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Abstract

Transitioning to a net-zero emissions power system will create and destroy jobs in different
occupations, creating skill mismatches and labor mobility frictions. We analyze the employ-
ment dynamics of a fast transition scenario for the US electricity sector that reaches 95%
decarbonization by 2035, using an input-output model coupled to an occupational mobility
network. We find three distinct labor market phases during the transition: ‘scale-up’, ‘scale-
down’, and a long-term steady state. During the scale-up phase, from 2023–2034, for every
job lost in a given industry, twelve new jobs are created elsewhere. But only a few occupations
experience a consistent increase in demand throughout the transition. We predict that skill
mismatches will create labor frictions during the transition, especially in the scale-down phase.
Without proper planning, rapidly growing industries will struggle to find skilled labor in the
scale-up phase, and displaced workers will have difficulty finding jobs during the scale-down
phase.

Introduction

An immediate and accelerated decarbonization of the global economy is required to limit global
warming to less than 1.5°C above pre-industrial levels (IPCC, 2018; Armstrong McKay et al.,
2022). Since the majority of greenhouse gas emissions (around 75%) are energy related, the rapid
expansion of renewables and the phase-out of fossil fuels has become a key focus in near-term
mitigation strategies (IEA, 2021). While a fast transition to a net zero energy system could end
up being economically beneficial (Way et al., 2022; IEA, 2023), it will still have profound impacts
on countries’ economies, including their labor markets.

The net-zero energy transition will create and destroy jobs. On the one hand, the transition will
lead to a downscaling or removal of fossil fuel energy generation with an associated displacement
of workers. Past experiences of long-term depressions from shrinking industries and mine closures
in North England, the US Appalachians, and the German Ruhr areas (Oei et al., 2020; Gore and
Hollywood, 2009; Olson-Hazboun, 2018; Beatty et al., 2007; Carley and Konisky, 2020) underscore
the importance of managing such transitions and finding ways to alleviate the negative impacts of
stranded labor on displaced workers and communities.

On the other hand, a net-zero transition will create a demand for many new workers to build
and manage the new clean energy infrastructure, leading to the possibility of skill shortages and
unfilled vacancies. This will be exacerbated if the overall labor market is tight1, as it currently
is in many countries in Europe and North America (Domash and Summers, 2022). A shortage of
workers with the right skills could slow down the energy transition.

Previous literature broadly aligns in concluding there will be a net gain of jobs in the US during
a clean energy transition. For example, Jacobson et al. (2015) find almost 2 million net jobs created

1The labor market is tight if the ratio between unemployment and vacancies is significantly larger than one.
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in the US (6 million gained, 4 million lost), whereas an IEA report finds a 0.45% economy-wide
net increase in employment, representing around 700,000 jobs2 (Kuhn et al., 2018). Mayfield et al.
(2021) project that the fraction of the US workforce that is part of the energy supply chain grows
from 1.5% in 2020 to 2.5–5% in 2050, representing a 1.6–3.6 million increase in workers. Ram
et al. (2022) find a 4 million net increase in energy-related jobs between 2020 and 2050 for the US.
Xie et al. (2023) find an increase of 439,000 jobs by the 2040s if the power sector reaches net zero
emissions by 2035. Other studies finding job growth include Dell’Anna (2021), Lehr et al. (2008)
and Černý et al. (2022). Only few studies find a negative impact on job creation. For an overview
see, e.g., Stavropoulos and Burger (2020).

Most of these studies focus on aggregate job numbers in the initial transition phase and do
not address the heterogeneity of impacts across workers. Workers’ occupations, skills, experience,
geographic location, available alternative employment options, and their perceived socio-economic
status can affect their employment prospects (Hollywood, 2002; Schmutte, 2014; Diodato and We-
terings, 2015; Nedelkoska et al., 2018; Neffke et al., 2022). Workers are more likely to transition
to jobs in industries and occupations related to their previous job (Mealy et al., 2018; Neffke and
Henning, 2013; Hausmann and Neffke, 2019). This can have significant implications for employ-
ment. When new vacancies are opened in occupations that are very unrelated to occupations where
workers lose their job, a skill mismatch is created, rendering it challenging for displaced workers
to find new roles as their usual job alternatives are not available (Del Rio-Chanona et al., 2021).

The net-zero transition has the potential to generate skill mismatches. To assess the employ-
ment implications of the net-zero transition, it is important to consider the heterogeneous effects
across all occupations. Traditional global process integrated assessment models rarely analyze the
evolving labor structure or categorize households by occupation, lacking information on employ-
ment shifts linked to specific mitigation scenarios (Rao et al., 2017). Although some macroeconomic
models have begun to explore labor market impacts at a detailed level and consider different skills
and occupations (ILO, 2018; Mayfield et al., 2021), most of these studies overlook potential skill
mismatches that result from correlated displacement shocks across occupations.

The skill mismatch literature often builds on network models. Three studies stand out in
examining potential skill mismatches resulting from the net-zero transition: Lankhuizen et al.
(2022) apply an industry and geography mobility model to the Netherlands, and Berryman et al.
(2023) use a computable general equilibrium model linked with an occupational mobility model
for Brazil. These studies identify potential skill mismatches that could lead to higher rates of
unemployment or unfilled vacancies. Additionally, Xie et al. (2023) look at the distributional
effects of a US power sector decarbonization across states for workers by skill level and gender.

To understand the potential for skill mismatch in the net-zero transition, previous work classifies
occupations into ‘green’ and ‘brown’ categories depending on their skills, industry employment, or
future outlook in a decarbonizing economy, sometimes with sub-classifications for green jobs (e.g.,
Dierdorff et al., 2009). For example, O*NET classifies occupations as ‘Green New & Emerging’ if
they are likely to see a demand increase when shifting to a ‘greener’ economy. Vona et al. (2018)
analyzes the characteristics of green and brown occupations in a labor market network. The labor
transition is complicated by the fact that green jobs tend to require higher skills, are more often
located in urban areas and are less prone to automation than brown jobs (Bergant et al., 2022;
Bowen et al., 2018; Saussay et al., 2022). Nevertheless, more transitions from brown to green jobs
can be expected as the availability of green jobs increases (Curtis et al., 2023).

Temporal effects also play a crucial role in the net-zero transition. The classification of occu-
pations as ‘green’ or ‘brown’ overlooks the fact that some roles may be crucial for only part of the
transition. While some macroeconomic models can deal with temporal changes in demand, their
focus is often restricted to the initial scale-up phase. This approach neglects the later stages when
generation capacity has shifted to renewables, and worker demand, particularly in construction and
manufacturing, may decline. The narrow focus on job growth in the initial transition phase can
lead to misunderstandings of the complexities involved in the full trajectory to a net-zero economy.

We develop a novel framework for analyzing skill mismatches during the clean energy transition.
We quantify the temporal dynamics of labor market frictions at a granular occupation level during
power sector decarbonization and identify occupation-specific impacts and skill-mismatch frictions
as they evolve through time. If the demand for occupations with similar skills rises in tandem,
it becomes relatively harder for employers to fill vacancies, and if it falls in tandem, it becomes
harder for workers to find new jobs. Our goal is to alert policymakers to these problems so they
can make targeted interventions to mitigate them.

We follow a four-step procedure (see Methods, Fig. 7). First, we translate the different cost

2In June 2023, about 161 million people were employed in the US (BLS, 2023).
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components (capital expenditure, operational expenditure and fuel cost) of power sector decar-
bonization scenarios into annual demand shocks and intermediate consumption changes. Second,
we use these shocks to initialize a simple demand-driven input-output (IO) model to estimate direct
and upstream industry output changes in the electricity generation sector as a consequence of the
changing energy mix. To do this, we disaggregate the IO data to include ten different electricity
technologies. Our model is dynamic: in each year of the analysis, we update the links in the IO
network to represent the change in the deployment of energy technologies (e.g., when the coal
power share of electricity production is reduced in favor of wind energy, industries and households
switch part of their demand from coal power to wind). Third, we calculate annual labor demand
profiles for all occupations and industries, assuming fixed employment and occupation inputs per
constant-dollar output. This assumption allows for any energy technology cost reductions to be
translated into decreased labor demand for the same product, accounting for automation and inno-
vation through the electricity supply chain.3 Finally, by linking occupational demand trajectories
to an occupational mobility network, we quantify potential skill-mismatch frictions. All such ‘skill
mismatch’ or labor market frictions identified by this study relate to the difficulty of changing
one’s occupation at different stages of the clean energy transition. To test the robustness of our
results, we engage in extensive sensitivity analysis of key assumptions and data sources.

We apply our method to the United States using the National Renewable Energy Laboratory
(NREL)’s standard scenarios, focusing on their fast transition scenario that reaches 95% decar-
bonization in the power sector by 2035 (Cole et al., 2021). We are interested in this scenario
partly because accelerated climate action is required to meet the US’s Paris pledge to keep global
warming well below 2 °C. A faster scenario might also be financially beneficial (Way et al., 2022;
IEA, 2023; Creutzig et al., 2023) and thus accelerated by economic forces. Additionally, NREL
is a US Department of Energy sponsored research center that produces scenarios that are closely
examined by US policymakers and has high credibility in the research community. Finally, NREL’s
fast transition scenario covers both the transition phase and a subsequent low carbon power system
phase of an energy sector that is decarbonized by 2050, enabling us to assess the full occupational
implications of the transition.

Our model works with national-level data and thus neglects regional differences. As shown in
Lim et al. (2023), green jobs are likely to arise in different locations than fossil fuel jobs, which can
amplify skill mismatches. Vice versa, locations without any green or brown energy-related jobs
may not be affected at all. We discuss how our analysis can be extended to include geography in
the Supplementary Material (SM) Section B.1.

Since we are concerned with the labor impacts of decarbonizing the power sector and its up-
stream industries, an IO network provides a straightforward way to convert the scenario’s annual
energy system spending into changes in direct and upstream labor demand. This should not be
interpreted as a macroeconomic model, as it lacks mechanisms such as prices and substitutability;
any additional energy demand effects caused by electrification or changes to the costs of energy
services from the scenario spending are assumed to have already been included in the energy sce-
narios that we apply. While it is beyond the scope of this work, the extent of electrification will
be an important factor. To focus specifically on the labor impacts of the low carbon transition
all of our results are shown as relative to a second NREL no-new-policies reference scenario. We
apply our method to the US transition, but with sufficient data this approach could be applied to
virtually any modeled energy-economy transition scenario for any country or region.

Temporal heterogeneity in labor demand during the transi-
tion

The two NREL scenarios we use are shown in Fig. 1. The left panels display the capacity and
generation profile of the reference scenario, representing “no new policies”. The right panels depict
the fast transition scenario, where the model is required to reach a 95% decarbonized system from
2035 onward. The corresponding emission pathways are shown in the Supplementary Material
(SM) Fig. 8.4

3When we refer to ‘jobs’ gained (lost), we refer to the net increase (decrease) in demand within industries or
occupations relative to a reference scenario. See Methods for more information.

4The 95% by 2035 scenario results in slightly higher total generation because of higher losses during transmission
and storage, and energy used for carbon capture, which we model as (more expensive) gas capacity.
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Figure 1: The US power sector scenarios we use in this study. The upper panels show the capacities in GW and the
lower panels the electricity generation in TWh in yearly resolution. On the left, we show NREL’s no-new-policies
scenario that we use as a reference and on the right NREL’s fast 95% by 2035 scenario (Cole et al., 2021). Up to
2020, the figures show historical data from the Electric Power Annual 2020 (EIA, 2022). Technological categories
are aggregated according to SM Table 2.

In Fig. 2 we present our model’s estimates of the cumulative difference in labor demand relative
to the reference scenario for industries and occupations between 2020 and 2050. For visualization
purposes, the labels indicate 2-digit NAICS industry classification codes (20 industries) and 22
high-level occupational categories, but this is an aggregation of results using a more detailed
classification of 82 industries and 539 occupations. Across all industries with a labor demand
growth, we predict an increase in demand of about 634,000 workers by 3034. In the same time
period, 52,000 jobs are lost in industries with a decrease in demand. In testing the sensitivity of our
analysis against some of the key uncertainties in the modeling (see SM Section D.4) we find that the
net growth in the number of workers at the peak in 2034 can be between 450,000 and 800,000, with
around 580,000 being our base case. Our estimates are roughly an order of magnitude lower than
reported by Jacobson et al. (2015), Mayfield et al. (2021), or Ram et al. (2022). This discrepancy
is in part due to the fact that these studies include the entire energy sector, rather than just the
electricity sector. Some also aggregate over a longer time period. Our results are more in line with
Xie et al. (2023)’s estimate of employment changes due to power sector decarbonization and the
ILO’s estimate of an IEA scenario to keep warming below 2°C (ILO, 2018).

To put our estimates in perspective, 680,000 jobs account for 0.4% of the current US employment
and roughly 0.15% of the average annual US labor market flux within 15 years.5 Not all job
transitions are occupational transitions: Vom Lehn et al. (2022) calculates that approximately
6.7% of US workers switched occupations per year between 2011–2019, although in recent times
occupational switching appears to have slowed down. While a change of 680,000 workers may
seem small with respect to total employment and labor flows, job changes caused by the energy
transition could be highly geographically concentrated (Lim et al., 2023). Therefore, there may be
skill shortages within regions where jobs are created and a concentration of displaced workers where
jobs are lost. While the former may slow down the transition, the latter can lead to local economic
decline and rising political discontent (Dijkstra et al., 2020). To understand possible employment
outcomes of the transition, we study these temporal aspects in detail and their implications for
industries and occupations.

5There are currently (2023) 161 million employed workers in the US, and the annual job reallocation rate is
roughly 20% (final year (2011) data from Davis and Haltiwanger, 2014).
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(a) Industries (b) Occupations

Figure 2: Cumulative demand for workers in the 95% decarbonization by 2035 scenario per industry (a) and per
occupation category (b). The change is shown as relative to the NREL no-new-policy reference scenario. Industries
are plotted at the detailed level used in the analysis (82 industries) but colored by their 2-digit aggregated categories.
Occupations are plotted at the detailed level used in the analysis (539 occupations) and colored by their 2-digit level
aggregation (22 occupation groups). Different phases of the transition are demarcated with dotted vertical lines and
labeled.

Our temporal analysis shows three distinct phases in the demand for labor in the electricity
supply chain over the full transition. The first phase, before 2034, is the scale-up phase where
the work is done to reach the goal of a 95% decarbonized generation capability by 2035. It
includes an increase in overall demand for labor, mainly driven by the need to replace existing
fossil fuel generation infrastructure with renewables and additional electrification. The next phase,
between 2034 and 2038, is the scale-down phase of decreasing labor demand after most of the new
replacement infrastructure is built. Together, the scale-up and scale-down phases make up what
we refer to as the ‘transition phase’.

Such fluctuations are not new and to be expected in large-scale infrastructure projects or tech-
nological transitions. For example, railway construction started in Ireland in 1833 and employment
grew to over 30,000 workers in 1847 during the railway mania. By 1849, the number of workers
had fallen back to 10,000–15,000, where it remained until 1960 (Lee, 1979). In a more modern
example, BT Group in the UK announced job cuts in 2023 when its fiberglass cable expansion was
finished. One labor union representative acknowledged that such job cuts were ‘no surprise’ given
the infrastructure changes (Sandle, 2023).

After the transition phase, we observe the low-carbon power system phase. While grid ex-
pansion continues in this phase until at least 2050, the demand for labor is relatively stable. We
estimate the new low carbon power system will have about 117,000 net more employed workers
compared to a no-new-policies reference scenario (see SM Section D.4 for a sensitivity analysis on
this estimate).

When we dive deeper into the industry profile details (Fig. 2a), we find that the largest con-
tributors to the peak in 2034 are the manufacturing and construction sectors, which are crucial
for producing renewable energy technologies and developing the necessary infrastructure. Smaller
industries, such as Professional, Scientific, and Technical Services, and Wholesale Trade, also fit
within this group. Other industries behave in different ways. Fossil-fuel industries, including some
utility industries and Mining, see a net loss of worker demand over the entire period. Utilities that
are based on renewables experience a net gain in labor demand.

We map sectoral labor demand changes to 539 occupations, assuming a fixed occupational
compositions per sector. Fig. 2b shows the labor requirement dynamics per aggregate occupation
category. We highlight two results: First, as seen by the differences in the mass of color below the
x-axis, occupations experience much fewer job losses than industries. This is due to the fact that
the same occupations are needed in many different industries. For workers in such occupations, the
transition might involve a change of firm and sector, but not necessarily a change in occupation.
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Second, while it is apparent that industries experience different temporal employment dynamics
(e.g., compare manufacturing vs. utilities vs. mining), most of the 22 occupational categories move
through the transition more or less in tandem. In the next section, however, the heterogeneity
becomes apparent at the detailed occupation level.

Figure 3: Occupation demand change relative to employment in the 95% by 2035 scenario. On the vertical axis,
the net demand change between 2021–2034 (scale-up phase), and on the horizontal axis, the change between 2034–
2048 (scale-down phase). Occupations within the grey circle indicating less than 1% demand change are considered
minimally affected; all others are categorized in the labor transition typology that is formed by the four quadrants.
The axes are in a linear scale from -5% to +5% and a log scale beyond that. Occupations are colored according
to their mean wage. The occupational profiles on the right show the full temporal dynamics for four selected
occupations. Grey error bars are constructed via the sensitivity analysis on the trajectory calculation (See SM
Section D.4).

Typology of temporal heterogeneity in occupational demand
change

To better understand skill mismatches, we study the temporal dynamics of different occupations.
In Fig. 3, we plot the change in demand for all occupations during the initial scale-up phase against
the change in demand during the later scale-down phase of the power system transition. We classify
occupations into five types based on the dynamics of their demand.6 We classify occupations that
lie within the grey circle as ‘minimally affected’. The combined demand change of these occupations
in the scale-up and scale-down phases is less than 1% of their 2020 employment level.7 This group
consists of 423 out of the 539 occupations, or 88% of total US employment in 2020. The minimally
affected occupations include all legal, healthcare and education occupations, and the vast majority
of sales, administrative support, management and business workers, among others.

The remaining occupations are classified based on the quadrants in Fig. 3 they are positioned
in. The top-right quadrant corresponds to the ‘Consistent growth’ occupations that experience a
demand increase during both the scale-up and scale-down of the electricity transition. This group
has only three occupations: solar PV installers, wind turbine service technicians and power line
installers. Relative to the no-new-policies baseline, the demand for solar PV installers is expected
to increase by 20% between 2020 and 2038, and the demand for wind power technicians is expected

6The formal definitions of the typology can be found in SM Section B.7. A full list of occupations in each group
can be found in SM Section C.10.

7We calculate the combined demand change by taking the square root of the sum of squared changes in demand
in the scale-up and scale-down phases.
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to increase by 80%. To achieve the fast transition scenario, we will need to train a substantial
number of new workers in these occupations.

The bottom-left quadrant corresponds to the ‘Consistent decline’ group, which experiences a
decline in demand during both the scale-up and scale-down phase. The 13 occupations of this
group are mainly employed in mining and extraction and fossil fuel operations. We find some of
the largest reductions in demand for power plant workers, roof bolters, mining machine operators
and mine shuttle operators. Note that our analysis focuses on the power sector only and thus does
not include other fossil fuel uses, such as direct coal use in the steel sector or fossil-fuel powered
vehicles. If the power sector transition is accompanied by a low-carbon transition in other sectors,
the decline in these occupations and others in fossil fuel extraction industries will be even more
dramatic.

The top-left quadrant of Fig. 3 corresponds to the 98 ‘temporary growth’ occupations that
have an increase in demand during the scale-up phase followed by a decline during the scale-down
phase. The temporary growth occupations cover more than half of production, construction, and
engineering occupations, as well as some installation and maintenance, management, business, and
administrative occupations.

Finally, there are no ‘late growth’ occupations in the bottom-right quadrant; i.e., there are no
occupations that experience a decrease in demand during the scale-up phase and an increase in
demand during the scale-down phase.

Following the methodology developed by Consoli et al. (2016), we examine the skill content of
these groups in SM Section D.2.2. We find that the occupations most adversely affected by the
transition have higher manual and routine skills. This is particularly true for the ’Consistent de-
cline’ occupations. Consistent growth occupations score above average on non-routine interactive
skills, and ‘Consistent decline’ occupations score below average. The other skills (analytical and
cognitive) show fewer differences in aggregate. In SM Section D.2.1 we map the current location
quotients by US state of the occupation typology, which highlights the current geographical dif-
ferences between some of these occupations. In Section B.7, as part of our robustness check, we
present an alternative definition of the transition groups.

As expected, ‘Consistent decline’ occupations mostly belong to brown occupations as defined
by Vona et al. (2018), and ‘Consistent growth’ occupations mostly belong to ‘Green new & emerg-
ing’ occupations as defined by Dierdorff et al. (2009). Temporary growth occupations do not fit
neatly into either category. This challenges the green vs brown dichotomy: the demand pattern of
temporary growth occupations is similar to ‘Consistent growth’ occupations for the scale-up phase,
but better reflects the pattern of ‘Consistent decline’ occupations during the scale-down phase. We
find that temporary growth occupations are included in existing classifications of both green and
brown occupations. See SM Section D.3 for more information.

Skills shortages and stranded labor

A key focus of this study is to identify skill mismatch frictions that may arise in the scale-up
and scale-down phases of the transition. We follow previous work on skill mismatch using skill-
relatedness networks (Bowen et al., 2018; Neffke et al., 2022; Mealy et al., 2018). We use a list
of related occupations from O*NET that provide career switching options for each occupation
and create an occupational mobility network where the nodes represent occupations. Links are
drawn between two occupations if workers can switch between them, similar to the network used
in Bowen et al. (2018) (see Methods and SM Sections A.4 and B.9). Figs. 4a and 4b show the
network structure with the nodes (occupations) colored by eleven broad occupational categories
(SM Section A.3.1) and our trajectory-based typology, respectively. Most affected occupations
cluster in the upper side of the network, suggesting that the transition affects specific parts of
the labor market much more. Because affected occupations are linked, skill mismatch frictions are
likely to be present for some occupations.
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(a) (b)

Figure 4: Network of occupations with connections between related occupations. The occupations are colored by a)
broad occupational categories, and b) their temporal profile typology. Figure layout was created using a force-pull
algorithm.

We use assortativity, a standard network science metric as a measure of skill mismatches in
the labor market (see Methods). Assortativity in networks refers to the tendency of nodes to be
connected to other nodes that are like (or unlike) them with respect to specific attributes. We use
assortativity to find whether occupations that are connected in the network are often part of the
same occupational typology and face a similar demand change during the scale-up and scale-down
phase. An assortativity value of 1 means occupations only link with similarly impacted nodes. A
value of 0 indicates random mixing.

Using our typology of ‘Consistent growth’, ’Consistent decline’, and ’Temporary growth’ oc-
cupations, we find positive and significant assortativity (Table 1). Thus, as suggested by Fig. 4,
occupations tend to be connected with other occupations within the same group, rather than with
occupations of other groups.

When we calculate the assortativity coefficient directly on the change in demand during the
two transition phases, we find a lower level of assortativity, especially for the scale-up period. The
positive but low assortativity for the initial period indicates that while frictions do exist in the scale-
up phase, there are still career options available for workers moving out of shrinking occupations.
This concretely means that workers in the ‘Consistent decline’ group have possibilities to move to
occupations in the ‘Temporary growth’ or ‘Consistent growth’ groups. In contrast, assortativity
in the scale-down phase is higher, indicating that career changes from ‘Consistent decline’ and
‘Temporary growth’ occupations to ‘Consistent growth’ occupations are likely to be less common.
This means that skill mismatch frictions are of greater concern in the later stages of the transition.
The results show that the network exacerbates the labor market impacts of the different phases of
the transition but that these impacts are not static – they evolve.8

Assortativity

Occupational typology (Consistent decline, Consistent growth, Temporary growth) 0.43***

2021–2034: Demand change during the scale-up phase 0.05***
2035–2038: Demand change during the scale-down phase 0.26***

Table 1: Assortativity of the shock relative to employment on different occupation networks. ***, **, * indicate
results that are greater than the randomized case for 99.9%, 99%, or 95% of values respectively in a Monte Carlo
simulation (see Methods for details).

Skill mismatch frictions can affect both the supply and demand side of the labor market. An
increase in demand for an occupation as well as for its neighbors means employers will find vacancies

8In SM Section D.2.3 we show that our results are robust when we use an occupational network based on
empirically observed occupational changes rather than O*NET’s measure of relatedness. In SM Section D.4 we also
explore how IO model assumptions affect the assortativity levels.
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harder to fill. A decrease in demand for an occupation and its occupational mobility neighbors can
make it harder for displaced workers to find new employment.

To highlight occupations most affected by skill-mismatch frictions during the first phase of the
transition, in Fig. 5 we plot the demand change for the scale-up phase against the demand change
for the pool of workers in related (neighboring) occupations. Frictions are strongest in the grey
areas of this figure, where the demand change for individual occupations is similar to the demand
change for its neighbors. On the left side of the x = 0 line, the darker shading indicates increased
frictions for workers: that is, it becomes harder for displaced workers to find new employment. On
the right side of the x = 0 line, the darker shading indicates increasing employer frictions: that
is, it becomes harder for employers to fill vacancies. Along the identity line, occupational frictions
are aligned assortatively, and an occupation is as affected as their neighboring pool of related
occupations. In other words, for occupations along the identity line, labor market pressure caused
by the transition cannot easily be alleviated by switching occupation or headhunting workers with
compatible skills.

Figure 5: Scatter plot of demand change in the scale-up phase (2021-2034) per occupation (x-axis) and their
neighbors (y-axis). The x-axis scale is linear until ±5%, and logarithmic beyond that. If the occupation has a
positive (negative) demand change, we average the neighbor demand change over its in- (out-) neighbors. Out-
neighbors of occupation α are related occupations that form potential career switching options for workers in α.
Vice versa, in-neighbors of α are occupations for which α is a related occupation. The identity line is plotted, and
selected occupations are highlighted. On the right, demand change profiles over time are plotted for occupations
highlighted in red. The intensity of background shading corresponds to more occupational frictions: worker frictions
for x < 0, employer frictions for x > 0. The grey scaling is a linear function of the neighborhood shock, when the
sign of the demand change for individual occupations is the same as for its neighbors (i.e., top right and bottom
left quadrants).

During the scale-up phase, most of the skill mismatch frictions affect employers struggling
to find suitable workers, including for manufacturing occupations such as ‘Tool and die makers’,
construction occupations such as ‘Construction laborers’, and renewable operations workers, such
as ‘Wind turbine service technicians’. ‘Derrick, rotary drill and service unit operators, mining’
see an increase in demand in this phase, but its neighbors, on average, see a very small decline,
suggesting an availability of workers. Some occupations, such as ‘Roof bolters’ and ‘Power plant
operators’, see their demand decrease, but experience a milder overall impact as job growth does
occur in their pool of out-neighboring related occupations, meaning the network helps alleviate
(part of) the direct negative impact.
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Figure 6: Scatter plot of demand change in the scale-down phase (2034-2038) per occupation (x-axis) and their
neighbors (y-axis). The x-axis scale is linear until ±5%, and logarithmic beyond that. If the occupation has a
positive (negative) demand change, we average the neighbor demand change over its in- (out-) neighbors. Out-
neighbors of occupation α are related occupations of α. In-neighbors of α are occupations for which α is a related
occupation. The identity line is plotted, and selected occupations are highlighted. On the right, demand change
profiles over time are plotted for occupations highlighted in red. The grey intensity of shading corresponds to more
occupational frictions: worker frictions for x < 0, employer frictions for x > 0.

In the scale-down phase, as shown in Fig. 6, the situation is reversed. In contrast to the scale-up
phase, displaced workers in many occupations, excluding the minimally affected, will struggle to
find compatible jobs in the scale-down phase. The construction and manufacturing occupations,
as well as mining and fossil fuel workers, all see a decline in demand, as well as a decline in demand
for occupations with similar skills (that they might be able to transition to).

We find that many of these occupations align along the identity line of assortative frictions,
confirming the relatively large assortativity coefficient for the scale-down phase in Table 1. Solar
PV installers and wind turbine service technicians still face larger demand increases than demand
declines in their neighborhood, indicating potential challenges in filling vacancies in these occupa-
tions. This effect is less pronounced in the scale-up phase, but still present. Thus, successfully
managing the power system decarbonization will involve policies aimed at supporting workers to
switch from other occupations into ‘Consistent growth’ occupations.

The six occupations most closely related (in-neighbors) to Wind turbine service technicians
are Energy engineers, Solar PV Installers, Power Plant Operators, Distributors, and Dispatchers,
Pipelayers, Plumbers, Pipefitters, and Steamfitters, Installation, Maintenance, and Repair Work-
ers, All Other, and Industrial Production Managers. Using these neighboring related occupations,
we can see how Figs. 5 and 6 relate to Fig. 3 and 4. For example, in Fig. 3, wind turbine service
technicians are in the ‘Consistent growth’ quadrant, and Power plant operators in the ‘Consistent
decline’ quadrant. Wind turbine service technicians are part of Installation, repair, and mainte-
nance occupations, and Power plant operators are part of Production occupations in Fig. 4a, but
these two occupations are connected and are placed close together in the network in Fig. 4. Be-
cause wind turbine technician is an out-neighbor of power plant operators, and, vice versa, power
plant operators is an in-neighbor of wind turbine technicians, they influence each others’ y-axis
value in Figs. 5 and 6. In particular, the connection between the two occupations increases the
out-neighbors average shock to power plant operators, and lowers the in-neighbors average shock
to wind turbine service technicians, lowering skill-mismatch frictions for both. Occupations most
closely related to solar PV Installers are similar to those related to wind turbine service tech-
nicians, but, in addition, include Electricians, Broadcast and Sound Engineering Technicians and
Radio Operators, Construction and Building Inspectors, and First-Line Supervisors of Construction
Trades and Extraction Workers.
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Beyond 2038, the demand for workers is above pre-transition levels and is relatively stable.
Although demand is lower than at the peak of the scale-up phase, there is a net increase with
respect to the reference scenario. This increase arises for two reasons. First, grid expansion is
ongoing until at least 2050 (SM Fig. 9). Second, the scenario foresees an increase in both capacity
and demand for electricity on top of the reference scenario, which increases the overall demand for
labor.

In testing the sensitivity of our results to key sources of uncertainty, we find that the employ-
ment level in the decarbonized system can change for a number of reasons. Most notably, lower
labor requirements in transmission and distribution (e.g., due to higher levels of innovation and
automation) could lead to lower employment in the electricity supply chain, almost on par with
the no-new-policies reference scenario. For more information, see SM Section D.4.

Discussion and conclusion

The transition to a world powered by renewable energy coupled with storage will involve a signifi-
cant transformation of part of the labor market. In this work we couple a dynamic IO model with
a network analysis of occupational mobility and show that such a transition has the potential to
generate significant temporal labor market fluctuations and skill mismatches. In line with previous
research, we find more jobs will be created than lost in the US during the initial part of the renew-
able electricity transition. However, a large fraction of these new jobs will only be required during
the scale-up period of the fast transition. The labor market dynamics will change throughout the
transition phase until the new stable decarbonized energy system is in place. These dynamics are
missed if the scale-down phase and a new stable decarbonized energy mix phase are not included
in the time horizon.

In addition to the direct effects on occupational labor demand, we show that there are important
secondary effects as related occupations are affected in similar ways. This creates a substantial
skill mismatch, especially in later stages of the transition. In the initial scale-up phase, we find the
potential for skill shortages that could jeopardize the speed of the transition. In the later scale-
down phase we anticipate that related occupations experience similar demand declines, negatively
affecting workers’ ability to find jobs. Temporal skill mismatches have received limited attention
in previous literature, but are important when considering employment impacts of the transition.

Relative to historic fluctuations in the total US labor market, the impact of a fast transition in
the electricity supply chain is modest. Our estimates are lower than those of others (e.g., Jacobson
et al., 2015; Mayfield et al., 2021; Ram et al., 2022), mainly because our scope is limited to the
power sector rather than the entire energy sector. Nonetheless, we conclude the changes might
still create difficulties for employers, individuals, and local communities both in the scale-up and
scale-down phases. Moreover, as already mentioned, we do not treat regional effects here, which
could further exacerbate labor market frictions (Lim et al., 2023).

We identify a fourfold occupational typology based primarily on the scale-up and scale-down
phases of the transition. Besides the large group of mostly unaffected occupations, a small number
of occupations see a sustained growth in demand, more see a consistent decline, and a large group
experiences a temporary rise in demand during the scale-up with an almost equal decrease in
demand after the electricity sector reaches its decarbonization target.

The green and brown jobs dichotomy cannot fully capture the temporal dynamics of the elec-
tricity sector transition. We find that the occupations that experience only temporary growth
do not fit neatly in either category, overlapping with both brown jobs from Bowen et al. (2018)
and green jobs from Dierdorff et al. (2009). More specifically, the demand pattern of ‘Temporary
growth’ occupations is similar to ‘Consistent growth’ occupations for the scale-up phase, but better
reflects the pattern of ‘Consistent decline’ occupations during the scale-down phase. Workers in
such occupations will be vital to ensuring the renewable electricity transition happens quickly, but
additional care needs to be taken to manage their long-term career trajectories. For such ‘Tempo-
rary growth’ jobs, the initial inflow and especially the outflow of workers later on can cause labor
market bottlenecks if not managed carefully.

The NREL rapid transition also involves a non-marginal increase in the demand for three key
‘Consistent growth’ occupations: solar PV installers, wind turbine service technicians and power
line installers. Given that the skills needed for these occupations will be in high demand during
the scale-up, it will be important to ramp up training in anticipation of such shortages to avoid
bottlenecks slowing down the transition. To find how much the transition may be slowed by
such skill shortages, the occupational bottlenecks would need to be coupled with, or incorporated
endogenously in the energy-economy model that produces the transition scenario.
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Our sensitivity analysis in the Methods and SM Section D.4 discusses the most important
assumptions in our model. For example, the continuing cost declines of renewables is an important
consideration. We take our projections from NREL’s ATB, but recent research using empirically
grounded technology learning curves suggests that we might see even more aggressive cost declines
for renewables and storage in the future (Way et al., 2022; Creutzig et al., 2023). While cost curves
for some technologies are well documented, estimating future cost and labor requirements for grid
expansion is challenging due to limited available estimates in the literature. Cost curves affect our
labor demand estimates because we assume a fixed ratio of workers per constant-dollar cost. This
suggests a cost-breakdown neutral path of innovation where productivity is fixed in monetary units
(USD output per worker) but can change in energy units (GW(h) output per worker). We provide
here some empirical evidence for why we think this assumption can hold in SM Section C.7 and
discuss further methodological assumptions in SM Section B.1.

We have demonstrated an approach that can provide valuable insights into the labor market
frictions associated with a major transition, applied to the US power sector. This method is
relatively simple, transparent and generic, yet can give granular results. Our approach naturally
incorporates cost-reduction forecasts and can be easily extended with more data granularity. In
light of the heterogeneous demand trajectory types that we have identified and the need for rapid
decarbonization, we conclude that the transition requires enlightened management to minimize skill
mismatch for displaced workers and skill shortages in filling vacancies. Our method is sufficiently
simple that it can and should be applied regularly as new data and insights on labor market changes
become available. Early identification of the potential causes of labor stranding and shortages can
enable policymakers to effectively help workers and employers tackle these frictions, thereby making
the green transition happen faster and more equitably, and ultimately reduce the levels of harmful
greenhouse gases in the atmosphere that future generations must face.

Methods

Resource availability

Correspondence and requests for resources should be addressed to joris.bucker@seh.ox.ac.uk.

Materials availability

This study did not generate any new materials.

Methods approach

We followed a 4-step framework that couples a power transition scenario (step 1) with a dynamic
input-output model to estimate upstream impacts (step 2), applying detailed occupational employ-
ment data (step 3) and an occupational mobility network (step 4) to assess labor market frictions.
The approach is pictured stylistically in Fig. 7, and each of the steps are described in detail below.

Figure 7: Methodology overview: Our methodology works in four steps. Firstly, we calculate the cost of the power
sector decarbonization, both in terms of capacity changes (investments), and electricity production (operational
costs) of different technologies. The IO model then calculates the direct and upstream supply chain changes in terms
of industry output and, subsequently, demand changes for workers per occupation. Finally, we use occupational
networks to calculate skill mismatch and skill shortage frictions.

Step 1: Energy and cost scenarios

The first step in our approach involves quantifying future technology-specific expenses at the indus-
try and country level. We achieve this by incorporating scenarios of future capacity, generation,
and unit costs for various detailed electricity technologies as exogenous inputs, which are then
aggregated into sectors. For our analysis, presented in the main text, we utilize the exogenous
deployment and cost trajectories from the fast decarbonization scenario (95% by 2035) outlined in
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NREL’s 2021 Standard Scenarios Report: A US Electricity Sector Outlook (Cole et al., 2021). To
focus specifically on the labor impacts of the low carbon transition all of our results are shown as
relative to a no-new-policies reference scenario (which is translated into our framework using the
same four-step procedure). In SM Section D.1, we present some of the results relative to the year
2020, rather than those relative to the no-new-policies scenario that are shown in the main text.

For each scenario, we map the deployment (capacity and generation) of 19 technologies and
unit cost projections of 17 technologies onto 10 electricity generation and supporting sectors (coal,
natural gas, biomass, geothermal, hydro, nuclear, solar, wind, battery storage, and transmission
and distribution (T&D)), as explained in detail in the SM Section C.2. Since investments and
operational expenses affect the input-output model differently (see Step 2 below), we consider
disaggregated cost projections, which comprise capital expenditure (capex) and operational ex-
penditure (opex, which consists of variable and fixed opex, and fuel cost). See SM Section B.4 for
more details on why we make this cost component disaggregation.

More formally, let cji,t denote the unit cost projection of electricity generation technology i of

a given cost category j for the year t. We obtain the total annual costs Cj
i,t for each cost category

as

Cfix opex
i,t = Yi,tc

fix opex
i,t , (1)

Cvar opex
i,t = Xi,tc

var opex
i,t , (2)

Cfuel
i,t = Xi,tc

fuel
i,t , (3)

Copex
i,t = Cfix opex

i,t + Cvar opex
i,t + Cfuel

i,t , (4)

Ccapex
i,t = max {(Yi,t − Yi,t−1 +Ri,t−1), 0} ccapexi,t , (5)

where Yi,t is the installed capacity of technology i at t in MW, Ri,t the retired capital stock in
MW and Xi,t the generated electricity in MWh. The maximum operator in Eq. (5) avoids negative
investment values when total installed capacity declines.9 Note that capex and fixed opex unit
costs are measured in USD per MW, whereas variable opex and unit costs are given in USD per
MWh.

Since scenarios generated by power system optimization models can lead to substantial year-on-
year fluctuations in installed capacities, we avoid overly erratic job impacts by smoothing the total
technology-specific cost estimates using 3-year moving averages. In SM Section D.4, we discuss
the impact on our results of removing this smoothing or extending it to a 5-year moving window.

Step 2: Input-output model

In the second step, we feed the investment and cost estimates of the previous step into a demand-
driven input-output (IO) framework to calculate the output changes throughout the electricity
sector and its upstream supply chain. We consider a standard domestic demand-driven IO model
where the total output xi,t of industry i at time t can be described as the weighted sum of final
demand fi,t and the intermediate demand of other industries:

xi,t =

n∑
j=1

aij,txj,t + fi,t, (6)

and in matrix notation:
xt = Atxt + ft. (7)

The technical coefficient matrix (also called ‘IO table’) A with elements aij,t stipulates the fixed
amount of input i required to produce one unit of output j (Blair and Miller, 2009).10 By defining
the Leontief inverse Lt = (I −At)

−1, and taking the time difference of Eq. (7), we can write

∆xt = Ltft − Lt−1ft−1, (8)

which demonstrates that industrial gross output can change over time as a result of changes in final
demand (∆ft) or/and of changes in the IO network (∆At). We model both components explicitly
by mapping the investments and operational expenses computed in Step 1 onto the final demand
ft and the IO table At, respectively.

11

9Due to data constraints, we calculate opex and capex for battery storage and T&D differently; see SM Sec-
tions B.3 and B.2 respectively.

10In our study, IO table A and final demand vector f refer to their domestic versions. See SM Section B.5 for
how we calculate them using the official IO data.

11We note two important assumptions. One: the linear demand-driven relationship implies the assumptions of
immutable production recipes without substitution and constant returns to scale (Blair and Miller, 2009). However,
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Mapping electricity costs to the IO framework

Changes to electricity technology capex from Eq. (5) lead to changes in final demand in the IO
framework. Changes to the electricity technology opex in Eq. (4) instead rewire the intermediate
expenses. We require that every electricity generation technology is represented as a separate
sector in the IO data. In SM Section B.6, we discuss how we disaggregate the energy sector for
that purpose.

Capex. Let Kcapex
ij be the the fraction of Ccapex

i,t (technology i’s capex) that is spent on industry

j, and let mi be the fraction of capex that is imported from a foreign industry i.12 The capex of
technology i spent on the domestic industry j is then

K̂capex
ij = (1−mj)K

capex
ij . (9)

The total domestic final demand in industry i due to capex in technology j follows then as

f capex,j
i,t = Ccapex

j,t K̂capex
ji . (10)

Summing over all technologies results into

f capex
i,t =

∑
j

Ccapex
j,t K̂capex

ji . (11)

We assume all capex is created in the year it comes online, such that the impact on the industry
output at time t is

∆xcapex
t = Ltf

capex
i,t − Lt−1f

capex
i,t−1 . (12)

Opex. We use the opex in year t to update the base year IO matrix A2018 to At (with elements
aij,t) as follows: industry i’s production requirement for electricity generated by technology j is

aji,t = aji,2018
Copex

j,t

Copex
j,2018

. (13)

We perform a similar shift on the opex part of final demand fopex
t at time t. Final demand

at time t for the opex of electricity generation technology j is fopex
j,t = fopex

j,t−1C
opex
j,t /Copex

j,t−1. We
assume here that the final demand for electricity is proportional to the total operational cost,
which assumes a fixed and constant markup. The change in output per industry between time
t− 1 and t becomes, following Eq. (8):

∆xopex
t = Ltf

opex
t − Lt−1f

opex
t−1 . (14)

Total effect of opex and capex. To quantify the total change in sectoral output in a given
year, we combine Eqs. (8), (12) and (14) to:

∆xt = ∆xopex
t +∆xcapex

t = Lt (f
opex
t + f capex

t )− Lt−1

(
fopex
t−1 + f capex

t−1

)
. (15)

Step 3: Modelling occupational demand impacts

We assume that demand for workers per occupation changes proportionally to industry output,
i.e. the number of jobs in a given occupation per constant-price USD output of an industry
is fixed through time. This means that we allow for proportionally fewer jobs per MW(h) if
innovation pushes real prices down. We show in SM Section C.7 some empirical evidence for this
proportionality in the solar and wind cost breakdown. In Section D.4 we show how our results
depend on the speed of such cost reductions.

Let M be the matrix of workers per output, where Mij is the number of workers in occupation
i working for industry j per constant-USD output. We calculate the total demand change ∆ot for
workers per occupation between time t− 1 and t with Eq. (15) as

∆ot = M∆xt (16)

where ∆ot = [∆o1,t, . . . ,∆om,t] where each elements ∆oi,t is the demand change for workers in
occupation i between time t− 1 and t.

as explained further below, we do allow the electricity sector to rewire over time. Two: because our model does not
feed how labour wages are spent back into final demand, our analysis does not include the induced output effect, but
only the output of sectors directly involved in the electricity supply chain. (In other words, it includes the supply
side intermediate effects but not changes in consumption demand). See Section B.1 for more details on our scope.

12The calculation for mi can be found in SM Section C.3.
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Skills and location quotient We follow (Consoli et al., 2016) for our calculation of skill content
per occupation (see SM Section D.2.2). In SM Section B.8 we explain how we calculate the location
quotients of occupation-state pairs.

Step 4: Occupational network and frictions

We quantify occupational skill mismatch frictions using measures derived from network science.
We will first define the occupation network, then define network-wide assortativity measures, and
finally our local neighborhood-friction measure. We are concerned with frictions caused by realloca-
tion of workers between occupations. Any frictions arising from job transitions between industries
within the same occupation are not considered, but could be significant if a geographic relocation
is required, or industry-specific knowledge is important (Lankhuizen et al., 2022).

Related occupation networks

The related occupation network is a directed network G(V,E) where the nodes V are occupa-
tions and the edges E contain a link between occupations i and j if j is a related occupation
of i. We construct this network using data on related occupations from O*NET (see SM Sec-
tion A.4 for further details). The network is defined by the adjacency matrix R with items
Rij = RelOccij/

∑
j RelOccij , where RelOccij = 1 if j is a related occupation of i according

to O*NET, and 0 otherwise. O*NET determines relatedness between occupations by comparing
the similarity in: tasks and work activities, knowledge importance, and job titles (Dahlke et al.,
2022). Note that this network is not necessarily symmetric.

Assortativity

We formalize a measure of overall frictions using assortativity. In network science, assortative
mixing refers to the inclination of nodes to be connected if they are similar with respect to specific
characteristics. We study assortative mixing of the demand change for occupations during the
scale-up and scale-down phase, and for the demand trajectory typology we identify in this study.

Assortativity is a network-wide property. We say that a network is assortative if a significant
fraction of the edges in the network connect similar nodes, or nodes that are of the same type.
In an unweighted network we can compute the assortativity coefficient (Newman, 2018), which is
equivalent to a Pearson correlation between connected nodes’ attributes. The attributes we are
interested in are the demand change, a continuous variable, and our demand trajectory typology,
a categorical variable. In our analysis we use weighted continuous assortativity and weighted
categorical assortativity, which are extensions to the assortativity coefficient for weighted networks
with continuous and categorical variables, respectively. We also define a local node assortativity
metric that we use to highlight frictions for individual occupations.

Weighted continuous assortativity We use an extended version of this coefficient for weighted
and directed networks; see also Yuan et al. (2021). This gives the following assortativity coefficient
ρs,x between the edge weights s and continuous node value x for a weighted and directed network
G:

ρx =

∑
ij

(
Rij −

s+i s−j
W

)
xixj√∑

ij

(
s+i δij −

s+i s+j
W

)
xixj

∑
ij

(
s−i δij −

s−i s−j
W

)
xixj

. (17)

where s+i =
∑

j Rij and s−j =
∑

j Rji denote the in and out strength (i.e. weighted degree) of
nodes i and j respectively, Rij is the weighted adjacency matrix, W the sum of edge strength, and
δij the Kronecker delta that is 1 if i = j and 0 otherwise. For the unweighted and undirected case
we have s+i = s−i = ki, the degree of node i, and we recover the standard assortativity coefficient
from Newman (2018):

ρ′x =

∑
ij

(
Rij − kikj

W

)
xixj∑

ij

(
kiδij − kiki

W

)
xixj

. (18)

Standard errors were obtained on each observation by reshuffling the demand for workers over
occupations, while keeping the network structure intact. We reshuffle the shocks 100,000 times and
compare our results with the random shocks, and report if the assortativity is larger than 95%,
99%, or 99.9% of the reshuffled values with one, two, or three starts, respectively.
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For Table 1 we calculate ρ∑2034
t=2021 ot

and ρ∑2038
t=2035 ot

using Eq. (17).

Weighted categorical assortativity The categorical assortativity values in Table 1 are cal-
culated with a weighted variety of Eq. 2 in Newman (2003). In Newman’s notation, categorical
assortativity is

r =

∑
i eii −

∑
i dibi

1−
∑

i dibi
, (19)

with di =
∑

j eij and bj =
∑

i eij , and where eij is the fraction of all edges that connects a node
of type i to a node of type j (Newman, 2003). In our application, with weighted networks, we use
Eq. (19) to calculate r but define eij as the fraction of edge weights in the occupational network
that connects a node of type i to one of type j, such that

eij =

∑
k∈i,l∈j Rkl∑

kl Rkl
; (20)

eij can be interpreted as the probability that any given occupational transition happened between
occupation archetypes i and j. In our application, the types are the occupational groups Temporary
growth, Consistent growth, Consistent decline, and all other occupations.

Randomization robustness We run Monte Carlo simulations with randomized shocks to un-
derstand the robustness of our estimates. For each value of assortativity we measure, we run
100,000 additional calculations where we keep the network fixed, and assign the attribute values to
randomly picked nodes. We highlight results that are greater in absolute value than 99.9%, 99%,
or 95% of Monte Carlo runs using three, two, or one star (***, **, *), respectively.

Node-specific frictions Assortativity is a network-wide measure, and might not be informative
on individual occupations. For occupation i, it matters what happens in its direct neighbourhood
Ni = {j|Rij > 0}. We call all jobs in the neighborhood occupations of i the pool of i.

Node-specific frictions arise when the pool of i and i itself are affected in the same way. This
borrows from the logic of assortativity. The change in demand in the pool of i at time t is

∆oNi,t =
∑
jinNi

∆oj,t. (21)

The neighborhood friction qi,t of occupation i is then the weighted average of neighboring
occupations demand change:

qi =
∆oNi,t

oNi,t
. (22)

We define two types of node-specific frictions: employer (labor demand) frictions and worker
(labor supply) frictions. If both occupation i and its pool experience an increase in demand, it
may be hard to find workers to fill all vacancies in i. We call this employer frictions, which can
arise even if the pool of i increases but at a slower rate than demand for i decreases. Vice versa,
if occupation i and its pool experience a fall in demand, it may be difficult for workers in i to find
a new job. We call this worker frictions.

Sensitivity analysis and robustness of results

We do a sensitivity analysis on seven assumptions and data sources. For more details, see the
sensitivity analysis results in SM Section D.4. For each sensitivity analysis, we reproduce Fig. 2b
in Fig. 21. In Fig. 22a and 22b we plot the cumulative worker demand at the peak (2034) and
in the new steady state (2045) respectively. In Fig. 23 we reproduce part of Table 1 and plot the
assortativity in the scale-up and scale-down phase for the different assumptions. For each of the
assumptions, we also reference which section of the SM discusses the default options.

We probe the following assumptions in our sensitivity analysis:

1. We have assumed (see SM Section B.5) that the input-output network structure does not
change in time, i.e., aij,t = aij . Our sensitivity analysis shows that our results are highly
robust with respect to changing this assumption.

2. The capex cost vectors translate how the capital expenditure per electricity technology from
the scenario is spent on specific industries in the IO table (see Section C.4). We add noise
to the capex cost vectors and find the results robust.
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3. The opex literature weights translate how intermediate costs are spent on industries in the
IO table. These are used to disaggregate the energy sector in the IO table (see Section C.4).
We add noise to the opex cost vectors and find the results robust.

4. The transmission and distribution (T&D) grid line cost are calculated in Section B.2 following
the methodology in Way et al. (2022). We test the sensitivity of some parameters and find
that these parameters can have a large influence on the results.

5. To remove overly erratic results, we apply a 3-year smoothing window to the energy scenario
costs. We also present results without smoothing and with a 5-year smoothing window.

6. We take the employment per occupation-industry pair from BLS and use it to calculate the
labor requirements per industry and occupation (see Section A.3). BLS publishes error bars
together with the point estimates that we use. We find that our results are robust against
using values that are on the extremes of the error bars.

7. We assume unit costs for electricity technologies can change over time according to the ATB
cost curves as mentioned in Section C.2. Our default assumption is to use the moderate cost
development for each technology. We find that using advanced or conservative cost curves
can have a significant impact on the results.

We also do a robustness check of the assortativity values in SM Section D.2.3 for different
network types: the original relatedness network, a network of empirical occupational mobility
between 2011 and 2019, and a combination of the two.

Data and code availability

We used data from a wide range of sources. Almost all were free and openly available on the
internet, but some were accessed via standard university-wide subscription licenses held by the
University of Oxford. For more details, see Supplementary Materials Section A. All data will be
made available upon request following journal publication (unless legal restrictions exist).
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A Data

This section discusses the datasets we use in this study. All datasets we use are publicly accessible.
We begin with the data on power system scenarios, followed by the supply chain (input-output)
data. We then discuss the occupational employment data and the occupational network data. This
section is split according to the same four steps as the methods section in the main text.

A.1 Step 1: Energy and cost scenarios

For our analysis we use the NREL’s Standard Scenarios13 which is a widely used set of scenarios
based on the US power system capacity expansion models ReEDS (Ho et al., 2021) and dGen
(Sigrin et al., 2016). Broadly speaking, these models take the decarbonization pathway as given

13https://www.nrel.gov/analysis/standard-scenarios.html
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and calculate the power capacities and generated electricity for each technology, obtained via cost
minimization. In particular, we focus on two specific scenarios of the main national-level results
of the 2021 Standard Scenarios Report (Cole et al., 2021): 1) No New Policy and 2) 95% by 2035.
The No New Policy scenario assumes no new carbon reduction policies beyond those in place as of
June 2021. The 95% by 2035 scenario assumes a 95%-decrease in CO2e emissions in 2035 compared
to 2005, resulting in a reduction from 1750 Mt CO2e in 2021 to less than 250 Mt CO2e by 2035.
We show the emission pathways in Fig. 8.
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Figure 8: Annual US power sector emissions in MT of CO2e. The black line shows historical power emissions
(EPA, 2022), and the blue and red lines, estimated emissions based on the scenarios.

To fit with the rest of the analysis, we aggregate the generation and capacity data to eight
electricity generation technologies, plus battery storage and transmission and distribution (T&D).
The electricity capacity and generation mix scenarios are shown in the main text and the trans-
mission lines capacity are depicted in Figure 9. In the fast decarbonization scenario, transmission
lines are required to grow faster and to higher levels than in the reference scenario.
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Figure 9: Transmission lines in MW-mile through time. Data until 2020 represents historical data; data after
2020 are scenario-specific.

The decarbonization pathways rely heavily on solar and wind. Nuclear and hydro are main-
tained roughly at their current levels. Coal is phased out, as well as a large portion of natural
gas generation, although gas capacity remains fairly constant. Bioenergy and geothermal electric-
ity generation remain small throughout. New generation capacity to deal with growing energy
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demand also comes from wind and solar, due to their lower cost. The decarbonization scenario
manages the increased levels of renewable intermittency from renewables in three ways: increased
(battery) storage, a relatively high level of natural gas capacity compared to natural gas electricity
generation, and grid expansion.

In the No New Policy reference scenario coal electricity capacity and generation drop – albeit
slowly – but natural gas grows over time. The share of renewables also grows, due to their lower
cost.

Technology-specific cost projections and capacity factors are based on NREL’s Annual Technol-
ogy Database (ATB).14 The cost data are broken down into capital expenditures (capex), fixed and
variable operational expenditures and fuel costs (opex).15 Data on unit costs, power capacities,
generation and retirement, as well as the input-output data all use different technology aggregation
levels. More details on how we harmonize these can be found in Section C.2. See Section D.4 for
more information on the sensitivity analysis of the unit cost projections.

The scenarios we consider here are an interesting study case, as they are widely known and
allow us to compare a business-as-usual scenario with an aggressive decarbonization scenario of the
US power sector. However, it should be pointed out that many possible low-carbon energy mixes
are feasible, possibly involving very different sets of technologies (e.g., see Pickering et al. (2022)).
Different technology choices would lead to different labor market impacts. Thus, results presented
in the main text should not be understood as covering the whole spectrum of labor market impacts
of the power sector transition but rather are based on specific future scenarios. The scenarios
considered here assume exogenous unit cost projections, although it has been pointed out that
energy technology costs develop endogenously, depending on overall deployment (Way et al., 2022).
We test the impact of such cost assumptions in Section D.4 but leave a more thorough examination
of the effects of endogenous price mechanisms on the labor market for future research.

A.2 Step 2: Input-output model

To estimate the direct and upstream supply chain effects of the changes in electricity technology
capex and opex, we use the 2018 US data published by the Bureau of Economic Analysis to
construct domestic input-output (IO) tables (Bureau of Economic Analysis, 2022b). We remove
any imports from the IO table, so that our results only point to US jobs. Vice versa, we assume
exports are not affected by the scenarios and remain constant over time. We use the 2018 data
to have an estimate of a relatively stable economic situation before the COVID pandemic.16 See
Section B.5 on how we calculate domestic IO tables. We show in Section D.4 that our results are
highly robust when using IO tables from different years.

The relevant electricity generation technologies are not separate industries in the official IO
tables but are bundled together in the Utilities sector. We manually disaggregate the Utilities
sector into nine electricity generation sectors.17 We do this partially using the 2012 detailed IO
table and partially using literature estimates of the opex cost structure of different electricity
technologies. We use additional literature estimates for translating capex changes to final demand
shocks. See Section B.6 on our disaggregation approach, Section C.5 for the data used, and
Section D.4 for a sensitivity analysis on the literature estimates. Electricity generation outside of
the Utilities sector is out of scope, as discussed in Section C.6.

There are alternatives available to the national IO tables that already include several electricity
generation technologies, such as the multi-regional IO tables (MRIOs) EXIOBASE and GTAP
(Stadler et al., 2018; Aguiar et al., 2023). We chose to work with the national tables for two
reasons: 1) the employment data we use from the Bureau of Labor Statistics (BLS) is a natural fit
for the BEA data, and 2) The BEA tables are the standard for the US, forming the basis for the
US tables of EXIOBASE and GTAP. Those MRIOs are designed for global supply chain analysis,
and require further statistical fitting to make the countries’ imports and exports aligns. MRIOs
also require the additional effort of combining and disaggregating industries to create a uniform
dataset.

14https://atb.nrel.gov/
15The 2021 ATB gives cost in 2019-USD, which we further deflate to 2018-USD using BEA’s GDP deflator (which

was 1.8% for 2018-2019: https://www.bea.gov/data/prices-inflation/gdp-price-deflator). Coal and gas
fuel cost were absent in the 2021 ATB, so we use the cost estimates from the 2020 ATB, which were already in
2018-USD.

16We use 2018 rather than 2019 to leverage the fact that BLS has not yet updated its occupational classification,
allowing us a direct comparison with earlier years.

17This contains one Other electricity generation sector, which we assume to be zero in NREL’s scenario.
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A.3 Step 3: Modelling occupational demand impacts

We use data from the US Bureau of Labor Statistics (BLS) Occupational Employment and Wage
Statistics (OEWS) database (Bureau of Labor Statistics, 2021) to create the industry-occupation
matrix B where element Bij is the number of workers of occupation i working in industry j, and∑

ij Bij = 145 million, the total size of the US employed labor force in 2018. This is also some-
times called the manpower matrix (e.g. Bezdek, 1973). BLS industry codes are slightly different
from BEA industry codes. We manually impute industry-occupation data that is censored in the
published tables. We harmonise the datasets using a crosswalk provided by the U.S. Environ-
mental Protection Agency (EPA) (Environmental Protection Agency, 2022). See Section C.8 for
more details on the imputation and data harmonization. We use BLS’s standard errors on their
estimates for a sensitivity analysis on matrix B in Section D.4

Combining B with industry output data x allows us to calculate Mij , the number of workers
from occupation i employed in industry j per dollar of output as

Mij =
Bij

xj
, (23)

where xj is the total output of industry j in 2018-USD.

A.3.1 Occupations

We divide all workers into 539 occupations. We use 2010 SOC codes, which BLS uses for its annual
OEWS surveys between 2010 and 2018. This data is available at four aggregation levels: major
(22 occupations in the 2018 OEWS), minor (93), broad (455), and detailed (809). To generate the
results shown in Fig. 4b we further define eleven high level occupational categories.18

Our list of occupations is a combination of broad and detailed occupation categories, generated
using the most detailed one-to-one harmonization possible with OCC codes, which is a different
classification used by the US Census bureau.

As a starting point, we take the list of occupations from a US Census bureau harmonization
table of Census OCC codes with 2010 SOC codes.19 We limit ourselves to the codes available in
BLS (i.e., excluding military occupations). For more details on the exact mapping between the
two datasets, see Section C.9.

A.3.2 Skill data

Data on occupational skills is taken from O*NET 25.0 Data Dictionary.20 See Consoli et al. (2016)
for details.

A.4 Step 4: Occupational network and frictions

We use two datasets on the relatedness between occupations: O*NET’s data on related occupa-
tions,21 and an empirical occupational mobility network based on US Census bureau data from
IPUMS, following Vom Lehn et al. (2022). We only use the latter to impute missing data in the re-
lated occupation network, as explained below, and for robustness testing. For a further discussion
on the different occupational networks, see Section B.9.

The Related Occupations network is created using O*NET data and a list of twenty most
related other occupations, following Bowen et al. (2018). For each occupation, O*NET lists twenty

18The 11 occupational categories are based on the 22 major BLS occupations as follows: Healthcare contains
Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations; Engineering and IT con-
tains Computer and Mathematical Occupations and Architecture and Engineering Occupations; Life, physical, and
social science contains Life, Physical, and Social Science Occupations; Education, social services, and media contains
Arts, Design, Entertainment, Sports, and Media Occupations, Education, Training, and Library Occupations, and
Community and Social Service Occupations; Construction and extraction contains Construction and Extraction Oc-
cupations and Farming, Fishing, and Forestry Occupations; Transportation contains Transportation and Material
Moving Occupations; Installation and maintenance contains Installation, Maintenance, and Repair Occupations and
Building and Grounds Cleaning and Maintenance Occupations; Other service occupations contains Personal Care
and Service Occupations, Food Preparation and Serving Related Occupations, and Protective Service Occupations ;
Management and financial includes Management Occupations, Business and Financial Operations Occupations, and
Legal Occupations, and Sales and administrative support contains Office and Administrative Support Occupations
and Sales and Related Occupations

19https://www.census.gov/topics/employment/industry-occupation/guidance/code-lists.html
20https://www.onetcenter.org/dictionary/25.0/excel
21https://www.onetcenter.org/dictionary/26.3/excel/related occupations.html
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occupations it is related to. In previous versions of O*NET, this data was called the career changers
matrix.

Not all occupations are covered by the related occupation network. Occupations whose name
contains ‘All other’ (e.g., Sales and Related Workers, All Other’ ), or ‘Miscellaneous’ tags (e.g.,
‘Miscellaneous Financial Clerks’ ), are often missing because they are deemed too general. Instead,
we impute links for these occupations from the occupational mobility network of observed past
mobility.

B SM methods

B.1 Improvement potential of proposed methodology

Our IO model has a few important limitations that are beyond the scope of our research to address.
Our results are aggregated to 82 industries and 539 occupations but differences between firms in
the same industry (e.g., Ishikawa, 2021) or variation within the same occupation (Saussay et al.,
2022; Caunedo et al., 2023; Atalay et al., 2020) can be obfuscated by our level of aggregation. For
example, we did not separate metal mining from coal mining.22

As mentioned before, changes in labour demand and their associated wages and how differently
workers spend them do not feed back into final demand in our model specification. Our results
therefore include direct and indirect upstream supply chain jobs, but not induced jobs. Induced
jobs are created when increased employment or higher wages lead to more spending by workers,
which in turn further increases economic demand, creating more jobs. Stavropoulos and Burger
(2020) argue that studies that include induced jobs often report lower overall job growth for the
energy transition.

Also out of scope for this research effort are the capital goods used in the electricity capex
supply chains that are not part of the final electricity mix. For example: the operation of oil
platforms, pipelines, and oil tankers is part of the analysis, but not the construction of these
secondary capital goods. I.e., workers on the opex side of these operations (oil rig staff, pipeline
controllers, and oil tanker sailors) are part of this analysis, but not the welders on the shipyards,
or the ground clearance construction worker for a pipeline project. This is a consequence of the
exclusion of capex in IO tables and national accounts data, and may underestimate the total job
estimates in this study (Södersten and Lenzen, 2020).

Additionally, out of scope for this research are both opex and capex impacts from transition
related projects outside the electricity sector, such as in automotive (e.g. batteries for electric
vehicles), or heating (e.g. heat pump installation or other building climate control equipment).

As mentioned in the introduction, our study also disregards geographical effects. In previous
studies, these have been taken into account by disaggregating Input-Output tables (Kahouli and
Martin, 2018), or by using firm level supply chain data (Ishikawa, 2021; Kahouli and Martin, 2018).
Our model also leaves out the effect of potential wage changes, including the green premium (for
a discussion on the green wage premium, see, e.g., Antoni et al., 2015; Saussay et al., 2022), and
changes beyond the power sector. We also assume an unchanged economic structure and policy
landscape, where only the electricity mix changes. Changing effects and policies regarding manu-
facturing on-shoring, automation, and aging will undoubtedly impact the results of our analysis,
either directly (e.g., more wind turbine components are manufactured domestically), or indirectly
(e.g., aging will require more health care staff), which potentially changes the skill mismatch fric-
tions in the labor market. Automation, in particular, could generate important changes to labour
markets and the nature of work (see, e.g., Acemoglu and Restrepo, 2019; Atalay et al., 2020; Frey
and Osborne, 2017). All such changes can exacerbate or reduce the direct and indirect impacts
presented in this study. Further research into how all aspects of a fast green transition can best be
managed while minimizing disruptions to the labor market might be worthwhile. The methods we
have employed here are sufficiently general that they could be applied to such analyses or virtually
any mix of labor transforming trends, in the US and elsewhere.

B.2 Transmission and Distribution cost calculation

NREL reports transmission line capacity Tt (in MW-mile) in year t, but not their associated capex
or opex costs. We follow the methodology of Way et al. (2022) for transforming MW-mi into

22The mining industry will undergo an eventual decline during the transition due to lower fossil fuel use, but
will receive a boost in our analysis from increased demand for the materials that are required for clean energy
technologies sourced within the US.
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capex, and assume opex scales linearly with the equipment capital new-value. Way et al. (2022)
assume that additional electricity distribution requirements can partially be met by increasing the
capacity of lines on existing grid infrastructure. As the grid requires more capacity, we assume old
grid infrastructure is replaced with lines that carry three times the capacity of the old ones, for
1.37 times the capex of standard transmission line cost. That means that for every 100 MW-mi of
grid expansion, 50 mile of existing grid is replaced with lines that are three times as powerful (see
p. 44 supplementary information of Way et al., 2022). Unit costs used in our study are based on
an NREL study showing average transmission line project costs of 1,384 USD (Jorgensen et al.,
2017, Table 4) (1,433 2018-USD).23

We include changes to both the transmission and distribution grid (T&D), although NREL
does not model the latter. We follow Way et al. (2022) by inferring from IEA data that between
2010–2019 about 69% of all US grid investments were on distribution grids, while 31% were on
transmission grids (IEA, 2022). Since this 69/31-ratio remained fairly stable in the 2010s, we
assume the same investment ratio for the future.

Thus, grid capex spending is given by:

Ccapex
T&D,t = Tt/2× 1.37× 1433× (100/31), (24)

where Tt is the amount of new transmission capacity in MW-mi, Tt/2 the number of miles of old
transmission grid that are upgraded, Tt/2 × 1.37 × 1433 the cost of upgrading to three times as
powerful lines in 2018-USD, and (100/31) the factor to account for the distribution grid too. As
with the generation technologies, we smooth the capex spending using a 3-year rolling window.

Similarly, we assume opex scales with the new-cost of the transmission grid capital stock, in
particular

Copex
T&D,t = Cfix opex

T&D,t ∝ 1.00× (T0 − (Tt − T0)/2) + 1.37× (Tt − T0)/2, (25)

where the first part relates to the old part of the grid, and the second to the new upgraded part.
We assume T&D’s variable costs to be zero: Cvar opex

T&D,t = 0.
In Section D.4, we test the sensitivity of our results with respect to the unit cost assumption,

as well as the 1.37 factors for capex and opex, and find that T&D cost uncertainties to be one of
the largest sources of uncertainty in our analysis.

B.3 Battery cost

We cannot include battery storage as a technology in our IO table because it is not part of the
electricity sector NAICS 2211. In fact, there is not a NAICS code (yet) for grid-scale battery
storage facilities. We add battery storage opex workers to our results via capex, following the final
demand approach as laid out in Blair and Miller (2009) (see Section B.4). We assume all battery
storage opex is fixed and represents maintenance and replacement costs. We assume the spending
breakdown of battery storage opex is the same as used for battery storage capex. We justify
this on two battery cost breakdown analyses, which report that battery opex work is often mainly
replacement maintenance that has a similar breakdown to newly manufactured and installed capex
(Feldman et al., 2021; Black & Veatch, 2012). Instead of Eq. (5), we take

Ccapex
battery,t = Cpure capex

battery,t + Cfix opex
battery,t, (26)

where Cfix opex
battery,t follows Eq. (1), and

Cpure capex
battery,t = max {(Ybattery,t − Ybattery,t−1 +Rbattery,t−1), 0} ccapexbattery,t (27)

is similar to Eq. (5), and Cvar opex
battery,t = Cfuel

battery,t = 0.

B.4 Differentiation between capex and opex

In our methodology we treat opex and capex costs separately, despite the overhead this creates.
We do this for three reasons. Firstly, fossil fuel technologies and renewables have very different cost
structures: renewables often require more capex and less opex. Secondly, the distinction between
the two costs matters for workers. Opex employment is generally stable and required for the
duration of electricity generation. Capex work is often only available before electricity generation
can start (and later during capital goods replacement). Their occupational profiles are different
too.

23We use the BEA price index for private fixed investment in power and communication structures (T50304).
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Thirdly, input-output frameworks naturally treat opex and capex differently. Capex mutations
can be modelled as a change in investment, a final consumption category. Opex mutations require
a modification of the intermediate expenses matrix. Blair and Miller (2009) indicate two potential
routes for dealing with new industries that are not yet encapsulated in the IO data: A complete
inclusion in the technical coefficient matrix (p. 636), or the final-demand approach (p. 634). The
final-demand approach has the advantage of requiring fewer data inputs. A disadvantage is that
only backward upstream links are included, and no downstream effects. A further caveat is that
most of the electricity generation sectors are not completely new, as these operational expenses
(opex) are partly already included in the existing Utilities sector. For these reasons, we decided to
follow the final-demand approach for capex, and for opex we split the utility sector in the IO table
into several electricity generation technologies. The exception is battery storage opex, for which
we follow the final demand approach, as was explained in Section B.3.

B.5 Domestic input-output tables

This section provides an explanation of how we calculated the domestic production network matrix
A. Matrix A is calculated using US domestic make and use tables from BEA at the summary (71
industries/commodities) level. Elements aij ; i, j ≤ n, represent the value of goods from domestic
industry i required to produce one dollar output for industry j.

We derive the domestic IO table A and domestic final demand vector f, which we use in Eq. (6),
following the official BEA derivation calculations,24 and proceed as follows:

Make and use tables The symmetric use matrix U has elements Uij : the value in USD in
2018 used of commodity i in the production of industry j. The make matrix V has elements Vij :
the value in USD in 2018 created of commodity i by industry j. Let W be the part of U that
is imported, with Wij the value in USD of commodity i that is imported for the production of
industry j. The vector g is the total industry output for the US (gi is the 2018 USD output of
industry i), and q the total commodity output. The total amount of imports used in industry j is
wj =

∑
i Wij .

Scrap and noncomparable imports In addition to the commodities associated with its 71
industries, the BEA data contains two more commodities, Scrap, sed, and secondhand products h,
and Noncomparable imports and rest-of-the-world adjustment i. For both we have three vectors
(use, make and import per industry), respectively hu, hv and hw, and iu, iv, and iw. We add
the noncompareable imports to the total amount of imports per industry w̃ with elements w̃j =
wj + (iuj − iwj ).

Market share matrix The same commodity can be produced by different industries. The
market share matrix D = V q̂−1 has elements Dij that give the share of industry i in producing
commodity j, where q̂ indicated a diagonal matrix with the elements of vector q along the diagonal.

Next, we adjust the market share matrix for scrap. Let p be the industry scrap adjustment
vector with elements pi = gi/(gi − hv

i ), which is larger than 1 if industry i produces scrap. The
adjusted market share matrix D̃ leaves out scrap; each element D̃ij gives the market share of

industry i in commodity j, excluding scrap production, as D̃ij = piDij .

Domestic industry by industry spending and recipe matrices The domestic industry-by-
industry matrix Z̃ can be found by multiplying the domestic use matrix Ũ = U −W 25 with the
market share matrix

Z̃ = D̃Ũ . (28)

In the final step, we add a row with total imports to get the domestic production network including
imports

Z = [Z̃; w̃]. (29)

Thus, Finally, the domestic IO table is

A = Zĝ−1. (30)

24(See chapter 12 of the BEA IO manual https://www.bea.gov/sites/default/files/methodologies/IOmanual
092906.pdf) as well as the domestic requirements derivation as per https://apps.bea.gov/scb/pdf/2017/03%20M
arch/0317 introducing domestic requirement tables.pdf

25To maintain the same total amount of use in the absence of scrap, we inflate the columns of Ũ proportionally
with the amount spent on scrap by each industry.
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Domestic final demand The domestic final demand follows analogously. Let Fc be the final
commodity demand matrix, with Fc,ij the final demand in 2018-USD for commodity i by final
demand category j. Different categories of final demand can include household spending, govern-
ment spending, and exports. Let FW

c be the final demand that is spent abroad, and F̃c = Fc−FW
c

the domestic final demand per commodity (including exports). The domestic final demand per
industry F with Fij the final demand in 2018-USD for goods from industry i by final demand
category j is then

F = D̃F̃c. (31)

We can sum over the categories to find the total domestic final demand vector f with elements
fi =

∑
c Fic of domestic final demand for industry i.

B.6 Electricity sector disaggregation in the US IO tables

In order to model the power sector transition, we disaggregate the generic utility sector in the
IO matrix A, as calculated in Eq. (30), into different electricity generation sectors and other
utilities. This requires additional input from BEA’s 2012 detailed (389 industries) US IO table
and literature estimates on production inputs (see Section C.4). We also use BEA data on detailed
industry output in 2018, which includes several electricity generation sectors. We do not include
battery electricity storage as it has not been part of the BEA utility industry. We add it via the
final demand approach as explained in Section B.3.

While we add different electricity generation sectors in our IO matrix, the IO table totals
must remain internally consistent. We use a bi-proportional method-based technique to ensure
this. Blair and Miller (2009, sect 7.4.7) discuss this method in the context of projecting IO tables
forward in time when only aggregate data was available. Our problem can be dealt with in a
similar fashion. But rather than an outdated matrix we use literature estimates of disaggregated
sectors.

This section lays out the IO table disaggregation procedure, and Section C.5 then demonstrates
how we apply it to the US utility sector.

B.6.1 IO industry disaggregation procedure

Recall the IO matrix A represents the production network. We call the ith columns of A the
production recipe of industry i. The jth row of A shows the fraction of spending of other industries
on industry i. We call these rows output recipes.

New industries Let A∗ be the IO matrix with industry i disaggregated into m sub-industries
(i1, . . . , im) with element A∗

ik,j
the amount of industry ik’s goods required to produce one 2018-

USD of output of industry j, with k ≤ m; j ≤ n. The output of sub-industry ik as a fraction of i’s
total output wk such that

∑
k wk = 1.

Following Lindner et al. (2012),26 the subsequent constraints need to be satisfied:

a) The sub-industries’ production recipes should sum to the original production recipe:

m∑
k=1

wka
∗
jik

= aji ∀j (32)

b) The output recipes of the sub-industries should sum to the output recipe of industry i:

m∑
k=1

a∗ikj = aij ∀j (33)

c) Any intermediate flows between the sub-industries should sum to the self-link of the original
industry:

m∑
k=1

m∑
k′=1

wka
∗
iki

′
k

= aii (34)

In addition, we require the following two regularization constraints to hold:

d) All items of A∗ should be non-negative: a∗ij ≥ 0

26Equations 6-8
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e) Total output should equal intermediate spending plus value added. The production recipes
should sum to

∑
j a

∗
i,j = αi ≤ 1, where αi+βi = 1 with βi =

value addedi

xi
the fraction of value

added of output of industry i.

Let us assume that we have an approximation of the production recipes D of the m sub-
industries of industry i where element dj,k; k ≤ m, j ≤ n is the approximation of the value of
goods required from industry j for one dollar of output of sub-industry k. While the approximate
recipes could be imputed directly in A to create A∗, they are unlikely to satisfy the aforementioned
constraints.

We use an iterative bi-proportional fitting method that fits the initial estimates in the larger
table such that it respects the aforementioned constraints.

Iterative proportional fitting procedure We use bi-proportional fitting, also known as the
‘RAS method’, as a heuristic to find a matrix D∗ which is closest to an initial matrix D but has
the row and column total of a target matrix A (Blair and Miller, 2009; Stephan, 1942). Matrix
D∗ is then used as a proxy for A, whose interior is unknown. The fitted matrix is of the form
D∗ = PDQ where P and Q are diagonal matrices.

Most algorithms to find D∗ are iterative, adjusting P and Q successively until convergence,
called iterative proportional fitting (IPF).

Figure 10: ipfp procedure, with production network matrix A on the left, the new recipes matrix D in the middle,
and the new production network matrix A∗ with industry i disaggregated into m sub-industries on the right

Our IO disaggregation procedure has the following steps (see also Fig. 10):

1. We identify the production recipes 1, . . . ,m that will take the place of the original production
recipe i (matrix D in Fig. 10)

2. We insert a set of new output recipes i1, . . . , im by splitting the original output recipe i;
we split it proportional to the fraction of output attributed to each of the sub-industries
1, . . . ,m. This refers to area C in Fig. 10 and satisfies constraints b, d and e above for the
non-disaggregated industries. We assume that all industries are agnostic about the source of
electricity, and consume electricity as per the average grid mix.

3. We apply IPF to fit the new recipes in D with two constraints: The columns sum to the
fraction of output that we attribute to intermediate demand (constraint e above), while the
rows sum to the original production recipe (constraint a above). We then replace production
recipe i with these new values. This refers to area D∗ in Fig. 10. The new production recipes
of the disaggregated industries now satisfy constraints a, d and e above, and the self-links
satisfy constraint c.

4. We combine the new production recipes, output recipes and self-links with the original input-
output matrix to create the new input-output matrix.

B.7 Occupational typology

In this section, we formalize the definition of occupational typology, and present an alternative
method for robustness checks. We classify occupations into four types according to their demand
dynamics in the scale-up and scale-down phases (see Fig. 3).

Occupation i has a change of demand between 2020 and 2034 of ȯupi = (
∑t=2034

t=2021 ∆ot)/oi,2020,

and, similarly, ȯdown
i = (

∑t=2038
t=2035 ∆oi,t)/oi,2020. If

√
(ȯupi )2 + (ȯdown

i )2 < 0.01 we conclude occupa-
tion i is not markedly affected. In all other cases, we assign the occupations to the three different
types as follows:
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i ∈ Consistent growth if (ȯupi > 0) ∧ (ȯdown
i > 0) (35)

i ∈ Temporary growth if (ȯupi > 0) ∧ (ȯdown
i < 0) (36)

i ∈ Consistent decline if (ȯupi < 0) ∧ (ȯdown
i < 0), (37)

Alternative typology definition Our alternative definition is based on the idea that all occu-
pations can be part of multiple ‘occupation types’ to a certain degree, depending on how the actual
values of demand increase and decrease over all industries in which workers are employed in that
occupation. We will say that a fraction of jobs in a particular occupation can be part of type α,
and a second fraction to type β etc. Let us define the following quantities for occupation i, which
calculate the total positive impact oi,+ and total negative impact oi,− on demand for occupation
i through the scenario between 2020 and 2050:

oi,+ =

t=2050∑
t=2021

Mij max(0,∆xt,j), (38)

and

oi,+ = −
t=2050∑
t=2021

Mij min(0,∆xt,j), (39)

where ∆xt,j is the change in industry j’s output in year t, and Mij the number of workers in
occupation i per USD-2018 output of industry j.

The number of Consistent Growth jobs in occupation i is

oi,perm = max(0, oi,+ − oi,−). (40)

Jobs classified as Consistent Decline are jobs that are lost in shrinking industries that did not
recover. The number of Consistent Decline jobs in occupation i is

oi,decline = −min(0, oi,+ − oi,−). (41)

Temporary growth jobs are jobs created by industries that are phased out after the transition
reaches its zenith. The number of Temporary growth jobs in occupation i is

oi,temp = oi,+ − oi,perm. (42)

The fraction of occupation i that is part of type α is then fα
i =

oi,α
oi,2020

. Our alternative, three

dimensional, type definition of occupation i is then given by fi = (fperm
i , f temp

i , fdecline
i ).

B.8 Occupational typology location quotients

The location quotient of occupation i in state β is the occupation i’s share in state β’s workforce
relative to the US as a whole. Specifically, we define

LQi,β =
oi,β/

∑
i∈Occupations oi,β∑

β∈States oi,β/
∑

i∈Occupations

∑
β∈States oi,β

=
oi,β/oβ
oi/o

, (43)

with oi,β is the total number of workers in occupation i in state β, and oβ the total number of
workers in state β, oi the total number of workers in occupation i, and o the total number of
workers in the US. In Fig. 16 we plot the mean location quotient for all occupations per type.

B.9 Occupation network choice

The occupational network reflects the options workers have outside their current occupation. There
are different reasons why workers would change their occupation, including wage and career pro-
gression considerations, preferences for specific job tasks, location and travel requirements, and
perceived status (Nedelkoska et al., 2018; Hollywood, 2002; Schmutte, 2014; Neffke et al., 2022).
We therefore considered multiple options for measuring relatedness between occupations. Besides
O*NET’s relatedness measure, there are empirically observed mobility networks, and networks
based on tasks or skills. We will introduce each of these approaches and weigh the pros and cons
of our chosen approach against the alternatives.
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Relatedness network As explained in the Methodology section, the network we use for the
main results is based on O*NET’s classification of related occupations (previously known as the
career changers matrix) and is defined by adjacency matrix R.

Empirical occupational mobility network Empirical occupational mobility networks infer
the likelihood of transitioning between occupations from empirical job mobility data, such as census
data or surveys. Del Rio-Chanona et al. (2021) construct an occupational mobility network from
US census data to inform an agent-based labour market model. Vom Lehn et al. (2022) use data
from the Annual Social and Economic Supplement (ASEC) of the Current Population Survey
(CPS) (Flood et al., 2021) that takes part every year in March. Participants are asked about their
current occupation and their occupation the previous year. In this way, the ASEC supplement
reduces errors in the estimation of occupational mobility due to misclassification (Cheng and Park,
2020).

Following Vom Lehn et al. (2022), we construct an occupational mobility network for 2010–
2019 with adjacency matrix AOMN. Edges in the occupational mobility network are weighted and
directed – the weight of an edge from occupation i to j is the average number of workers per year
that changed from occupation i to j between 2010 to 2019 (inclusive). We only include occupations
that presented transitions between 2010 to 2019. This leads to a strongly connected network with
539 nodes.

Skill-based networks Links between nodes can also be informed by the skill difference between
occupations, or other job characteristics, directly. For example, Anderson (2017) pulls skills data
off an online work platform and shows which skills lead to higher wages for individual workers.
Workers with diverse skills that are in high demand but short supply are especially valuable. Mealy
et al. (2018) construct a network where occupations are more strongly connected if they perform
the same tasks.

Combined network We define a combined network using both O*NET’s Relatedness Occupa-
tion data and the empirical occupation transitions data following Vom Lehn et al. (2022). We
define the mixed 50/50 network with the adjacency matrix

Amix50 =
R+AOMN

2
, (44)

where R and AOMN are the adjacency matrices defined by O*NET’s related occupation list and
the empirical occupational mobility network, respectively.

Pros and cons of our approach vs alternatives We chose to present our main results using
O*NET’s relatedness network because it attempts to capture various reasons for relatedness in one
metric, and it is intended to be forward-looking. A relatedness measure that is based on the skill
or task difference between occupations captures an important factor that may induce or inhibit a
worker from moving into a particular occupation but neglects other aspects of the decision. Mealy
et al. (2018) find that task similarity is a significant exploratory variable for empirical occupational
mobility, although with a lot of variation left unexplained. This type of relatedness measure may
represent an upper limit of mobility: if workers are willing to relocate or take a pay cut in a
disruptive situation, their skill set may still inhibit them from getting a job.

Empirical occupational mobility networks have the advantage that they combine all job-switching
considerations by measuring occupational mobility directly. A downside is that economic factors
of the period in which the data was gathered can influence the results. For example, if the financial
sector saw a decline in activity, fewer workers would be observed moving into financial occupations,
even if many more would take up such a job were the economic situation different.

A further, more practical, limitation of the empirical occupational mobility network is that
some occupations that are relevant to the transition have not existed for very long, such as wind
turbine technicians and solar panel installers. Indeed, we were only able to observe a handful of
transitions in and out of those occupations, which leads to noisy results.

In Methods and Section A.4 we discuss the occupational network built using O*NET’s list
of related occupations. O*NET’s Related Occupation list was constructed using different data
sources, including expert opinions, and is meant as a forward looking measure. For this reason
we decided to use this network for our main analysis. A downside is that it is an ad-hoc list that
contains some arbitrariness and may not fully reflect reality; for example, each occupation that is
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included has 20 related occupations, but it is not clear why every occupation should have exactly
20 related occupations.

In the robustness test for assortativity in Section D.2.3, we show that our main results using the
relatedness network hold when we use the empirical occupational mobility network or the 50/50
combined network instead.

C Supplementary data

C.1 Summary of data used in this study

The data relevant for our methodology can be visualised as a two-layer network of connected
industries and occupations, as can be seen in Fig. 11. In total it includes 82 industry nodes and
539 occupation nodes and their connections. The full data set consists of a combination of this
bipartite network of occupations and industries, the IO network of industries, and the occupational
mobility networks described in the preceding sections.

Figure 11: Two-layer network of US industries and occupations showing input-output relationships between the
82 industries of the BEA IO tables (top), occupational relatedness between 539 occupations as defined by O*NET
(bottom), and connecting occupational employment by industries according to data from the BLS (inter-layer
connections). Nodes are sized by the log of total industrial output or total employment; a link’s width is determined
by the strength of its connection. The layout is produced by a force-directed algorithm that tends to move connected
industries and occupations close together, and then we manually split the industry and occupation nodes into two
layers.

C.2 Matching of technologies and industries

In our analysis we combine several large datasets which comes with the challenge of aligning
different definitions of technologies and industries across these datasets. We take the unit costs for
various power technologies from NREL’s 2021 Annual Technology Baseline (ATB) (NREL, 2021).
Technology costs are further separated into capital expenditure, fixed and variable operational
expenditure, and fuel costs. Since no fuel costs for gas and coal are reported in the 2021 ATB
version, we have used the 2020 ATB costs for these cases. For all technologies we have used the
moderate future cost pathways which are consistent with the power sector scenarios considered
here.

As can be seen in Table 2, there is not always a clear one-to-one mapping between the ATB
technologies and the capacity and generation technologies from NREL’s Standard Scenarios from
(Cole et al., 2021). The cost data tends to be much more granular for most technologies but does
not include all technologies that are reported in the Cambium scenarios (e.g. Oil-Gas-Steam or
Bioenergy with carbon capture).

Our results in the main text are based on input-output industries where we disaggregate 10 key
energy technologies (see Section C.5). We thus have to further aggregate the more granular cost
and power system scenario data. The mappings between the technology definitions of the various
datasets are described in detail in Table 2. We also used annual capacity retirement data which
we have obtained via personal correspondence with authors of the Cambium report.

The NREL scenarios include both utility and distributed electricity generation and capac-
ity, but the other data sources (BLS and BEA) only include utility-scale establishments. Con-
trary to other generation technologies, distributed solar can be a significant contribution to so-
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lar electricity total production. We therefore add distributed solar to the solar IO industry

as: asolar,i,t = asolar,i,2018 × Copex
solar util,t

Copex
solar util,2018

× Copex
solar util,t+Copex

solar dist,t

Copex
solar util,t

, and equivalently for fsolar,t =

fsolar,t−1 ×
Copex

solar util,t

Copex
solar util,t−1

× Copex
solar util,t+Copex

solar dist,t

Copex
solar util,t

.

ATB Technology ATB Technology Detail Cambium technologies IO
Utility-Scale Battery Storage 4Hr Battery Storage battery Batteries
Biopower Dedicated beccs Bio
Biopower Dedicated biomass Bio
Coal FE newAvgCF coal Coal
NaturalGas FE CCAvgCF gas.cc Gas
NaturalGas FE CCCCSAvgCF gas.cc.ccs Gas
NaturalGas FE CTAvgCF gas.ct Gas
NaturalGas FE CTAvgCF o.g.s Gas
Geothermal HydroFlash geothermal Geo
Hydropower NPD1 hydro Hydro
Nuclear Nuclear nuclear Nuclear
Pumped Storage Hydropower Class 3 phs Hydro
CSP Class3 csp Solar
ResPV Class5 distpv Solar
CommPV Class5 distpv Solar
UtilityPV Class5 upv Solar
LandbasedWind Class4 wind.on Wind
OffShoreWind Class3 wind.ofs Wind
- - Transmission grid T&D

Table 2: Matching technologies across different datasets. The left column represents the ATB technologies
which are further differentiated into detailed categories (second column). We refer to NREL (2021) for further
details on these technologies. The third column gives the technological detail of the NREL Cambium Standard
Scenarios as they can be downloaded from https://scenarioviewer.nrel.gov/ (accessed: September 21, 2022).
The fourth column shows the input-output energy categories. ATB cost estimates for transmission and distribution
(T&D) are not available: see Section B.2 for details on how we deal with that.

C.3 Domestic capex spending

We only include the capex that is spent domestically. As mentioned before, we use the domestic
IO tables to restrict our analysis to US domestic employment (including both direct and indirect
jobs) for different electricity generation technologies. However, part of the capex cost can be spent
abroad directly and thus never enter the domestic IO table. In Eq. (9) we defined mi as the fraction
of goods produced by industry i that are imported rather than sourced domestically. We calculate
mi using the 2018 BEA use and import table (Bureau of Economic Analysis, 2022b). Recall from
Section B.5 that the use table U has elements Uij that are the use of commodity i by industry j,
and the import part of that is matrix W where Wij is the value of commodity i that is imported
by industry j. The market share matrix D has elements Dij that give the share of industry i in
producing commodity j.

The total industry-to-industry spending matrix is Ztot = DU , of which the import part is
Z imp = DW . The total fraction mi of spending on industry i that is imported is then

mi =

∑
j Z

imp
ij∑

j Z
tot
ij

. (45)

How much is spent on the domestic industry differs per industry. Table 3 shows the top and
bottom 3 industries by import percentage m in 2018 are shown. For example, 66% of goods
acquired from the Electrical equipment, appliances, and component industry, and about half of
those from the Computer and electronics industry were imported in 2018. We assume that these
fractions remain constant at 2018 levels. However, recent policy discussions and policies, such as
the Inflation Reduction Act and CHIPS and Science Act, indicate that the US is keen to produce
more of its own demand domestically (The White House, 2022).
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Industry Imports for use in other industries,
as percentage of total intermediate
demand

Apparel and leather and allied products 69
Electrical equipment, appliances, and components 56
Computer and electronic products 49
... ...
Construction 0
Wholesale trade 0
Management of companies and enterprises 0

Table 3: Most and least three imported from industries by domestic production of intermediate use in 2018

C.4 Cost vectors for opex and capex

The link between the energy technologies and IO industries are the cost vectors K in Eqs. (9)
and (11). Kcapex

j is a vector of industries that embeds knowledge of the capital expenditure
process of electricity generation technology j, with elements Kcapex

ji : the fraction of capex cost for
technology j that is spent on industry i, and

∑
i K

capex
ji = 1. For example, wind turbines consist

of metal products (e.g. for the tower), machinery (e.g. for the nacelle), and electrical equipment
(e.g. for the grid connection). Finally, construction work is required to prepare the turbine
foundations and installation. Thus, the wind energy capex cost vector Kcapex

wind will have non-zero
entries for metal industries (Kcapex

wind,fabricated metal products > 0), certain manufacturing industries,

and construction, and all must sum to unity with
∑

i K
capex
wind,i = 1. Similarly, we require cost

vectors of operational (e.g. fuel and maintenance) expenses Kopex
j for disaggregation of the utility

sector.
We construct cost vectors for the eight electricity generation technologies by taking the average

of previous estimates available in the literature, most of which are based on technical reports by
engineering firms or (inter)national agencies, such as IRENA and NREL. Specifically, for wind, so-
lar, geothermal, and biomass both opex and capex we use the mean of values taken from Dell’Anna
(2021) and Pollin et al. (2014). NACE industry codes from Dell’Anna (2021) were transformed to
NAICS using a crosswalk from Eurostat (Remond-Tiedrez and Defense-Palojarv, 2014). We also
use the three different solar and wind vectors and one geothermal cost vector from Garrett-Peltier
(2017), which represent ‘total cost’ according to the authors. However, because the cost items can
solely be attributed to materials and construction, we reinterpret these as capex. We further in-
clude the cost vectors for coal and natural gas electricity generation by Garrett-Peltier (2017) and
Pollin et al. (2014) respectively as opex cost estimates.27 For gas capex costs, we use the estimates
for new oil and natural gas capacity from Pollin et al. (2014). We did not construct any capex cost
vectors for coal electricity technologies, as our scenarios assume no new coal electricity generation
capacity will be added in the US, nor has any been added since 2014 (EIA, 2021). Similarly, we
assume nuclear capacity remains stable and thus leave it out of the analysis. This also implicitly
assumes that nuclear capex unit costs will not decline, which is in line with technological trend
assessments provided in the literature (e.g. Way et al., 2022).

In addition to electricity generation technologies, we construct capex cost vectors for battery
storage from two reports (Feldman et al., 2021; Black & Veatch, 2012). We manually assign the
cost items to industries in our IO table, taking the simple mean of the two technical reports.
Finally, we take transmission and distribution grid capex vectors from Schreiner and Madlener
(2021).28,29

Table 4 shows the capex cost vectors used for this study. Note that while we take the cost
breakdown per USD spent from the (grey) literature and assume it remains constant over time, we
allow the total cost in 2018-USD per MW(h) to vary according to data from NREL’s ATB.30 See

27We note that Garrett-Peltier (2017)’s coal and natural gas cost vectors are sparse and only represent fuel costs,
which is the main supply chain cost component for fossil fuel electricity but not the only one. Our matrix inclusion
method can account for opex costs beyond fuel costs.

28We assume US transmission lines are mostly DC overhead lines (their Table D.2).
29Schreiner and Madlener (2021) uses commodity group categories (CPAs), which we translate to IO industries

as follows: we match Services of architecture, engineering and technical and physical investigation on Miscella-
neous professional, scientific, and technical services; Metal products on Fabricated Metal Product Manufacturing;
Ceramics, processed stones and soils on Nonmetallic Mineral Product Manufacturing; both Electrical gears and
Electric current, services in electricity, heating and cooling on Electrical Equipment, Appliance, and Component
Manufacturing; and finally both Civil engineering works (Tiefbauarbeiten) and Preparation of construction sites,
construction installation and other finishing work on Construction.

30Except for T&D cost which we calculate separately, as discussed in Section A.1.
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Industries Codes Wind Solar
Nat.
gas

Coal Biomass
Geo
thermal

Hydro
Battery
storage

T&D

Farms 111CA 0. 0. 0. 0. 0. 0. 0. 0. 0.
Forestry, fishing, and related activities 113FF 0. 0. 0. 0. 0. 0. 0. 0. 0.
Oil and gas extraction 211 0. 0. 0. 0. 0. 0. 0. 0. 0.
Mining, except oil and gas 212 0. 0. 0. 0. 0. 0.03 0. 0. 0.
Support activities for mining 213 0. 0. 0. 0. 0. 0.23 0. 0. 0.
Utilities 22 0. 0. 0. 0. 0. 0. 0. 0. 0.
Construction 23 0.25 0.2 0.07 0. 0.35 0.15 0.39 0.09 0.09
Petroleum and coal products 324 0. 0. 0. 0. 0. 0. 0. 0. 0.
Chemical products 325 0. 0. 0. 0. 0. 0. 0. 0. 0.
Plastic and rubber products 326 0.05 0. 0. 0. 0. 0. 0. 0. 0.
Nonmetallic mineral products 327 0.04 0.03 0. 0. 0. 0. 0. 0. 0.05
Fabricated metal products 332 0.18 0.23 0. 0. 0.11 0.1 0.1 0. 0.58
Machinery 333 0.22 0.13 0.79 0. 0.47 0.38 0.15 0. 0.
computer and electronic products, 334 0.01 0.13 0.14 0. 0.03 0.01 0.01 0. 0.
electrical equipment, appliances, and
components

335 0.17 0.15 0. 0. 0.03 0.04 0.08 0.82 0.22

Wholesale trade 42 0. 0. 0. 0. 0. 0. 0. 0. 0.
Rail transportation 482 0. 0. 0. 0. 0. 0. 0. 0. 0.
Truck transportation 484 0.01 0. 0. 0. 0. 0. 0. 0. 0.
Pipeline transportation 486 0. 0. 0. 0. 0. 0. 0. 0. 0.
Real estate ORE 0.01 0. 0. 0. 0.02 0.02 0.04 0. 0.
Federal Reserve banks, credit
intermediation, and related activities

521CI 0. 0. 0. 0. 0. 0.01 0.01 0. 0.

Insurance carriers and related activities 524 0.01 0. 0. 0. 0. 0. 0. 0. 0.
Miscellaneous professional, scientific,
and technical services

5412OP 0.04 0.1 0. 0. 0. 0.02 0.22 0.05 0.06

Management of companies and
enterprises

55 0.01 0.02 0. 0. 0. 0.02 0. 0.04 0.

Accommodation 721 0.0005 0. 0. 0. 0. 0. 0. 0. 0.
Food services and drinking places 722 0.0005 0. 0. 0. 0. 0. 0. 0. 0.
Administrative and support services 561 0. 0. 0. 0. 0. 0. 0. 0. 0.
Other transportation and support
activities

487OS 0. 0. 0. 0. 0. 0. 0. 0. 0.

Legal services 5411 0. 0. 0. 0. 0. 0. 0. 0. 0.

Sum 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0

Table 4: Capex cost vectors of electricity generation technologies for the 71 industry US input-output table. The
estimates we use are the mean of values taken from the literature with some manual adjustments. Coal and Nuclear
capex is zero as we assume no new coal electricity generation capacity will be built and nuclear capacity will remain
constant. T&D is Transmission and Distribution grid.

Section C.7 for some empirical evidence on the stability of the solar and wind cost breakdown.
In Section D.4 we test the sensitivity of our literature estimates by adding noise to all values

of K.

C.5 US electricity sector disaggregation

We apply the opex cost vectors to the procedure of Section B.6 to disaggregate the IO tables.
In practice, we perform the procedure twice. We will first discuss how we disaggregate the

Utility sector into three more detailed utility sectors, one of which concerns electricity generation
and distribution. Following this we will discuss how we further disaggregate the electricity sector
into detailed generation and transmission sectors.

Utilities split in electricity, natural gas direct distribution, and water and sewage
systems We disaggregate the Utility sector (NAICS code 22) into its three more detailed com-
ponents: Electric power generation, transmission and distribution (NAICS code 2211), Natural
gas distribution (2212), and Water, sewage, and other systems (2213). The 2018 IO table only
contains the aggregate Utility sector, but the (latest) 2012 detailed IO table contains the three
more detailed sectors. For the three more detailed utility sectors we do have 2018 data on their
total output (Bureau of Economic Analysis, 2022a). We first isolate both the production and out-
put recipes of the 2012 utility sectors. We crosswalk all non-utility sectors to match the 70 other
industries available in 2018, and thus end up with three output- and production recipes associated
with 73 sectors.

We perform the disaggregation procedure of Section B.6.1 to update the 2012 production and
output recipes to fit the 2018 table. This created a new 2018 IO table with 73 industries.31

Electricity sector split in eleven sub-industries The new IO table with 73 industries con-
tains one electricity generation and distribution sector, which we further split in eleven sectors
consisting of eight specific electricity generation technologies, one ’other’ electricity generation
technology, and two sectors for electricity transmission and distribution respectively:

1. Hydroelectric Power Generation (NAICS 221111) (short name: Hydro)

2. Gas Electric Power Generation (22111232) (Gas)

31Because we update the 2012 IO table with 2018 data, this method is equivalent to the biproportional fitting
method for projecting tables into the future mentioned before in Blair and Miller (2009).
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Electricity generation
2018 output in million
(2018-USD)

Hydroelectric power generation 3,045
Fossil fuel electric power generation 100,489
Nuclear electric power generation 35,737
Solar electric power generation 779
Wind electric power generation 6,458
Geothermal electric power generation 1,376
Biomass electric power generation 1,066
Other electric power generation 230
Electric bulk power transmission and control 12,403
Electric power distribution 240,901

Table 5: Total output of the electricity sector (Source: Bureau of Economic Analysis, 2022a). In our analysis we
split the fossil fuel electric power generation output in coal (43%) and gas (57%), using the relative numbers in
GWh electricity generation output for the US in 2018 from the EIA.

3. Coal Fuel Electric Power Generation (22111232) (Coal)

4. Nuclear Electric Power Generation (221113) (Nuclear)

5. Solar Electric Power Generation (221114) (Solar)

6. Wind Electric Power Generation (221115) (Wind)

7. Geothermal Electric Power Generation (221116) (Geothermal)

8. Biomass Electric Power Generation (221117) (Biomass)

9. Other Electric Power Generation (221118) (Other)

10. Electricity transmission and control (221121) (Trans)

11. Electric power distribution (221122) (Dist)

In this disaggregation we follow BEA’s industry classification at the sixth digit level, with the
added benefit that for all these sectors we have 2018 total output data from BEA (see Table 5).32 In
the main text, we combine the final two industries (Trans and Dist) together into one Transmission
and Distribution (T&D) sector.

As mentioned in Section B.3, battery storage is not part of the Utility industry, and we model
that separately via a final demand inclusion as explained in Section C.4.

We use the literature opex cost vectors discussed in Section C.4 and shown in Table 6 as initial
estimates of the production recipes. We did not prepare opex cost vectors for Trans, Dist, Nuclear,
and Other. We initialize these instead with the same production recipe as the higher level industry
(Electricity generation and distribution and transmission (2211)), excluding any obvious fuel costs
(mining, extraction, refineries, agriculture and pipeline transportation). For Nuclear (221113), we
make an extra manual modification and assume it requires nuclear fuel from the Chemical industry
(325), as explained in the paragraph below.

We make three further modifications in order for the disaggregation procedure to work. First,
the literature estimates are often not exhaustive and only highlight the most relevant parts of the
production recipes. For example, the fossil fuel production recipes do not include spending on
the utility industry that provides electricity, water, and gas, which is a cost they would incur. We
therefore add 2% spending on Utilities for Fossil fuel electricity generation. For all other industries
that are not mentioned in the literature Table 6, we assume relative spending by all electricity
generation sectors equal to the aggregated Electricity generation and transmission sector (2211).

Second, zero-valued entries can lead to matrix inversion problems. We set any zero-valued entry
to the equivalent of 2018-USD 1,000. Then we use the disaggregation procedure from Section B.6
to fit according to the constraints as detailed above. After fitting, the biomass fuel component fall

32BEA does not distinguish between fossil fuel technologies. Gas and Coal electric power generation are both part
of the same Fossil Fuel Electric Power Generation industry (NAICS 221112). We use additional data by the US
Energy Information Administration (EIA) on total GWh electricity production to be able to distinguish between
Coal and Natural gas powered electricity plants (Bureau of Economic Analysis, 2022a).
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away completely as agriculture is not an input to the utility sector in the official IO table. We
make the decision to manually add agricultural inputs for biomass.

Third, we assume the value-added components are the same across electricity sectors, except for
spending on employee compensation, which we assume scales with total wages paid in that sector.
We calculate total wage spending by multiplying the number of workers in each electricity sector
with their mean wage as reported by BLS (Bureau of Labor Statistics, 2021). We scale the employee
compensation part of value added with the total wage that is spent in that sector. The other
components (taxes, subsidies, and gross margin) we assume to be constant across the Electricity
generation and transmission sectors (2211xx). For the Solar electricity generation sector, scaling
value added with employee compensation results in a value added that is larger than total output,
which should not be possible. We lower it proportionally so that value added represents 98% of
total output, and 2% intermediate spending.

See Table 7 for the top 25 industries in the production recipes of the electricity sectors, and
their values.

Nuclear fuel Nuclear fuel is an important input for the Nuclear electricity generation sector.
From the US Energy Information Administration (EIA, 2022b) we learn that about 1/5th (11
million ton) of nuclear fuel was produced domestically in 2018, and that the total costs of this was
about 480 million 2018-USD, about 1.3% of total nuclear electricity output.

We use the IO data to find the right source of nuclear fuel. Three candidates are: Uranium
mining, Uranium refining, and/or the Chemical industry. In the 2018 IO data Uranium Mines are
grouped together with all other mines under a generic mining sector (NAICS 212), and it is unclear
whether any uranium is used this way, or if all items relate to coal, a ubiquitous mining good in
electricity generation. The more detailed 2012 tables can help here. Uranium mines are classified
under NAICS 212291 (grouped with gold and miscellaneous metals as 2122A0), and uranium
smelting and refining grouped under all non-ferrous metal smelting and refining (331410), and/or
rolling, drawing, alloying of nonferrous metals (331490). The combined use by the Electricity
generation and transmission sector of products from all three sectors (2122A0, 331410 and 331490)
in 2012 was 1 million 2012-USD (< 0.001% of total electricity output), not enough to account for
nuclear fuel costs.

Enriched nuclear fuel can also be an output of Other Basic Inorganic Chemicals Manufacturing
(NAICS 325180). In 2012 the use by Electricity generation and transmission sector (221100) of
products from NAICS 325180 was about 166 million 2012-USD (182 million 2018-USD), domestic
and imported. In 2018, the Utility sector (220000) in total used products from the more aggregate
Chemical manufacturing (NAICS 325) as a whole for about 2 billion 2018-USD in 2018, enough
to cover the uranium input. We thus decided to assign the full 1.3% of Nuclear fuel cost to sector
325.
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Total Hydro Nuclear Solar Wind
Geo
thermal

Biomass Coal Gas Other Trans Dist

221100 3.9% 6.0% 4.3% 0.2% 3.4% 1.4% 0.6% 3.3% 5.4% 5.4% 0.1% 0.1%
imports 3.7% 2.1% 3.8% 0.2% 3.8% 3.9% 2.0% 2.9% 4.8% 4.8% 0.9% 0.8%
561 3.1% 1.8% 3.3% 0.1% 3.3% 3.3% 1.7% 2.5% 4.1% 4.1% 0.8% 0.7%
211 2.9% 0.0% 0.0% 0.0% 0.0% 0.0% 7.6% 0.0% 0.0% 0.0% 0.0% 20.1%
324 2.6% 0.0% 0.0% 0.0% 0.0% 0.0% 2.5% 0.0% 0.0% 0.0% 15.4% 6.6%
GSLE 2.2% 1.3% 2.3% 0.1% 2.3% 2.3% 1.2% 1.7% 2.9% 2.9% 0.5% 0.5%
212 2.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 19.2% 0.0%
23 1.7% 0.0% 1.9% 0.2% 4.2% 7.8% 0.2% 1.4% 2.4% 2.4% 0.0% 0.0%
5412OP 1.6% 0.9% 1.8% 0.2% 3.8% 6.2% 0.3% 1.3% 2.2% 2.2% 0.0% 0.0%
487OS 1.6% 0.9% 1.7% 0.1% 1.7% 1.7% 0.9% 1.3% 2.1% 2.1% 0.4% 0.3%
42 1.4% 0.0% 1.6% 0.0% 0.0% 0.0% 2.5% 1.2% 2.0% 2.0% 0.0% 0.0%
521CI 1.2% 1.7% 1.3% 0.3% 2.6% 3.1% 0.8% 1.0% 1.6% 1.6% 0.0% 0.0%
486 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 8.4%
482 1.0% 0.0% 1.1% 0.0% 0.1% 0.0% 1.9% 0.8% 1.4% 1.4% 0.0% 0.0%
484 0.9% 0.0% 1.0% 0.0% 0.1% 0.0% 2.1% 0.8% 1.3% 1.3% 0.0% 0.0%
5411 0.7% 0.4% 0.8% 0.0% 0.8% 0.8% 0.4% 0.6% 1.0% 1.0% 0.2% 0.2%
ORE 0.6% 2.3% 0.6% 0.1% 4.1% 4.2% 0.0% 0.5% 0.8% 0.8% 0.0% 0.0%
221300 0.6% 0.9% 0.6% 0.0% 0.5% 0.2% 0.1% 0.5% 0.8% 0.8% 0.0% 0.0%
4A0 0.5% 0.3% 0.5% 0.0% 0.5% 0.5% 0.3% 0.4% 0.6% 0.6% 0.1% 0.1%
514 0.4% 0.3% 0.5% 0.0% 0.5% 0.5% 0.2% 0.4% 0.6% 0.6% 0.1% 0.1%
513 0.4% 0.2% 0.4% 0.0% 0.4% 0.5% 0.2% 0.3% 0.6% 0.6% 0.1% 0.1%
325 0.4% 0.2% 1.1% 0.0% 0.4% 0.4% 0.2% 0.3% 0.5% 0.5% 0.1% 0.1%
722 0.4% 0.2% 0.4% 0.0% 0.4% 0.4% 0.2% 0.3% 0.5% 0.5% 0.1% 0.1%
5415 0.2% 0.1% 0.2% 0.0% 0.2% 0.2% 0.1% 0.1% 0.2% 0.2% 0.0% 0.0%
721 0.2% 0.1% 0.2% 0.0% 0.2% 0.2% 0.1% 0.1% 0.2% 0.2% 0.0% 0.0%
532RL 0.2% 0.1% 0.2% 0.0% 0.2% 0.2% 0.1% 0.1% 0.2% 0.2% 0.0% 0.0%
333 0.2% 1.8% 0.1% 0.0% 4.0% 2.5% 0.6% 0.1% 0.1% 0.1% 0.0% 0.0%

Table 7: Final production recipes imputed. This table only shows the top 26 industries on which the aggregated
Electricity generation and transmission sector spends more than 0.2% of total output (left-most column). The full
columns, including all industries plus value added, sum up to 100% of output.

C.6 Electricity generation outside the BEA utilities sector not in scope

We only model electricity generation that happens in NAICS industry 221100, plus commercial
and rooftop solar, battery storage, and T&D in NAICS industries 22121 and 22122. This leaves
out electricity production that may happen in other sectors, such as government enterprises and
waste incinerators.

Government enterprises that might also produce electricity are out of scope (specifically in-
dustry codes S00101 and S00202 in the detailed classification for federal and state/local electric
utilities respectively, which are aggregated in GFE and GSLE in the 2018 BEA respectively).
These might comprise about 15% of total electricity sector output (Bureau of Economic Analysis,
2022a). We took this decision as the available data is often mixed with other data on government
branches. Government utilities are not a separate industry in the latest BEA IO tables, nor an
employment industry in the BLS data. Manually disaggregating the government industries for IO
and occupational inclusion would add more noise to our analysis.

We also do not consider electricity generated by the Solid Waste Combustors and Incinerators
industry (NAICS 562213, which is part of theWaste management and remediation services [NAICS
code 562] in the IO table).

C.7 Cost breakdown through time

Throughout our analysis, we assume that the spending breakdown per energy technology is con-
stant. We assume cost-factor neutral technical change, meaning that we allow for unit cost per
technology to change, but not how each dollar is spent (c.f. hicks-neutral technical change). We
think this assumption is reasonable based on two empirical sources for solar and wind cost break-
down over time: NREL’s ATB solar cost data, and Elia et al. (2020)’s analysis of wind power
data.

From NREL’s ATB data over time, we find that while the cost for utility-scale solar PV instal-
lations declined almost five-fold in the years 2010–2020, the breakdown of these costs into several
cost buckets has remained remarkably stable (Fig. 12). While there are fluctuations, no clear pat-
tern can be discerned over the entire period. We use this as evidence to assume that although costs
are likely to decline in the future according to technology learning curves, the relative breakdown
of cost elements will remain constant over time.
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(a) Cost per Watt DC (b) Cost fraction of total

Figure 12: Utility-scale PV cost through time. In a) the breakdown per year in constant 2019-USD per Watt DC
output. In b) the fraction of each of the cost components through time. Data from NREL (Feldman et al., 2021).

Further evidence for the case of wind turbines comes from Fig. 8 of Elia et al. (2020), which
looks at the US wind turbine price per kW breakdown for the period 2005-2017. Labor costs are
responsible for a 15% to 23% share of the turbine price, with the former estimates most prevalent
for the 2005-2008 period. While there are clear fluctuations in different price components, there is
no clear trend visible in labor cost as percentage of the wind turbine price, especially after 2009.

C.8 BEA to BLS industry and occupations crosswalk

The Bureau of Labor Statistics (BLS) publishes employment data for industries and occupations
at various levels of detail. We use the level of industry detail that matches with that of the BEA
industries.33 A correspondence table from the EPA is used to connect the two classifications, which
gives mostly one-to-one or one-BEA-to-many-BLS matches (Environmental Protection Agency,
2022). This allows us to directly link the number of workers per occupation to the BEA industries,
or the sum of several BLS industries linked to one BEA industry.34 Extra care was given to
distinguish between government-run and private education services, which are part of government
services in the BEA data, and education services for BLS. The same is true for government-run
and private hospitals. We exploit the BLS information on ownership to get the distinction right.

Two sets of industries had many-to-one relationships. While BLS distinguishes governments by
regional level (local, state, federal), BEA distinguishes between level (federal and state/local) and
function (general government and government enterprises). We sum all BLS government codes
and assign them to the BEA government codes (except local/state government enterprises and
GFGD, the defense part of the federal general government), with fractions based on BEA spending
on employee compensation. We thus assume the relative occupational make-up of government
services is the same on the state and federal level. 28% of government employees work on the
federal level. The aforementioned government-run hospital and education services were matched
on the remaining local/state government enterprise sector.

The second many-to-one relation concerns the real estate sector. BEA distinguishes between
Housing (HS) and Other real estate (ORE) sectors, which both map on BLS’s more general 531000
(Real Estate) sector. We assume HS and ORE sectors have the same occupational make-up as
the BLS’s 531000 sector, with the absolute number split according to the relative difference in
employee benefits spending by HS and ORE respectively. This results in our estimate that 17% of
Real Estate workers work in the HS sector, and 83% in the ORE sector.

Agricultural and government defense industries are not included in the BLS data, and we leave
them out of this analysis.

In Fig. 13 we compare the two datasets as a sanity check of our harmonization. BEA also
publishes numbers of total full-time equivalent workers per industry. We find a good agreement
with BLS’s total employment in Fig. 13a, with the largest difference for Other services (81), which
has more workers according to BEA than to BLS. This might be due to the eclectic nature of this
industry, or measurement differences on either side.

We also compare total employee compensation as published by BEA with total wage spending
according to BLS. Employee compensation includes everything the employer pays for its workers,
including additional taxes and bonuses that are not reflected in average wages. It is almost always
higher than the wage a worker receives, but can also be lower due to subsidies. the difference is

33Except for the disaggregated Utility sector: see paragraph below.
34e.g. BEA industry 315AL (Apparel and leather and allied manufacturing) consists of BLS industries 351500

(Apparel manufacturing) and 351600 (Leather and allied product manufacturing).
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often larger for high-paid workers. We conclude that Fig. 13b reflects this to a large extent, and
that our harmonization can be used.

(a)

(b)

Figure 13: Comparison of BLS and BEA industry data. In a) thousands of workers in the BLS dataset vs the
thousands of full time equivalent workers in BEA, and in b) the compensation of employees according to 2018 IO
tables published by BEA, and the sum of wages of all employees working in the industries in 2018 according to data
from BLS, both in millions of 2018-USD. Note that we do not have wage data for military (GFGD) or agricultural
(111CA and 113FF) workers.

Electricity sector industries and workers. As explained in Section C.5 we split the utilities
sector into 13 industries including eight electricity generation technologies. Since 2015 BLS reports
on the number of workers and their occupation per electricity generation technology, we incorporate
their data for 2018 in our analysis. Following on from Table 2, we show which BLS and BEA
industries match on the IO classifications for industries in Table 8.

Four things should be noted. First, Battery storage is not present as a separate electricity
technology in either BEA or BLS. As explained further in Section B.3, we add battery storage
opex workers manually, with a similar occupational makeup as its capex workers. Second, as
mentioned before, neither BEA nor BLS split fossil fuel electricity generation into gas or coal. We
use EIA electricity production data for that split,35 both for the BEA and BLS data. Third, we
combine transmission and distribution (T&D) in our IO analysis, which are separated in the BEA
data. We simply sum them together. BLS does not report any data on electricity transmission
and distribution but does report figures on the NAICS 2211 level (Electric power generation,
transmission and distribution). We assume any workers in NAICS 2211 that are not accounted
for by the other sub-industries work in T&D. Last, while we do not report on Other electric power
generation, it is included in our IO table. As we assume all electricity generation comes from the
technologies identified in Table 2, the ’Other’ sector output was set to always be zero.

The Utilities sector employed over half a million workers in 2018, almost 400,000 of which
were working in electricity generation, transmission and distribution. Just over 150,000 workers
were directly involved with electricity generation facilities, the majority in fossil fuel (89,000),
followed by nuclear (44,000). Total employment in renewables (hydro, wind, solar, biomass, and
geothermal) stood at about 17,000 in 2018, with about a third of that for wind and another third
for hydro.

Because the electricity generation sectors are small compared to the more aggregated sectors

35https://www.eia.gov/energyexplained/us-energy-facts/
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IO industry NAICS
code

BLS industry BEA industry

Battery - - -
Bio 221117 Biomass electric power generation Biomass Electric Power Generation
Coal

221112 Fossil fuel electric power generation Fossil Fuel Electric Power Generation
Gas
Geo 221116 Geothermal Electric Power Generation Geothermal electric power generation
Hydro 221111 Hydroelectric Power Generation Hydroelectric power generation
Nuclear 221113 Nuclear Electric Power Generation Nuclear electric power generation
Solar 221114 Solar Electric Power Generation Solar electric power generation
Wind 221115 Wind Electric Power Generation Wind electric power generation
Other 221118 Other Electric Power Generation Other electric power generation

T&D
221121 - Electric bulk power transm. and control
221122 - Electric power distribution

Gas dist 221200 Natural Gas Distribution Natural gas distribution
Water and
sewage

221300 Water, Sewage and Other Systems Water, sewage and other systems

Table 8: IO, BLS, and BEA industry matching for the disaggregated Utility sector

this data is not as detailed and more error prone than the utilities sector data as a whole. This is
also highlighted by the larger relative standard error reported by BLS. BLS gives both the total
number of workers per industry and an occupational breakdown for most workers. We first matched
the occupational breakdown to our occupational list. Some of these have censored values. In the
OEWS files, these occupations have two stars (**) instead of an estimated number of workers for
that occupation-industry pair. We infer from more aggregated occupation levels how many workers
there should roughly be. We impute those values with those in Table 9. Additionally, the utility
industries report total employment figures that are larger than the sum of their detailed occupation
list. We take two approaches. First, for the high-level utilities industries (first 221000 (Utilities),
then 221100 (Electric Power Generation, Transmission and Distribution), 221200 (Natural Gas
Distribution ), and 221300 (Water, Sewage and Other Systems)), we assign missing workers to
their existing occupations proportional to employment.

Secondly, the proportion of missing workers is larger for smaller sectors. For example, 900 of
2,560 Solar electricity generation workers did not have detailed occupations assigned in the BLS
data. This means that those industries often also report on a smaller number of occupations.
Potentially there are unreported occupations. We call these missing occupations. We know how
many there are as BLS also reports the total number of workers per industry regardless of their
occupation. We assign these workers to occupations as follows:

1. We sum all workers to the minor occupation level (often 3-digit level). If that value is larger
than OEWS reports at that minor level, we add workers to all occupations in that minor
level, including those that are not in the OEWS data.

2. We next sum all workers to the major occupation level (often 2 digits). These occupation
categories group together dozens of more detailed occupations. If they sum to a total number
of workers that is lower than OEWS reports, we add workers only to those occupations that
BLS reports on or to those occupations we had added in the previous step.

3. We remove any tiny occupations (i.e. those industry-occupations pairs with less than 30
workers or 0.2% of industry total, and add those workers proportionally to all other occupa-
tions in that industry.

OEWS does not report an occupational breakdown for Electric power Transmission and Dis-
tribution industry (NAICS code 221120). We assume that all workers in 221100 (Electric Power
Generation, Transmission and Distribution) that do not work in Electricity generation (NAICS
22111) work for Electric Power Transmission and Distribution.

Finally, we split fossil fuel electricity generation in two, one dedicated to coal and the other to
natural gas based electricity generation. The occupational profiles are kept identical, but the total
number of workers is split according to the electricity output as reported by EIA (2022a).

In Section D.4 we perform a sensitivity analysis on the number of workers per occupation per
industry, using the standard errors reported by BLS. That analysis shows that the impact on the
results is larger for small but fast-growing occupations such as Wind Turbine Service Technicians.
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BLS NAICS code BLS OCC code Total employment imputation

221000 17-1010 50
221000 17-1020 980
221000 21-1090 0
221000 41-9040 120
221000 47-4070 250
221000 47-5020 210
221000 53-6030 80
221000 53-6090 80
221100 17-3010 2340
221100 19-4040 80
221100 21-1090 0
221100 41-3030 160
221100 49-2020 440
221100 49-9052 1660
221100 51-8090 1100
221100 53-2010 0
221100 53-6090 90
221200 17-1020 460
221200 41-9040 120
221200 41-9099 60
221200 43-4190 100
221200 43-5070 30
221200 43-9050 70
221200 49-9051 2650
221200 51-8010 830
221200 51-8020 710
221200 53-6030 80
221300 17-3010 80
221300 33-9030 0
221300 47-3010 170
221300 47-4070 270
221300 49-9051 120
221300 51-8010 165
221300 51-8090 165
221300 51-9199 160
221300 53-7030 40
221111 13-1070 75
221111 13-1080 75
221111 51-8090 70
221111 51-9060 110
221111 51-9198 100
221112 53-2010 0
221115 49-9041 430
221115 15-1120 50
221115 51-1010 80
221118 51-8010 390

Table 9: All employment imputations in the industry-occupation matrix B2018

C.9 Occupation crosswalk Census - BLS

The crosswalk includes occupations that are grouped together. We perform a manual operation to
split them. For example, we split 25-90XX (Other Education, Training, and Library Occupations)
into four occupations that BLS reports on within that group: 25-9010 Audio-Visual and Multime-
dia Collections Specialists; 25-9020 Farm and Home Management Advisors; 25-9030 Instructional
Coordinators; 25-9090 Miscellaneous Education, Training, and Library Workers). Table 10 shows
the full list of imputed alterations that we performed.

We drop two census occupations that are not in BLS: 6100 (Fishers and related fishing workers;
soc code 45-3011), and 6110 (Hunters and trappers; soc code 45-3021).

The final list of BLS occupations has 539 entries on the BLS side, and 529 census occupations.
Our set of BLS occupations comprises 138 6-digit occupations, 497 5-digit occupations and 3 4-digit
occupations.

C.10 Occupational typology

We list all ‘Consistent growth’ occupations in Table 11, all ‘Consistent decline’ occupations in
Table 12, and all ‘Temporary growth’ occupations in Table 13.
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2010 SOC Code Imputed

15-113X 15-1132
15-113X 15-1133
25-90XX 25-9010
25-90XX 25-9020
25-90XX 25-9030
25-90XX 25-9090
31-909X 31-9093
31-909X 31-9099
33-909X 33-9092
33-909X 33-9099
37-201X 37-2011
37-201X 37-2019
39-40XX 39-4000
47-50XX 47-5050
47-50XX 47-5090
49-209X 49-2094
49-209X 49-2095
49-904X 49-9041
49-904X 49-9045
49-909X 49-9093
49-909X 49-9099
53-40XX 53-4040
53-40XX 53-4090
53-60XX 53-6040
53-60XX 53-6090

Table 10: SOC crosswalk imputation of missing values

O*NET-SOC Code Occupation title Mean annual wage (2018)

47-2230 Solar Photovoltaic Installers 46,010
49-9051 Electrical Power-Line Installers and Repairers 70,240
49-9080 Wind Turbine Service Technicians 58,000

Table 11: Consistent growth occupations. All occupations that are affected more than 1% of total pre-transition
employment and see a demand increase in both the scale-up and scale-down phase.

O*NET-SOC Code Occupation title Mean annual wage (2018)

17-2150 Mining and Geological Engineers, Including Mining Safety Engineers 98,420
47-5040 Mining Machine Operators 53,090
47-5050 Rock Splitters, Quarry 35,760
47-5060 Roof Bolters, Mining 59,090
47-5090 Miscellaneous Extraction Workers 54,300
49-2095 Electrical and Electronics Repairers, Powerhouse, Substation, and Relay 80,040
51-8010 Power Plant Operators, Distributors, and Dispatchers 81,760
51-8090 Miscellaneous Plant and System Operators 66,430
53-7030 Dredge, Excavating, and Loading Machine Operators 48,790
53-7040 Hoist and Winch Operators 56,390
53-7070 Pumping Station Operators 52,510
53-7110 Mine Shuttle Car Operators 56,150
53-7120 Tank Car, Truck, and Ship Loaders 42,330

Table 12: Consistent decline occupations. All occupations that are affected more than 1% of total pre-transition
employment and see a demand decrease in both the scale-up and scale-down phase.

O*NET-SOC Code Occupation title Mean annual wage (2018)

11-3050 Industrial Production Managers 113,370
11-3060 Purchasing Managers 125,630
11-9020 Construction Managers 103,110
11-9040 Architectural and Engineering Managers 148,970
13-1020 Buyers and Purchasing Agents 67,530
13-1050 Cost Estimators 69,710
13-2082 Tax Preparers 46,860
17-2070 Electrical and Electronics Engineers 104,250
17-2110 Industrial Engineers, Including Health and Safety 91,800
17-2130 Materials Engineers 96,930
17-2140 Mechanical Engineers 92,800

Continued on next page
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Table 13 – continued from previous page
O*NET-SOC Code Occupation title Mean annual wage (2018)
17-2170 Petroleum Engineers 156,370
17-2199 Engineers, All Other 99,410
17-3010 Drafters 58,180
17-3020 Engineering Technicians, Except Drafters 61,380
19-4040 Geological and Petroleum Technicians 62,890
41-9030 Sales Engineers 108,610
43-5060 Production, Planning, and Expediting Clerks 50,020
43-5070 Shipping, Receiving, and Traffic Clerks 34,980
47-1010 First-Line Supervisors of Construction Trades and Extraction Work-

ers
70,540

47-2010 Boilermakers 63,240
47-2020 Brickmasons, Blockmasons, and Stonemasons 52,810
47-2030 Carpenters 51,120
47-2040 Carpet, Floor, and Tile Installers and Finishers 45,330
47-2050 Cement Masons, Concrete Finishers, and Terrazzo Workers 47,340
47-2060 Construction Laborers 40,350
47-2071 Paving, Surfacing, and Tamping Equipment Operators 44,360
47-2072 Pile-Driver Operators 64,360
47-2073 Operating Engineers and Other Construction Equipment Operators 53,030
47-2080 Drywall Installers, Ceiling Tile Installers, and Tapers 50,420
47-2110 Electricians 59,190
47-2120 Glaziers 48,620
47-2130 Insulation Workers 46,910
47-2141 Painters, Construction and Maintenance 43,050
47-2142 Paperhangers 40,840
47-2150 Pipelayers, Plumbers, Pipefitters, and Steamfitters 56,980
47-2160 Plasterers and Stucco Masons 47,610
47-2170 Reinforcing Iron and Rebar Workers 54,670
47-2180 Roofers 43,870
47-2210 Sheet Metal Workers 52,710
47-2220 Structural Iron and Steel Workers 58,170
47-3010 Helpers, Construction Trades 32,900
47-4020 Elevator Installers and Repairers 79,370
47-4030 Fence Erectors 37,650
47-4090 Miscellaneous Construction and Related Workers 43,000
47-5010 Derrick, Rotary Drill, and Service Unit Operators, Oil, Gas, and Min-

ing
52,950

47-5020 Earth Drillers, Except Oil and Gas 47,570
47-5070 Roustabouts, Oil and Gas 40,220
47-5080 Helpers–Extraction Workers 37,660
49-2094 Electrical and Electronics Repairers, Commercial and Industrial

Equipment
59,210

49-9020 Heating, Air Conditioning, and Refrigeration Mechanics and Installers 50,160
49-9041 Industrial Machinery Mechanics 54,000
49-9043 Maintenance Workers, Machinery 48,720
49-9044 Millwrights 56,250
49-9045 Refractory Materials Repairers, Except Brickmasons 52,510
49-9096 Riggers 51,330
51-1010 First-Line Supervisors of Production and Operating Workers 64,340
51-2020 Electrical, Electronics, and Electromechanical Assemblers 35,910
51-2030 Engine and Other Machine Assemblers 45,330
51-2040 Structural Metal Fabricators and Fitters 41,640
51-2090 Miscellaneous Assemblers and Fabricators 34,300
51-4010 Computer Control Programmers and Operators 43,940
51-4021 Extruding and Drawing Machine Setters, Operators, and Tenders,

Metal and Plastic
36,620

51-4022 Forging Machine Setters, Operators, and Tenders, Metal and Plastic 40,770
51-4023 Rolling Machine Setters, Operators, and Tenders, Metal and Plastic 40,790
51-4031 Cutting, Punching, and Press Machine Setters, Operators, and Ten-

ders, Metal and Plastic
36,180

51-4032 Drilling and Boring Machine Tool Setters, Operators, and Tenders,
Metal and Plastic

41,490

51-4033 Grinding, Lapping, Polishing, and Buffing Machine Tool Setters, Op-
erators, and Tenders, Metal and Plastic

36,690

51-4034 Lathe and Turning Machine Tool Setters, Operators, and Tenders,
Metal and Plastic

41,090

51-4035 Milling and Planing Machine Setters, Operators, and Tenders, Metal
and Plastic

44,490

51-4040 Machinists 45,250
51-4050 Metal Furnace Operators, Tenders, Pourers, and Casters 41,160
51-4060 Model Makers and Patternmakers, Metal and Plastic 53,430
51-4070 Molders and Molding Machine Setters, Operators, and Tenders, Metal

and Plastic
34,200

Continued on next page
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Table 13 – continued from previous page
O*NET-SOC Code Occupation title Mean annual wage (2018)
51-4080 Multiple Machine Tool Setters, Operators, and Tenders, Metal and

Plastic
37,510

51-4110 Tool and Die Makers 53,650
51-4120 Welding, Soldering, and Brazing Workers 43,930
51-4191 Heat Treating Equipment Setters, Operators, and Tenders, Metal and

Plastic
39,050

51-4192 Layout Workers, Metal and Plastic 47,380
51-4193 Plating and Coating Machine Setters, Operators, and Tenders, Metal

and Plastic
34,830

51-4194 Tool Grinders, Filers, and Sharpeners 40,890
51-4199 Metal Workers and Plastic Workers, All Other 38,140
51-6091 Extruding and Forming Machine Setters, Operators, and Tenders,

Synthetic and Glass Fibers
35,500

51-9020 Crushing, Grinding, Polishing, Mixing, and Blending Workers 37,960
51-9030 Cutting Workers 35,090
51-9040 Extruding, Forming, Pressing, and Compacting Machine Setters, Op-

erators, and Tenders
36,800

51-9050 Furnace, Kiln, Oven, Drier, and Kettle Operators and Tenders 40,610
51-9060 Inspectors, Testers, Sorters, Samplers, and Weighers 42,010
51-9120 Painting Workers 39,850
51-9140 Semiconductor Processors 39,810
51-9192 Cleaning, Washing, and Metal Pickling Equipment Operators and

Tenders
33,090

51-9194 Etchers and Engravers 34,550
51-9195 Molders, Shapers, and Casters, Except Metal and Plastic 35,190
51-9197 Tire Builders 45,530
51-9198 Helpers–Production Workers 29,380
51-9199 Production Workers, All Other 34,490
53-7020 Crane and Tower Operators 58,160
53-7063 Machine Feeders and Offbearers 31,710

Table 13: Temporary growth occupations. All occupations that are affected more than 1% of total pre-transition
employment and see a demand increase in the scale-up phase and a demand decrease in the scale-down phase.

D SM Results

D.1 Results not relative to the reference scenario

The results presented in the main text are shown as relative to NREL’s No New Policies reference
scenario. Because of the cost declines in renewables, this reference scenario does include some
decarbonization driven by cost optimization rather than climate policy. See the left columns of
Fig. 1 for the capacity and generation mix in the reference case.

In Fig. 14 we plot the aggregate demand change from 2020 (net per industry (left) and occupa-
tion (right) through time for the 95% decarbonization by 2035 scenario. Compared to Fig. 2, we
find the same scale-up and scale-down phases, but the steady state phase is less visible. While there
appears to be a steady state for the period 2038-2043, employment rises again in subsequent years.
This is likely due to the gradual increase in the use of electricity and the end-of-life replacements
that are included in the reference scenario.
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(a) Industries (b) Industries

Figure 14: Cumulative new job demand since 2020 a) per industry, and b) occupation. Compare to Fig. 2. Industries
and occupations are plotted at the detailed level (82 industries and 530 occupations respectively) but colored by
their aggregated categories.

Fig. 15 shows some trajectories for selected occupations through time (relative to the reference
scenario in Fig. 20). We find the main differences in the last decade 2040-2050. As the reference
scenario also decarbonizes (but slowly), the difference between the two scenarios becomes smaller
in the late 2040s. This causes some occupational trajectories, such as Mining Machine Operators
and Solar PV Installers, to trend towards the x = 0 line in the 2040s relative to the baseline in
Fig. 20 but not in Fig. 15.

Figure 15
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D.2 Location, skills, and frictions

In this section, we shows the current geographical spread and skill content of the occupational
typology presented in the main text.

D.2.1 Geographical spread

Our main results are for the US as a whole, but such national aggregation may obfuscate local
differences, as mentioned in the main text. In Fig. 16 we show the 2018 average location quotients
for different occupational types. Because we do not disaggregate our forward-looking results, we can
not confidently predict the places where future jobs will be located. Consistent growth occupations
were located in 2018 where the US is generating most of its renewable energy: in the south-west,
where most utility-scale solar electricity is generated, and the central Great Plains states that see
the highest on-shore wind resource and economic potential (McCabe et al., 2022). Temporary
growth occupations are less concentrated but more prevalent in traditional manufacturing states
in the Northeast and Midwest. Phase out occupations display the highest level of concentration,
and are mostly located in a few coal and gas-rich states. See Appendix B.8 for more details on
how we calculate the location quotients.

While the location quotients of the phase out occupations might be a good indicator of where job
losses are concentrated, this is not necessarily true for occupations with growing demand. Newer
generations of wind turbines, for example, are taller, and wind potential at higher altitudes can
be different (McCabe et al., 2022), opening up new places for competitive wind energy generation.
And local regulations can change. The best wind turbine locations for the future may thus not
be where most wind turbines are located right now. Additionally, the current US government
domestic manufacturing agenda may well benefit places beyond the traditional rust belt states
(The White House, 2022).

Figure 16: Average location quotient in 2018 of selected occupations in the three occupation types as defined in the
main text. These may not be the states where future jobs are located. The location quotient of occupation a in

state β is
xa,β/xβ

xa/x
, with xa,β is the number of workers in occupation a in state β, and any subscripts that are left

out are summed over (e.g. xβ =
∑

i xi,β). Permanent and Temporary growth occupations share the same colormap;
phase out occupations has their own.

D.2.2 Skill content

Skill differences between occupations has been identified in the literature as one of the main factors
influencing the ease of transition between occupations (Consoli et al., 2016; Bowen et al., 2018;
Saussay et al., 2022). In this section, we highlight the skill content of the occupation typology. We
follow Consoli et al. (2016) who quantify the skill categories of Autor et al. (2003) for green jobs.
These skill categories are Non-routine analytical (NRA), Non-routine interactive (NRI), Routine
cognitive (RC), Routine manual (RM), Non-routine manual (NRM), and the Routine index (RTI
index).

In Fig. 17 we find that compared to all other jobs, occupations in the three affected groups in
our typology have higher manual and routine (NRM, RTI, RM) skills. The other skills show less
differences across occupation types on aggregate.
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Figure 17: Average skill content per affected job in the electricity supply chain, split into occupations that see a
‘Temporary Growth’ (black), ‘Consistent Growth’ (blue), or ‘Consistent decline’ (green). Average skill content of
all other occupations is plotted in red.

In Fig. 18 we plot the same skill distribution using the alternative typology definition (see
Section B.7). We compute the average skill content of all occupations, weighted by the fraction of
workers in an occupation that are part of each type. Fig. 18 show that for non-routine analytical
(NRA), non-routine interactive (NRI), and routine cognitive (RC), the differences between tran-
sition workers and all workers distribution are small. However, all affected types of occupations
score score higher on routine manual (RM) and non-routine manual (NRM) indicators on average.

Figs. 17 and 18 are similar in that all three affected occupation types exhibit higher manual
and routine skill levels (NRM, RTI, RM) than the average job.

Figure 18: Average skill content per affected job in the electricity supply chain, split into those that see a Temporary
growth (black), Consistent growth (blue), or Consistent decline (green), using the alternative typology definition.
Average skill content of all workers is also plotted in red.

D.2.3 Occupation network frictions and alternative networks

This section expands the assortativity analysis of Table 1 in the main text by incorporating alter-
native occupational network definitions and the alternative typology. We also discuss the Monte
Carlo simulation approach and results that give the confidence intervals for Table 1.

We will first expand the analysis of categorical assortativity, and after that the analysis of
continuous attribute assortativity. We use three networks for our analysis: in addition to the
related occupation network, we use an occupational mobility network constructed from census
data and a combination of both. For more details on the two networks, see Section A.4.

Categorical assortativity results Table 14 shows the assortativity between the occupational
types. All of these results use the categorical assortativity method of Eq. (19). The Categorical
result on the related network (RN) is the same as in Table 1. The assortativity results of the three
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individual types are calculated by only including two categories in Eq. (19): that particular type,
and an other group containing all other occupations.

We find that the categorical results are robust over the networks, if somewhat smaller in
magnitude than for the related network. For the individual occupational types, we find that
in particular the Temporary Growth has high assortativity in both networks but in particular the
related occupation network. This indicates that it may be difficult to find a lot of workers to
fill vacancies for all the Temporary growth jobs simultaneously. Interestingly, the assortativity
for Consistent growth and Consistent decline occupations are much lower and less significant,
indicating that the affected occupations are more spread out in the network. On the occupational
mobility network, the Consistent growth shock has a slightly negative assortativity, meaning that
very few transitions have been observed between them in the past.

OMN RN mixed 50/50

Categorical 0.29*** 0.43*** 0.39***

Consistent growth -0.00 0.05** 0.01
Temporary growth 0.28*** 0.45*** 0.39***
Consistent decline 0.18** 0.13*** 0.17***

Table 14: Network assortativity of the occupational typology of the power sector transition. OMN = occupational
mobility network, RN = related network. ***, **, * indicate results that are greater than 99.9%, 99%, or 95% of
values respectively in a Monte Carlo simulation.

In Table 15 we randomise the impact per occupation while keeping the network intact. The
standard errors are computed across 100,000 randomizations, which we also use to get confidence
intervals for the assortativity results in Table 14. That is, a value in Table 14 gets three (***), two
(**), or one (*) star if it is larger in absolute value than 99.9%, 99%, or 95% of randomised runs
respectively.

OMN RN mixed 50/50

Categorical -0.002 (0.02) -0.002 (0.01) -0.002 (0.01)

Consistent growth -0.002 (0.02) -0.002 (0.01) -0.002 (0.01)
Temporary growth -0.002 (0.02) -0.002 (0.01) -0.002 (0.02)
Consistent decline -0.002 (0.02) -0.002 (0.01) -0.002 (0.02)

Table 15: Average network assortativity coefficient of occupational typology; average of 100,000 randomised runs.
OMN = occupational mobility network, CCN = related network. Standard deviation in brackets.

Continuous assortativity The alternative occupational typology is a continuous variable, so
we use the weighted continuous assortativity measure of Eq. (17). The results for the scale-up and
scale-down results on the related network are the same as in Table 1. These are robust over the
different networks, if slightly higher for the scale-up phase in the empirical occupational mobility
network, and lower for the scale-down phase.

The results for the ‘Consistent growth’ and ‘Temporary growth’ occupations is very similar to
the categorical assortativity in Table 14. For ‘Consistent decline’ occupations the sign is the same,
but assortativity on the binary type classification is higher and more significant, indicating that
the most impacted occupations cluster together more than the impact more broadly.

OMN RN mixed 50/50

2020-2034 (scale-up) 0.08** 0.05*** 0.05**
2035-2038 (scale-down) 0.16*** 0.26*** 0.23***

Consistent growth (alternative) -0.02** 0.04** 0.02*
Temporary growth (alternative) 0.32*** 0.51*** 0.46***
Consistent decline (alternative) 0.07* 0.06** 0.06**

Table 16: Assortativity of the shock relative to employment on different occupation networks. OMN = occupational
mobility network, RN = related network. ***, **, * indicate results that are greater than 99.9%, 99%, or 95% of
values respectively, which were obtained from a Monte Carlo simulation.

Table 17 shows the average results over 100,000 randomizations of the results in Table 16.
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OMN RN mixed 50/50

2020-2034 -0.002 (0.02) -0.002 (0.01) -0.002 (0.01)
2034-2038 -0.002 (0.02) -0.002 (0.01) -0.002 (0.01)

Consistent growth (alternative) -0.002 (0.01) -0.002 (0.00) -0.002 (0.01)
Temporary growth (alternative) -0.002 (0.02) -0.002 (0.01) -0.002 (0.02)
Consistent decline (alternative) -0.002 (0.02) -0.002 (0.01) -0.002 (0.01))

Table 17: Average assortativity of the randomised shock relative to employment on different occupation networks.
OMN = occupational mobility network. OMN = occupational mobility network, RN = related network. Standard
deviations obtained from monte carlo simulation in brackets.

D.3 Beyond Green and Brown occupations

Our measure of dividing the occupational demand patterns into ‘Consistent growth’, ‘Temporary
growth’, and ‘Consistent decline’ is related to the green jobs literature, which aims to classify
which occupations or jobs more generally can be deemed green or brown. Some studies have
attempted to define green and brown occupations with respect to the green transitions (e.g.,
Bowen et al., 2018; Dierdorff et al., 2009; Vona et al., 2018; Peters, 2014). Their measures lead to a
distinction between green and brown jobs, sometimes with sub-classifications of green jobs. Green
occupations are generally regarded as those that will see a growth in demand due to the green
transition, while brown occupations will see a decrease in demand due to the phase out of fossil
fuels. For example, Dierdorff et al. (2009) classify occupations into three green classes: Green
increased demand for occupations whose demand increase when pursuing green policies, Green
new & emerging occupations, and Green enhanced skills occupations that may require significant
modifications to their tasks and skill requirements due to greening the economy.

In total, Vona et al. (2021) indicate five ways to classify green occupations. Besides the binary
approach (e.g., the aforementioned Dierdorff et al. (2009)) and the task approach from Vona et al.
(2018), one can use green job vacancies, information on green technologies and productions, and
the pollution content of jobs to define green occupations.

In Table 18 we compare our trajectory-based occupational classification with both O*NET’s
green occupational typology, and Vona et al. (2018)’s classification of Brown occupations. We find
that Consistent growth occupations correlate with Green new & emerging occupations, and that
Consistent decline occupations correlate with Brown occupations. Interestingly, Temporary growth
occupations correlates both with Green increased demand occupations and Brown occupations.

Consist.
decline

Consist.
growth

Temp.
growth

Green
enhanced
skills

Green
new &
emerging

Green
increased
demand

Brown

Consistent decline 1.0*** -0.0 -0.1 0.0 0.0 -0.0 0.3***
Consistent growth -0.0 1.0*** -0.0 -0.0 0.2*** 0.1 0.0
Temporary growth -0.1 -0.0 1.0*** 0.1 0.0 0.3*** 0.3***
Green Enhanced Skills 0.0 -0.0 0.1 1.0*** -0.1 -0.1* -0.0
Green New & Emerging 0.0 0.2*** 0.0 -0.1 1.0*** -0.1 -0.1
Green Increased Demand -0.0 0.1 0.3*** -0.1* -0.1 1.0*** 0.0
Brown 0.3*** 0.0 0.3*** -0.0 -0.1 0.0 1.0***

Table 18: Pearson correlation coefficient between different occupational classifications, namely our trajectory-based
occupational typology, the occupational classification of different types of green jobs by O*NET (Dierdorff et al.,
2009), and the classification of brown jobs by Vona et al. (2018).

D.4 Sensitivity Analysis

We test the sensitivity of our results to seven specific data inputs and modeling choices: 1) The
‘supply and use’ table base years used in Section B.5; 2) the capex cost vectors of Section C.4; 3)
the opex literature weights of Section C.4; 4) the T&D cost in Section B.2; 5) the number of years
over which we perform the cost smoothing as explained in the Methods; 6) the employment per
occupation-industry pair of Section A.3; and 7) the ATB cost curves per technology as mentioned
in Section C.2. We explain each of the separate items in more detail below, and Table 19 gives
an overview of each item, the relevant methodology section, and the sensitivity analysis approach
and values.
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First
relevant
equa-
tions or
sections

Sensitivity anal-
ysis approach

Default Values in sensitivity analysis

Base year supply and
use tables

Eq. (7) Alternative years 2018 2015
2016
2017
2019

Capex cost vectors Eq. (11) Add noise No noise 30 runs with all values multiplied
by random normal noise, and re-
normalised to sum to unity

Opex literature weights Section B.6 Add noise No noise 30 runs with all values multiplied
by random normal noise, and re-
normalised to sum to unity

T&D cost per MW-
mile

Eq. (24) Min / max litera-
ture value

1,433 (2018-
USD)

932 (2018-USD) (min)
3,624 (2018-USD) (max)

T&D cost factor for
three times more pow-
erful lines

Eq. (24) plus-minus 25% 1.37 1.0275
1.7125

Number of years of cost
smoothing

Methods Alternative values 3 1 (no smoothing)
5

Employment per
occupation-industry
pair

Eq. (16) Standard deviation Point estimate Point estimate + standard deviation
Point estimate - standard deviation

Technology cost curves Eqs. 1-5 Alternative projec-
tions from NREL’s
ATB

Moderate Advanced
Conservative
Pro-fossil fuel (pro-ff)
Pro-renewables (pro-re)

T&D Opex Eq. (25) plus-minus 25% 1.37 1.0275
1.7125

Table 19: Sensitivity analysis approach

Base year supply and use tables The A matrix in Eq. (7) and beyond is the domestic input
output table, the basis of which are the 2018 ‘supply and use’ tables provided by BEA as explained
in Section B.5. In our sensitivity analysis we also use the ‘supply and use’ tables from 2015, 2016,
2017, and 2019. Fig. 19 shows the different in technical coefficients of the domestic IO table after
performing the electricity sector disaggregation procedure of Section B.6.1. There is some diffusion
visible, but we find that a different choice of IO base year has only limited impact on our results.
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Figure 19: Scatter plot of technical coefficients for different IO base years, from left to right: 2015 vs 2018, 2015 vs
2019, and 2018 vs 2019. Bottom row log-log plots correspond to the linear plots from the top row. Any changes of
more than 5 percentage points (top) or 50x (bottom) are labeled.

Capex cost vectors We translate capex cost per technology into spending on final demand per
industry in Eq. (11). The translation from technology i to the IO industries is done using capex
cost vector Kcapex

i , where each element Kcapex
ij is the the fraction of technology i capex that is

spent on industry j. We initialize the Kcapex
ij using previous literature estimates. The cost vectors

we use in our main analysis are shown in Table 4.
For our sensitivity analysis we use random noise to generate alternative cost vectors around

the estimates used to produce the main results

KSAcapex
ij = max(0, 1 + ϵKij )K

capex
ij βi, (46)

where βi = 1∑
j max(0,1+ϵKij)K

capex
ij

is the normalization constant such that
∑

j K
SAcapex
ij = 1, and

the maximum operator makes sure no value is negative. We draw ϵKij ∼ N (µ, σ2) from a normal
distribution with σ = 0.5. We do this 30 times, which we show in Fig. 22, and take the mean and
standard deviation of all 30 runs to show the results in Figs. 20 and 21.

Opex cost vectors In Section B.6 we discuss how we disaggregate the IO table using literature
estimates of their production recipes.

Analogously to the capex cost vectors, we apply Eq. (46) to the electricity sector opex cost
vectors B from the literature of Table 6 to create additional opex cost vectors

BSA
ij = max(0, 1 + ϵBij)Bijβi, (47)

where βi =
1∑

j max(0,1+ϵBij)Bij
is the normalization constant such that still

∑
j B

SA
ij = 1. We draw

ϵBij ∼ N (µ, σ2) from a normal distribution with σ = 0.5.

T&D cost In Eq. (24) we assume transmission grid costs 1,433 2018-USD / MW-mile. A different
publication, Brinkman et al. (2021) puts the cost between 900 (932 2018-USD) and 3,500 USD
(3,624 2018-USD) per MW-mile. We use those two numbers as a lower and upper bound on T&D
line cost. Secondly, In Eq. (24) we assume three times more powerful lines can be installed for 1.37
times the cost. In the sensitivity analysis, we change this value by 25% to 1.0275 and 1.7125.

T&D opex In Eq. (25) we use a factor of 1.37 to calculate the opex needs to maintain 3 times
as powerful lines, analogous to the capex calculation. In the sensitivity analysis, we increase and
decrease this value by 25%, i.e. 1.0275 and 1.7125.
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This parameter has a small effect on most occupations and the peak value in 2034, but a large
effect on specialised occupations such as Electrical power-line installers and repairers, and the
steady-state level of employment post-2038.

Number of years of cost smoothing To make the investment flows less erratic, we smooth
them using a 3-year moving window. We change this using a 5-year moving window, or by applying
no smoothing. More smoothing results in a less peaky and erratic trajectory, as can be seen in
Fig. 21.

Employment per occupation-industry pair In Eq. (16) we use Mij , the number of workers
in occupation i in industry j per million output. We calculate Mij in Eq. (23) using Bij , the total
number of workers in occupation i employed in industry j in 2018. This data is from BLS. BLS also
provides Percent relative standard error (PRSE) per Bij . We construct two additional versions
B+σ

ij = Bij +σB
ij and B−σ

ij = Bij −σB
ij to test our results sensitivity to this data input. This affects

some smaller occupation-industry pairs that are important to the transition most, such as wind
turbine service technicians.

ATB cost curves Our baseline scenarios use the moderate ATB unit cost curves per technology
as provided by NREL. These unit costs are used in Eqs. (1)-(5) to translate electricity capacity
and generation to capex and opex.

We will test our model for sensitivity by employing NREL’s other unit cost trajectories: the
conservative and advances scenario. In addition, we add a pro-fossil fuel (pro-ff) and pro-renewables
(pro-re) cost curves, which are combinations of the conservative and advanced cost curves. In the
pro-ff (pro-re), we take the advanced (conservative) estimate for fossil fuel technologies, and the
conservative (advanced) estimates for all renewable technologies and battery storage.

D.4.1 Impact of sensitivity analysis on temporal profiles

Fig. 20 shows the impact of the parameter sensitivity on trajectories of individual occupations.
What item has the most impact differs per occupation. Electrical Power-Line Installers and Repair-
ers are impacted mostly by T&D opex changes. Solar PV installers and Win Turbine Technicians
have different trajectories that depend mostly on the assumption of energy cost reductions over
time, as well as measurement errors by BLS, as these occupations are still relatively new and small.

Figure 20: Sensitivity of occupation trajectories over time of selected occupations.

Fig. 21 shows the aggregated demand for workers of all occupations in a stacked bar plot. The
top left sub-figure reproduces the right-hand side figure of Fig. 2a. While their overall figure is
very similar, with a peak at 2034, and a relatively steady state after 2038, the size of the peak and
steady-state employment can differ. Fig. 22 shows the net employment demand changes relative
to the reference scenario for the peak in 2034, and the steady state phase in 2045.
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Higher line costs lead to much higher net labor demand in 2034, as do more conservative cost
curves and not using a smoothing window. The latter also leads to much more erratic occupational
demand profiles. The largest impact on steady-state employment are opex T&D employment
factors and transmission line costs.

Figure 21: Cumulative sum of net occupational demand changes over time. Each plot changes one parameter of the
sensitivity analysis. Top left figure reproduces the right-hand side figure of Fig. 2a.

55



(a)

(b)

Figure 22: Results from a sensitivity analysis on estimated net additional jobs from changes to key variables and
components used in the modelling for a) 2034 during the peak, and b) 2045 during the steady state phase

D.4.2 Assortativity analysis

For each of the sensitivity analysis items, Fig. 23 shows the assortativity of shocks relative to
employment on the combined network before and after the peak during the transition, as a further
robustness check on Table 1. We also included the assortativity calculation of the base assumptions
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using the empirical occupational mobility network (OMN) and the mixed network (as defined in
Section B.9). For more results on the assortativity levels of the different networks, see Section D.2.3.

Figure 23: Sensitivity analysis of assortativity analysis of scale-up (x axis) and scale-down (y-axis) phases. The
value for Base corresponds to the scale-up and scale-down values in Table 1. RN = related network. The mix
RN/OMN = 50/50 mix of related network and empirical occupational mobility network (see Section B.9)

We can see that the assortativity levels for the 2034-2038 period all deviate by less than 25%
from the Base estimate, except for 5-year smoothing and the assortativity using the occupational
mobility network (OMN), which moves the assortativity to almost 40% lower than the base esti-
mate. For the 2020–2034 period we find that the assortativity values for OMN and high line cost
are more than 25% removed from the base estimate, respectively 40% and 55% higher.

Most of the assumptions move assortativity up or down for both time periods, but two do
not. Using more ambitious (advanced learning rates on cost curves leads to lower assortativity
in the scale-up phase (2020–2034) but higher assortativity in the scale-down phase (2034–2038).
The occupational mobility network, vice versa, has higher assortativity for the scale-up phase and
lower for the scale-down phase.

References

Acemoglu, D. and Restrepo, P. (2019), ‘Automation and new tasks: How technology displaces and
reinstates labor’, Journal of Economic Perspectives 33(2), 3–30.

Aguiar, A., Chepeliev, M., Corong, E. and van der Mensbrugghe, D. (2023), ‘The global trade
analysis project (gtap) data base: Version 11’, Journal of Global Economic Analysis 7(2).
URL: https://jgea.org/ojs/index.php/jgea/article/view/181

Anderson, K. A. (2017), ‘Skill networks and measures of complex human capital’, Proceedings of
the National Academy of Sciences 114(48), 12720–12724.
URL: https://www.pnas.org/doi/abs/10.1073/pnas.1706597114

Antoni, M., Janser, M. and Lehmer, F. (2015), ‘The hidden winners of renewable energy promotion:
Insights into sector-specific wage differentials’, Energy Policy 86, 595–613.

Atalay, E., Phongthiengtham, P., Sotelo, S. and Tannenbaum, D. (2020), ‘The evolution of work
in the United States’, American Economic Journal: Applied Economics 12(2), 1–34.

Autor, D. H., Levy, F. and Murnane, R. J. (2003), ‘The skill content of recent technological change:
An empirical exploration’, Quarterly Journal of Economics 118(4), 1279–1333.
URL: https://academic.oup.com/qje/article/118/4/1279/1925105

Bezdek, R. H. (1973), ‘Interindustry manpower analysis: Theoretical potential and empirical prob-
lems’, American Economist 17(1), 147–153.
URL: https://journals.sagepub.com/doi/abs/10.1177/056943457301700116?journalCode=aexb

57



Black & Veatch (2012), Cost and performance data for power generation technologies: prepared
for prepared for the national renewable energy laboratory, Technical report, Black & Veatch.
Accessed online at https://refman.energytransitionmodel.com/publications/1921/.
URL: https://refman.energytransitionmodel.com/publications/1921/

Blair, P. and Miller, R. E. (2009), Input-output analysis: foundations and extensions, Cambridge
University Press.

Bowen, A., Kuralbayeva, K. and Tipoe, E. L. (2018), ‘Characterising green employment: The
impacts of ‘greening’ on workforce composition’, Energy Economics 72, 263–275.
URL: https://doi.org/10.1016/j.eneco.2018.03.015

Brinkman, G., Bain, D., Buster, G., Draxl, C., Das, P., Ho, J., Ibanez, E., Jones, R., Koebrich,
S., Murphy, S., Narwade, V., Novacheck, J., Purkayastha, A., Rossol, M., Sigrin, B., Stephen,
G. and Zhang, J. (2021), The North American renewable integration study: A U.S. perspective,
Technical report, National Renewable Energy Laboratory, Golden, CO.
URL: https://www.nrel.gov/docs/fy21osti/79224.pdf

Bureau of Economic Analysis (2022a), ‘Industry economic accounts data’. Accessed: 2022-02-01.
URL: https://www.bea.gov/data/industries/gross-output-by-industry

Bureau of Economic Analysis (2022b), ‘Input-output accounts data’. Accessed: 2022-05-05.
URL: https://www.bea.gov/industry/input-output-accounts-data

Bureau of Labor Statistics (2021), ‘Occupational employment and wage statistics’. Accessed: 2021-
11-11.
URL: https://www.bls.gov/oes/tables.htm

Caunedo, J., Keller, E. and Shin, Y. (2023), ‘Technology and the Task Content of Jobs across the
Development Spectrum’, The World Bank Economic Review 37(3), 479–493.
URL: https://doi.org/10.1093/wber/lhad015

Cheng, S. and Park, B. (2020), ‘Flows and boundaries: A network approach to studying occupa-
tional mobility in the labor market’, American Journal of Sociology 126(3), 577–631.

Cole, W., Carag, J. V., Brown, M., Brown, P., Cohen, S., Eurek, K., Frazier, W., Gagnon, P.,
Grue, N., Ho, J., Lopez, Anthony amd Mai, T., Mowers, M., Murphy, C., Sergi, B., Steinberg, D.
and Williams, T. (2021), Standard scenarios report: A U.S. electricity sector outlook, Technical
report, National Renewable Energy Lab.(NREL), Golden, CO (United States).

Consoli, D., Marin, G., Marzucchi, A. and Vona, F. (2016), ‘Do green jobs differ from non-green
jobs in terms of skills and human capital?’, Research Policy 45(5), 1046–1060.

Del Rio-Chanona, R. M., Mealy, P., Beguerisse-Dı́az, M., Lafond, F. and Farmer, J. D. (2021),
‘Occupational mobility and automation: a data-driven network model’, Journal of the Royal
Society, Interface 18(174), 20200898.
URL: https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2020.0898

Dell’Anna, F. (2021), ‘Green jobs and energy efficiency as strategies for economic growth and the
reduction of environmental impacts’, Energy Policy 149, 112031.

Dierdorff, E. C., Norton, J. J., Drewes, D. W., Kroustalis, C. M., Rivkin, D. and Lewis, P. (2009),
Greening of the world of work: Implications for O*NET-SOC and new and emerging occupations,
Technical report, O*NET Resource Center.
URL: https://www.onetcenter.org/reports/Green.html

EIA (2021), Of the operating U.S. coal-fired power plants, 28% plan to retire by 2035, Technical
report, U.S. Energy Information Administration (EIA).
URL: ht tp s: // ww w. ei a. go v/ to da yi ne ne rg y/ de ta il .p hp ? i d= 50 65 8

EIA (2022a), Electric power annual 2020, Technical report, U.S. Energy Information Administra-
tion (EIA).
URL: https://www.eia.gov/electricity/annual/

EIA (2022b), Monthly energy review march 2022, Technical report, U.S. Energy Information Ad-
ministration (EIA).

58

https://refman.energytransitionmodel.com/publications/1921/
https://www.eia.gov/todayinenergy/detail.php?id=50658
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