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Chaos

There is order in chaos: randomness has an underlying geometric form. Chaos imposes
fundamental limits on prediction, but it also suggests causal relationships where none
were previously suspected

by James P. Crutchfield, J. Doyne Farmer, Norman H. Packard, and Robert S. Shaw

The great power of science lies in the ability to relate cause and effect. On the basis of the laws of gravitation, for example,
eclipses can be predicted thousands of years in advance. There are other natural phenomena that are not as predictable.
Although the movements of the atmosphere obey the laws of physics just as much as the movements of the planets do,
weather forecasts are still stated in terms of probabilities. The weather, the flow of a mountain stream, the roll of the dice all
have unpredictable aspects. Since there is no clear relation between cause and effect, such phenomena are said to have
random elements. Yet until recently there was little reason to doubt that precise predictability could in principle be achieved.
It was assumed that it was only necessary to gather and process a sufficient amount of information.

Such a viewpoint has been altered by a striking discovery: simple deterministic systems with only a few elements can
generate random behavior. The randomness is fundamental; gathering more information does not make it go away.
Randomness generated in this way has come to be called chaos.

A seeming paradox is that chaos is deterministic, generated by fixed rules that do not themselves involve any elements of
chance. In principle the future is completely determined by the past, but in practice small uncertainties are amplified, so that
even though the behavior is predictable in the short term, it is unpredictable in the long term. There is order in chaos:
underlying chaotic behavior there are elegant geometric forms that create randomness in the same way as a card dealer
shuffles a deck of cards or a blender mixes cake batter.

The discovery of chaos has created a new paradigm in scientific modeling. On one hand, it implies new fundamental limits on
the ability to make predictions. On the other hand, the determinism inherent in chaos implies that many random phenomena
are more predictable than had been thought. Random-looking information gathered in the past—and shelved because it was
assumed to be too complicated—can now be explained in terms of simple laws. Chaos allows order to be found in such
diverse systems as the atmosphere, dripping faucets, and the heart. The result is a revolution that is affecting many different
branches of science.

What are the origins of random behavior? Brownian motion provides a classic example of randomness. A speck of dust
observed through a microscope is seen to move in a continuous and erratic jiggle. This is owing to the bombardment of the
dust particle by the surrounding water molecules in thermal motion. Because the water molecules are unseen and exist in
great number, the detailed motion of the dust particle is thoroughly unpredictable. Here the web of causal influences among
the subunits can become so tangled that the resulting pattern of behavior becomes quite random.

The chaos to be discussed here requires no large number of subunits or unseen influences. The existence of random behavior
in very simple systems motivates a reexamination of the sources of randomness even in large systems such as weather.

What makes the motion of the atmosphere so much harder to anticipate than the motion of the solar system? Both are made

up of many parts, and both are governed by Newton's second law, F' = m a, which can be viewed as a simple prescription for
predicting the future. If the forces F acting on a given mass m are known, then so is the acceleration a. It then follows from
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the rules of calculus that if the position and velocity of an object can be measured at a given instant, they are determined
forever. This is such a powerful idea that the 18th-century French mathematician Pierre Simon de Laplace once boasted that
given the position and velocity of every particle in the universe, he could predict the future for the rest of time. Although
there are several obvious practical difficulties to achieving Laplace's goal, for more than 100 years there seemed to be no
reason for his not being right, at least in principle. The literal application of Laplace's dictum to human behavior led to the
philosophical conclusion that human behavior as completely predetermined: free will did not exist.

CHAOS results from the geometric operation of stretching. The effect is illustrated for a painting of the
French mathematician Henri Poincaré, the originator of dynamical systems theory. The initial image (top
left) was digitized so that a computer could perform the stretching operation. A simple mathematical
transformation stretches the image diagonally as though it were painted on a sheet of rubber. Where the
sheet leaves the box it is cut and reinserted on the other side, as is shown in panel 1. (The nhumber above
each panel indicates how many times the transformation has been made.) Applying the transformation
repeatedly has the effect of scrambling the face (panels 2-4). The net effect is a random combination of
colors, producing a homogeneous field of green (panels 10 and 18). Sometimes it happens that some of
the points come back near their initial locations, causing a brief appearance of the original image (panels
47-48, 239-241). The transformation shown here is special in that the phenomenon of “Poincaré
recurrence” (as it is called in statistical mechanics) happens much more often than usual; in a typical
chaotic transformation recurrence is exceedingly rare, occurring perhaps only once in the lifetime of the
universe. In the presence of any amount of background fluctuations the time between recurrences is
usually so long that all information about the original image is lost.

Chaos_SciAm.pg47.1.jpg

Twentieth-century science has seen the downfall of Laplacian determinism, for two very different reasons. The first reason is
quantum mechanics. A central dogma of that theory is the Heisenberg uncertainty principle, which states that there is a
fundamental limitation to the accuracy with which the position and velocity of a particle can be measured. Such uncertainty
gives a good explanation for some random phenomena, such as radioactive decay. A nucleus is so small that the uncertainty
principle puts a fundamental limit on the knowledge of its motion, and so it is impossible to gather enough information to
predict when it will disintegrate.

The source of unpredictability on a large scale must be sought elsewhere, however. Some large-scale phenomena arc
predictable and others are not. The distinction has nothing to do with quantum mechanics. The trajectory of a baseball, for
example, is inherently predictable; a fielder intuitively makes use of the fact every time he or she catches the ball. The
trajectory of a flying balloon with the air rushing out of it, in contrast, is not predictable; the balloon lurches and turns
erratically at times and places that are impossible to predict. The balloon obeys Newton's laws just as much as the baseball
does; then why is its behavior so much harder to predict than that of the ball?

OUTLOOKS OF TWO LUMINARIES on chance and probability are contrasted. The French mathematician Pierre
Simon de Laplace proposed that the laws of nature imply strict determinism and complete predictability, although
imperfections in observations make the introduction of probabilistic theory necessary. The quotation from Poincaré
foreshadows the contemporary view that arbitrarily small uncertainties in the state of a system may be amplified in
time and so predictions of the distant future cannot he made.

Laplace, 1776

“The present state of the system of nature is evidently a consequence of what it was in the preceding
moment, and if we conceive of an intelligence which at a given instant comprehends all the relations of
the entities of this universe, it could state the respective positions, motions, and general affects of all
these entities at any time in the past or future.
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“Physical astronomy, the branch of knowledge which does the greatest honor to the human mind, gives
us an idea, albeit imperfect, of what such an intelligence would be. The simplicity of the law by which the
celestial bodies move, and the relations of their masses and distances, permit analysis to follow their
motions up to a certain point; and in order to determine the state of the system of these great bodies in
past or future centuries, it suffices for the mathematician that their position and their velocity be given by
observation for any moment in time. Man owes that advantage to the power of the instrument he employs,
and to the small number of relations that it embraces in its calculations. But ignorance of the different
causes involved in the production of events, as well as their complexity, taken together with the
imperfection of analysis, prevents our reaching the same certainty about the vast majority of phenomena.
Thus there are things that are uncertain for us, things more or less probable, and we seek to compensate
for the impossibility of knowing them by determining their different degrees of likelihood. So it is that we
owe to the weakness of the human mind one of the most delicate and ingenious of mathematical theories,
the science of chance or probability.”

Poincaré, 1903

“A very small cause which escapes our notice determines a considerable effect that we cannot fail to see,
and then we say that the effect is due to chance. If we knew exactly the laws of nature and the situation of
the universe at the initial moment, we could predict exactly the situation of that same universe at a
succeeding moment. But even if it were the case that the natural laws had no longer any secret for us, we
could still only know the initial situation approximately. If that enabled us to predict the succeeding
situation with the same approximation, that is all we require, and we should say that the phenomenon had
been predicted, that it is governed by laws. But it is not always so; it may happen that small differences in
the initial conditions produce very great ones in the final phenomena. A small error in the former will
produce an enormous error in the latter. Prediction becomes impossible, and we have the fortuitous
phenomenon.”

The classic example of such a dichotomy is fluid motion. Under some circumstances the motion of a fluid is laminar—even,
steady, and regular— and easily predicted from equations. Under other circumstances fluid motion is turbulent—uneven,
unsteady, and irregular—and difficult to predict. The transition from laminar to turbulent behavior is familiar to anyone who
has been in an airplane in calm weather and then suddenly encountered a thunderstorm. What causes the essential difference
between laminar and turbulent motion?

To understand fully why that is such a riddle, imagine sitting by a mountain stream. The water swirls and splashes as though
it had a mind of its own, moving first one way and then another. Nevertheless, the rocks in the stream bed are firmly fixed in
place, and the tributaries enter at a nearly constant rate of flow. Where, then, does the random motion of the water come
from?

The late Soviet physicist Lev D. Landau is credited with an explanation of random fluid motion that held sway for many
years, namely that the motion of a turbulent fluid contains many different, independent oscillations. As the fluid is made to
move faster, causing it to become more turbulent, the oscillations enter the motion one at a time. Although each separate
oscillation may be simple, the complicated combined motion renders the flow impossible to predict.

Landau's theory has been disproved, however. Random behavior occurs even in very simple systems, without any need for
complication or indeterminacy. The French mathematician Henri Poincaré realized this at the turn of the century when he
noted that unpredictable, “fortuitous” phenomena may occur in systems where a small change in the present causes a much
larger change in the future. The notion is clear if one thinks of a rock poised at the top of a hill. A tiny push one way or
another is enough to send it tumbling down widely differing paths. Although the rock is sensitive to small influences only at
the top of the hill, chaotic systems are sensitive at every point in their motion.

A simple example serves to illustrate just how sensitive some physical systems can be to external influences. Imagine a game
of billiards, somewhat idealized so that the balls move across the table and collide with a negligible loss of energy. With a
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single shot the billiard player sends the collection of balls into a protracted sequence of collisions. The player naturally wants
to know the effects of the shot. For how long could a player with perfect control over his or her stroke predict the cue ball's
trajectory? If the player ignored an effect even as minuscule as the gravitational attraction of an electron at the edge of the
galaxy, the prediction would become wrong after one minute!

The large growth in uncertainty comes about because the balls are curved, and small differences at the point of impact are
amplified with each collision. The amplification is exponential: it is compounded at every collision, like the successive
reproduction of bacteria with unlimited space and food. Any effect, no mailer how small, quickly reaches macroscopic
proportions. That is one of the basic properties of chaos.

It is the exponential amplification of errors due to chaotic dynamics that provides the second reason for Laplace's undoing.
Quantum mechanics implies that initial measurements are always uncertain, and chaos ensures that the uncertainties will
quickly overwhelm the ability to make predictions. Without chaos Laplace might have hoped that errors would remain
bounded, or at least grow slowly enough to allow him to make predictions over a long period. With chaos, predictions are
rapidly doomed to gross inaccuracy.

The larger framework that chaos emerges from is the so-called theory of dynamical systems. A dynamical system consists of
two parts: the notions of a state (the essential information about a system) and a dynamic (a rule that describes how the state
evolves with time). The evolution can be visualized in a state space, an abstract construct whose coordinates are the
components of the state. In general the coordinates of the state space vary with the context; for a mechanical system they
might be position and velocity, but for an ecological model they might be the populations of different species.

A good example of a dynamical system is found in the simple pendulum. All that is needed to determine its motion are two
variables: position and velocity. The state is thus a point in a plane, whose coordinates are position and velocity. Newton's
laws provide a rule, expressed mathematically as a differential equation, that describes how the state evolves. As the
pendulum swings back and forth the state moves along an “orbit”, or path, in the plane. In the ideal case of a frictionless
pendulum the orbit is a loop; failing that, the orbit spirals to a point as the pendulum comes to rest.

STATE SPACE is a useful concept for visualizing the behavior of a dynamical system. It is an abstract space whose
coordinates are the degrees of freedom of the system's motion. The motion of a pendulum (zop), for example, is
completely determined by its initial position and velocity. Its state is thus a point in a plane whose coordinates are
position and velocity (bottom). As the pendulum swings hack and forth it follows an “orbit”, or path, through the state
space. For an ideal, frictionless pendulum the orbit is a closed curve (bottom left); otherwise, with friction, the orbit
spirals to a point (bottom right).

Chaos_SciAm.pg49.1.jpg

A dynamical system's temporal evolution may happen in either continuous time or in discrete time. The former is called a
flow, the latter a mapping. A pendulum moves continuously from one state to another, and so it is described by a
continuous-time flow. The number of insects born each year in a specific area and the time interval between drops from a
dripping faucet are more naturally described by a discrete-time mapping.

To find how a system evolves from a given initial state one can employ the dynamic (equations of motion) to move
incrementally along an orbit. This method of deducing the system's behavior requires computational effort proportional to the
desired length of time to follow the orbit. For simple systems such as a frictionless pendulum the equations of motion may
occasionally have a closed-form solution, which is a formula that expresses any future state in terms of the initial state. A
closed-form solution provides a short cut, a simpler algorithm that needs only the initial state and the final time to predict the
future without stepping through intermediate states. With such a solution the algorithmic effort required to follow the motion
of the system is roughly independent of the time desired. Given the equations of planetary and lunar motion and the earth's
and moon's positions and velocities, for instance, eclipses may be predicted years in advance.
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Success in finding closed-form solutions for a variety of simple systems during the early development of physics led to the
hope that such solutions exist for any mechanical system. Unfortunately, it is now known that this is not true in general. The
unpredictable behavior of chaotic dynamical systems cannot be expressed in a closed-form solution. Consequently there are
no possible short cuts to predicting their behavior.

The state space nonetheless provides a powerful tool for describing the behavior of chaotic systems. The usefulness of the
state-space picture lies in its ability to represent behavior in geometric form. For example, a pendulum that moves with
friction eventually comes to a halt, which in the state space means the orbit approaches a point. The point does not move—it
is a fixed point—and since it attracts nearby orbits, it is known as an attractor. If the pendulum is given a small push, it
returns to the same fixed-point attractor. Any system that comes to rest with the passage of time can be characterized by a
fixed point in state space. This is an example of a very general phenomenon, where losses due to friction or viscosity, for
example, cause orbits to be attracted to a smaller region of the state space with lower dimension. Any such region is called an
attractor. Roughly speaking, an attractor is what the behavior of a system settles down to, or is attracted to. Some systems do
not come to rest in the long term but instead cycle periodically through a sequence of states. An example is the pendulum
clock, in which energy lost to friction is replaced by a mainspring or weights. The pendulum repeats the same motion over
and over again. In the state space such a motion corresponds to a cycle, or periodic orbit. No matter how the pendulum is set
swinging, the cycle approached in the long-term limit is same. Such attractors are therefore called limit cycles. Another
familiar system with a limit-cycle attractor is the heart.

A system may have several attractors. If that is the case, different initial conditions may evolve to different attractors. The set
of points that evolve to an attractor is called its basin of attraction. The pendulum clock has two such basins: small
displacements of the pendulum from its rest position result in a return to rest; with large displacements, however, the clock
begins to tick as the pendulum executes a stable oscillation.

The next most complicated form of attractor is a torus, which resembles the surface of a doughnut. This shape describes
motion made up of two independent oscillations, sometimes called quasi-periodic motion. (Physical examples can be
constructed from driven electrical oscillators.) The orbit winds around the torus in state space, one frequency determined by
how fast the orbit circles the doughnut in the short direction, the other regulated by how fast the orbit circles the long way
around. Attractors may also be higher-dimensional tori, since they represent the combination of more than two oscillations.

The important feature of quasi-periodic motion is that in spite of its complexity it is predictable. Even though the orbit may
never exactly repeat itself, if the frequencies that make up the motion have no common divisor, the motion remains regular.
Orbits that start on the torus near one another remain near one another, and long-term predictability is guaranteed.

ATTRACTORS are geometric forms that characterize long-term behavior in the state space. Roughly speaking, an
attractor is what the behavior of a system settles down to, or is attracted to. Here attractors are shown in blue and
initial states states in red. Trajectories (green) from the initial states eventually approach the attractors. The simplest
kind of attractor is a fixed point (fop leff). Such an attractor corresponds to a pendulum subject to friction; the
pendulum always comes to the same rest position, regardless of how it is started swinging (see right half of illustration
on preceding page). The next most complicated attractor is a limit cycle (top middle), which forms a closed loop in the
state space. A limit cycle describes stable oscillations, such as the motion of a pendulum clock and the beating of a
heart. Compound oscillations, or quasi-periodic behavior, correspond to a torus attractor (top right). All three
attractors are predictable: their behavior can be forecast as accurately as desired. Chaotic attractors, on the other
hand, correspond to unpredictable motions and have a more complicated geometric form. Three examples of chaotic
attractors are shown in the bottom row; from left to right they are the work of Edward N. Lorenz, Otto E. Rossler and
one of the authors (Shaw), respectively. The images were prepared by using simple systems of differential equations
having a three-dimensional state space.

Chaos_SciAm.pg50.1.jpg

Until fairly recently, fixed points, limit cycles, and tori were the only known attractors. In 1963 Edward N. Lorenz of the
Massachusetts Institute of Technology discovered a concrete example of a low-dimensional system that displayed complex
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behavior. Motivated by the desire to understand the unpredictability of the weather, he began with the equations of motion for
fluid flow (the atmosphere can be considered a fluid), and by simplifying them he obtained a system that had just three
degrees of freedom. Nevertheless, the system behaved in an apparently random fashion that could not be adequately
characterized by any of the three attractors then known. The attractor he observed, which is now known as the Lorenz
attractor, was the first example of a chaotic, or strange, attractor.

Employing a digital computer to simulate his simple model, Lorenz elucidated the basic mechanism responsible for the
randomness he observed: microscopic perturbations are amplified to affect macroscopic behavior. Two orbits with nearby
initial conditions diverge exponentially fast and so stay close together for only a short time. The situation is qualitatively
different for nonchaotic attractors. For these, nearby orbits stay close to one another, small errors remain bounded and the
behavior is predictable.

The key to understanding chaotic behavior lies in understanding a simple stretching and folding operation, which takes place
in the state space. Exponential divergence is a local feature: because attractors have finite size, two orbits on a chaotic
attractor cannot diverge exponentially forever. Consequently the attractor must fold over onto itself. Although orbits diverge
and follow increasingly different paths, they eventually must pass close to one another again. The orbits on a chaotic attractor
are shuffled by this process, much as a deck of cards is shuffled by a dealer. The randomness of the chaotic orbits is the result
of the shuffling process. The process of stretching and folding happens repeatedly, creating folds within folds ad infinitum. A
chaotic attractor is, in other words, a fractal: an object that reveals more detail as it is increasingly magnified [see illustration
on page 53].

CHAOTIC ATTRACTOR has a much more complicated structure than a predictable attractor such as a point, a limit
cycle, or a torus. Observed at large scales, a chaotic attractor is not a smooth surface but one with folds in it. The
illustration shows the steps in making a chaotic attractor for the simplest case: the Rossler attractor (bottom). First,
nearby trajectories on the object must “stretch”, or diverge, exponentially (fop), here the distance between
neighboring trajectories roughly doubles. Second, to keep the object compact, it must “fold” back onto itself (mmiddle):
the surface bends onto itself so that the two ends meet. The Rossler attractor has been observed in many systems, from
fluid flows to chemical reactions, illustrating Einstein's maxim that nature prefers simple forms.

Chaos_SciAm.pg51.1.jpg

Chaos mixes the orbits in state space in precisely the same way as a baker mixes bread dough by kneading it. One can
imagine what happens to nearby trajectories on a chaotic attractor by placing a drop of blue food coloring in the dough. The
kneading is a combination of two actions: rolling out the dough, in which the food coloring is spread out, and folding the
dough over. At first the blob of food coloring simply gets longer, but eventually it is folded, and after considerable time the
blob is stretched and refolded many times. On close inspection the dough consists of many layers of alternating blue and
white. After only 20 steps the initial blob has been stretched to more than a million times its original length, and its thickness
has shrunk to the molecular level. The blue dye is thoroughly mixed with the dough. Chaos works the same way, except that
instead of mixing dough it mixes the state space. Inspired by this picture of mixing. Otto E. Rossler of the University of
Tiibingen created the simplest example of a chaotic attractor in a flow [see illustration on preceding page].

When observations are made on a physical system, it is impossible to specify the state of the system exactly owing to the
inevitable errors in measurement. Instead the state of the system is located not at a single point but rather within a small
region of state space. Although quantum uncertainty sets the ultimate size of the region, in practice different kinds of noise
limit measurement precision by introducing substantially larger errors. The small region specified by a measurement is
analogous to the blob of blue dye in the dough.

DIVERGENCE of nearby trajectories is the underlying reason chaos leads to unpredictability. A perfect measurement
would correspond to a point in the state space, but any real measurement is inaccurate, generating a cloud of
uncertainty. The true state might be anywhere inside the cloud. As shown here for the Lorenz attractor, the
uncertainty of the initial measurement is represented by 10,000 red dots, initially so close together that they are
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indistinguishable. As each point moves under the action of the equations, the cloud is stretched into a long, thin
thread, which then folds over onto itself many times, until the points are spread over the entire attractor. Prediction
has now become impossible: the final state can be anywhere on the attractor. For a predictable attractor, in contrast,
all the final states remain close together. The numbers above the illustrations are in units of 1/200 second.

Chaos_SciAm.pg52.1.jpg

Locating the system in a small region of state space by carrying out a measurement yields a certain amount of information
about the system. The more accurate the measurement is, the more knowledge an observer gains about the system's state.
Conversely, the larger the region, the more uncertain the observer. Since nearby points in nonchaotic systems stay close as
they evolve in time, a measurement provides a certain amount of information that is preserved with time. This is exactly the
sense in which such systems are predictable: initial measurements contain information that can be used to predict future
behavior. In other words, predictable dynamical systems are not particularly sensitive to measurement errors.

The stretching and folding operation of a chaotic attractor systematically removes the initial information and replaces it with
new information: the stretch makes small-scale uncertainties larger, the fold brings widely separated trajectories together and
erases large-scale information. Thus chaotic attractors act as a kind of pump bringing microscopic fluctuations up to a
macroscopic expression. In this light it is clear that no exact solution, no short cut to tell the future, can exist. After a brief
time interval the uncertainty specified by the initial measurement covers the entire attractor and all predictive power is lost:
there is simply no causal connection between past and future.

Chaotic attractors function locally as noise amplifiers. A small fluctuation due perhaps to thermal noise will cause a large
deflection in the orbit position soon afterward. But there is an important sense in which chaotic attractors differ from simple
noise amplifiers. Because the stretching and folding operation is assumed to be repetitive and continuous, any tiny fluctuation
will eventually dominate the motion, and the qualitative behavior is independent of noise level. Hence chaotic systems cannot
directly be “quieted”, by lowering the temperature, for example. Chaotic systems generate randomness on their own without
the need for any external random inputs. Random behavior comes from more than just the amplification of errors and the loss
of the ability to predict; it is due to the complex orbits generated by stretching and folding.

CHAOTIC ATTRACTORS are fractals: objects that reveal more detail as they are increasingly magnified. Chaos
naturally produces fractals. As nearby trajectories expand they must eventually fold over close to one another for the
motion to remain finite. This is repeated again and again, generating folds within folds, ad infinitum. As a result
chaotic attractors have a beautiful microscopic structure. Michel Hénon of the Nice Observatory in France discovered
a simple rule that stretches and folds the plane, moving each point to a new location. Starting from a single initial
point, each successive point obtained by repeatedly applying Hénon's rule is plotted. The resulting geometric form (a)
provides a simple example of a chaotic attractor. The small box is magnified by a factor of 10 in b. By repeating the
process (f, d) the microscopic structure of the attractor is revealed in detail. The bottom illustration depicts another
part of the Hénon attractor.

Chaos_SciAm.pg53.1.jpg
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It should be noted that chaotic as well as nonchaotic behavior can occur in dissipationless, energy-conserving systems. Here
orbits do not relax onto an attractor but instead are confined to an energy surface. Dissipation is, however, important in many
if not most real-world systems, and one can expect the concept of attractor to be generally useful.

Low-dimensional chaotic attractors open a new realm of dynamical systems theory, but the question remains of whether they
are relevant to randomness observed in physical systems. The first experimental evidence supporting the hypothesis that
chaotic attractors underlie random motion in fluid flow was rather indirect. The experiment was done in 1974 by Jerry P.
Gollub of Haverford College and Harry L. Swinney of the University of Texas at Austin. The evidence was indirect because
the investigators focused not on the attractor itself but rather on statistical properties characterizing the attractor.

7 of 11 12/5/12 2:01 PM



Chaos, Scientific American 54:12 (1986) 46-57 file:///Users/joy/Desktop/Chaos_SciAm1986.html

The system they examined was a Couette cell, which consists of two concentric cylinders. The space between the cylinders is
filled with a fluid, and one or both cylinders are rotated with a fixed angular velocity. As the angular velocity increases, the
fluid shows progressively more complex flow patterns, with a complicated time dependence [see illustration on this page).
Gollub and Swinney essentially measured the velocity of the fluid at a given spot. As they increased the rotation rate, they
observed transitions from a velocity that is constant in time to a periodically varying velocity and finally to an aperiodically
varying velocity. The transition to aperiodic motion was the focus of the experiment.

The experiment was designed distinguish between two theoretical pictures that predicted different scenarios for the behavior
of the fluid as the rotation rate of the fluid was varied. The Landau picture of random fluid motion predicted that an ever
higher number of independent fluid oscillations should be excited as the rotation rate is increased. The associated attractor
would be a high-dimensional torus. The Landau picture had been challenged by David Ruelle of the Institut des Hautes
Etudes Scientifiques near Paris and Floris Takens of the University of Groningen in the Netherlands. They gave mathematical
arguments suggesting that the attractor associated with the Landau picture would not be likely to occur in fluid motion.
Instead their results suggested that any possible high-dimensional tori might give way to a chaotic attractor, as originally
postulated by Lorenz.

Gollub and Swinney found that for low rates of rotation the flow of the fluid did not change in time: the underlying attractor
was a fixed point. As the rotation was increased the water began to oscillate with one independent frequency, corresponding
to a limit-cycle attractor (a periodic orbit), and as the rotation was increased still further the oscillation took on two
independent frequencies, corresponding to a two-dimensional torus attractor. Landau's theory predicted that as the rotation
rate was further increased the pattern would continue: more distinct frequencies would gradually appear. Instead, at a critical
rotation rate a continuous range of frequencies suddenly appeared. Such an observation was consistent with Lorenz'
“deterministic nonperiodic flow,” lending credence to his idea that chaotic attractors underlie fluid turbulence.

EXPERIMENTAL EVIDENCE supports the hypothesis that chaotic attractors underlie some kinds of random
motion in fluid flow. Shown here are successive pictures of water in a Couette cell, which consists of two nested
cylinders. The space between the cylinders is filled with water and the inner cylinder is rotated with a certain angular
velocity (a). As the angular velocity is increased, the fluid shows a progressively more complex flow pattern (b), which
becomes irregular (c) and then chaotic (d).

Chaos_SciAm.pg54.1.jpg

Although the analysis of Gollub and Swinney bolstered the notion that chaotic attractors might underlie some random motion
in fluid flow, their work was by no means conclusive. One would like to explicitly demonstrate the existence in experimental
data of a simple chaotic attractor. Typically, however, an experiment does not record all facets of a system but only a few.
Gollub and Swinney could not record, for example, the entire Couette flow but only the fluid velocity at a single point. The
task of the investigator is to “reconstruct” the attractor from the limited data. Clearly that cannot always be done; if the
attractor is too complicated, something will be lost. In some cases, however, it is possible to reconstruct the dynamics on the
basis of limited data.

A technique introduced by us and put on a firm mathematical foundation by Takens made it possible to reconstruct a state
space and look for chaotic attractors. The basic idea is that the evolution of any single component of a system is determined
by the other components with which it interacts. Information about the relevant components is thus implicitly contained in the
history of any single component. To reconstruct an “equivalent” state space, one simply looks at a single component and
treats the measured values at fixed time delays (one second ago, two seconds ago, and so on, for example) as though they
were new dimensions.

The delayed values can be viewed as new coordinates, defining a single point in a multidimensional state space. Repeating
the procedure and taking delays relative to different times generates many such points. One can then use other techniques to
test whether or not these points lie on a chaotic attractor. Although this representation is in many respects arbitrary, it turns
out that the important properties of an attractor are preserved by it and do not depend on the details of how the reconstruction
is done.
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The example we shall use to illustrate the technique has the advantage of being familiar and accessible to nearly everyone.
Most people are aware of the periodic pattern of drops emerging from a dripping faucet. The time between successive drops
can be quite regular, and more than one insomniac has been kept awake waiting for the next drop to fall. Less familiar is the
behavior of a faucet at a somewhat higher flow rate. One can often find a regime where the drops, while still falling
separately, fall in a never repeating patter, like an infinitely inventive drummer. (This is an experiment easily carried out
personally; the faucets without the little screens work best.) The changes between periodic and random-seeming patterns are
reminiscent of the transition between laminar and turbulent fluid flow. Could a simple chaotic attractor underlie this
randomness?

DRIPPING FAUCET is an example of a common system that can undergo a chaotic transition. The underlying
attractor is reconstructed by plotting the time intervals between successive drops in pairs, as is shown at the top of the
illustration. Attractors reconstructed from an actual dripping faucet (@, ¢c) compare favorably with attractors
generated by following variants of Hénon's rule (b, d). (The entire Hénon attractor is shown on page 53.) Illustrations
e and f'were reconstructed from high rates of water flow and presumably represent the cross sections of hitherto
unseen chaotic attractors. Time delay coordinates were employed in each of the plots. The horizontal coordinate is 7,
the time interval between drop n and drop n-1. The vertical coordinate is the next time interval, #,+; and the third
coordinate, visualized as coming out of the page, is #,+2. Each point is thus determined by a triplet of numbers (7, #,+1,
ty+2) that have been plotted for a set of 4,094 data samples. Simulated noise was added to illustrations b and d.

Chaos SciAm.pg55.1.jpg

The experimental study of dripping faucet was done at the University of California at Santa Cruz by one of us (Shaw) in
collaboration with Peter L. Scott, Stephen C. Pope, and Philip J. Martein. The first form of the experiment consisted in
allowing the drops from an ordinary faucet to fall on a microphone and measuring the time intervals between the resulting
sound pulses. Typical results from a somewhat more refined experiment are shown on the preceding page. By plotting the
time intervals between drops in pairs, one effectively takes a cross section of the underlying attractor. In the periodic regime,
for example, the meniscus where the drops are detaching is moving in a smooth, repetitive manner, which could be
represented by a limit cycle in the state space. But this smooth motion is inaccessible in the actual experiment; all that is
recorded is the time intervals between the breaking off of the individual drops. This is like applying a stroboscopic light to
regular motion around a loop. If the timing is right, one sees only a fixed point.

The exciting result of the experiment was that chaotic attractors were indeed found in the nonperiodic regime of the dripping
faucet. It could have been the case that the randomness of the drops was due to unseen influences, such as small vibrations or
air currents. If that was so, there would be no particular relation between one interval and the next, and the plot of the data
taken in pairs would have shown only a featureless blob. The fact that any structure at all appears in the plots shows the
randomness has a deterministic underpinning. In particular, many data sets show the horse-shoelike shape that is the signature
of the simple stretching and folding process discussed above. The characteristic shape can be thought of as a “snapshot” of a
fold in progress, for example, a cross section partway around the Rossler attractor shown on page 51. Other data sets seem
more complicated; these may be cross sections of higher-dimensional attractors. The geometry of attractors above three
dimensions is almost completely unknown at this time.

If a system is chaotic, how chaotic is it? A measure of chaos is the “entropy” of the motion, which roughly speaking is the
average rate of stretching and folding, or the average rate at which information is produced. Another statistic is the
“dimension” of the attractor. If a system is simple, its behavior should be described by a low-dimensional attractor in the state
space, such as the examples given in this article. Several numbers may be required to specify the state of a more complicated
system, and its corresponding attractor would therefore be higher-dimensional.

The technique of reconstruction, combined with measurements of entropy and dimension, makes it possible to reexamine the
fluid flow originally studied by Gollub and Swinney. This was done by members of Swinney's group in collaboration with
two of us (Crutchfield and Farmer). The reconstruction technique enabled us to make images of the underlying attractor. The
images do not give the striking demonstration of a low-dimensional attractor that studies of other systems, such as the
dripping faucet, do. Measurements of the entropy and dimension reveal, however, that irregular fluid motion near the
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transition in Couette flow can be described by chaotic attractors. As the rotation rate of the Couette cell increases so do the
entropy and dimension of the underlying attractors.

In the past few years a growing number of systems have been shown to exhibit randomness due to a simple chaotic attractor.
Among them are the convection pattern of fluid heated in a small box, oscillating concentration levels in a stirred-chemical
reaction, the beating of chicken-heart cells, and a large number of electrical and mechanical oscillators. In addition computer
models of phenomena ranging from epidemics to the electrical activity of a nerve cell to stellar oscillations have been shown
to possess this simple type of randomness. There are even experiments now under way that are searching for chaos in areas as
disparate as brain waves and economics.

It should be emphasized, however, that chaos theory is far from a panacea. Many degrees of freedom can also make for
complicated motions that are effectively random. Even though a given system may be known to be chaotic, the fact alone
does not reveal very much. A good example is molecules bouncing off one another in a gas. Although such a system is
known to be chaotic, that in itself does not make prediction of its behavior easier. So many particles are involved that all that
can be hoped for is a statistical description, and the essential statistical properties can be derived without taking chaos into
account.

There are other uncharted questions for which the role of chaos is unknown. What of constantly changing patterns that are
spatially extended, such as the dunes of the Sahara and fully developed turbulence? It is not clear whether complex spatial
patterns can be usefully described by a single attractor in a single state space. Perhaps, though, experience with the simplest
attractors can serve as a guide to a more advanced picture, which may involve entire assemblages of spatially mobile
deterministic forms akin to chaotic attractors.

The existence of chaos affects the scientific method itself. The classic approach to verifying a theory is to make predictions
and test them against experimental data. If the phenomena are chaotic, however, long-term predictions are intrinsically
impossible. This has to be taken into account in judging the merits of the theory. The process of verifying a theory thus
becomes a much more delicate operation, relying on statistical and geometric properties rather than on detailed prediction.

Chaos brings a new challenge to the reductionist view that a system can be understood by breaking it down and studying each
piece. This view has been prevalent in science in part because there are so many systems for which the behavior of the whole
is indeed the sum of its parts. Chaos demonstrates, however, that a system can have complicated behavior that emerges as a
consequence of simple, nonlinear interaction of only a few components.

The problem is becoming acute in a wide range of scientific disciplines, from describing microscopic physics to modeling
macroscopic behavior of biological organisms. The ability to obtain detailed knowledge of a system's structure has undergone
a tremendous advance in recent years, but the ability to integrate this knowledge has been stymied by the lack of a proper
conceptual framework within which to describe qualitative behavior. For example, even with a complete map of the nervous
system of a simple organism, such as the nematode studied by Sidney Brenner of the University of Cambridge, the organism's
behavior cannot be deduced. Similarly, the hope that physics could be complete with an increasingly detailed understanding
of fundamental physical forces and constituents is unfounded. The interaction of components on one scale can lead to
complex global behavior on a larger scale that in general cannot be deduced from knowledge of the individual components.

Chaos is often seen in terms of the limitations it implies, such as lack of predictability. Nature may, however, employ chaos
constructively. Through amplification of small fluctuations it can provide natural systems with access to novelty. A prey
escaping a predator's attack could use chaotic flight control as an element of surprise to evade capture. Biological evolution
demands genetic variability; chaos provides a means of structuring random changes, thereby providing the possibility of
putting variability under evolutionary control.

Even the process of intellectual progress relies on the injection of new ideas and on new ways of connecting old ideas. Innate
creativity may have an underlying chaotic process that selectively amplifies small fluctuations and molds them into
macroscopic coherent mental states that are experienced as thoughts. In some cases the thoughts may be decisions, or what
are perceived to be the exercise of will. In this light, chaos provides a mechanism that allows for free will within a world
governed by deterministic laws.
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TRANSITION TO CHAOS is depicted schematically by means of a bifurcation diagram: a plot of a family of
attractors (vertical axis) versus a control parameter (horizontal axis). The diagram was generated by a simple
dynamical system that maps one number to another. The dynamical system used here is called a circle map, which is
specified by the iterative equation x,+; =w + x,, + k/2 7 sin(2 & x, ). For each chosen value of the control parameter k a
computer plotted the corresponding attractor. The colors encode the probability of finding points on the attractors:
red corresponds to regions that are visited frequently, green to regions that are visited less frequently, and blue to
regions that are rarely visited. As k is increased from 0 to 2 (see drawing at left), the diagram shows two paths to chaos:
a quasi-periodic route (from &k = 0 to k = 1, which corresponds to the green region above) and a “period doubling”
route (from k = 1.4 to = 2). The quasi-periodic route is mathematically equivalent to a path that passes through a torus
attractor. In the period-doubling route, which is based on the limit-cycle attractor, branches appear in pairs, following
the geometric series 2, 4, 8, 16, 32, and so on. The iterates oscillate among the pairs of branches. (At a particular value
of k—1.6, for instance—the iterates visit only two values.) Ultimately, the branch structure becomes so fine that a
continuous band structure emerges: a threshold is reached beyond which chaos appears.
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