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Abstract

Are lockdown policies e�ective at inducing physical distancing to counter the spread of
COVID-19? Can less restrictive measures that rely on voluntary community action achieve
a similar e�ect? Using data from 40 million mobile devices, we find that a lockdown
increases the percentage of people who stay at home by 8% across US counties. Grouping
states with similar outbreak trajectories together and using an instrumental variables
approach, we show that time spent at home can increase by as much as 39%. Moreover,
we show that individuals engage in limited physical distancing even in the absence of such
policies, once the virus takes hold in their area. Our analysis suggests that non-causal
estimates of lockdown policies’ e�ects can yield biased results. We show that counties
where people have less distrust in science, are more highly educated, or have higher incomes
see a substantially higher uptake of voluntary physical distancing. This suggests that
the targeted promotion of distancing among less responsive groups may be as e�ective as
across-the-board lockdowns, while also being less damaging to the economy.
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1 Introduction
The outbreak of COVID-19 has caused an unprecedented healthcare crisis and a major disruption
to the global economic system across the world. Political leaders in many countries have taken
measures to limit the contagion rates in order to relieve the pressure on health care systems and
prevent excess deaths. While epidemiological uncertainty about the virus and its spread remains
(Anderson et al., 2020), research on China and South Korea shows that early governmental
action and cooperation by the population can stem the uncontrolled spread of the pandemic
(Kraemer et al., 2020; Wilder-Smith and Freedman, 2020; Wu and McGoogan, 2020).

In this paper, we provide estimates of how government action influences community be-
havior along several dimensions, and in turn is itself influenced by decisions made by the
population at large. From a policy perspective, understanding whether and how communities
respond to government actions is crucial. To the best of our knowledge, we are the first to
leverage high-resolution big data on people’s movements and whereabouts in combination with
causal econometric methods in order to analyze the interdependence between government and
community action.

Using staggered di�erence-in-di�erences (DiD) approaches and an instrumental-variable
(IV) analysis, we show that physical distancing measures pick up after the implementation
of government lockdown policies. In particular, in our first approach, we estimate that the
introduction of a lockdown policy increases the proportion of people who stay completely at home
by around 8%, over and above any community action taken. For our di�erence-in-di�erences
instrumental variable approach, we group states together by the date on which the first within-
state COVID death occurs. The evidence suggests that the e�ect size can be as large as 39%
for certain states, once we account for endogeneity due to treatment selection. However, we
document that communities take action even in the absence of government policies. Moreover,
we find that the more communities take independent action to limit social interactions, the less
likely it is that state governments implement restrictive lockdown measures. Our conclusion is
that government policies can further amplify measures already taken at the community level,
but that the need for restrictive policies is reduced the more the community takes independent
action. Finally, our analysis suggests that non-causal econometric approaches to measure the
uptake in physical distancing following lockdown policies will yield biased results, as we provide
evidence for a two-way interaction between physical distancing and such policies.

These result shed further light on the role of public health policies in combating the COVID
pandemic. In general, governments can take two distinctive strategies according to Ferguson et al.
(2020): mitigation and suppression. The former aims at lowering maximum healthcare demand
by reducing contagion rates through non-pharmaceutical interventions, while the latter approach
adopts very restrictive measures to push down the prevalence of new cases to zero. Most
researchers argue that only a mix of suppressive measures such as mandatory home isolation and
lockdown policies can be successful in mitigating the spread of the virus. These interventions
may need to be maintained over several years (Kissler et al., 2020) and complemented with



school and business closures (Ebrahim and Memish, 2020; Ferguson et al., 2020; Hellewell
et al., 2020). Yet, even though lockdown policies have been crucial in slowing down infection
rates during the early phases of the disease (Stoecklin et al., 2020; Wu et al., 2020; Xiao and
Torok, 2020; Zu et al., 2020), the ‘Swedish solution’ of voluntary physical distancing has gained
increased support in balancing the burden on health systems and the economy in the medium
run (Krueger et al., 2020). Our findings reveal that both approaches may help to promote
physical distancing. Nonetheless, the evidence we provide for di�erential outbreak response
along socioeconomic lines calls for a more nuanced discussion paired with policies targeted at less
responsive groups. Our findings align closely with earlier findings in the epidemiology literature
that the distribution of individual infectiousness around the basic reproductive number – R(0) –
is often highly skewed in epidemics, making that targeted control measures generally outperform
population-wide ones (Lloyd-Smith et al., 2005).

So far, first steps have been taken to analyze social distancing under lockdown policies. Using
mobility statistics from Unacast, Engle et al. (2020) find state-wide stay-at-home orders to be
correlated with a reduction in mobility of 7.9%. Mediated by perceived risk, this correlation is
stronger in counties with lower vote shares of the Republican party, higher population density
and relatively more people over age 65. Painter and Qiu (2020) exploit SafeGraph data to show
that the introduction of shelter-in-place policies is associated with a 5.1 percentage point increase
in the probability of staying home. They also document smaller correlations in Republican
states and in case a county is politically misaligned with the governor of the state. Qualitatively
similar results have been obtained by Andersen (2020) and Allcott et al. (2020). We add to
this literature by providing a detailed examination of the two-way causality and the overlooked
endogeneity of lockdown policies.

More broadly, our research speaks to the field studying the behavioral impact of major
crises such as natural disasters or pandemics. A host of papers deal with the long-run e�ects
of the Spanish Flu in 1918-19, showing persistent decreases in human capital (Beach et al.,
2018), generalized trust (Aassve et al., 2020) and old-age survival (Myrskylä et al., 2013). In
terms of economic outcomes, pandemics have been associated with subsequent reductions in
returns to assets (Jorda et al., 2020) and slight increases in real wages (Barro et al., 2020).
In addition, our findings inform the debate about the role of formal and informal institutions
in times of crisis (Stiglitz, 2000). In the past, both types of institutions have been shown to
contribute to economic development individually and in a complementary (Guiso et al., 2004;
Williamson, 2009) or substitutive manner (Ahlerup et al., 2009). Finally, several studies indicate
that informal institutions are vital in promoting behavior that helps mitigate the spread of
infectious diseases (Chuang et al., 2015; Rönnerstrand, 2013, 2014).

We find support for these results in that more informed (highly educated and high trust in
science) areas react more strongly to the outbreak of the virus itself by voluntarily practicing
physical distancing. In contrast to previous studies by Painter and Qiu (2020) and Engle et al.
(2020) we do not find evidence for heterogeneity in response to lockdown policies, except for rural
and urban areas – neither in that more privileged people show a stronger additional reaction nor



in a catch-up e�ect of disadvantaged communities. Nevertheless, socioeconomic inequalities may
enter the COVID crisis along several dimensions. First, it is likely that disadvantaged groups will
be a�ected more strongly by the crisis due to lower levels of health coverage, higher prevalence of
pre-existing health problems, mass lay-o�s and unfavorable living conditions.1 Second, existing
income and education di�erences income and education are likely to be exacerbated through
the disruption of economic and educational systems (Armitage and Nellums, 2020; Glover et al.,
2020; Van Lancker and Parolin, 2020). Third, tackling inequality could be crucial in mitigating
the spread of the virus (Ahmed et al., 2020). Combining data on testing and incidences in
New York City with demographic characteristics, Borjas (2020) shows that people residing
in poor or immigrant areas were less likely to be tested. Yet, once a test was carried out in
these neighborhoods, it was more likely to be positive. These counteracting factors dilute the
importance of socioeconomic characteristics, making simple correlations between household
income and the number of incidences prone to underestimating the asymmetric e�ects of the
pandemic. Our result that less well-o� areas tend to respond less to the outbreak of the crisis
implies an important role for formal institutions in reaching out to such areas through welfare
programs and information campaigns and for bolstering the informal institutions in place.

The remainder of this paper is structured as follows: Section 2 discusses our data sources, in
particular our measures of physical distancing and lockdown policies.2 Section 3 discusses our
empirical approach and presents the results. Section 4 concludes.

1See e.g. www.vox.com
2The state-level policy dataset can be accessed here.



2 Data
We compile a dataset on government policies and physical distancing for the period between
February 1, 2020 and March 31, 2020 from various sources. In this section, we briefly discuss
each of the sources and describe the variables we construct from them.

2.1 SafeGraph Physical Distancing and Foot Tra�c Data

Our main dataset comes from SafeGraph, a California-based company that provides data on
over 4 million points of interest (POI) across the United States, along with the associated foot
tra�c at those places, collected from up to 40 million mobile devices. The data was made
available to academic researchers by SafeGraph to study the COVID-19 pandemic. Here, we
provide a concise discussion of the two main datasets that we use.3 Both datasets build on
SafeGraph’s core database of ~4 million POIs in the US, which they compile from thousands
of diverse sources in an exhaustive 6-step process designed to guarantee reliability, granularity
and accuracy. We aggregate this data to the state and county level to estimate the e�ect of
lockdown policies targeted at reducing social interactions implemented by state governments to
combat the spread of the virus.

Weekly Patterns. A temporary data product especially introduced for the study of the
COVID-19 pandemic, Weekly Patterns, provides weekly updates of visitor and demographic
aggregations for ~3.6MM POIs across the United States. It is based on an underlying panel of
up to 40MM mobile devices with home addresses in all 200,000+ census block groups (CBG)
across the United States.4 Geographic bias of the sample is limited, with the absolute di�erence
between the panel’s density and true population density as measured by the US census never
exceeding 3% at the state level. The correlation between both densities is 0.98. At the county
level, the overall sampling bias is larger, with the correlation dropping to 0.97, although the
bias for each separate county drops, to never exceed 1%.5 In addition to this low geographic
sampling bias, the panel also has a low degree of demographic sampling bias. Although device-
level demographics are not collected for privacy reasons, average demographic patterns can
be studied using panel-weighted, CBG-level Census data. Here again, the frequency of salient
race, demographic and income groups in the panel closely tracks the same frequency in the
Census. To obtain a measure of daily state-level foot tra�c, we sum up the total number
of visits each day to all POIs in each state. We consider overall foot tra�c the best-suited
measure to study movement patterns, since it smooths out industry-specific idiosyncrasies in

3For a more detailed exposition of SafeGraph’s data products, see https://safegraph.com.
4CBGs with less than 5 devices are excluded for privacy reasons.
5CBGs, expectedly, are marked by larger sampling bias, mostly due to technical errors in determining devices’

home locations and so-called sinks. Since we restrict our analysis to the state and county level, this does not
pose a serious issue. For a detailed exposition of SafeGraph’s panel bias, see here.



foot tra�c that arise from the particular nature of the policies imposed – with tra�c to airports,
for example, temporarily increasing after the travel ban on European countries.

Social Distancing Metrics. To facilitate the study of how people adhere to COVID-related
social distancing arrangements, SafeGraph introduced a new data product that provides direct
information on the movements of the smartphone devices in its panel.6 Based on GPS pings
from the devices, the common nighttime location of each mobile device over a 6 week period
is narrowed down to a Geohash-7 ( 153m ◊ 153m) granularity, which is denoted the device’s
home. Aggregate device metrics are then reported at the CBG level.

For our analysis, we further aggregate these metrics to the county and state level. Specifically,
we measure, on a daily basis7:

• Median distance traveled from home for each state and county by taking the median
of the same measure for all CBGs.

• Median home dwell time, constructed in a similar way.

• The percentage of devices that spent all day at home is obtained by summing a
count of such devices at the CBG level and dividing it by the total number of devices
observed in that CBG.

For the county-level analysis, our preferred measure is the percentage of devices that spent
all day at home, because it is constructed from a raw count of the numbers of devices. Thus, this
variable exhibits the most detailed variation, and no information is lost by repeatedly extracting
moments from it, as is the case for the other variables. At the same time, the measure is less
well-suited to state-level analysis, since we expect state-level policies to be more strongly related
to movements in the entire state-wide distribution of physical distancing – captured well by the
median dwell time –, rather than to the highly detailed movements of single individuals which
show up in the percent at home variable.

SafeGraph guarantees privacy preservation of the subjects whose data is collected in at least
three ways. First, the data was not collected directly from people’s smartphones, but from a
secondary source; it contains only aggregate mobility patterns. Second, SafeGraph excluded
CBG information if fewer than five devices visited a place in a month from a given CBG so
as to further enhance privacy. Third, the data products and maps derived from the mobility
patterns are again aggregate results. No human subjects have or can be re-identified using these
derived results.

6See here for detailed information on this product.
7Detailed descriptions of each variable can be found in Appendix A, Table 5.



2.2 Government Measures

Government Measures. Data on government measures implemented to combat the COVID-
19 spread has been retrieved from the National Association of Counties (NACO)8 and the
National Governors’ Association.9 For each state and county, we obtained data on whether and
when they declared a state of emergency (SOE) and implemented business or school closures and
safer-at-home polices.10 The business closure order requires all non-essential businesses to close
down, while the safer-at-home order calls for all citizens to stay at home. Essential needs (such
as grocery shopping, exercise and medical emergencies) are the only exceptions to safer-at-home
orders. People working in essential businesses are still allowed to go to work. Additionally, all
50 states implemented school closures. The dates for school closures were obtained from the
o�cial websites of the administrations of the 50 states and the District of Columbia.

2.3 Instruments and Controls

Instruments: Weather and Ventilators Needed. To account for the potential en-
dogeneity of government policies with respect to the community response measures obtained
from the SafeGraph data, we construct an instrument based on the daily number of ventilators
required for each state. This variable is based on o�cial estimates from the Institute for Health
Metrics and Evaluation (IHME) that publishes COVID-19 projections under the assumption of
full social distancing throughout May 2020.11 While a current or predicted need of ventilators
increases pressure on politicians to impose lockdown policies, these information are hardly
disclosed to the public, or only with a lag. Therefore, we expect a need of ventilators to influence
politicians’ decisions without any direct e�ect on physical distancing in the population.

As to the converse endogeneity, we construct an instrument for community response measures
from weather data, based on the deviations of temperature and precipitation from their 10
year-averages in the capital of each state. The data is taken from the National Centers for
Environmental Information website.12 Temperature and precipitation in the capitals are based
on measurements from the main weather station of the capital’s airport. We match these to our
community response measures for the capital cities in question.

Hospital Capacity. Data on hospital capacity is provided by Definitive Healthcare13 through
the ESRI’s Disaster Response Program14, which gathers useful data to understand the spread
of COVID-19 in the United States. We use daily forecasts on the number of hospital beds and
ventilators needed for COVID patients at the state level.

8For details, see https://ce.naco.org/?dset=COVID-19&ind=State%20Declaration%20Types. We thank
NACO for sharing the underlying data with us.

9The underlying data from the NGA can be found under https://www.nga.org/coronavirus/#states

10In this paper, we use the terms shelter-in-place and safer-at-home interchangeably.
11See www.covid19.healthdata.org for a current version of the data.
12The historical weather data is available under www.ncdc.noaa.gov.
13www.definitivehc.com
14www.coronavirus-disasterresponse.hub.arcgis.com



COVID-19 Statistics. The data on COVID-19 cases and deaths in the United States is
collected from three di�erent sources: the o�cial US Government COVID-19 dedicated page15,
the Johns Hopkins Coronavirus Research Center16 and the COVID Tracking Project.17 We
collect measures on positive tests, negative tests and number of deaths; and this for both
cumulative count and day-on-day increases.

Socio-Economic Statistics. Most demographic variables are sourced from the American
Community Survey 2018 (Ruggles et al., 2018), a 1 % random sample of the American population.
Population estimates for 2018 come from the o�cial Census Statistics. 18 Next, data on county-
level employment and education were drawn from the Quarterly Census of Employment and
Wages (2019Q3) and the United States Department of Agriculture’s Economic Research Service.
As a proxy for belief in science, we leverage data on county-level opinions on climate change
from Howe et al. (2015). Data on party vote shares in the 2016 presidential election by county
was obtained from the MIT Election Lab.19 Lastly, we use the institutional health index from
the United States Congress Joint Economic Committee.20 The index combines information
on the rate at which citizens cast ballots in the 2012 and 2016 presidential elections; the rate
at which residents returned the 2010 census through the mail; and the confidence of adults in
corporations, the media and public schools.

3 Results
We now turn to the results of this paper. In particular, we pose four sets of questions. First, to
what extent do people practice physical distancing, such as staying at home, in the absence of
government policies? Second, how do people adapt their behavior following a policy change?
Third, how is the implementation of lockdown policies influenced by previous community
behavior? And fourth, to what extent do socioeconomic and political factors matter in shaping
community responses to COVID-19?

In order to answer these questions, we first review the data descriptively in subsection 3.1.
The descriptive statistics point towards the conclusion that people stay at home even in the
absence of lockdowns after the virus takes hold in their area, but that their response is stronger
if policies are implemented. Building upon this analysis, in subsection 3.2 we employ a staggered
di�erence-in-di�erences (DiD) approach and a DiD instrumental variables (IV) methodology in
order to estimate the causal e�ect of lockdown policies. We then turn to the question of reverse
causality in subsection 3.3, where we use an IV strategy to show that persistent inaction on the
side of the community can trigger the government to implement policies.

15www.COVID19.healthdata.org
16www.coronavirus.jhu.edu
17www.COVIDtracking.com
18www.bea.gov
19www.electionlab.mit.edu
20www.jec.senate.gov



Finally, we document substantial heterogeneity in community responses across socioeconomic
groups in section 3.4. After discovering stark di�erences between groups in their reaction to
the outbreak of the virus, we show that the same heterogeneity is not evident in the additional
response to lockdown policies, but is rather due to di�erences in the degree of voluntary physical
distancing. Our analysis suggests that cross-county di�erences in socioeconomic variables, such
as income, belief in science or education, can have as much of an e�ect on the level physical
distancing as the imposition of a lockdown. In the medium run, this implies that governments
can decrease the need for damaging lockdowns by expanding cohesive policies.

3.1 Descriptive Statistics

Figure 1 shows the series of events that occurred over the course of February and March 2020 in
the United States. The first cases and deaths were confirmed in late February while the spread
of the disease o�cially only gained momentum during the middle of the month. Lockdown
policies were imposed across states during the weeks after these incidents. As of end March,
all states have adopted school closure policies and roughly half of them have gradually been
introducing business closures and shelter-in-place measures, i.e. orders to stay home.

Figure 1: Timeline of Contagion and Lockdown Policies, Feb-Mar 2020
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Figure 2 and Figure B.4 in the Appendix depict trajectories for selected states from each
US region by plotting the percentage of devices that stayed home all day and the foot tra�c,
respectively, alongside national and state-level lockdown policies. For all states, the variables
seem to be stationary until the first week of March, when tra�c starts to drop and the percentage



that stayed home increases. The upward trend seems to continue regardless of national and
state-level policies, though the nation-wide state of emergency declaration (first dashed grey
line) appears to cause a significant acceleration of this trend, as do several of the state-wide
policies. Not only does the timing of the outbreak of the pandemic di�er across states, but so
do the community reaction as well as the timing and scope of lockdown policies. This variation
allows us to explore the interplay between community behavior and government action around
the time of the enactment of the lockdown policies.

Our analysis reveals that outbreaks of COVID-19 are significantly associated with uptakes in
physical distancing. Figure 3 shows how three types of distancing measures respond to the first
death in a state, alongside 95% confidence intervals. The estimates illustrate how the variable
changes on each day after the first COVID death compared to no death having occurred, where
we control for state fixed e�ects. Note that all three variables change in the expected way:
compared to no death having occurred, the percentage of people who stay at home all day and
the median dwell time at home go up (panels (a) and (b)), while the median distance from
home decreases (panel (c)). Moreover, the estimated e�ects are large: the percentage of people
staying at home all day increases by around 8 percentage points one day after the first death
compared to the period before the first death.

At the state-level, the downward trends in tra�c observed in Figure B.4 seem to hold both
in the presence and in the absence of policy interventions. Figure 4 expands on this point by
showing the community response before a policy has been implemented. In the left panel, the
y-axis presents the percentage change in tra�c between the date of the tenth confirmed case and
the enactment of the first lockdown policy, while the x-axis shows the number of days between
these two events. The right panel plots equivalently the di�erence in percentage stayed home.
For the majority of states, lockdown policies were implemented several days after the first death
as indicated by the positive values on the x-axis. The figure illustrates that once a state is
a�ected by COVID-19, individuals start to reduce their daily foot tra�c and spend relatively
more time at home even before any lockdown policy is implemented. Hence, we conjecture
that calls for physical distancing and information on the virus’s spread are taken seriously and
individuals voluntarily modify their behaviour even in the absence of fast-moving policies. This
association is by no means negligible in size: in our sample, foot tra�c decreases by up to 50%
10 days after the tenth confirmed case, while the share of individuals staying home increases by
up to 16 percentage points.
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Figure 3: Physical Distancing Change Since First Death from COVID-19, Relative to No
Death
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Figure 4: Change in Outcome Variables Before Enactment of Lockdown Policies
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Notes: The graphs plot the change in outcome variables over the period between the tenth confirmed case in the
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in the share of all devices that stayed home. Both variables are smoothed over a 7 day window.

However, it is clear that the community response will di�er once states have implemented
policies targeted at inducing people to take physical distancing measures. In order to disentangle
independent community reaction to COVID-19 from the response to policy measures, we estimate
the following model:

commi,t = –i +
28ÿ

j=0
—j j-daysi,t +flLDPi,t +

28ÿ

j=0
“j j-daysi,t ◊LDPi,t +ui,t, (1)

where commi,t is the community response variable for state i at time t, i.e. either percent of
people who stay at home for the whole day, median time spent at home or median distance
from home; j-daysi,t takes the value of 1 if j periods have passed since the first death; LDPi,t

is a dummy equal to 1 if the government has implemented the respective lock-down policy at or
before period t; and –i are state-fixed e�ects. Thus, the coe�cient —j estimates the community
response on day j after the first death in case the government action has not been taken, relative
to no death having occurred; and fl + “j estimates the additional community response if the
government action is in place during that period, compared to the case when no death has
occurred and no policy action has yet been implemented.

Figure 5 plots the resulting estimates from Equation 1, alongside 95% intervals, for the
introduction of lock-down policies. The upper panel illustrates the change in the physical
distancing measure in case that no such policy was in place (i.e. —j for each j œ {0,1, ..9} from
Equation 1), while the lower panel shows the additional change in the measure when the policy
is in place (i.e. fl + “j for each j œ {0,1, ..9}). The upper panel documents that even in the
absence of government policies, communities take physical distancing actions in response to
COVID-19, controlling for di�erences between states. However, the lower panel suggests that
the community responses are stronger if the government also takes action. The estimates in



Figure 5 show that in states with lock-down policies in place, on the day after the first death
the percent of people who stay completely at home is approximately 3 percentage points higher
than in states without the policy. Similar responses are found for other measures of physical
distancing (see Figures B.1 and B.2 in the Appendix). The response is also very similar when
using county-level rather than state level data, where we use county instead of state fixed
e�ects (see Appendix Figure B.3). Note that each estimate after the day of the first death pools
together both states that have had the policy in place for multiple days as well as states that
implemented the policy on the day of the estimate.

We can summarise two main findings so far. Firstly, people do respond to the COVID
pandemic even in the absence of state-level policies. Secondly, state-level policies coincide with
increased responses of the community in terms of physical distancing measures. However, our
estimates do not yet yield insights about the causal response to policies. One issue is that an
absence of community action can make the implementation of policies more likely, as we explore
in section 3.3. Another issue is that there might be common factors that drive both physical
distancing measures as well as the inclination of states to take action – such as the progression
of the disease. In order to counter these potential endogeneity issues, in the next subsection we
employ causal econometric methods to estimate the e�ect of shelter-in-place policies on physical
distancing.

3.2 E�ect of Government Action on Community Action

In order to account for potential endogeneity, we pursue two approaches in estimating the
community response to the lockdown policies: first, we estimate a saturated staggered DiD
specification where we use a rich set of controls for factors that might influence both community
action and the implementation of policies. Moreover, we conduct the analysis at the county level
and exclude the capitals of each state, arguing that county-level changes in foot-tra�c outside
of state capitals do not a�ect state-level policies. This combats the potential reverse causality
problems which are explored in section 3.3. Second, we use a DiD-IV approach for groups of
states that have experienced the first death on the same day. As an instrument, we use the
number of required ventilators at the state level. We argue that, conditional on controlling
for the spread of the virus, our instrument only a�ects community action by changing the
probability of the policy being implemented.

3.2.1 Staggered Di�erence-in-Di�erences

As we have shown in subsection 3.1, communities respond to the pandemic even in the absence
of any policy. Thus, our identification strategy requires that we control for the progression of the
virus in each state in order for the common trends assumption to hold. Put di�erently, we need
to guarantee that, conditional on our controls, counties in states that have not (yet) implemented
a policy are a viable counterfactual for those that have. Another potential source of bias comes
from non-random treatment assignment or time-varying treatment e�ects, as several recent



Figure 5: Percentage Point Change in Percent Completely at Home, Conditional on Lockdown
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1 Top panel: plots the estimated response of percent of devices at home by day since the first death in the
state if no lockdown policy is in place, i.e. the —js from Equation 1.
2 Bottom panel: plots the estimated additional response of percent of devices at home by day since the first
death if a lockdown policy was in place on that day, i.e. the fl+“js from the same Equation.

papers have demonstrated (Athey and Imbens, 2018; Goodman-Bacon, 2018). In what follows,
we account for the stage of the pandemic each county is in by including days-since-first-case
dummies and controls for the number of deaths and cases. We then assume that, conditional
on controlling for the progression of the pandemic as well as county and time invariant factors,
treatment assignment is indeed random. In that case, the staggered DiD estimates give an
unbiased estimate of a weighted average causal e�ect.



With these caveats in mind, we proceed by estimating the following saturated staggered DiD
model:

commi,j,t = countyi + ”t +—i,t +
11ÿ

k=≠5
flk Pj,t+k +�xi,t +ui,t, (2)

where commi,j,t is the community physical distancing action under analysis in county i, state
j and day t; countyi are county-level fixed-e�ects; ”t are day fixed-e�ects; —i,t are day-since-
first-case fixed e�ects21; Pj,t+k is a state-level policy dummy that is equal to 1 at time t + k

and 0 otherwise, where k = 0 when state j implements the policy at time t; and xi,t comprises
the numbers of deaths and confirmed cases as controls. Note that we include the e�ect of the
policy on previous community response as a placebo check on whether we control su�ciently for
pre-policy implementation trends. We also exclude capital counties in order to further combat
potential reverse causality issues.

Figure 6 shows the resulting estimates for this specification. The pre-implementation
responses are insignificant. Once the policy is enacted, however, there is a marked increase
over the subsequent days in the percentage of people who stay at home. We find that the
implementation of a shelter-in-place policy increases the time spent at home by approximately
2 percentage points one day after its implementation, once taking account of any community
responses due to the county-specific COVID-19 incidence and country-wide developments.
Compared to a base of approximately 25.7% at the end of February, this amounts to a 8%
increase in the time spent at home. Perhaps more importantly, the e�ect stays significant for
subsequent days.

As a robustness check, we also estimate Equation 2 at the state level, with state instead of
county fixed e�ects and using days-since-first-death instead of days-since-first-case fixed e�ects.
The results are presented in Figure B.5 in the Appendix with the estimated e�ects being very
similar, albeit somewhat larger.

3.2.2 Di�erence-in-Di�erences IV

As a further step to counter endogeneity issues, we group states by the day on which their first
death occurred. This allows us to run di�erence-in-di�erences IV regressions for states that have
experienced the first death on the same day. Grouping states by the incidence of the first death
yields the advantage that it explicitly controls for part of the overall evolution of COVID-19
and thus makes the common trends assumption more viable.

We have seen in Figure 1 that there is a lot of variation across states in the timing of the
first death caused by the coronavirus. Nevertheless, there are a number of states that share
the date of the first death. Table 1 shows the occurrence of the first COVID-related deaths
for dates at which at least three states experienced their first death. On six dates we observe
a first death for three or more states on the same day. We will concentrate on the first four

21The categorical variable employed here takes the same value for all time periods before the first case. Hence,
it is an additional control to distinguish between periods before the outbreak of COVID with those thereafter.



Figure 6: Staggered DiD Estimates of the Policy Impact on Percent of Devices at Home
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Note: The figure plots the flk-coe�cients and 95% confidence intervals from Equation 2 against the days relative
to the implementation of a shelter-in-place policy.

of these, since the last two happen too close towards the end of our sample for a meaningful
analysis. Note that there are early and late adopters for the groups of states with first deaths
on March 14, 16 and 18. In contrast, the two states with first deaths on March 19 that do adopt
safer-at-home measures implement those on the same date, March 25.

Table 1: Groups of States by Days since First Death

Date of first death Number of states State-ID
March 14 3 LA, NY, VA
March 16 4 IN, KY, NV, SC
March 18 4 CT, MI, MO, PA
March 19 5 MD, MS, OK, VT, WI
March 20 3 MA, OH, TN
March 25 4 AL, IA, NC, NM
Total until March 28 48

Figure 7 shows the evolution of the median time spent at home since the first death occurred
for each group of states. Panels (a) to (c) compare early adopters to never adopters, while in
panel (d) both states that adopt a policy did so on the same day. For all groups under analysis,
we can draw two broad conclusions: first, even unconditionally, states exhibit parallel trends
before the implementation of the policy. Second, within a few days after states impose the
shelter-in-place policy, their dwell-at-home time increases relative to states with the same first
death date that do not adopt the policy.



Figure 7: Dwell Time at Home (Log), by Date of First Death from COVID-19
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Note: The graph plots the log of median home dwell time for groups of states that had the same date of first
death from COVID-19, by whether they implemented shelter-in-place policy early (red) or not at all during the
sample. The red vertical lines indicate the first policy implementation date.

We now proceed to a di�erence-in-di�erences IV regression for states with the first death
occurring on March 19. This date is particularly suitable for our analysis for two reasons.
Firstly, it is the date on which most states share their first death. Secondly, the two states
that implement a shelter-in-place policy do so on the same date, March 25. This helps to
eliminate any remaining potential bias arising from the staggered DiD specification due to time
heterogeneity in treatment e�ects and gives us the unweighted average treatment e�ect for the
treated.

In order to estimate the causal e�ect of policy adoption, we estimate the following standard
DiD specification in the second stage:

commi,t = –i + ”t +flLDPi,t +�xi,t +ui,t, (3)



where all variables are defined as before. Thus, fl is the standard DiD estimate that captures
the e�ect of implementing the policy.22

In the first stage, we instrument LDPi,t by the number of ventilators needed in a given
state. Note that time-invariant di�erences across states will be eliminated by the fixed e�ects
–i. We argue that, conditional on controlling for the number of COVID-related cases and
deaths, the number of ventilators needed will be driven by idiosyncratic factors that only a�ect
community action through government measures. This is because the population can observe
general statistics capturing COVID-related cases and deaths and respond to them, but cannot
in real time observe the number of ventilators needed due to COVID-19. However, a higher need
for ventilators will increase the pressure on governors to implement preventive shelter-in-place
policies to mitigate the spread of the disease.

Note that for the IV specification, our estimates should be interpreted as those for ‘compliers’
– i.e. states that will only adopt measures if there is an experienced or projected shortage of
ventilators, but would not do so otherwise. Given that there is a long time lag between the
COVID-19 outbreak and the implementation of policies for many states, we believe that the
existence of ‘compliers’ is highly likely. Nevertheless, there could also be some ‘always takers’ –
states that would have adopted the policy even if there was no experienced or forecast pressure
on their healthcare system.

Tables 2 and 3 report the estimation results for median dwell-time and median distance
from home, respectively. In each table, the first column shows the simple DiD result without
instrumenting the government action, while the second one contains the baseline IV results.
Note that for the latter, the F-statistic in the first stage on the excluded variable is large at
80.6, indicating that our instrument is relevant. Moreover, the sign of the coe�cient for our
excluded instrument is intuitive: an increase in the amount of ventilators needed increases the
probability of introducing a shelter-in-place policy. The number of deaths and of confirmed
cases enters our DiD estimation results generally insignificantly; columns 3 and 4 show that our
results are robust to excluding either of these controls.

Across both the standard DiD and the IV specifications, there is a large positive and
significant e�ect of the government policy on the community response. According to our
favoured IV specification in Table 2, the government response increases the dwell-at-home time
by exp(0.33) ≠ 1 = 39%. Without the instrument, the e�ect is reduced to a still substantial
exp(0.134) ≠ 1 = 14%. Given that the median dwell time across states from February 1 to
February 15 was 12 hours (including sleep), this would mean that the shelter-in-place policy
causes an average increase of 1.7 to 4.7 hours in daily time spent at home.

Note that the size of the results as well as their significance is strikingly similar when
analyzing the response of the median distance from home (see Table 3). Again, we find that

22Note that we do not include treatment indicators (whether a government has ever implemented a policy)
since these are captured by fixed e�ects. Moreover, we do not incorporate post-treatment time indicators since
we include the more flexible date dummies instead.



Table 2: DiD-IV Estimates of E�ect on (Log) Home Dwell Time

(1) (2) (3) (4)
DiD DiD-IV DiD-IV DiD-IV

Lockdown 0.134** 0.329*** 0.311** 0.363***
(0.0412) (0.0244) (0.0707) (0.0736)

COVID deaths -0.00815* -0.0140 -0.0130
(0.00346) (0.00790) (0.00773)

COVID known cases 2.14e-05 2.34e-05 -3.29e-05
(9.12e-05) (9.76e-05) (0.000198)

State FEs X X X X
Date FEs X X X X
First-stage F (excl.) 80.60 14.12 17.99
Observations 285 260 260 260
R2 0.887

Note: This table reports various DiD estimates at the state level for those states that experienced their first
COVID-related death on March 19, 2020.

Table 3: DiD-IV Estimates of E�ect on (Log) Home Distance

(1) (2) (3) (4)
DiD DiD-IV DiD-IV DiD-IV

Lockdown -0.102*** -0.228** -0.249** -0.264*
(0.0197) (0.0640) (0.0665) (0.104)

COVID deaths 0.0107*** 0.0145* 0.0157
(0.000772) (0.00607) (0.00960)

COVID known cases 3.71e-05 2.75e-05 8.56e-05
(0.000106) (8.43e-05) (0.000197)

State FEs X X X X
Date FEs X X X X
First-stage F (excl.) 80.60 14.12 17.99
Observations 285 260 260 260
R2 0.921

Note: This table reports various DiD estimates at the state level for those states that experienced their first
COVID-related on March 19, 2020.



the estimated e�ect is larger once pursuing an IV strategy.23 Our findings from Tables 2 and 3
suggest that the omission of an IV approach can lead to a downwards bias for the estimated
causal e�ect of a shelter-in-place policy. There are two reasons to expect this result. First, it
is likely that there are states which would always implement the policy, regardless of whether
ventilators are lacking (i.e. ‘always takers’). If such states also have a population that reduces
tra�c even in the absence of government policies, then the implementation of the policy will
appear to have a small causal e�ect on tra�c. In contrast, the IV estimates would be larger
since they are only based on states which are ‘compliers’, and not on those who are ‘always
takers’.

Second, states with people who do not change their behaviour might be more inclined to
introduce shelter-in-place policies. If people who are less likely to take action on their own are
also less likely to change their behaviour following government action, then the estimated e�ect
of state action will appear smaller than it truly is. In the following subsection, we will show that
there are good reasons to believe that this line of argumentation holds true: states are indeed
more likely to implement a policy if their population does not reduce foot tra�c on their own.

3.3 E�ect of Community Action on Government Action

In this section, we examine to what extent independent community action a�ects the probability
of state governments introducing lockdown policies. From a theoretical point of view, the
predicted sign of the e�ect is rather unclear. As shown in the previous section, people practice
physical distancing even before the imposition of restraining measures, be it to minimize
individual risk, to limit contagion within the community or because they anticipate the lockdown
policies. Under this scenario, governors can introduce extensive measures to suppress the
spread of the pandemic at fairly low political cost, yet the additional health e�ects from these
lockdown policies would be comparatively small. The lower political cost would suggest stronger
independent community action triggers stronger government action; the smaller e�ect on public
health would suggest the opposite. By contrast, if the population refuses to su�ciently comply
with non-compulsory calls for social distancing due to denial, defiance or to take advantage of
free movement before an anticipated lockdown, governors’ suppressive actions may be more
e�ective in terms of health policy but come at higher political costs.

To evaluate the impact of community action on the probability of governors introducing
lockdown policies, we estimate the following equation:

LDPi,t = –i + ”t +—j commi,t≠8 +�xi,t +ui,t (4)
23In contrast, we do not find significant results when employing the percent of devices that stay at home as

an outcome variable instead. We conjecture that this is due to the nature of the variable, which is a raw count of
the number of devices that stay completely at home, divided by the total number of devices in the state. Thus,
this variable will capture some unrelated variation, and potentially be more prone to sampling biases at the
CBG level. In contrast, the distance from home and dwell time at home variables capture movements in the
median CBG of the median county for each state, and thus are less prone to these problems.



where LDPi,t is 1 on the day of state i’s announcement of the lockdown policy in question–
after which the state drops out of the sample – and 0 before; and commi,t≠j denotes the jth

lag of the physical distancing measure in question. We alternatively capture community action
by total foot tra�c, percentage of devices staying completely at home, and by median home
dwell time, and find similar results across the board. In addition, the regression includes state
and days fixed e�ects, –i and ”t, along with a vector of covariates xi,t that controls for the
cumulative number of confirmed cases and deaths by state.

We adopt an Instrumental Variables (IV) strategy to assess how community action a�ects the
probability of lockdown policies being imposed. For policymakers, the most visible indicator for
compliance with the call to physical distancing is public foot tra�c. However, if the community
anticipates the imposition of a lockdown policy, then lagged community action will also be
a�ected by the future imposition of any such policies. As a result, Ordinary Least Squares
(OLS) estimates of the e�ect of independent community action on the imposition of suppressive
government-imposed lockdown policies will be biased. To account for this e�ect, we estimate
the J di�erent —js by means of two-stage least squares, where we instrument the physical
distancing measures with the maximum temperature, minimum temperature, precipitation and
interaction of max temperature and precipitation in the state capital. If the temperature is high
or precipitation low, individuals are more likely to leave their homes. Governmental intervention,
though, should not be directly a�ected by weather, except insofar as it impacts individual
behavior. Therefore, the instruments TMAX and PRCP should be relevant and satisfy the
exclusion restriction.

To meaningfully interpret the results from Equation 4, we restrict the sample as follows. First,
states only enter the panel from the moment they have 10 confirmed cases of COVID-19 onward.
We do this because community response before this point is unlikely to a�ect future government
interventions much – or vice versa, for that matter. In other words, we assume that people only
start anticipating a state government lockdown policy from the moment the virus has gained
foothold in their state. Second, we drop states after they announce the lockdown policy. The
measures we consider – school closure, shelter-in-place and business closure – are all implemented
for a predetermined period, with a fixed future reevaluation date. Therefore, the decision to
implement them is a one-o� decision, and leaving states in the panel after announcement would
lead to spurious identification, as community action after announcement ceases to a�ect the
probability that governors implement the lockdown policy after that point. Note that in this
section, we use the announcement date as the government policy variable, instead of the date of
implementation, because we care about the governors’ decision to implement, not when the
implementation is actually followed through.

Table 4 reports estimates for the second-stage regression of the shelter-in-place dummy on our
physical distancing measures. As a first caveat, note that we are estimating a linear probability
model (LPM). It is well-known that the estimates of a LPM are biased and inconsistent whenever
any of the predicted probabilities lie outside the unit interval (Horrace and Oaxaca, 2006).
Nonetheless, the marginal e�ects can be consistently estimated. Moreover, we are not necessarily



Table 4: Second Stage: Regression of Shelter-in-Place on Physical Distancing

Dependent variable:
Shelter in Place

~Tra�c Capital ~Tra�c State ~%Home All Day
(1) (2) (3)

L8.y 2.075úú 2.459úúú ≠2.060úú

(0.940) (0.943) (0.966)
State FEs X X X
Day FEs X X X
F-Stat 1st Stage 7.526 16.898 13.569

1 Dependent variable is shelter-in-place dummy, independent variables are
various physical distancing measures. Controls include nr. of deaths and
number of positive cases.
2 * p<0.1; **p<0.05; ***p<0.01

interested in the precise magnitude of our estimates, but rather in their sign. That said, we
find a significant and positive e�ect of increased social tra�c on the probability that state
governments will move to announce a shelter-in-place policy a week later. In other words, if
people engage less in physical distancing by themselves, state governments are more likely to
impose compulsory measures to that e�ect. For example, a 1% increase in state-level foot tra�c
increases the probability of the imposition of a lockdown policy by 2.5%. The magnitude and
significance of this coe�cient are robust to alternative specifications with di�erent combinations
of lags, while the other lag coe�cients remain insignificant across various specifications. The
week-long lag of community action on government action seems to conform with the delay that
usually marks data collection and policy decision-making. We can thus conclude that, not only
do state lockdown policies a�ect people’s social distancing behavior, but the prevalence of such
behavior before the implementation of a shelter-in-place policy also decreases the probability of
that policy being introduced.

3.4 County Analysis: Heterogeneity in Virus Response and Treat-
ment E�ects

We now dig deeper into the data by looking at government and community action at the county
level. While many county and most state governments similarly recurred to drastic lockdown
policies such as shelter-in-place policies as they came under pressure from the rapid spread
of the virus, it is less clear that all subgroups of individuals responded to the spread of the
virus and the policies implemented in similar ways. In this paragraph, we, therefore, exploit the
variation coming from daily data for the more than 3,000 counties to explore the heterogeneity
in outbreak and treatment response among di�erent demographic, cultural and economic lines.
In what follows, we focus on the percentage of people who stay completely at home as the main
measure of social distancing, and shelter-in-place as the lockdown policy of interest. Note that



the interpretation of the dependent variable’s response is in percentage points (p.p.) throughout
the analysis.

Figure 8 plots the evolution of the outcome variable over time, for quantiles of the distribution
of several variables of interest. Specifically, it shows the estimates of the regression coe�cients
on a set of time dummies referring to the 10 days before and 15 days after the first confirmed
COVID-19 case in the county, interacted with the variables of interest evaluated at their 10th
(light blue), and 90th percentile (dark blue). Also included in the regression are state-day fixed
e�ects and county fixed e�ects. These allow us to control for state-specific time-varying shocks,
as well as any county-level characteristics that remain constant over the period considered, apart
from the characteristic we are interacting with. In other words, when considering di�erences
in outbreak response by income group, we are at the same time controlling for time-invariant
occupational di�erences, such that our results cannot be attributed solely to, for example,
the fact that lower income groups are less able to work from home (unless the two features
exactly overlap). As such, we can neatly disentangle the specific subgroup-level social distancing
response to the spread of the virus and to the county-level policies from other factors merely
correlated with the social distancing behavior of these groups. Note that we do not control
for the policy implementation, so the estimated e�ects are average e�ects for counties that
did not implement lock-down policies as well as those who did. This means that the reported
subgroup heterogeneity can be both due to di�erent voluntary distancing across the subgroups,
as well as di�erent frequency of policy implementation. For example, highly educated counties
might see residents engage more in voluntary distancing, but might also see county governments
implement lockdown policies more often. As a general measure of heterogeneity in outbreak
response, both e�ects are of interest. However, we also further disentangle these e�ects below.

The figure shows stark di�erences in the evolution of the physical distancing behavior of
the various subgroups as the virus spreads. The top left graph plots this evolution for the
cross-county shares of Democratic votes in the 2016 presidential election.24 The divide between
those counties that voted strongly for Clinton and those that did not starts opening up a few
days after the first confirmed case. After 15 days, the di�erence is 3 p.p., which means the
percentage of devices that stayed home increases by 8% more for Clinton counties compared
to the February mean of ~23% of devices. A similar di�erence can be observed in the middle
left graph when we look at the evolution of counties with di�erent shares of people who do not
believe in global warming, which we consider a proxy for distrust in science. While these findings
are in line with well-documented dividing lines of trust in science by political party – with 69%
of Republicans saying global warming is exaggerated compared with 4% of Democrats (Gallup,
2018) – it is striking how strong of a role they seem to play even during a pandemic whose
e�ects are starkly visible in daily life. At the same time, even counties with very low values of
trust in science see social distancing increase by up to 4 p.p., or ~6% compared to the February
mean. A further remarkable di�erence is the one between counties with lower and higher median

24Note that subplot a) and c) only plot the 10th and 90th percentile, as the confidence intervals overlap with
the plot for the median.



Figure 8: Heterogeneity in Community Outbreak response Over Time, % At Home
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(b) Institutional Health Index (2010-2016)
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(d) Rural-Urban Continuum
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1 Light blue: 10th percentile; blue: median; dark blue: 90th percentile - for variable of interest across counties.
Dependent variable: percentage of devices fully at home.
2 Shaded area is 95% confidence interval. Observations: 114,580.
3 Figure plots estimates of dummies for days since 1st confirmed COVID-19 case interacted with variables of
interest in panel regression with state-day fixed e�ects and county fixed e�ects.

household incomes. Not only do high-income counties ramp up their physical distancing by
up to 8 p.p., or almost 30%, more than low-income counties when the virus gains foothold in
the county; they also strongly anticipate the arrival of the virus. The median-income counties
respond moderately, while low-income counties barely see an increase in the share of people



staying home. The results in counties with higher and lower shares of college-educated people
follow a similar trajectory, though the di�erences are less stark, and groups with less education
still engage in increased physical distancing. As expected, more urban areas experience a much
stronger increase than rural areas, with the most rural counties actually seeing a decrease in the
percentage of devices staying completely home.25 A last conspicuous pattern, in the top right
graph, is that counties where institutions are in better standing see a markedly larger increase
in physical distancing both before and after the virus takes hold.

To further assess how these di�erent subgroups respond to lockdown policies, we re-estimate
the staggered di�erence-in-di�erences model with state-day and county fixed e�ects, where we
interact the dummies for days since policy implementation with the variables of interest. This
entails the following triple DiD extension of Equation 2:

commi,j,t = countyi +”j,t +”tGi,t +—i,t +
20ÿ

k=≠5
flk Pi,t+k +

20ÿ

k=≠5
flk Pi,t+k ◊Gi,t +�xi,t +ui,t, (5)

where we add, for county i, state j and day t, the group variable Gi,t interacted with day fixed
e�ects and with the staggered DiD dummies Pi,t, as well as state-day fixed e�ects ”j,t. We also
include a control for whether the county already has a business closure policy in place. The rest
of the equation remains the same. Note that the inclusion of day fixed e�ects interacted with
the variable of interest is crucial to recovering the interpretation of the DiD estimate as the
counterfactual treatment e�ect.26 We also control for cumulative number of confirmed cases
and deaths in each county, and double-cluster the standard errors by county and date.

Figure B.6 in Appendix thus shows how the e�ect of a county-level shelter-in-place policy
on physical distancing di�ers across county subgroups. For most subgroups, we do not find
evidence for significantly di�erent responses to a shelter-in-place policy, apart from a marginally
significantly stronger response for the poorest county compared to the richest county in Figure
B.7 in Appendix. A remarkable exception, however, is that people in highly urbanized areas
seem to respond much more strongly to shelter-in-place policies than people in heavily rural
areas. This could indicate that the treatment response to such policies largely depends on
enforceability – which would also explain why most of the other heterogeneity seems to matter
little for treatment response even as it matters a lot for outbreak response. Moreover, these
results suggest that most of the heterogeneity documented in Figure 8 is due to subgroup
di�erences in either voluntary physical distancing or in the frequency with which shelter-in-place
policies are implemented, not due to di�erent treatment response. Similar results obtain when

25Note that for the rural-urban continuum index, lower values mean more urban. Also note that the decrease
for rural areas does not necessarily indicate that they do not engage in physical distancing at all. It might simply
indicate that, forced to stay at home, residents in such areas go out for short trips more often than otherwise.

26Our analysis suggests that the results obtained by Painter and Qiu (2020) are driven by the fact that they
fail to incorporate these additional interactions in the regression. Thus, we argue that the presumed heterogeneity
in treatment response along party lines can be largely explained by democratic and republican counties di�ering
in voluntary physical distancing and frequency with which lock-down policies are imposed – as in Figure 8 –,
rather than di�erent treatment response to shelter-in-place policies.



Figure 9: Physical Distancing in Counties With and Without Lockdown, by Subgroup
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1 Light blue: 10th percentile with shelter-in-place policy in place; dark blue: 90th percentile without shelter-in-
place policy in place - for variable of interest across counties.
2 Shaded area is 95% confidence interval. Standard errors are double-clustered by county and date. Observations:
180,295.
3 Figure plots DiD estimate for days since 1st confirmed COVID-19 case interacted with variables of interest, in
panel regression with state x day, variable of interest x day and county fixed e�ects.

considering state-level shelter-in-place policies, suggesting that the results of Painter and Qiu,
2020 should be interpreted with caution, as explained in Footnote 26.



In Figure 9, we further explore the implications of the above findings by re-estimating the
triple DiD with days-since-first-case dummies as the relevant time dimension, as in Equation 1.
This allows us to separate the voluntary physical distancing response from the overall response,
that is, the sum of voluntary and imposed distancing. We do this to compare the total increase
in physical distancing of less-responsive groups to the voluntary increase of more responsive
groups. That way, we come to the striking result that subgroups that take more independent
action end up increasing their physical distancing in the absence of any policy by nearly as
much as their counterpart subgroups do under an imposed lockdown. For example, in highly
urban areas (middle right plot), people engage more intensely in voluntary physical distancing in
response to the virus than people in heavily rural areas do even when there are lockdown policies
in place. Similarly striking results are obtained for counties with institutions in good standing
(top right) and for rich counties (bottom left). For the other variables, our findings indicate
that the lockdown and voluntary response of both groups are not significantly di�erent from
each other. The reason for these findings is as above: for all subgroups at the 90th percentile,
the voluntary physical distancing response is very high compared to their counterparts at the
10th percentile, however, the treatment response of both is the same. For example, counties
where trust in institutions is high engage in voluntary physical distancing much more than those
where such trust is low. Yet, when the government implements an additional lockdown policy,
both high-trust and low-trust counties increase their physical distancing by the same additional
amount. This means that lockdown policies, even when only implemented in low-trust counties,
cannot close the large gap in voluntary response shown in Figure 8. These findings point
towards the important conclusion that containment measures targeted at population subgroups
that less easily engage in voluntary physical distancing by themselves might be more e�ective
than indiscriminate lock-down policies. Given evidence from the epidemiological literature
that the distribution of individual infectiousness in epidemics is often highly skewed around
R(0), it seems likely that there are decreasing marginal returns to additional imposed physical
distancing as the level of voluntary physical distancing increases (Lloyd-Smith et al., 2005).
In other words, it seems likely that there are larger returns to the same increase in physical
distancing for those subgroups that barely change their behavior by themselves than for those
groups that already heavily engage in voluntary physical distancing. Moreover, not only should
such targeted containment policies be more e�ective from the epidemiological point of view
– they should also wreak less economic havoc than full-scale lockdowns. Thus, we conclude
that containment policies targeted along socio-economic lines are likely to be more e�ective
at containing the outbreak than total lockdowns, while also leading to less economic damage.
Insofar as the groups we identify as less responsive are also typically more exposed to the e�ects
of lockdown policies – with, for example, poor people often being less able to work from home –,
this should additionally help avoid a further widening of the socio-economic chasms that drive
the di�erences in response.

Lastly, we investigate how the e�ect of a county-level shelter-in-place policy di�ers depending
on which state-wide policies are already in place. To this aim, in Figure 10, we plot the responses



of the percentage of people staying fully home to a county-level shelter-in-place policy, for
counties where a state-wide policy is already in place (dark blue) and where it is not (lighter
blue). Though the confidence intervals are wide, a few patterns can be observed. First, when
there is no state-wide school closure in place, the initial response of the county-level share of
people staying home to a county-level shelter-in-place policy is much more pronounced, though
it seems to decrease quite quickly after. When there is no state-wide business closure policy in
place, there is not much di�erence in initial response to when there is. However, the response
seems to decline quicker, possibly because without a state-wide business closure, people are
tempted to defy the shelter-in-place order and go out. Finally and expectedly, when there is
no state-wide shelter-in-place policy in place, implementing a county-wide stay-at-home order
elicits a persistently higher response.

Figure 10: Interaction Between County- and State-Wide Policy, for County Shelter-in-Place
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1 Lighter blue: state-wide policy not in place; darker blue: state-wide policy in place.
2 Shaded area is 95% confidence interval. Standard errors are double-clustered by county and date. Observations:
180,307.
3 Figure plots DiD estimate for days since 1st confirmed COVID-19 case interacted with variables of interest, in
panel regression with state-day fixed e�ects and county fixed e�ects.



4 Conclusion
The outbreak of the COVID-19 pandemic has seen local and national governments around
the world scramble to implement policies aimed at constraining social interaction so as to
dampen the spread of the virus, relieve the pressure on hospital systems, and save lives. While
the drastic nature of such lockdown policies all but guarantees that they reach their desired
response, no credible counterfactual estimates of these policies’ causal e�ect on people’s social
interactions exists so far. This paper aims to fill this gap by studying the interaction between
state- and county-level lockdown policies and individuals’ physical distancing behavior, using a
panel dataset based on 40 million smartphone devices across the United States, combined with
detailed data on state- and county-level government policies.

That way, we find that lockdown policies can bring about a counterfactual increase in the
time people spend at home of up to 39%, even as our results suggest that individuals also decrease
their social interactions to a more limited extent in the absence of any such policies. Moreover,
we find evidence that when individuals engage more in such voluntary physical distancing,
the likelihood of governments implementing restrictive measures decreases. Furthermore, we
weigh in on the debate about the benefits of imposed versus voluntary physical distancing by
documenting that in highly urbanized areas that are less distrustful of science, more highly
educated, have higher incomes or have stronger institutions, people react more strongly to the
outbreak of the virus, even in the absence of lockdown policies. Our results complement earlier
epidemiological research that shows that the distribution of individual infectiousness rates in
epidemics tends to be highly skewed around the basic reproductive number R(0). Together, these
findings strongly indicate that less restrictive containment policies targeted along socio-economic
lines are likely to be more e�ective at containing the outbreak than total lockdowns, while also
leading to less economic damage. Lastly, we show that county-level policies tend to have a more
pronounced impact when they are implemented with no state-wide policies in place, suggesting
that coordination of government response at di�erent levels can further improve outcomes.
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A Tables

Table 5: Description of Key Social Distancing Variables

Product Variable Description Raw Data Aggregation

Social Distancing
Metrics

Home Distance Median distance traveled from the geohash-7
of the home by the devices included in the de-
vice_count during the time period (excluding
any distances of 0). We first find the median
for each device and then find the median for
all of the devices.

Median of all CBGs in
county/state.

Home Dwell Time Median dwell time at home geohash-7 ("home")
in minutes for all devices in the device_count
during the time period. For each device, we
summed the observed minutes at home across
the day (whether or not these were contiguous)
to get the total minutes for each device. Then
we calculate the median of all these devices.

Median of all CBGs in
county/state.

Share at Home Out of the device_count, the number of de-
vices which did not leave the geohash-7 in
which their home is located during the time
period.

Sum over all CBGs in
county/state.

Percentage at Home NA (constructed variable) Sum of Share at Home
for all CBGs in county or
state / sum of Total De-
vice Count for all CBGs in
county or state.

Weekly Patterns Tra�c Number of visits in our panel to this POI dur-
ing the date range.

Sum of total raw visit
counts per day for all POIs
in state/county, normal-
ized by total number of
unique devices observed in
given month.

Note: Description Raw Data replicates the data description provided by SafeGraph here.



Table 6: Summary Statistics

N Mean SD P5 P25 P50 P75 P95

SafeGraph Data:
Tra�c 2935 13.78 16.97 0.88 2.91 9.12 16.84 46.10
Median dist. from home 2907 6563.37 1434.76 4433.50 5590.00 6450.50 7404.00 8982.00
Time dwelled home 2907 672.07 114.04 470.00 617.00 677.00 730.00 861.00
% devices stayed home 2907 25.37 6.97 16.83 20.02 23.56 29.50 39.09
Share fulltime workers 2907 17.04 3.73 10.87 14.21 17.30 19.75 23.07

COVID-19 Data:
Deaths JH 2907 3.06 22.61 0.00 0.00 0.00 0.00 10.00
Confirmed cases JH 2907 204.27 1798.36 0.00 0.00 0.00 18.00 626.00
Positive tests CTP 1145 394.18 2311.14 0.00 5.00 32.00 161.00 1328.00
Negative tests CTP 1040 2536.53 7102.81 10.00 73.00 330.00 2008.00 12432.00

Instruments:
Max. temperature 2901 11.82 8.54 -1.10 5.60 11.10 17.80 27.20
Precipitation 2902 2.63 6.74 0.00 0.00 0.00 1.50 14.50
Inv. ventilation needed 2652 17.06 116.96 0.00 0.00 0.00 0.57 65.29

State-Level Demographics:
Population in 1000 2907 6415.05 7272.21 702.46 1754.21 4468.40 7535.59 21299.33
Mean age 2907 39.52 1.64 36.80 38.65 39.45 40.38 42.45
Share > 65 2907 15.73 1.92 12.13 14.86 15.69 16.76 19.16
Share of asian-american 2907 5.62 7.94 1.23 2.36 3.75 5.87 11.45
Share college degree 2907 32.61 6.70 23.83 28.13 31.28 35.61 42.73
Unemployment rate 2907 2.79 0.59 2.06 2.37 2.80 3.01 3.64
Labor force participation 2907 63.52 3.82 56.22 61.25 63.70 66.49 68.93

Note: see section 2 for a detailed description of the data.



B Figures

Figure B.1: Proportional Change in Median Dwelling Time, Conditional on Safer-At-Home
Policies
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Figure B.2: Proportional Change in Median Distance from Home, Conditional on Safer-At-
Home Policies
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Figure B.3: Percentage Point Change in Percent Completely at Home at the County Level,
Conditional on Safer-At-Home policies

.0
2

.0
4

.0
6

.0
8

.1

0 1 2 3 4 5 6 7 8 9
days since first death

(a) Percentage Point Change if no Lockdown Enacted (Relative to no Death)

.0
3

.0
4

.0
5

.0
6

.0
7

.0
8

0 1 2 3 4 5 6 7 8 9
days since first case

(b) Additional Change if Lockdown Enacted (Relative to no Death and no Lockdown
Enacted)



F
ig

ur
e

B
.4

:
Fo

ot
Tr

a�
c

an
d

Lo
ck

do
w

n
Po

lic
ie

s
in

Se
le

ct
ed

St
at

es

SO
E

Sc
ho

ols
Sh

op
s

Sh
elt

er

0.
00

0.
03

0.
06

0.
09

0.
12

Fe
b 
01

Fe
b 
15

M
ar

 0
1

M
ar

 1
5

A
pr

 0
1

C
A

SO
E

Sc
ho

ols

Sh
op

s
Sh

elt
er

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0 Fe

b 
01

Fe
b 
15

M
ar

 0
1

M
ar

 1
5

A
pr

 0
1

C
O

SO
E Sc

ho
olsSh

op
s

Sh
elt

er

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5 Fe

b 
01

Fe
b 
15

M
ar

 0
1

M
ar

 1
5

A
pr

 0
1

L
A

SO
E Sc

ho
olsSh

op
s

Sh
elt

er

0.
00
5

0.
01
0

0.
01
5 Fe

b 
01

Fe
b 
15

M
ar

 0
1

M
ar

 1
5

A
pr

 0
1

M
A

SO
E Sc

ho
ols

Sh
op

s
Sh

elt
er

0.
00

0.
01

0.
02

0.
03

Fe
b 
01

Fe
b 
15

M
ar

 0
1

M
ar

 1
5

A
pr

 0
1

M
I

SO
E Sc

ho
ols

Sh
op

s
Sh

elt
er

0.
00
0

0.
00
5

0.
01
0

0.
01
5 Fe

b 
01

Fe
b 
15

M
ar

 0
1

M
ar

 1
5

A
pr

 0
1

M
N

SO
E

Sc
ho

olsSh
op

s
Sh

elt
er

0.
01

0.
02

0.
03

0.
04

0.
05

Fe
b 
01

Fe
b 
15

M
ar

 0
1

M
ar

 1
5

A
pr

 0
1

N
Y

SO
E

Sc
ho

ols
Sh

op
s

Sh
elt

er

0.
00

0.
01

0.
02

0.
03

Fe
b 
01

Fe
b 
15

M
ar

 0
1

M
ar

 1
5

A
pr

 0
1

T
N

SO
E Sc

ho
olsSh

op
s

0.
00
0

0.
00
1

0.
00
2

0.
00
3 Fe

b 
01

Fe
b 
15

M
ar

 0
1

M
ar

 1
5

A
pr

 0
1

D
C

L
ev
el

N
at
io

na
l (
1 
SO

E
, 2

 G
at

he
ri

ng
s 

B
an

)
St

at
e

N
ot

es
:

T
he

pl
ot

s
sh

ow
da

ily
fo

ot
tr

a�
c

an
d

th
e

pe
rc

en
ta

ge
of

de
vi

ce
s

th
at

st
ay

ed
ho

m
e

in
se

le
ct

ed
st

at
es

ov
er

tim
e.

T
he

da
sh

ed
ve

rt
ic

al
lin

es
in

di
ca

te
na

tio
na

l
m

ea
su

re
s

(S
O

E,
G

at
he

rin
gs

B
an

s)
an

d
th

e
so

lid
lin

es
re

pr
es

en
t

st
at

e-
le

ve
lS

O
Es

an
d

lo
ck

do
w

n
po

lic
ie

s.



Figure B.5: Staggered Di�-in-Di� Estimates of the Policy Impact
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Figure B.6: Heterogeneity in Counterfactual Shelter-in-Place Response
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(a) Share of Votes Democratic 2016
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(b) Institutional Health Index (2010-2016)
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(c) Institutional Health Index
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(d) Rural-Urban Continuum
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(e) Median Household Income 2019Q3
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(f) Percent with Bachelor’s Degree

1 Light blue: 10th percentile; dark blue: 90th percentile - for variable of interest across counties.
2 Shaded area is 95% confidence interval. Standard errors are double-clustered by county and date. Observations:
180,295.
3 Figure plots DiD estimate for days since 1st confirmed COVID-19 case interacted with variables of interest, in
panel regression with state x day, variable of interest x day and county fixed e�ects.



Figure B.7: Counterfactual Shelter-in-Place Response, for Poorest and Richest County
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1 Light blue: min; dark blue: max.
2 Shaded area is 95% confidence interval. Standard errors are double-clustered by county and date. Observations:
180,295.
3 Figure plots DiD estimate for days since 1st confirmed COVID-19 case interacted with variables of interest, in
panel regression with state x day, variable of interest x day and county fixed e�ects.


