% confidence
level. Standard errors in brackets.
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Emission intensity revenues Emission intensity assets Log absolute emissions

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

EPS_STD 58.9609*** 38.1219*** 9.4497*** 21.2152*** 23.4367*** -0.301 -280.7932*** -129.6253*** -192.1518***
(1.0358) (0.295) (0.8938) (2.0554) (0.5306) (0.5886) (6.7288) (2.3791) (4.2255)

TOT_EMISS -463.4163*** -50.1747** -539.8365*** -7255.9721*** -472.6214*** -2507.1871*** -0.7676*** -0.5625*** -2.4857***
(53.42) (27.1214) (219.3579) (607.1296) (232.4031) (929.4158) (0.2072) (0.1095) (0.2624)

TOT_EMISS_STD 10.9375*** 16.1093*** 235.0278*** 1694.9267*** 913.0794*** 4213.7354*** 17.4751*** 8.6794*** 13.7564***
(2.1538) (1.3115) (6.8984) (80.6763) (26.3322) (54.4091) (0.3416) (0.121) (0.2603)

R2 0.8661 0.9307 0.6862 0.8802 0.9446 0.8803 0.9158 0.9667 0.7709
N 3421 4006 1348 3440 4045 1350 3510 4118 1368
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 7: Panel regression of price-earnings ratio with emissions and forecast disagreement interaction. Panel
regression of price-earnings ratio, Scope 1,2,3 GHG emissions expressed in absolute and relative term (USD mln revenues and assets)
and interaction term between earnings per share forecast disagreement - defined as the ratio between the standard deviation of
analysts’ estimates and absolute value of latest earning per share - (EPS_STD) and total emissions EMISS_STD. Controlling
for firm fixed effect. From left to right: analysts’ estimates for 1 fiscal year ahead (FH+1) up to 3 fiscal years ahead (FH+3).
Monthly estimates between January 2010 and December 2019 for 480 fossil-fuel companies. *** significant at 5% confidence level,
** significant at 10% confidence level, * significant at 15% confidence level. Standard errors in brackets.
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Emission intensity revenues Emission intensity assets Log absolute emissions

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

EPS_STD -144.9668*** 17.2523*** 79.0991*** 6.6337*** -1.9701*** 7.6546*** 11.4046*** -2.0635*** 4.4649***
(18.6816) (6.9441) (7.8942) (2.1868) (0.9511) (1.0198) (2.0249) (0.883) (0.8813)

TOT_EMISS 0.9471*** 0.9494*** 0.8876 1694.2122*** 1119.5393** 3877.4815*** 162.2697*** 173.0214** 413.732***
(0.3428) (0.4058) (0.6985) (551.2063) (650.9953) (1484.9827) (77.3247) (100.2057) (195.3629)

TOT_EMISS_STD 10.3639*** -1.3157*** -5.2424*** 1849.2289 -195.1936 -5759.0534*** -234.1549*** -16.154 -238.4999***
(1.2652) (0.4671) (0.5407) (1284.9045) (647.3618) (944.0303) (78.7568) (52.299) (86.7956)

ROE 13.8686*** -20.9593*** -30.3121** 12.603** -22.5162*** -44.5367*** 17.2699*** -19.0173*** -29.5146**
(6.7981) (8.206) (16.7672) (7.1708) (8.6291) (18.31) (7.0454) (8.4301) (17.6469)

Liquidity -0.4449*** 0.862*** 0.7805*** -0.6069*** 0.9129*** 0.81*** -0.6341*** 0.9419*** 0.7976***
(0.1061) (0.1202) (0.1591) (0.1042) (0.12) (0.1647) (0.1023) (0.1197) (0.1685)

Profit margin -0.3932 21.476*** -5.049 2.9232 23.3105*** -3.3259 0.1967 20.8166*** -6.5806
(4.3367) (5.3536) (9.3553) (4.5136) (5.5224) (9.8724) (4.4827) (5.4684) (9.9053)

M/B 1.0849* 0.579 -2.1039 0.8802 0.38 -6.079*** 1.1504** 0.398 -3.795
(0.6656) (0.8348) (2.6995) (0.6921) (0.8568) (2.9889) (0.6884) (0.8547) (2.8924)

Leverage -105.1858*** -20.563 -38.3963 -92.3705*** 2.5909 -3.766 -92.1502*** 5.6423 1.6264
(13.9495) (16.6605) (32.9231) (10.56) (12.369) (26.107) (10.3969) (12.0416) (26.2242)

Cash to Debt 43.6282*** -110.4863*** 1.877 79.7646*** -95.0741*** -14.1229 90.7292*** -94.2473*** -28.0553
(15.3307) (18.1628) (32.5835) (12.9072) (15.1379) (26.549) (12.7333) (15.0395) (26.6984)

R2 0.0817 0.0441 0.1253 0.0544 0.0419 0.0774 0.0526 0.042 0.052
N 2420 2534 1062 2368 2481 1045 2368 2481 1045
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 8: Panel regression of price-earnings ratio with emissions and forecast disagreement interaction robustness.
Panel regression of price-earnings ratio, Scope 1,2,3 GHG emissions expressed in absolute and relative term (USD mln revenues
and assets) and interaction term between earnings per share forecast disagreement - defined as the ratio between the standard
deviation of analysts’ estimates and absolute value of latest earning per share - (EPS_STD) and total emissions (EMISS_STD).
Including as control variables: Return on Equity (ROE), Interest coverage rate (Liquidity), Profit Margin, Market to Book (M/B),
Assets to debt ratio (Leverage), and Cash to Debt. Controlling for firm fixed effect. From left to right: analysts’ estimates for 1
fiscal year ahead (FH+1) up to 3 fiscal years ahead (FH+3). Monthly estimates between January 2010 and December 2019 for 480
fossil-fuel companies. *** significant at 5% confidence level, ** significant at 10% confidence level, * significant at 15% confidence
level. Standard errors in brackets.
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Figure 1: Scenario energy expenditure growth probability distributions and
Price Dividend ratio. Left hand side chart shows yearly energy expenditure growth
distribution (µ) from Network for Greening the Financial System (NGFS) scenarios.
Right hand side chart shows distribution of price-dividend ratio simulated with the model.
Green lines are distributions conditional to a set of scenarios assuming a climate policy
shift (Net zero emissions by 2050 target). Brown lines are distributions conditional to a
set of scenarios with no climate policy shift (Business as usual target). Values generated
from parameters estimated based on an ensemble of NGFS climate scenarios. Full vertical
line represents price-dividend ratio in Q4 2019, dashed line represents price-dividend ratio
of the period 2016-2019 following the Paris Agreement. Shadow area shows the range
of values in the period following the Paris Agreement. NGFS Scenarios used: Policy
shift: Below 2°C, Net Zero 2050, Delayed transition, Divergent Net Zero. No policy shift:
Current Policies. Models used: GCAM 5.3+ NGFS, MESSAGEix-GLOBIOM 1.1-M-
R12, REMIND-MAgPIE 3.0-4.4
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Mean Price-Dividend Std Price-Dividend

Value No policy scenario Policy scenario No policy scenario Policy scenario

Baseline 19.7249 14.9237 3.0995 2.8669

ri

0.05 29.2781 19.9925 6.2523 4.6582
0.07 17.6959 13.2081 2.9093 2.2933
0.09 12.689 10.0354 1.6725 1.381
0.11 9.8684 8.1313 1.0582 0.922

σ2
i

0.02 21.5722 15.3742 7.382 4.4199
0.03 23.7984 16.6053 13.9412 8.1763
0.04 27.6246 18.7428 25.9365 14.924
0.06 45.6795 28.441 115.54 61.4787

γi

0.5 18.198 15.5276 1.5155 1.4913
0.7 19.0611 15.2486 2.289 2.0398
1.3 22.2754 14.6574 5.5039 3.7066
1.5 23.6145 14.5426 6.9424 4.2835

2016-2020 25.7681 2.68
Q4 2019 22.1188

Table 9: Price and µ probability mean and standard deviation sensitivity.
Model generated mean and standard deviation of price-dividend ratio using different
calibration parameters. From top to bottom: simulation of three levels of discount rate
(r) from 0.05 to 0.11, simulation of three levels of uncertainty (σ2) from 0.02 to 0.06,
simulation of three levels of elasticity of dividends to energy expenditure (γ) from 0.5 to
1.5. NGFS Scenarios used: Policy shift: Below 2°C, Net Zero 2050, Delayed transition,
Divergent Net Zero. No policy shift: Current Policies. Models used: GCAM 5.3+ NGFS,
MESSAGEix-GLOBIOM 1.1-M-R12, REMIND-MAgPIE 3.0-4.4
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8 Appendix

A Full derivation of the model

Let Ei,t denote the level of energy expenditure for energy produced by firm i. Energy

supply matches energy demand. Let Ei,t follow the process in (1), where dWt is a process

with mean zero and unit variance dWt ∼ N (0, 1)

dEi,t = µiEi,tdt+ ωiEi,tdWt (1)

The drift µi in (1) remains constant for all t ∈ [0,∞]. The level of µi is not known a

priori and depends on an exogenous decision from the policy-maker about climate action.

The representative investor expectations of µi are distributed normally with mean gi and

variance σ2
i as in (2)

µi ∼ N (gi, σ
2
i ) (2)

I assume that the change in the level of dividends Di is proportional to the change in

energy expenditure Ei for the respective energy production technology of firm i. Therefore

the parameter γi denotes a known and constant scaling factor between the change in the

energy expenditure and the change in dividends for firm i. In (1), I set ωi = 0 without

loss of generality.

dDi = γidEi (3)

With the assumptions in (3), dividends grow at an exponential rate γiµi for all t ∈ [0,∞]

Di,t = Di,0exp(γiµit) (4)
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Let Di,t denote the dividend paid by firm i at time t. The price of an asset at time 0 is

the expected present value of future dividends from 0 to infinity discounted by a known

rate ri as in (5):

Pi = E0

∫ ∞

0

Di,texp(−rit)dt (5)

I assume that the discount rate ri is based on an exogenous and known model of expected

returns Et[ri] = ri. Substituting Di,t in equation (5) with the process in equation (4) and

taking the expectations:

Pi = E0

∫ ∞

0

Di,0exp [(µiγi)t] exp [(−ri)t] dt (6)

Pi = E0

∫ ∞

0

Di,0exp [(µiγi − ri)t] dt (7)

Pi

Di,0

= E0

∫ ∞

0

exp [(µiγi − ri)t] dt (8)

Pi

Di,0

=

∫ ∞

0

exp
{ [

(gi + σ2
i /2)γi − ri

]
t
}
dt (9)

Equation (9) is a perpetuity growing at the rate α = (gi + σ2
i /2)γi and discounted at the

rate ri. Solving the integral between 0 and infinity results in the following equation:

Pi/Di = 1/[ri − (gi + σ2
i /2)γi] (10)

Equation (10) shows a relationship between the price-dividend ratio and the four param-

eters discussed in the paper.
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B Additional identification analyses

Firstly, I control analysts’ forecasts are sensitive to climate policy events. The average

forecast of the growth rate of earnings across all firms in the sample (EPS_GFH
i,t ) and

the average disagreement (EPS_STDFH
i,t ) varies throughout time in line with key pol-

icy events (Figure A1). In the period around the announcement of the Paris agreement

and following President Trump’s subsequent withdrawal, I observe spikes in forecast dis-

agreement, demonstrating the sensitivity of this metric to climate policy. Similarly this

measure increases around the UN Climate action summit in 2019 and the release of the

fourth IPCC report in late 2014. The forecast disagreement for one year ahead forecast

horizon is more volatile than three years ahead which reacts more slowly. Analysts’ fore-

casts about the growth of earnings also seem to react to policy events such as the Paris

agreement and President Trump withdrawal. Following the former, all three measures

of average earnings’ growth start decreasing, although the metric for three years ahead

forecast horizon is more stable.

Secondly, I compare the average forecast disagreement with general economic uncer-

tainty. In Figure A2, I compare the average forecast disagreement for a three years ahead

forecast horizon with two general uncertainty indexes: the VIX of the S&P 500 index

and the measure proposed by Bloom (2009). This analysis highlights that the average

forecast disagreement has a low correlation with general political and economic uncer-

tainty. The VIX and the GEPU indexes are low in the period between the release of

the IPCC Fourth Assessment report and the Paris agreement, contrary to the average

forecast disagreement which peaks in the months preceding the Paris Agreement. The

VIX is also low around the election of President Trump, although the GEPU spikes in the

months preceding the nomination and then returns to normal levels around the elections.

In this period, the average forecast disagreement does not spike in the months preceding

the election, but only around and after the election when discussions about the US with-

drawal from the Paris Agreement started. Although the VIX index is flat for most of the

periods where climate policy developments unfolded, the GEPU index shows a somewhat

negative correlation with the average forecast disagreement showing how it may not be

substantially biased by general uncertainty.
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Figure A1: Average forecast estimates time series. Average Mean EPS growth
forecast (EPS_GFH

i,t ) and earnings per share forecast disagreement (EPS_STDFH
i,t ) rel-

ative to the absolute value of EPS. 480 fossil-fuel companies in the sample. Blue line on
left hand side axis represents EPS_GFH and orange line on right hand side axis rep-
resents EPS_STDFH for forecast horizons (FH) 1,2,3. Vertical lines from left to right
represent Fourth IPCC assessment report release, Paris Agreement, President Trump
withdrawal from it and 2019 UN Climate action summit.

Thirdly, I compare the average forecast disagreement with other climate policy uncer-

tainty (CPU) measures. In Figure A2, I compare the average forecast disagreement for

three years ahead forecast horizon with three CPU indexes: the text mining approaches

of Gavriilidis (2022), Noailly et al. (2022) and Berestycki et al. (2022). Opposite to gen-

eral macroeconomic uncertainty indexes, the average forecast disagreement co-moves with

the indexes of climate policy uncertainty, especially in the first part of President Trump’s

term. All measures of climate policy uncertainty increase in the periods around and after

President Trump election, consistently with the measure of forecast disagreement.
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Figure A2: Uncertainty indexes comparison. Comparison of earnings per share
forecast disagreement (EPS_STDFH

i,t ) relative to the absolute value of EPS (Full line, left
axis) and three indexes of uncertainty (Dashed lines, right axis). From top to bottom Vix
of the S&P 500 index retrieved from Fred Database, Global Economic Uncertainty Index
of Bloom (2009), Climate Policy Uncertainty index of Gavriilidis (2022) used by Chan
and Malik (2022), EnvPU from Noailly et al. (2022) and OECD CPU index of Berestycki
et al. (2022). Vertical lines from left to right represent Fourth IPCC assessment report
release, Paris Agreement, President Trump withdrawal from it and 2019 UN Climate
action summit. Excluding the 15 renewable energy companies in the sample.

Interestingly, the text-based measures of climate policy uncertainty do not increase in the
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periods around the Paris Agreement, as opposed to the average of forecast disagreement,

which peaks in the months preceding the Paris Conference of Parties (COP). Arguably

in such case uncertainty may have been high given the relevance of such accord for the

future of the fossil-fuel industry. Nevertheless, with the exception of the Paris Agreement,

the measure seems to track fairly well the trend of the EnvPU index proposed by Noailly

et al. (2022) giving comfort that the measure used in this paper tracks, to a good extent,

climate policy uncertainty.

Finally, I compare the average forecast disagreement with the average implied option

volatility for the fossil-fuel firms in my sample. In Figure A3, I show that this market

measure of uncertainty co-moves with the level of forecast disagreement. This suggests

that analysts’ forecasts may be related to actual investment decisions and market out-

comes. Moreover, I remove from the average implied volatility (IMVOL) the general stock

market volatility using the S&P 500 volatility index (VIX) index. This additional analysis

shows that the spikes in uncertainty may emerge from fossil-fuel companies specific events

as opposed to general market uncertainty. The implied volatility of the S&P 500 remains

flat throughout major climate events in the sample. This provides further support to the

main assumption that forecast disagreement about the fundamentals of fossil-fuel firms

may be a sensible measure of market climate policy uncertainty. Correlation coefficients

are reported in Table A9.
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Figure A3: Investors disagreement and implied option volatility. Comparison
of earnings per share forecast disagreement (EPS_STDFH

i,t ) - orange line - and average
implied option volatility for the 303 companies with traded options (out of 480 fossil-fuel
companies) removing S&P 500 option volatility - dashed line. Vertical lines from left
to right represent Fourth IPCC assessment report release, Paris Agreement, President
Trump withdrawal from it and 2019 UN Climate action summit. Excluding the 15 re-
newable energy companies in the sample.
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C Additional figures and tables

Figure A4: Price and µ probability distributions sensitivity. The chart shows
the model generated distribution of price-dividend ratios using different calibration pa-
rameters. The green distribution represents climate policy shift scenarios and brown
distribution represent no climate policy scenario. Values generated from parameters es-
timated based on an ensemble of NGFS climate scenarios conditional to the respective
emission scenario. Full vertical line represents price-dividend ratio in Q4 2019, dashed
line represents price-dividend ratio of the period 2016-2019 following the Paris Agree-
ment. From top to bottom: simulation with three levels of discount rate r from 0.05 to
0.11, simulation of three levels of uncertainty σ2 from 0.02 to 0.04, simulation of three
levels of γ from 0.5 to 1.5. NGFS Scenarios used: Policy shift: Below 2°C, Net Zero 2050,
Delayed transition, Divergent Net Zero. No policy shift: Current Policies. Models used:
GCAM 5.3+ NGFS, MESSAGEix-GLOBIOM 1.1-M-R12, REMIND-MAgPIE 3.0-4.4
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Emission intensity revenues Emission intensity assets Log absolute emissions

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

DPS_G 24.299*** 9.9384*** 7.5175*** 24.3938*** 9.9013*** 7.5369*** 26.1994*** 10.077*** 7.2865***
(2.6987) (0.6192) (0.3029) (2.7126) (0.6181) (0.3023) (2.6838) (0.5966) (0.3022)

DPS_STD 11.5108*** -7.8267*** 3.1553*** 12.2022*** -7.7941*** 2.9109*** 9.0567*** -7.4911*** 3.4721**
(3.336) (2.1587) (2.0133) (3.2911) (2.153) (2.0166) (3.2416) (2.0798) (2.0011)

SCOPE_1 -0.0003*** -0.0001 -0.0001 0.0011*** 0.0002 -0.0001 0.8328*** 0.7727*** 0.7703***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0011) (0.3403) (0.3379) (0.2331)

SCOPE_2 -0.0076*** -0.0092*** -0.0042*** -0.0091 -0.0314*** -0.0185*** -2.7757*** -2.6441*** -1.7497***
(0.0019) (0.0019) (0.0012) (0.0084) (0.0083) (0.006) (0.8272) (0.8179) (0.5387)

SCOPE_3 0.0001*** 0.0001*** 0.0001*** -0.0001 0.0002 0.0002* 1.0441*** 0.9102*** 0.5196***
(0.000) (0.000) (0.000) (0.0001) (0.0001) (0.0001) (0.3689) (0.3667) (0.247)

R2 0.0926 0.1651 0.6335 0.1098 0.1628 0.6334 0.1311 0.2179 0.6447
N 2421 2152 529 2436 2164 529 2445 2172 529
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table A1: Panel regression - price-dividend and forecast disagreement regression. Panel regression of price-dividend
ratio, dividends per share mean growth forecast (DPS_G), dividend per share forecast disagreement - defined as the ratio between
the standard deviation of analysts’ estimates and the latest dividend per share - (DPS_STD), Scope 1,2,3 GHG emissions expressed
in absolute and relative term (revenue and asset intensity). Controlling for firm fixed effect. From left to right: analysts’ estimates
for 1 fiscal year ahead (FH+1) up to 3 fiscal years ahead (FH+3). Monthly estimates between January 2010 and December 2019
for 480 fossil-fuel companies. *** significant at 5% confidence level, ** significant at 10% confidence level, * significant at 15%
confidence level. Standard errors in brackets.

46



Emission intensity revenues Emission intensity assets Log absolute emissions

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

DPS_G 33.2981*** 21.1773*** 7.7613*** 33.7498*** 21.4658*** 7.9534*** 34.9199*** 21.0423*** 8.2046***
(3.6959) (1.308) (0.3889) (3.761) (1.3224) (0.4284) (3.6524) (1.3424) (0.3648)

DPS_STD 7.6224** 10.3006* 1.6168 8.4008** 11.6957** 1.723 4.196 13.1327*** 2.9484
(4.5945) (6.5555) (2.4623) (4.7473) (6.4825) (2.5508) (4.5519) (6.5077) (2.7698)

SCOPE_1 -0.0004 0.0049*** 0.0016 0.0369*** 0.0651*** 0.0094 5.722*** 5.4706*** -1.066**
(0.0013) (0.0018) (0.0015) (0.0087) (0.0093) (0.0075) (0.6209) (0.6825) (0.6145)

SCOPE_2 -0.0233*** -0.0278*** -0.0022 -0.1277*** -0.2176*** -0.0071 -11.4157*** -11.3648*** 2.0791**
(0.0052) (0.0058) (0.0043) (0.0266) (0.0279) (0.0261) (1.4268) (1.5959) (1.1271)

SCOPE_3 0 -0.0005*** -0.0001 -0.0008** -0.0026 -0.0001 4.349*** 4.083*** -0.6663
(0.0001) (0.0001) (0.0001) (0.0005) (0.0005) (0.0005) (0.6415) (0.723) (0.534)

ROE 77.528*** 33.7519*** 29.3699*** 81.6477*** 45.6709*** 30.1598*** 90.7101*** 45.691*** 25.9262***
(6.8535) (7.8033) (6.8127) (6.8106) (7.7396) (6.6137) (6.5991) (7.622) (6.5938)

Liquidity 0.0682* 0.1172*** -0.0269 0.0975*** 0.1493*** -0.0231 0.0809** 0.1628*** -0.0461**
(0.043) (0.0445) (0.0274) (0.0433) (0.0441) (0.0278) (0.0421) (0.0442) (0.0276)

Profit Margin -10.1111*** -4.113 20.2271*** -10.902*** -6.5535** 21.1993*** -14.2733*** -7.2457*** 22.9878***
(3.5488) (3.8186) (4.3397) (3.5133) (3.7553) (4.3444) (3.381) (3.7295) (4.3008)

MB 1.2782*** 0.8824** 0.678*** 1.2111*** 1.4515*** 0.3591 1.2796*** 0.9623** 0.8321***
(0.5222) (0.5321) (0.2706) (0.6773) (0.6831) (0.3127) (0.5133) (0.5335) (0.2666)

Leverage 3.3987 9.9118* -27.85*** -2.9169 14.3385*** -30.2166*** -19.4244** 4.7369 -37.0031***
(6.4159) (6.7951) (5.2577) (6.6125) (7.0163) (7.8147) (10.2668) (11.5347) (7.8575)

Cash Debt -50.8202*** -57.9809*** -10.4426 -73.9358*** -89.5926*** -15.1901** -98.0335*** -94.5473*** 1.8338
(7.4716) (8.0707) (7.7089) (7.8679) (8.2113) (9.1075) (11.3734) (12.3614) (11.7244)

R2 0.3323 0.4149 0.7771 0.308 0.4053 0.7796 0.3498 0.4036 0.7787
N 1078 956 285 1078 956 285 1079 956 285
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table A2: Robustness analysis - price-dividend and forecast disagreement regression. Panel regression of dividends
per share growth mean forecast (DPS_G), dividend per share forecast disagreement (defined as the ratio between the standard
deviation of analysts’ estimates and the latest dividends per share - DPS_STD) and the price-dividend ratio. Controlling for
firm fixed effects. From left to right: analysts’ estimates for 1 fiscal year ahead (FH+1) up to 3 fiscal years ahead (FH+3).
Monthly estimates between January 2010 and December 2019 for 480 fossil-fuel companies. *** significant at 5% confidence level,
** significant at 10% confidence level, * significant at 15% confidence level. Standard errors in brackets.
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Emission intensity revenues Emission intensity assets Log absolute emissions

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

EPS_G 27.2502*** 12.98*** 13.7058*** 27.2028*** 15.3939*** 14.9817*** 27.1435*** 15.3985*** 14.9737***
(0.1603) (0.1166) (0.136) (0.1617) (0.0511) (0.1401) (0.1629) (0.0493) (0.1394)

EPS_STD 76.5105*** 6.5801*** 10.8526*** 71.1351*** 24.6416*** 19.1861*** 70.937*** 27.5642*** 23.9605***
(3.5108) (0.3245) (0.37) (3.5313) (1.3739) (2.528) (3.6797) (1.4774) (2.8263)

SCOPE_1 -0.011*** -0.0006*** -0.004*** -0.0917*** -0.0367*** -0.0363*** -2.5105*** -1.5041*** -0.1005
(0.0008) (0.0002) (0.0006) (0.0085) (0.0045) (0.0156) (0.9262) (0.3202) (0.7964)

SCOPE_1 -0.0355*** -0.0015 -0.036*** -0.0205 0.0597 0.0242 2.9446*** 0.2718 -0.5699
(0.0177) (0.0045) (0.0096) (0.0949) (0.0467) (0.1148) (1.4499) (0.3062) (0.7669)

SCOPE_3 -0.0028*** 0.0001 -0.0003*** -0.0061*** 0.0013 -0.0026 -2.1393*** 0.4487 -0.8871
(0.0003) (0.0001) (0.0001) (0.0018) (0.0009) (0.0021) (0.6594) (0.3157) (0.5971)

R2 0.7819 0.9828 0.9418 0.778 0.9174 0.7888 0.7745 0.9176 0.7898
N 8282 4004 1346 8282 9251 3172 8282 9251 3172
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table A3: Price-earnings and forecast disagreement - Winsorised regression. Panel regression of price-earnings ratio,
earning per share growth mean forecast (EPS_G), earnings per share forecast disagreement - defined as the ratio between the
standard deviation of analysts’ estimates and latest earnings - (EPS_STD), Scope 1,2,3 GHG emissions expressed in absolute
and relative term. Controlling for firm fixed effect. From left to right: analysts’ estimates for 1 fiscal year ahead (FH+1) up to 3
fiscal years ahead (FH+3). Winsorising to the 5th and 95th percentile. Monthly estimates between January 2010 and December
2019 for 480 fossil-fuel companies. *** significant at 5% confidence level, ** significant at 10% confidence level, * significant at 15%
confidence level. Standard errors in brackets.
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Emission intensity revenues Emission intensity assets Log absolute emissions

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

EPS_G -45.0162*** -34.8575*** -26.9768*** 7.9701*** 8.1953*** 9.0198*** 6.2517*** 5.6326*** 7.6415***
(7.4724) (0.979) (1.0041) (7.5738) (0.9473) (1.2481) (7.0996) (0.8978) (1.0991)

EPS_STD 71.7916*** 56.0785 39.0953*** 0.0745*** 0.7899 -3.6653*** 139.4269*** 159.3744 106.0413***
(9.1957) (7.1545) (29.4485) (10.403) (7.2033) (34.6903) (9.1495) (6.6003) (31.4603)

SCOPE_1 0.0099 -0.0001 2.0661*** -0.0001*** -0.0005 2.4151 -0.0065*** -0.0017*** -0.4583*
(0.0004) (0.0005) (0.0007) (0.0034) (0.0035) (0.0052) (0.3829) (0.3896) (0.3003)

SCOPE_2 -0.0347*** -0.0103*** -5.0708 -0.0668*** -0.0154*** -6.185 0.0131*** 0.004*** -0.915
(0.002) (0.0022) (0.0032) (0.0105) (0.0112) (0.0157) (0.94) (0.9312) (0.6405)

SCOPE_3 -0.0005*** 0.0001 1.8509 0.0008* 0.0002*** 2.2671 0*** 0.0001*** 1.027***
(0.0001) (0.0001) (0.0001) (0.0003) (0.0003) (0.0004) (0.4295) (0.4393) (0.2908)

R2 0.1713 0.1863 0.2342 0.2664 0.2761 0.3863 0.8757 0.8879 0.9334
N 492 492 492 367 367 367 34 34 34
FE Firm Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table A4: Panel regression considering minimum number of estimates greater than 15. Panel regression of price-
earnings ratio, earning per share growth mean forecast (EPS_G), earnings per share forecast disagreement - defined as the ratio
between the standard deviation of analysts’ estimates and the absolute value of the latest earnings per share - (EPS_STD), Scope
1,2,3 GHG emissions expressed in absolute and relative term (revenue and asset intensity). Controlling for firm fixed effect. From
left to right: analysts’ estimates for 1 fiscal year ahead (FH+1) up to 3 fiscal years ahead (FH+3). Monthly estimates between
January 2010 and December 2019 for 480 fossil-fuel companies. Considering at least 15 analysts’ forecasts for each forecast date.
*** significant at 5% confidence level, ** significant at 10% confidence level, * significant at 15% confidence level. Standard errors
in brackets.
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Emission intensity revenues Emission intensity assets Log absolute emissions

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

EPS_G 15.7828*** 8.1093*** 11.4338*** 15.2102*** 7.9844*** 11.4045*** 14.141*** 8.1621*** 11.4513***
(1.4887) (0.3517) (0.1841) (1.4804) (0.3516) (0.1849) (1.4593) (0.3439) (0.1852)

EPS_STD 36.1642*** 0.5417 -11.7913*** 32.2877*** 1.1212 -12.644*** 29.3903*** 0.3254 -13.2866***
(2.8394) (1.4275) (1.3773) (2.7964) (1.4165) (1.3882) (2.827) (1.3806) (1.3541)

SCOPE_1 -0.0001*** -0.0002*** 0.0003*** 0.000*** 0.000* -0.0001*** 0.1023 2.4821*** 0.5872
(0) (0) (0.0001) (0.2886) (0) (0) (0) (0.254) (0.4126)

SCOPE_2 0.0011 -0.0022*** -0.0008 0.0089 -0.0074*** 0.0006 -1.6785*** -7.6011*** -1.0468
(0.0063) (0.0007) (0.0013) (0.6802) (0.0037) (0.0054) (0.0008) (0.5963) (0.9737)

SCOPE_3 0.0000*** 0.0001*** 0.0000 -0.0001 0.0001*** 0 1.1384*** 3.5286*** 0.3725
(0.0001) (0) (0) (0.2966) (0.0001) (0.0001) (0) (0.2605) (0.4301)

R2 0.0915 0.1853 0.6499 0.0791 0.1886 0.6444 0.088 0.2178 0.6354
N 5026 4739 2859 5131 4820 2895 5205 4878 2922
FE Firm Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table A5: Panel regression considering minimum number of estimates greater than 5. Panel regression of price-earnings
ratio, earning per share growth mean forecast (EPS_G), earnings per share forecast disagreement - defined as the ratio between the
standard deviation of analysts’ estimates and the absolute value of the latest earnings per share - (EPS_STD), Scope 1,2,3 GHG
emissions expressed in absolute and relative term (revenue and asset intensity). Controlling for firm fixed effect. From left to right:
analysts’ estimates for 1 fiscal year ahead (FH+1) up to 3 fiscal years ahead (FH+3). Monthly estimates between January 2010
and December 2019 for 480 fossil-fuel companies. Considering at least 5 analysts’ forecasts for each forecast date. *** significant
at 5% confidence level, ** significant at 10% confidence level, * significant at 15% confidence level. Standard errors in brackets.
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Emission intensity revenues Emission intensity assets Log absolute emissions

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

EPS_G 17.1052*** 6.9151*** 11.2296*** 28.3143*** 6.9207*** 11.6557*** 17.8288*** 13.2681*** 14.2242***
(0.6361) (0.1191) (0.1385) (0.6379) (0.1183) (0.1283) (0.5806) (0.1197) (0.1204)

EPS_STD 27.1682*** -0.0001*** -0.0031*** -0.0043*** -0.0009*** -0.0286*** 24.485*** 5.7348*** 11.7644***
(1.4348) (0.33) (0.3855) (1.4482) (0.3277) (0.3886) (1.3179) (0.3307) (0.3828)

SCOPE_1 -0.0009* -0.0086 -0.0358*** -0.5352** -0.0388* 0.0446*** -40.5824*** -5.5114*** -11.0889***
(0.0006) (0.0002) (0.0006) (0.0023) (0.0006) (0.0099) (8.1869) (2.5809) (4.2097)

SCOPE_2 -0.1748*** 0.0001** -0.0002*** 0.0018*** 0.0006 -0.0015 9.4041* 0.5639 8.0049***
(0.0138) (0.0048) (0.0105) (0.1002) (0.032) (0.0663) (5.7907) (1.8858) (3.0257)

SCOPE_3 0.0017*** -5.3806*** -7.684* 7.6564 -5.6498* -12.3879 -1.062 0.8697 -1.6532*
(0.0002) (0.0001) (0.0001) (0.0014) (0.0004) (0.0012) (1.8816) (0.6387) (1.0151)

Oil & Gas Integrated -28.6921 -12.5501* -12.3189 -19.1706 -12.1612* -15.7063*** 553.8283*** 64.5136*** 84.4228**
(10.7114) (3.583) (5.6183) (11.0083) (3.5704) (6.1507) (93.3896) (29.5752) (49.6363)

Oil & Gas Exploration & Production 6.0277*** -1.6712*** 3.4812*** 30.872*** -1.7374*** 14.6732*** 487.455*** 54.8813*** 76.3594**
(5.9428) (2.1111) (3.6648) (5.5961) (1.919) (4.1019) (86.3388) (27.389) (44.8119)

Oil & Gas Refining & Marketing -39.2344 -3.1263 -6.316 -46.3015*** -3.0683 -12.9933** 536.9284*** 65.6017*** 98.6779***
(10.6681) (3.6876) (6.8463) (11.3972) (3.7567) (8.7145) (89.6028) (28.2971) (46.763)

Oil & Gas Storage & Transportation -12.2363*** 11.3516 -11.434 -12.5959*** 11.6155 -5.2359** 430.0717*** 61.4769*** 72.1224*
(8.3302) (2.5497) (5.6916) (8.996) (2.6562) (6.8559) (85.4417) (27.1637) (43.9035)

Coal & Consumable Fuels 12.8433 13.7574* 16.2278 12.855 14.1271* -5.2359 495.6135*** 78.3061*** 82.7269**
(23.433) (7.4975) (11.8621) (23.9571) (7.4611) (12.699) (89.8103) (28.4755) (46.4238)

R2 0.8958 0.983 0.9424 0.8906 0.9830 0.9400 0.887 0.9815 0.9394
N 3424 4009 1351 3443 4048 1353 3513 4121 1371
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table A6: Panel regression including sub-industries. Panel regression of price-earnings ratio, Scope 1,2,3 GHG emissions
expressed in absolute and relative term (USD mln revenues and assets), earning per share growth mean forecast (EPS_G), earnings
per share forecast disagreement - defined as the ratio between the standard deviation of analysts’ estimates and the absolute value
of the latest earnings per share - (EPS_STD), and Sub-industries. Controlling for firm fixed effect. From left to right: analysts’
estimates for 1 fiscal year ahead (FH+1) up to 3 years fiscal years ahead (FH+3). Monthly estimates between January 2010
and December 2019 for 480 fossil-fuel companies. *** significant at 5% confidence level, ** significant at 10% confidence level, *
significant at 15% confidence level. Standard errors in brackets.
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(1) (2)

FH 1 FH 2 FH 3 FH 1 FH 2 FH 3

EPS_G 4.7607*** 9.653*** 0.0998*** 5.032*** 15.1348*** 18.3934***
(0.4174) (0.1036) (0.0298) (1.5871) (0.3077) (0.3067)

EPS_STD 2.8888*** 7.5983*** 0.1848*** 41.8321*** 9.2057*** 16.7057***
(0.6759) (0.1477) (0.0751) (1.9537) (0.7782) (0.5838)

ESG -14.2924*** -4.256 1.5273 12.5862*** 9.2866*** 18.4701***
(5.4931) (4.8142) (9.544) (11.9607) (10.7321) (16.8017)

ROE 31.5176*** 12.2061 7.2309
(12.5583) (10.7171) (22.0175)

Liquidity 0.0304 0.1579*** -0.3587***
(0.0666) (0.0546) (0.1727)

Profit Margin -15.7909*** -6.1174 -10.8346
(6.9868) (6.1265) (10.005)

M/B 1.8768* 0.2918*** 6.8752***
(1.2254) (1.2897) (2.8981)

Leverage -76.5667*** -0.9529 -116.5636***
(19.2522) (17.4137) (32.6335)

Cash to Debt -0.1104 -100.9435*** -6.4637
(16.8417) (15.3721) (25.6419)

R2 0.0587 0.6646 0.006 0.1441 0.4578 0.7506
N 4835 5467 2124 2924 3047 1387
Firm FE Yes Yes Yes Yes Yes Yes

Table A7: Panel regression robustness including ESG ratings. Panel regression of price-earnings ratio, earning per share
growth mean forecast (EPS_G), earnings per share forecast disagreement - defined as the ratio between the standard deviation of
analysts’ estimates and the absolute value of the latest earnings per share - (EPS_STD), and Refinitiv ESG scores. Controlling for
firm fixed effect. From left to right: analysts’ estimates for 1 fiscal year ahead (FH+1) up to 3 fiscal years ahead (FH+3). Monthly
estimates between January 2010 and December 2019 for 480 fossil-fuel companies. Considering at least 5 analysts forecasts. ***
significant at 5% confidence level, ** significant at 10% confidence level, * significant at 15% confidence level. Standard errors in
brackets.
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P/E EPS_G EPS ROE Liquidity Profit Margin M/B Leverage Cash debt

P/E 1 0.106 0.1 0.02 0.00 0.00 0.00 -0.02 0.02
EPS_G 0.16 1 -0.36 0 0.00 0.03 0.02 -0.01 0.03
EPS_STD 0.10 -0.36 1 -0.08 0.00 -0.04 -0.04 0.07 -0.03
ROE 0.02 0 -0.08 1 0.02 0.38 -0.38 -0.28 0.12
Liquidity 0.00 0.00 0.00 0.02 1 0.1 0.00 0.01 0.10
Profit Margin 0.00 0.03 -0.04 0.38 0.1 1 -0.19 -0.14 0.22
M/B 0.00 0.02 -0.04 -0.38 0.00 -0.19 1 0.29 -0.02
Leverage -0.02 -0.01 0.07 -0.28 0.01 -0.14 0.29 1 -0.40
Cash debt 0.02 0.03 -0.03 0.12 0.1 0.22 -0.02 -0.4 1

Table A8: Regression variables correlation. Pearson correlation coefficient matrix of variables in empirical analysis. From
top to bottom and left to right: price earnings ratio (P/E, analysts earnings growth mean forecast (EPS_G), analysts forecast
disagreement (EPS), Return on Equity (ROE), Interest coverage ration (Liquidity), Profit margin, Market to Book ratio (M/B),
debt to assets (Leverage) and cash to debt. Monthly data between January 2010 and December 2019 for 480 fossil-fuel companies.
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PD E_STD_1 E_STD_2 E_STD_3 VIX GEPU CPU EnvPU OECD IVOL IVOLSPX

PD 1 -0.54 -0.78 0.26 0.34 -0.67 -0.52 -0.31 -0.66 -0.52 -0.78
EPS_STD_1 -0.54 1 0.62 -0.21 -0.24 0.37 0.25 0.22 0.44 0.26 0.44
EPS_STD_2 -0.78 0.62 1 -0.34 -0.27 0.44 0.28 0.12 0.33 0.66 0.86
EPS_STD_3 -0.54 0.27 0.62 1 -0.4 0.05 0.02 0.12 0.43 0.34 0.62
VIX 0.34 -0.24 -0.27 0.09 1 0.02 -0.07 0.02 -0.31 0.35 -0.28
GEPU -0.67 0.37 0.44 -0.27 0.02 1 0.66 0.23 0.42 0.37 0.38
CPU -0.52 0.25 0.28 -0.01 -0.07 0.66 1 0.52 0.58 0.19 0.27
EnvPU -0.31 0.22 0.12 0.24 0.02 0.23 0.52 1 0.59 0.13 0.15
OECD -0.66 0.44 0.33 0.14 -0.31 0.42 0.58 0.59 1 0.09 0.33
IVOL -0.52 0.26 0.66 -0.36 0.35 0.37 0.19 0.13 0.09 1 0.8
IVOLSPX -0.78 0.44 0.86 -0.4 -0.28 0.38 0.27 0.15 0.33 0.8 1

Table A9: Indexes correlation. Pearson correlation coefficient matrix among climate uncertainty, general uncertainty indexes
and measures of forecast disagreement for FH 1,2,3. Vix of the S&P 500 index retrieved from Fred Database, Global Economic
Uncertainty Index (GEPU) of Bloom (2009), Climate Policy Uncertainty index (CPU) of Gavriilidis (2022) used by Chan and Malik
(2022), EnvPU from Noailly et al. (2022) and OECD CPU index of Berestycki et al. (2022). Average implied option volatility of
fossil-fuel firms in the sample (IVOL) and Average implied option volatility of fossil-fuel firms in the sample minus implied volatility
of S&P 500 index (IVOLSPX).
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Date Event

20/04/10 BP Oil Rig explodes
10/12/10 COP 16
11/03/11 Fukushima
01/09/11 Solyndra bankruptcy
09/11/11 COP 17
09/02/12 US NRC approves new Nuclear Power Plants
27/03/21 EPA clean air act
17/04/12 EPA clean air act for natural gas
06/11/12 Obama election
07/12/12 COP 18
25/06/13 Obama climate action plan
20/09/13 EPA new rule to cut emissions from plants
23/11/13 COP 19
13/02/14 Ivanpah, Worlds’s largest Solar power generation plant goes online
22/09/14 Rockefellers and over 800 global investors annnounce fossil fuel divestment
23/09/14 Climate submmit 2014
01/11/14 IPCC Fifth Assessment Report
12/12/14 COP 20
03/08/15 Obana annouces Clean Power Act
12/12/15 COP 21
08/11/16 Trump election
18/11/16 COP22
28/03/17 Trump sign reversal of Obama Clean power Act
01/06/17 US Withdraws from paris Agreement
31/07/17 Two nuclear plants abandoned before construction completed in NC
22/12/17 Act opens Artic Drilling
09/05/18 Solar power to be required by all New California homes by 2020
02/12/18 COP 24
22/03/19 New Mexico Commits to 100% Renewable Energy for Electricity by 2050
02/12/19 COP 25
20/10/19 Three Mile Island to Close

Table A10: Climate Policy Events. List of major climate policy events between 2010
and 2020

55



Date Event Property Damage (2021 USD) Fatalities

30/04/11 Flooding 7,694,617,566 402
31/05/11 Coastal Flooding 7,997,691,811 202
31/08/11 Hurricane/Tropical Storm 4,083,073,551 113
31/07/12 Heat 755,061,921 121
31/10/12 Heat 24,326,399,473 49
31/05/13 Flooding 2,769,247,857 68
31/12/15 Flooding 406,764,972 61
30/06/16 Heat 206,311,372 62
31/08/16 Flooding 9,735,094,174 25
31/10/16 Coastal Flooding 4,210,043,341 37
31/08/17 Severe Storm/Thunder Storm 94,468,908,739 118
30/09/17 Hurricane/Tropical Storm 25,868,233,259 45
31/07/18 Heat 1,660,779,779 137
31/10/18 Hurricane/Tropical Storm 6,038,462,572 15
30/11/18 Wildfire 19,732,088,872 101

Table A11: Climate Physical Events. List of major climate disasters in the US
between 2010 and 2020. Major disaster defined as event which caused either fatalities or
property damages higher than the 90th percentile of events in the decade 2010-2020.

56



Democratic Republican

BERGEN-PASSAIC, NJ AUSTIN-SAN MARCOS, TX
BOSTON-WORCESTER-, MD CHICAGO, IL
DENVER, CO DALLAS, TX
FLORIDA FORT WORTH-ARLINGTON, TX
HARTFORD, CT HOUSTON, TX
JERSEY CITY, NJ LOUISVILLE, KY-IN
LOS ANGELES-LONG BEACH, CA MEMPHIS, TN-AR-MS
MIDDLESEX-SOMERSET-HUNTERDON, NJ NASHVILLE, TN
MINNEAPOLIS-ST. PAUL, MN-WI OKLAHOMA CITY, OK
NASSAU-SUFFOLK, NY
NEW HAVEN-BRIDGEPORT
NEW YORK-NEWARK, NY-NJ-PA
NEWARK, NJ
ORANGE COUNTY, CA
PORTLAND-VANCOUVER,OR-WA
RICHMOND-PETERSBURG, VA
SAN DIEGO, CA
SAN FRANCISCO, CA
SAN JOSE, CA
SEATTLE-BELLEVUE-EVERETT, WA
WASHINGTON, DC-MD-VA-WV

Table A12: Political orientation. Metropolitan statistical area and State political
Orientation. Political orientation defined in terms of election results between 2004 and
2020 (four electoral cycles). Without considering states where election results were mixed
in the four electoral cycles considered.
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