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Abstract

Economic shocks due to Covid-19 were exceptional in their severity, suddenness and het-
erogeneity across industries. To study the upstream and downstream propagation of these
industry-specific demand and supply shocks, we build a dynamic input-output model in-
spired by previous work on the economic response to natural disasters. We argue that
standard production functions, at least in their most parsimonious parametrizations, are
not adequate to model input substitutability in the context of Covid-19 shocks. We use a
survey of industry analysts to evaluate, for each industry, which inputs were absolutely nec-
essary for production over a short time period. We calibrate our model on the UK economy
and study the economic e↵ects of the lockdown that was imposed at the end of March and
gradually released in May. Looking back at predictions that we released in May, we show
that the model predicted aggregate dynamics very well, and sectoral dynamics to a large
extent. We discuss the relative extent to which the model’s dynamics and performance was
due to the choice of the production function or the choice of an exogenous shock scenario.
To further explore the behavior of the model, we use simpler scenarios with only demand or
supply shocks, and find that popular metrics used to predict a priori the impact of shocks,
such as output multipliers, are only mildly useful.
Keywords: Covid-19; production networks; epidemic spreading
JEL codes: C61; C67; D57; E00; E23; I19; O49
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1 Introduction

The social distancing measures imposed to combat the Covid-19 pandemic created severe dis-
ruptions to economic output, causing shocks that were highly industry specific. Some industries
were shut down almost entirely by lack of demand, labor shortages restricted others, and many
were largely una↵ected. Meanwhile, feedback e↵ects amplified the initial shocks. The lack of
demand for final goods such as restaurants or transportation propagated upstream, reducing
demand for the intermediate goods that supply these industries. Supply constraints due to
a lack of labor under social distancing propagated downstream, creating input scarcity that
sometimes limited production even in cases where the availability of labor and demand would
not have been an issue. The resulting supply and demand constraints interacted to create bot-
tlenecks in production, which in turn led to unemployment, eventually decreasing consumption
and causing additional amplification of shocks that further decreased final demand.

In this paper we develop a model that respects the three main features that made the Covid-
19 episode exceptional: (1) The shocks were highly heterogeneous across industries, making it
necessary to model the economy at the sectoral level, taking sectoral inter-dependencies into
account; (2) the shocks a↵ected both supply and demand simultaneously, making it necessary
to consider both upstream and downstream propagation; (3) the shocks were so strong and were
imposed and relaxed so quickly that the economy never had time to converge to a new steady
state, making dynamic models better suited than static models.

In the first version of this work, results were released online on 21 May, not long after
social distancing measures first began to take e↵ect in March (Pichler et al. 2020). Based on
data from 2019 and predictions of the shocks by del Rio-Chanona et al. (2020), we predicted
a 21.5% contraction of GDP in the UK economy in the second quarter of 2020 with respect to
the last quarter of 2019. This forecast was remarkably close to the actual contraction of 22.1%
estimated by the UK O�ce of National Statistics. (The median forecast by several institutions
and financial firms was 16.6% and the forecast by the Bank of England was 30%).1

In this substantially revised paper we present our model and describe its results, but we
also take advantage of the benefits of hindsight to perform a “post-mortem”. This allows us
to better understand what worked well, what did not work well, and why. To what extent did
we succeed by getting things right vs. just getting lucky? We systematically investigate the
sensitivity of the results under di↵erent specifications, including variations in the shock scenario,
production function, and key parameters of the model. We examine the performance at both
the aggregate and sectoral levels. We also look at the ability of the model to reproduce the time
series patterns of the fall and recovery of sectoral output. Surprisingly, we find that the original
specification used for out-of-sample forecasting performs about as well at the aggregate level as
any of those developed with hindsight; with a minor adjustment its results are also among the
best at the sectoral level. We show how getting good aggregate results depends on making the
right trade-o↵ between the severity of the shocks and the rigidity of the production function,
as well as other key factors such as the right level of inventories. This provides valuable lessons
about modeling the economic e↵ects of disasters such as the Covid-19 pandemic.

Our model is inspired by previous work on the economic response to natural disasters (Hal-
legatte 2008, Henriet et al. 2012, Inoue & Todo 2019). As in these models, industry demand and
production decisions are based on simple rules of thumb, rather than resulting from optimiza-
tion in a dynamic general equilibrium setup. We think that the Covid-19 shock was so sudden

1 Sources: ONS estimate: https://www.ons.gov.uk/economy/grossdomesticproductgdp/bulletins/gdp
firstquarterlyestimateuk/apriltojune2020; median forecast of institutions and financial firms (in May):
https://www.gov.uk/government/statistics/forecasts-for-the-uk-economy-may-2020; forecast by the
Bank of England (in May): https://www.bankofengland.co.uk/-/media/boe/files/monetary-policy-
report/2020/may/monetary-policy-report-may-2020.

3



and unexpected that agent expectations had little time to converge to an equilibrium over the
short time period that we consider (Evans & Honkapohja 2012). Our work here is also one of
several studies using sectoral models with input-output linkages that appeared in the first few
months of the pandemic (Barrot et al. 2020, Mandel & Veetil 2020, Fadinger & Schymik 2020,
Bonadio et al. 2020, Baqaee & Farhi 2020, Guan et al. 2020). Our paper belongs to this e↵ort,
but di↵ers in a number of important ways.

The most important conceptual di↵erence is our treatment of the production function. The
most common production functions can be ordered by the degree to which they allow substitu-
tions between inputs. At one extreme, the Leontief production function assumes a fixed recipe
for production, allowing no substitutions and restricting production based on the limiting input
(Inoue & Todo 2020). Under the Leontief production function, if a single input is reduced, over-
all production will be reduced proportionately, even if that input is ordinarily relatively small.
This can lead to unrealistic behaviours. For example, the steel industry has restaurants as an
input, presumably because steel companies have a workplace canteen and sometimes entertain
their clients and employees. A literal application of the Leontief production function predicts
that a sharp drop in the output of the restaurant industry will dramatically reduce steel output.
This is unrealistic, particularly in the short run.

The alternatives used in the literature are the Cobb-Douglas production function (Fadinger
& Schymik 2020), which has an elasticity of substitution of 1, and the CES production function,
where typically calibration for short term analysis uses an elasticity of substitution less than
1 (Barrot et al. 2020, Mandel & Veetil 2020, Bonadio et al. 2020). Some papers (Baqaee &
Farhi 2020) consider a nested CES production function, which can accommodate a wide range
of technologies. In principle, this can be used to allow substitution between some inputs and
forbid it between others in an industry-specific manner. However, it is hard to calibrate all
the elasticities, so that in practice many models end up using only limited nesting structure or
assuming uniform substitutability. Consider again our example of the steel industry: Under the
calibrations of the CES production function that are typically used, firms can substitute energy
or even restaurants for iron, while still producing the same output. For situations like this,
where the production process requires a fixed technological recipe, this is obviously unrealistic.

To solve this problem we introduce a new production function that distinguishes between
critical and non-critical inputs at the level of the 55 industries in the World Input-Output
tables. This production function allows firms to keep producing as long as they have the
inputs that are absolutely necessary, which we call critical inputs. The steel industry cannot
produce steel without the critical inputs iron and energy, but it can operate for a considerable
period of time without non-critical inputs such as restaurants or management consultants. We
apply the Leontief function only to the critical inputs, ignoring the others. Thus we make
the assumption that during the pandemic the steel industry requires iron and energy in the
usual fixed proportions, but the output of the restaurant or management consultancy industries
is irrelevant. Of course restaurants and logistics consultants are useful to the steel industry
in normal times – otherwise they wouldn’t use them. But during the short time-scale of the
pandemic, we believe that neglecting them provides a better approximation of economic behavior
than either a Leontief or a CES production function with uniform elasticity of substitution. In
the appendix, we show that our production function is very close to a limiting case of an
appropriately constructed nested CES, which we could have used in principle, but is less well-
suited to our calibration procedure.

To determine which inputs are critical and which are not, we use a survey performed by
IHS Markit at our request. This survey asked “Can production continue in industry X if input
Y is not available for two months?”. The list of possible industries X and Y was drawn from
the 55 industries in the World Input-Output Database. This question was presented to 30
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di↵erent industry analysts who were experts of industry X. Each of them was asked to rate the
importance of each of its inputs Y. They assigned a score of 1 if they believed input Y is critical,
0 if it is not critical, and 0.5 if it is in-between, with the possibility of a rating of NA if they
could not make a judgement. We then apply the Leontief function to the list of critical inputs,
ignoring non-critical inputs. We experimented with several possible treatments for industries
with ratings of 0.5 and found that we get somewhat better empirical results by treating them
as half-critical (though at present we do not have su�cient evidence to resolve this question
unambiguously).

Besides the bespoke production function discussed above, we also introduce a Covid-19-
specific treatment of consumption. Most models do not incorporate the demand shocks that
are caused by changes in consumer preferences in order to minimize risk of infection. The vast
majority of the literature has focused on the ability to work from home, and some studies in-
corporate lists of essential vs. inessential industries, but almost no papers have also explicitly
added shocks to consumer preferences. (Baqaee & Farhi (2020) is an exception, but the treat-
ment is only theoretical). Here we use the estimates from del Rio-Chanona et al. (2020), which
are taken from a prospective study by the Congressional Budget O�ce (2006). These estimates
are crude, but we are not aware of estimates that are any better. The currently available data
on actual consumption is qualitatively consistent with the shocks predicted by the CBO, with
massive shocks to the hospitality industry, travel and recreation, milder (but large) shocks else-
where (Andersen et al. 2020, Carvalho et al. 2020, Chen et al. 2020, Surico et al. 2020). The
largest mismatch between the CBO estimates and consumption data is in the healthcare sector,
whose consumption decreased during the pandemic, in contrast to the estimated increase by
the CBO. There was also an increase in some specific retail categories (groceries) which the
CBO estimates did not consider. However, overall, as del Rio-Chanona et al. (2020) argue, the
estimates remain qualitatively accurate. Besides the initial shock, we also attempt to introduce
realistic dynamics for recovery and for savings. The shocks to on-site consumption industries
are more long lasting, and savings from the lack of consumption of specific goods and services
during lockdown are only partially reallocated to other expenses.

Our key finding is that there is a trade-o↵ between the severity of the shocks and the rigidity
of the production function. At one extreme, severe shocks with a Leontief production function
lead to an almost complete collapse of the economy, and at the other, small shocks with a linear
production function fail to reproduce the massive recession observed in the data. There is a
sweet spot in the middle, with empirically good results based on various mixes of production
function rigidity and shock severity. We also find that our models’ performance improved after
we used better data for inventories.

Our selected scenario predicts the aggregate UK recession in Q2 2020 about as well as
our initial forecast. It also correctly predicts a stronger reduction in private consumption,
investment and profits than in government consumption, inventories and wages. At the sectoral
level, the mean absolute error is around 12 percentage points, slightly lower than in our initial
forecast (14 p.p.). The correlation between sectoral reductions in the model and in the data is
generally high (the Pearson correlation coe�cient weighted by industry size is 0.75). However,
this masks substantial di↵erences across industries: while our model makes a good job at
predicting sectoral outcomes in most industries, it fails at others such as vehicle manufacturing
and air transport. We conjecture that this is due to idiosyncratic features of these industries
that our model could not capture. Conversely, we provide examples where our model predicts
sectoral outcomes correctly when these depend on inter-industry relationships, both statically
and dynamically.

We conclude by investigating some theoretical properties of the model using a simpler set-
ting. We ask whether popular metrics of centrality, such as upstreamness and output multipliers,
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are useful to understand the di↵usion of supply and demand shocks in our model. We find that
static measures are only partially able to explain modeling results. Nevertheless, an industry’s
upstreamness is a strong indicator of its potential to amplify shocks - this is true for supply
shocks, as expected, and for demand shocks, which is somewhat more surprising.

The paper is organized as follows. The details of the model are presented in Section 2. We
discuss the shocks induced by the pandemic which we use to initialize the model in Section 3.
We show our model predictions for the UK economy in Section 4 and discuss production network
e↵ects and re-opening single industries in Section 5. We conclude in Section 6.

2 A dynamic input-output model

Our model combines elements of the input-output models developed by Battiston et al. (2007),
Hallegatte (2008), Henriet et al. (2012) and Inoue & Todo (2019), together with new features
that make the model more realistic in the context of a pandemic-induced lockdown.

The main data input to our analysis is the UK input-output network obtained from the
latest year (2014) of the World Input-Output Database (WIOD) (Timmer et al. 2015), allowing
us to distinguish 55 sectors.

2.1 Timeline

A time step t in our economy corresponds to one day. There areN industries2, one representative
firm for each industry, and one representative household. The economy initially rests in a
steady-state until it experiences exogenous lockdown shocks. These shocks can a↵ect the supply
side (labor compensation, productive capacity) and the demand side (preferences, aggregate
spending/saving) of the economy. Every day:

1. Firms hire or fire workers depending on whether their workforce was insu�cient or redun-
dant to carry out production in the previous day.

2. The representative household decides its consumption demand and industries place orders
for intermediate goods.

3. Industries produce as much as they can to satisfy demand, given that they could be limited
by lack of critical inputs or lack of workers.

4. If industries do not produce enough, they distribute their production to final consumers
and to other industries on a pro rata basis, that is, proportionally to demand.

5. Industries update their inventory levels, and labor compensation is distributed to workers.

2.2 Model description

It will become important to distinguish between demand, that is, orders placed by customers
to suppliers, and actual realized transactions, which might be lower.

2.2.1 Demand

Total demand. The total demand faced by industry i at time t, di,t, is the sum of the demand
from all its customers,

di,t =
NX

j=1

Oij,t + c
d
i,t + f

d
i,t, (1)

2See Appendix G for a comprehensive summary of notations used.
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where Oij,t (for orders) denotes the intermediate demand from industry j to industry i, cdi,t rep-

resents (final) demand from households and f
d
i,t denotes all other final demand (e.g. government

or non-domestic customers).

Intermediate demand. Intermediate demand follows a dynamics similar to the one studied
in Henriet et al. (2012), Hallegatte (2014), and Inoue & Todo (2019). Specifically, the demand
from industry i to industry j is

Oji,t = Ajidi,t�1 +
1

⌧
[niZji,0 � Sji,t]. (2)

Intermediate demand thus is the sum of two components. First, to satisfy incoming demand
(from t � 1), industry i demands an amount Ajidi,t�1 from j. Therefore, industries order
intermediate inputs in fixed proportions of total demand, with the proportions encoded in
the technical coe�cient matrix A, i.e. Aji = Zji,0/xi,0 where Zji,0 is realized intermediate
consumption and xi,0 is total output of industry i. Before the shocks, both of these variables
are considered to be in the pre-pandemic steady state. While we will consider several scenarios
where industries do not strictly rely on fixed recipes in production, demand always depends on
the technical coe�cient matrix.

The second term in Eq. (2) describes intermediate demand induced by desired reduction
of inventory gaps. Due to the dynamic nature of the model, demanded inputs cannot be used
immediately for production. Instead industries use an inventory of inputs in production. Sji,t

denotes the stock of input j held in i’s inventory. Each industry i aims to keep a target inventory
niZji,0 of every required input j to ensure production for ni further days3. The parameter
⌧ indicates how quickly an industry adjusts its demand due to an inventory gap. Small ⌧
corresponds to responsive industries that aim to close inventory gaps quickly. In contrast, if ⌧
is large, intermediate demand adjusts slowly in response to inventory gaps.

Consumption demand. We let consumption demand for good i be

c
d
i,t = ✓i,tc̃

d
t , (3)

where ✓i,t is a preference coe�cient, giving the share of goods from industry i out of total
consumption demand c̃

d
t . The coe�cients ✓i,t evolve exogenously, following assumptions on how

consumer preferences change due to exogenous shocks (in our case, di↵erential risk of infection
across industries, see Section 3).

Total consumption demand evolves following an adapted and simplified version of the con-
sumption function in Muellbauer (2020). In particular, c̃dt evolves according to

c̃
d
t =

�
1� ✏̃

D
t

�
exp

⇢
⇢ log c̃dt�1 +

1� ⇢

2
log
⇣
ml̃t

⌘
+

1� ⇢

2
log
⇣
ml̃

p
t

⌘�
. (4)

In the equation above, the factor
�
1� ✏̃

D
t

�
accounts for direct aggregate shocks and will be

explained in Section 3. The second factor accounts for the endogenous consumption response
to the state of the labor market and future income prospects. In particular, l̃t is current labor
income, l̃pt is an estimation of permanent income (see Section 3), and m is the share of labor
income that is used to consume final domestic goods, i.e. that is neither saved nor used for
consumption of imported goods. In the pre-pandemic steady state with no aggregate exogenous

3Considering an input-specific target inventory would require generalizing ni to a matrix with elements nji,
which is easy in our computational framework but di�cult to calibrate empirically.
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shocks, ✏̃Dt = 0 and by definition permanent income corresponds to current income, i.e. l̃pt = l̃t.
In this case, total consumption demand corresponds to ml̃t.4

Other components of final demand. In addition, an industry i also faces demand f
d
i,t from

sources that we do not model as endogenous variables in our framework, such as government
or industries in foreign countries. We discuss the composition and calibration of fd

i,t in detail in
Section 3.

2.2.2 Supply

Every industry aims to satisfy incoming demand by producing the required amount of output.
Production is subject to the following two economic constraints:

Productive capacity. First, an industry has finite production capacity x
cap
i,t , which depends

on the amount of available labor input. Initially every industry employs li,0 of labor and
produces at full capacity x

cap
i,0 = xi,0. We assume that productive capacity depends linearly on

labor inputs,

x
cap
i,t =

li,t

li,0
x
cap
i,0 . (5)

Input bottlenecks. Second, the production of an industry might be constrained due to an
insu�cient supply of critical inputs. This can be caused by production network disruptions.
Intermediate input-based production capacities depend on the availability of inputs in an in-
dustry’s inventory and its production technology, i.e.

x
inp
i,t = functioni(Sji,t, Aji). (6)

We consider five di↵erent specifications for how input shortages impact production, ranging
from a Leontief form, where inputs need to be used in fixed proportions, to a Linear form,
where inputs can be substituted arbitrarily. As intermediate cases we consider specifications
with industry-specific dependencies of inputs. For this purpose, IHS Markit analysts rated at
our request whether a given input is critical, important or non-critical for the production of a
given industry (see Appendix C for details). We then make di↵erent assumptions on how the
criticality ratings of inputs a↵ect the production of an industry. We now introduce the five
specifications in order of stringency with respect to inputs.
(1) Leontief: As first case we consider the Leontief production function, in which every positive
entry in the technical coe�cient matrix A is a binding input to an industry. This is the most
rigid case we are considering, leading to the functional form

x
inp
i,t = min

{j: Aji>0}

⇢
Sji,t

Aji

�
. (7)

In this case, an industry would halt production immediately if inventories of any input are run
down, even for small and potentially negligible inputs.
(2) IHS1: As most stringent case based on the IHS Markit ratings, we assume that production
is constrained by critical and important inputs, which need to use in fixed proportions. In

4To see this, note that in the steady state c̃dt = c̃dt�1. Taking logs on both sides, moving the consumption

terms on the left hand side and dividing by 1� ⇢ throughout yields log c̃dt = log
⇣
ml̃t

⌘
.
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contrast to the Leontief case, however, production is not constrained by the lack of non-critical
inputs. Thus, an industry’s production capacity with respect to inputs is

x
inp
i,t = min

j2{Vi [ Ui}

⇢
Sji,t

Aji

�
, (8)

where Vi is the set of critical inputs and Ui is the set of important inputs to industry i.
(3) IHS2: As second case using the input ratings, we leave the assumptions regarding critical
and non-critical inputs unchanged but assume that the lack of an important input reduces an
industry’s production by a half. We implement this production scenario as

x
inp
i,t = min

{j2Vi, k2Ui}

⇢
Sji,t

Aji
,
1

2

✓
Ski,t

Aki
+ x

cap
i,0

◆�
. (9)

This means that if an important input goes down by 50% compared to initial levels, production
of the industry would decrease by 25%. When the stock of this input is fully depleted, production
drops to 50% of initial levels.
(4) IHS3: Next we treat all important inputs as non-critical, such that only critical suppliers
can create input bottlenecks. This reduces the input bottleneck equation, Eq. (6), to

x
inp
i,t = min

j2Vi

⇢
Sji,t

Aji

�
. (10)

(5) Linear: Finally, we also implement a linear production function for which all inputs are
perfectly substitutable. Here, production in an industry can continue even when inputs cannot
be provided, as long as there is su�cient supply of alternative inputs. In this case we have

x
inp
i,t =

P
j Sji,tP
j Aji

. (11)

Note that while production is linear with respect to intermediate inputs, the lack of labor supply
cannot be compensated by other inputs.

We assume for any production function that imports never cause bottlenecks. Thus, imports
are treated as non-critical inputs or, equivalently, there is no shortages in foreign intermediate
goods.

Input bottlenecks are most likely to arise under the Leontief assumption, and least likely
under the linear production function. The IHS production functions assume intermediate levels
of input specificity. In Appendix D we show that the IHS production functions are almost
equivalent to (suitably parameterised) CES production functions and that results are even
identical using these CES specifications instead of the IHS production functions.

Output level choice and input usage. Since an industry aims to satisfy incoming demand
within its production constraints, realized production at time step t is

xi,t = min{xcapi,t , x
inp
i,t , di,t}. (12)

Thus, the output level of an industry is constrained by the smallest of three values: labor-
constrained production capacity x

cap
i,t , intermediate input-constrained production capacity x

inp
i,t ,

or total demand di,t.
The output level xi,t determines the quantity used of each input according to the production

recipe. Industry i uses an amount Ajixi,t of input j, unless j is not critical and the amount of j
in i’s inventory is less than Ajixi,t. In this case, the quantity consumed of input j by industry
i is equal to the remaining inventory stock of j-inputs Sji,t < Ajixi,t.

9



Rationing. Without any adverse shocks, industries can always meet total demand, i.e. xi,t =
di,t. However, in the presence of production capacity and/or input bottlenecks, industries’
output may be smaller than total demand (i.e., xi,t < di,t) in which case industries ration
their output across customers. We assume simple proportional rationing, although alternative
rationing mechanisms could be considered (Pichler & Farmer 2021). The final delivery from
industry j to industry i is a share of orders received

Zji,t = Oji,t
xj,t

dj,t
. (13)

Households receive a share of their demand

ci,t = c
d
i,t
xi,t

di,t
, (14)

and the realized final consumption of agents with exogenous final demand is

fi,t = f
d
i,t
xi,t

di,t
. (15)

Inventory updating. The inventory of i for every input j is updated according to

Sji,t+1 = min {Sji,t + Zji,t �Ajixi,t, 0} . (16)

In a Leontief production function, where every input is critical, the minimum operator would not
be needed since production could never continue once inventories are run down. It is necessary
here, since industries can produce even after inventories of non-critical input j are depleted and
inventories cannot turn negative.

Hiring and separations. Firms adjust their labor force depending on which production con-
straints in Eq. (12) are binding. If the capacity constraint x

cap
i,t is binding, industry i decides

to hire as many workers as necessary to make the capacity constraint no longer binding. Con-
versely, if either input constraints x

inp
i,t or demand constraints di,t are binding, industry i lays

o↵ workers until capacity constraints become binding. More formally, at time t labor demand
by industry i is given by l

d
i,t = li,t�1 +�li,t, with

�li,t =
li,0

xi,0

h
min{xinpi,t , di,t}� x

cap
i,t

i
. (17)

The term li,0/xi,0 reflects the assumption that the labor share in production is constant over
the considered period. We assume that it takes time for firms to adjust their labor inputs.
Specifically, we assume that industries can increase their labor force only by a fraction �H in
direction of their target. Similarly, industries can decrease their labor force only by a fraction
�F in the direction of their target. In the absence of strong labor market regulations, we usually
have �F > �H, indicating that it is easier for firms to lay o↵ employed workers than to hire new
workers. Industry-specific employment evolves then according to

li,t =

(
li,t�1 + �H�li,t if �li,t � 0,

li,t�1 + �F�li,t if �li,t < 0.
(18)

The parameters �H and �F can be interpreted as policy variables. For example, the implemen-
tation of a furloughing scheme makes re-hiring of employees easier, corresponding to an increase
in �H.
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3 Pandemic shock

Simulations of the model described in Section 2.2 start in the pre-pandemic steady state. While
there is evidence that consumption started to decline prior to the lockdown (Surico et al. 2020),
for simplicity we apply the pandemic shock all at once, at the date of the start of the lockdown
(March 23rd in the UK).

The pandemic shock is a combination of supply and demand shocks that propagate down-
stream and upstream and get amplified through the supply chain. During the lockdown, workers
who cannot work on-site and are unable to work from home become unproductive, resulting
in lowered productive capacities of industries. At the same time demand-side shocks hit as
consumers adjust their consumption preferences to avoid getting infected, and reduce overall
consumption out of precautionary motives due to the depressed state of the economy.

For diagnostic purposes, in addition to the shocks that we used for our original predictions,
we consider a few additional supply shock scenarios that are grounded on what happened in the
UK specifically5. We then compare the outcomes under each scenario based on its aggregate and
sectoral forecasts (see Section 4.2). In the following, we describe all the scenarios for supply and
demand shocks that we consider. Further details and industry-level shock statistics are shown
in Appendix A.

3.1 Supply shock scenarios

At every time step during the lockdown an industry i experiences an (exogenous) first-order
labor supply shock ✏Si,t 2 [0, 1] that quantifies reductions in labor availability. Letting li,0 be the
initial labor supply before the lockdown, the maximum amount of labor available to industry i

at time t is given as
l
max
i,t = (1� ✏

S
i,t)li,0. (19)

If ✏Si,t > 0, the productive capacity of industry i is smaller than in the initial state of the
economy. We assume that the reduction of total output is proportional to the loss of labor. In
that case the productive capacity of industry i at time t is

x
cap
i,t =

li,t

li,0
x
cap
i,0  (1� ✏

S
i,t)xi,0. (20)

Recall from Section 2.2.2 that firms can hire and fire to adjust their productive capacity to
demand and supply constraints. Thus, productive capacity can be lower than the initial supply
shock, in case industry i has some idle workers that are not prevented to go to work by lockdown
measures. In any case, during lockdown firms can never hire more than l

max
i,t workers. When

the lockdown is lifted for a specific industry i, first-order supply shocks are removed, i.e., we
set ✏Si,t = 0, for t � tend lockdown.

For diagnostic purposes we consider six di↵erent scenarios for the supply shocks ✏Si,t, S1 to
S6, ordered from lowest to the highest severity of lockdown restrictions. Scenario S5 is the
one that was used to produce out of sample forecasts in our original paper. We follow del
Rio-Chanona et al. (2020) and estimate the supply shocks in each scenario by calculating for

5As described below, here we use estimates of the shocks that we develop a priori, based on empirically
motivated assumptions on labor supply constraints and changes in preferences. We could have, in principle, used
a traditional macro approach (see Brinca et al. (2020) in the case of Covid-19) where one can infer the shocks
based on data. We did not pursue this here for several reasons. Our model does not feature price changes (which
are crucial to separately identify supply and demand shocks), and we would have had to develop a method to
infer the shocks based on model’s fit to the data, a problem that is unlikely to have a unique solution. Most
importantly, inferring shocks this way is only useful in hindsight, whereas our goal was to make predictions.
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each industry the number of workers who can work remotely, and considering the government
regulations that dictate whether an industry is essential i.e., whether an industry can operate
during a lockdown even if working from home is not possible. For instance, if an industry is
non-essential, and none of its employees can work from home, it faces a labor supply reduction
of 100% during lockdown i.e., ✏Si,t = 1, 8t 2 [tstart lockdown, tend lockdown. Instead, if an industry is

classified as fully essential, it faces no labor supply shock and ✏Si,t = 0 8t. In some scenarios, we
further refine the supply shocks estimates by taking into account the di�culty of adjusting to
social distancing measures. To do this refinement we use the Physical Proximity work context
provided by O*NET, as others have done (Mongey et al. 2020, Koren & Pető 2020).

To estimate the shocks we define a Remote Labor Index, an Essential Score and a Physical
Proximity Index at the WIOD industry level. We interpret these indices as follows. The Remote
Labor Index of industry i is the probability that a worker from industry i can work from home.
The Essential Score is the probability that a worker from industry i has an essential job. The
Physical Proximity Index is the probability that an essential worker that cannot work from
home cannot go to work due to social distancing measures. In Appendix A we explain how,
similarly to del Rio-Chanona et al. (2020), Dingel & Neiman (2020), Gottlieb et al. (2020),
Koren & Pető (2020), we use O*NET data to estimate our Remote Labor Index and Physical
Proximity Index. Below we explain each scenario in more detail and how we determine the
essential score in each scenario. Figure 8 in Appendix A shows time series of supply shocks ✏Si,t
for all scenarios throughout our simulations, while Table 5 shows the cross section of shocks.

S1: UK policy. In contrast to some European countries such as Italy and Spain, in the UK
shutdown orders were only issued for a few industries6. Although social distancing guidelines
were imposed for all industries (see S2 � S4 below), strictly speaking only non-essential retail,
personal and recreational services, and the restaurant and hospitality industries were mandated
to shut down. While some European countries shut down some manufacturing sectors and
construction, the UK did not explicitly forbid these sectors from operating.

Based on the UK regulations, we assume that all WIOD industries have an essential score
of one with the exception of industries G45 and G47 (vehicle and general retail), I (hotels and
restaurants) and R S (recreational and personal services). We break down these industries into
smaller subcategories that we can directly match to shutdown orders in the UK, and compute
an essential score from a weighted average of these subcategories, where weights correspond to
output shares (see Appendix A for more details). The resulting essential scores are 0.64 for
G45, 0.71 for G47, 0.05 for I and 0.07 for R S.

Similarly to del Rio-Chanona et al. (2020), we assume an industry’s supply shock is given
by the fraction of workers that cannot work. If we interpret the Remote Labor Index and the
essential score as independent probabilities, the expected value of the fraction of workers of
industry i that cannot work is

✏
S
i,t = (1� RLIi)(1� ESSi) 8t 2 [tstart lockdown, tend lockdown),

where RLIi and ESSi are the Remote Labor Index and Essential Score of industry i respec-
tively. We lift labor supply shocks to trade industries on June 15th and shocks to other sectors
in July, as per o�cial guidance. That is, ✏Si,t = 0, 8t 2 [tend lockdown,1).

S2, S3, S4 : UK policy + di�culty to adapt to social distancing. In monthly com-
munications on the impact of Covid-19 on the UK economy7, the ONS reported that several

6 https://www.legislation.gov.uk/uksi/2020/350/pdfs/uksi 20200350 en.pdf
7See, e.g., https://www.ons.gov.uk/economy/grossdomesticproductgdp/articles/coronavirusandtheimp

actonoutputintheukeconomy/may2020
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manufacturing industries and the construction sector were struggling to comply with the require-
ments on social distancing imposed by the government. Thus, further to the legal constraints
considered in scenario S1, we also consider the practical constraints of operating under the new
guidance. For all industries that were not explicitly forbidden to operate, we consider a supply
shock due to the di�culties of adapting to social distancing measures.

We assume that industries with a higher index of physical proximity have more di�culty
to adhere to social distancing, so that only a portion of workers that cannot work from home
can actually work at the workplace. In particular, in-person work can only be performed by
a fraction of workers that is proportional to the Physical Proximity Index of industry i (see
Appendix A for details). We rescale this index so that it varies in an interval between zero and
◆, and consider three values ◆ = 0.1, 0.4, 0.7. These three values distinguish between scenarios
S2, S3 and S4, which are reported in order of severity. At the time when lockdown starts, the
supply shocks are given by

✏
S
i,tstart lockdown

= (1� RLIi)

✓
1� ESSi

✓
1� ◆

PPIi
maxj(PPIj)

◆◆
,

where PPIi is the Physical Proximity Index.
Di↵erently from the scenarios above, we do not assume that shocks due to the di�culty to

adapt to social distancing are constant during lockdown. In line with ONS reports, firms are able
to bring a larger fraction of their workforce back to work as they adapt to the new guidelines.
For simplicity, we assume that these shocks vanish when lockdown is lifted (May 13th), and
interpolate linearly between their maximum value (which is when lockdown is imposed, March
23rd) and the time when lockdown is lifted. This leads to the following supply shocks

✏
S
i,t = (1� RLIi)

✓
1� ESSi

✓
1� ◆

PPIi,t
maxj(PPIj)

◆◆
,

where

PPIi,t = PPIi

✓
1� t� tstart lockdown

tend lockdown � tstart lockdown

◆
.

Note that lockdown did not have a clear end date in the UK. However, we conventionally
take May 13th as tend lockdown. This is the day when the UK government asked all workers to
go back to work, and we assume that at this time most firms had had su�cient time to comply
to social distancing guidelines.

S5: Original shocks. This baseline scenario corresponds to the original shocks ✏Si,t we used
in our previous work (Pichler et al. 2020) and was based on the estimates by del Rio-Chanona
et al. (2020). The supply shocks were estimated by quantifying which work activities of di↵erent
occupations can be performed from home based on the Remote Labor Index and using the
occupational compositions of industries. The predictions also considered whether an industry
was essential in the sense that on-site work was allowed during the lockdown. We then compiled
a list of essential industries within the NAICS classification system, based on the list of essential
industries provided by the Italian government using the NACE classification system. Then, we
computed an essential score ESSi for each industry i in their sample of NAICS industries and
calculated the supply shock using the following equation

✏
S
i = (1� RLIi)(1� ESSi). (21)

Following our original work (Pichler et al. 2020), we map these supply shocks from the
NAICS 4-digit industry classification system to the WIOD classification using a NAICS-WIOD
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crosswalk. To deal with one-to-many and many-to-one maps in these crosswalks, we split each
NAICS industry’s contributions using employment data (see Appendix A for details). We follow
this approach to weigh each worker in the NAICS industries’ sample from del Rio-Chanona et al.
(2020) equally. In Appendix A we discuss the implications of this crosswalk methodology in
more detail. Finally, for the Real Estate sector, we assume that the supply shock does not apply
to imputed rents (which represent about 2/3 of gross output).

S6: European list of essential industries. For comparison, we also consider the list of
essential industries produced by Fana et al. (2020). This list was compiled independently
from del Rio-Chanona et al. (2020), and listed which industries were considered essential by
governments of Spain, Germany and Italy. Using this list, we compute the essential score for
each industry by taking the mean across essential scores for the three countries considered. We
keep labor supply shocks constant during lockdown, and lift them all when lockdown ends. This
scenario produces the largest supply shocks of all. For comparison, the average supply shock
for S1 is 3%, while the average shock for S6 is 28%.

3.2 Demand shocks

The Covid-19 pandemic caused strong shocks to all components of demand. We consider shocks
to private consumption demand, which we further distinguish into shocks due to fear of infection
and due to fear of unemployment, and shocks to other components of final demand, such as
investment, government consumption and exports. We outline the basic assumptions on demand
shocks below and show in in Appendix A the detailed cross-sectional and temporal shock profiles.
We further demonstrate in Appendix F that alternative plausible demand shock assumptions
only mildly influence model results.

Demand shocks due to fear of infection. During a pandemic, consumption/saving deci-
sions and consumer preferences over the consumption basket are changing, leading to first-order
demand shocks (Congressional Budget O�ce 2006, del Rio-Chanona et al. 2020). For exam-
ple, consumers are likely to demand less services from the hospitality industry, even when the
hospitality industry is open. Transport is very likely to face substantial demand reductions,
despite being classified as an essential industry in many countries. A key question is whether
reductions in demand for “risky” goods and services is compensated by an increase in demand
for other goods and services, or if lower demand for risky goods translates into higher savings.

We consider a demand shock vector ✏Dt , whose components ✏Di,t are the relative changes in

demand for goods of industry i at time t. Recall from Eq. (3), cdi,t = ✓i,tc̃
d
t , that consumption

demand is the product of the total consumption scalar c̃
d
t and the preference vector ✓t, whose

components ✓i,t represent the share of total demand for good i. We initialize the preference
vector by considering the initial consumption shares, that is ✓i,0 = ci,0/

P
j cj,0. By definition,

the initial preference vector ✓0 sums to one, and we keep this normalization at all following
time steps. To do so, we consider an auxiliary preference vector ✓̄t, whose components ✓̄i,t are
obtained by applying the shock vector ✏Di,t. That is, we define ✓̄i,t = ✓i,0(1� ✏

D
i,t) and define ✓i,t

as

✓i,t =
✓̄i,tP
j ✓̄j,t

=
(1� ✏

D
i,t)✓i,0P

j(1� ✏Dj,t)✓j,0
. (22)

The di↵erence 1�
P

i ✓̄i,t is the aggregate reduction in consumption demand due to the de-
mand shock, which would lead to an equivalent increase in the saving rate. However, households
may not want to save all the money that they are not spending. For example, they most likely
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want to spend on food the money that they are saving on restaurants. Therefore, we define the
aggregate demand shock ✏̃Dt in Eq. (4) as

✏̃
D
t = �s

 
1�

NX

i=1

✓̄i,t

!
, (23)

where �s is the change in the savings rate. When �s = 1, households save all the money that
they are not planning to spend on industries a↵ected by demand shocks; when �s = 0, they
spend all that money on goods and services from industries that are a↵ected less.

To parameterize ✏Di,t, we adapt consumption shock estimates by the Congressional Budget
O�ce (2006) and del Rio-Chanona et al. (2020). Roughly speaking, these shocks are massive
for restaurants and transport, mild for manufacturing and null for utilities. We make two
modifications to these estimates. First, we remove the positive shock to the health care sector, as
in the UK the cancellation of non-urgent treatment for other diseases than Covid-19 far exceeded
the additional demand for health due to Covid-19.8 Second, we apportion to manufacturing
sectors the reduced demand due to the closure of non-essential retail. For example, retail shops
selling garments and shoes were mandated to shut down, and so we apply a consumption demand
shock to the manufacturing sector producing these goods.9

We keep the intensity of demand shocks constant during lockdown. We then reduce demand
shocks when lockdown is lifted according to the situation of the Covid-19 pandemic in the UK.
In particular, we assume that consumers look at the daily number of Covid-19 deaths to assess
whether the pandemic is coming to an end, and that they identify the end of the pandemic as
the day in which the death rate drops below 1% of the death rate at the peak. Given o�cial
data10, this happens on August 11th. Thus, we reduce ✏Di,t from the time lockdown is lifted (May

13th) by linearly interpolating between the value of ✏Di,t during lockdown and ✏Di,t = 0 on August

11th. The choice of modeling behavioral change in response to a pandemic by the death rate
has a long history in epidemiology (Funk et al. 2010).

Demand shocks due to fear of unemployment. A second shock to consumption demand
occurs through reductions in current income and expectations for permanent income.

Reductions in current income are due to firing/furloughing, due to both direct shocks and
subsequent upstream or downstream propagation, resulting in lower labor compensation, i.e.
l̃t < l̃0, for t � tstart lockdown. To support the economy, the government pays out social benefits
to workers to compensate income losses. In this case, the total income l̃t that enters Eq. (4)
is replaced by an e↵ective income l̃

?
t = bl̃0 + (1 � b)l̃t, where b is the fraction of pre-pandemic

labor income that workers who are fired or furloughed are able to retain.
A second channel for shocks to consumption demand due to labor market e↵ects occurs

through expectations for permanent income. These expectations depend on whether households
expect a V-shaped vs. L-shaped recovery, that is, whether they expect that the economy will
quickly bounce back to normal or there will be a prolonged recession. Let expectations for
permanent income l̃

p
t be specified by

l̃
p
t = ⇠t l̃0 (24)

8https://www.ons.gov.uk/economy/grossdomesticproductgdp/bulletins/gdpfirstquarterlyestimateuk
/apriltojune2020

9To be fully consistent with the definition of demand shock, we should model non-essential retail closures as
supply shocks, and propagate the shocks to manufacturing through reduced intermediate good demand. However,
there are two practical problems that prevent us to do so: (i) the sectoral aggregation in the WIOD is too coarse,
comprising only one aggregate retail sector; (ii) input-output tables only report margins of trade, i.e. they
do not model explicitly the flow of goods from manufacturing to retail trade and then from retail trade to final
consumption. Given these limitations, we conventionally interpret non-essential retail closures as demand shocks.

10https://coronavirus.data.gov.uk/
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In this equation, the parameter ⇠t captures the fraction of pre-pandemic labor income l̃0 that
households expect to retain in the long run. We first give a formula for ⇠t and then explain the
various cases.

⇠t =

8
>><

>>:

1, t < tstart lockdown,

⇠
L = 1� 1

2
l̃0�l̃tstart lockdown

l̃0
, t 2 [tstart lockdown, tend lockdown],

1� ⇢+ ⇢⇠t�1 + ⌫t�1, t > tend lockdown.

(25)

Before lockdown, we let ⇠t ⌘ 1, i.e. permanent income expectations are equal to current income.
During lockdown, following Muellbauer (2020) we assume that ⇠t is equal to one minus half the
relative reduction in labor income that households experience due to the direct labor supply
shock, and denote that value by ⇠L. (For example, given a relative reduction in labor income
of 16%, ⇠L = 0.92.)11 After lockdown, we assume that 50% of households believe in a V-
shaped recovery, while 50% believe in an L-shaped recovery. We model these expectations by
letting ⇠t evolve according to an autoregressive process of order one, where the shock term ⌫t

is a permanent shock that reflects beliefs in an L-shaped recovery. With 50% of households
believing in such a recovery pattern, it is ⌫t ⌘ �(1� ⇢)(1� ⇠

L)/2.12

Other final demand shock scenarios Note that WIOD distinguishes five types of final de-
mand: (I) Final consumption expenditure by households, (II) Final consumption expenditure by
non-profit organisations serving households, (III) Final consumption expenditure by government
(IV) Gross fixed capital formation and (V) Changes in inventories and valuables. Additionally,
all final demand variables are available for every country, meaning that it is possible to calculate
imports and exports for all categories of final demand. The endogenous consumption variable
ci,t corresponds to (I), but only for domestic consumption. All other final demand categories,
including all types of exports, are absorbed into the variable fi,t.

We apply di↵erent shocks to fi,t. We do not apply any exogenous shocks to categories (III)
Final consumption expenditure by government and (V) Changes in inventories and valuables,
while we apply the same demand shocks to category (II) as we do for category (I). To determine
shocks to investment (IV) and exports we start by noticing that, before the Covid-19 pandemic,
the volatility of these variables has generally been three times the volatility of consumption.13

The overall consumption demand shock is around 5% so, as a baseline, we assume shocks to
investment and exports to be 15%. In Appendix F we show that the model results are fairly
robust with respect to alternative choices.

4 Economic impact of Covid-19 on the UK economy

As already mentioned, in the first version of this work we released results in May predicting a
21.5% contraction of GDP in the UK economy in the second quarter of 2020 with respect to

11During lockdown, labor income may be further reduced due to firing. For simplicity, we choose not to model
the e↵ect of these further firings on permanent income.

12The specification in Eq. (25) reflects the following assumptions: (i) time to adjustment is the same as for
consumption demand, Eq. (4); (ii) absent permanent shocks, ⌫t = 0 after some t, ⇠t returns to one, i.e. permanent
income matches current income; (iii) with 50% households believing in an L-shaped recovery, ⇠t reaches a steady
state given by 1� (1� ⇠L)/2: with ⇠L = 0.92 as in the example above, ⇠t reaches a steady state at 0.96, so that
permanent income remains stuck four percentage points below pre-lockdown income.

13This is computed by calculating the standard deviation of consumption, investment and export growth
over all quarters from 1970Q1 to 2019Q4. These are 1.03%, 2.87% and 3.24% respectively. Source: https:
//www.ons.gov.uk/file?uri=%2feconomy%2fgrossdomesticproductgdp%2fdatasets%2frealtimedatabasefor
ukgdpcomponentsfortheexpenditureapproachtothemeasureofgdp%2fquarter2aprtojune2020firstestimate
/gdpexpenditurecomponentsrealtimedatabase.xls
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the last quarter of 201914. This is in comparison to the contraction of 22.1% that was actually
observed. In this section we do a post-mortem to understand the factors that influenced the
quality of the forecasts. To do this, we compare results under di↵erent scenarios defined by
di↵erent shocks and production functions. Our analysis includes a sectoral breakdown of the
forecasts and a comparison of the time series of observed vs. predicted behavior.

4.1 Definition of scenarios and calibration

The model and shock scenarios that we described in the previous sections has several degrees of
freedom that can be tuned when exploring the model. These are either model assumptions such
as the production function, shock scenarios, or parameters (see Table 1). To understand the
factors that influenced the quality of the forecasts, we focus on the assumptions and parameters
that cannot easily be calibrated from data and that have a strong e↵ect on the results.

As the sensitivity analysis in Appendix F shows, the model is most sensitive to two assump-
tions: the supply shock scenario and the production function. So, we consider all combinations
of the six scenarios for supply shocks, S1 to S6 (Section 3.1), and of the five production functions
mentioned in Section 2.2.2. These are: standard Leontief, three versions of the IHS-Markit-
modified Leontief that treat important inputs as critical (IHS1), half-critical (IHS2), and non-
critical (IHS3) and the linear production function. Combining these two assumptions, we get
6⇥ 5 = 30 scenarios that we compare to the data.

Table 1: Assumptions and parameters of the model that: (top) are varied across scenarios; (middle) are fixed
due to little e↵ect on results; (bottom) are fixed due to direct data calibration.

Name Symbol Value
Supply shocks S S1, S2, S3, S4, S5, S6
Production function Leontief, IHS1, IHS2, IHS3, linear
Final demand shocks Appendix A
Inventory adjustment ⌧ 10
Upward labor adjustment �H 1/30
Downward labor adjustment �F 1/15
Change in savings rate �s 0.50
Consumption adjustment ⇢ 0.99
Inventory targets ni Appendix B
Propensity to consume m 0.82
Government benefits b 0.80

Other parameters have less e↵ect on the model (Appendix F) and so we fix them to reason-
able values. These are:

• The parameter ⌧ , capturing responsiveness to inventory gaps. We fix ⌧ = 10 days, which
indicates that firms aim at filling most of their inventory gaps within two weeks. This lies
in the range of values used by related studies (e.g. ⌧ = 6 in Inoue & Todo (2019), ⌧ = 30
in Hallegatte (2014)).

• The hiring and firing parameters �H and �F. We choose �H = 1/30 and �F = 2�H.
Given our daily time scale, this is a rather rapid adjustment of the labor force, with firing
happening faster than hiring.

14Due to an error in how we dealt with Real Estate shocks, our prediction was slightly worse than it would
have been without the error, see Appendix A
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• The parameter ⇢, indicating sluggish adjustment to new consumption levels. We select
the value assumed by Muellbauer (2020), adjusted for our daily timescale15.

• The savings parameter �s. We take �s = 0.5, meaning that households save half the
money they are not spending in goods and services due to fear of infection, and direct
half of that money to spending for other “safer” goods and services.

Finally, we are able to directly calibrate some parameters against the data. For example, we
calibrate the inventory target parameters ni using ONS data for the usual stock of inventories
that di↵erent industries typically have (see details in Appendix B). These parameters are highly
heterogeneous across industries; typically manufacturing and trade have much higher inventory
targets than services. Another parameter which we can directly calibrate from data is the
propensity to consume m (see Eq. 4). Directly reading the share of labor income that is used to
buy final domestic goods from the input-output tables, we find m = 0.82. Finally, we calibrate
benefits b based on o�cial UK policy, b = 0.8.

4.2 Comparing our initial forecast with alternative scenarios

We have chosen not to search for a calibration of the model that best fits the data. We do this
because we only have one real world example and this would lead to overfitting. Instead we start
from the out-of-sample forecast we made in May and try to understand how performance would
have changed if we had made di↵erent choices. This helps us understand what is important
in determining the accuracy and gives some insight into how the model works, and where care
needs to be taken in making forecasts of this type.

Since our initial forecast, we have made small changes to the model (in particular the
consumption function), and obtained better data to calibrate inventories (using ONS rather
than US BEA data). Our initial forecast featured a supply shock scenario identical to S5 except
for Real Estate (Section 3.1 and Appendix A), and an IHS3 production function. In this section,
we compare our original forecast to the forecasts made using the 30 possible scenarios discussed
above. To do so, we evaluate the forecast errors for each scenario at both the sectoral and
aggregate levels, allowing us to better understand the trade-o↵ involved in selecting amongst
various assumptions and calibrations.

For all 30 scenarios, we simulate the model for six months, from January 1st to June 30th,
2020. We start lockdown on March 23rd, at which point we apply the supply and demand
shocks described in Section 3.16

We then compare the monthly sectoral output of each scenario against empirical data from
the indexes of agriculture, production, construction and services, all provided by the ONS (see
Appendix E.1). Specifically, we compute the sector-level Absolute Forecast Errors (AFE) for

15Assuming that a time step corresponds to a quarter, Muellbauer (2020) takes ⇢ = 0.6, implying that more
than 70% of adjustment to new consumption levels occurs within two and a half quarters. We modify ⇢ to
account for our daily timescale: By letting ⇢̄ = 0.6, we take ⇢ = 1 � (1 � ⇢̄)/90 to obtain the same time
adjustment as in Muellbauer (2020). Indeed, in an autoregressive process like the one in Eq. (4), about 70% of
adjustment to new levels occurs in a time ◆ related inversely to the persistency parameter ⇢. Letting Q denote
the quarterly timescale considered by Muellbauer (2020), time to adjustment ◆Q is given by ◆Q = 1/(1� ⇢̄). Since
we want to keep approximately the same time to adjustment considering a daily time scale, we fix ◆D = 90◆Q.
We then obtain the parameter ⇢ in the daily timescale such that it yields ◆D as time to adjustment, namely
1/(1� ⇢) = ◆D = 90◆Q = 90/(1� ⇢̄). Rearranging gives the formula that relates ⇢ and ⇢̄.

16We do not run the model further in the future, both because we focus on the first UK lockdown and the
immediate aftermath, and because our assumptions on non-critical inputs are only valid for a limited time span.
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April, May, and June,17

Ez
i,t = |yi,t � ŷ

z
i,t|,

where yi,t = xi,t/xi,0 is the output of sector i during month t expressed as a percentage of the
output of sector i during February, xi,0. Here, ŷzi,t is the equivalent quantity in simulations
of scenario z. We then obtain a scenario-specific average sectoral AFE by taking a weighted
mean of Ez

i,t across all sectors i and months t, where weights correspond to output shares in
the steady state (forecast errors for important sectors are more relevant than forecast errors for
small sectors). This quantity is defined as

AFEz
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1
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X

t

X

i
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j xj,0

Ez
i,t. (26)

We also compare aggregate output reductions in all di↵erent scenarios in April, May and
June against empirical data. We compute a scenario-specific average aggregate AFE by aver-
aging aggregate forecast errors over the three months we are considering. This is

AFEz
agg =

1

3

X

t
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z
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!
, (27)

where x̂zi,t is output of sector i at time t for scenario z. Note that, unlike the measure of sectoral
error AFEz

sec, the aggregate measure AFEz
agg does not include an absolute value – it is positive

when true production is greater than predicted, and negative when it is smaller than predicted.
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Figure 1: Sectoral and aggregate errors across scenarios. We plot aggregate Average Forecast Error
AFEagg

z vs. sectoral Average Forecast Error AFEsec
z for 30 di↵erent scenarios z, corresponding to all of the six

possible shock scenarios (indicated by color) and the five possible production functions (indicated by symbol),
as well as the original model forecast, indicated by a black asterisk. The other parameter values are indicated in
Table 1. Both sectoral and aggregate AFE are multiplied by 100 to be interpreted as percentages. The right panel
zooms on the region with lowest sectoral and aggregate errors. The dashed lines refer to an average forecast by
institutions and financial firms (above zero) and to a forecast by the Bank of England (below zero), see footnote
1.

Figure 1 plots sectoral and aggregate AFE for the 30 scenarios, plus the original out-of-
sample forecast. The sectoral and aggregate errors vary considerably across scenarios. The left

17We exclude January, February and March from our comparison as we do not model the reaction of the
economy before the lockdown, when e.g. international supply chains started to be disrupted.

19



panel, which includes all 31 scenarios, contains two outliers where the sectoral error reaches al-
most 30% and the aggregate error is roughly -30%, meaning that the model predicts a downturn
30 percentage points larger than that actually observed (i.e., about a 50% downturn). This oc-
curs when the Leontief production function is combined with the two most severe supply shock
scenarios S5 and S6. The right panel blows up the region containing the other 28 scenarios.
The sectoral errors range between roughly 10% and 20%, while the aggregate forecast errors
range from roughly -10% to 10%.

A close examination of the figure makes it clear that, as expected, the predicted downturn
generally gets stronger as the severity of the shock and the rigidity of the production function
increases. With one exception, the choice of scenario has a bigger e↵ect on the error than
the production function. This is evident from the fact that there are clusters of points with
the same color associated with each scenario. The clusters are particularly tight for the less
severe scenarios. The exception is the Leontief production function: The two most severe shock
scenarios produce outliers with downturns that are much too strong and the remainder all
produce results clustered together, with aggregate errors in the range of �4% to �6%. This is
true even for the weakest shock scenario S1; by comparison, every other production function
predicts a downturn that is too weak under scenario S1, in the range of 8%� 12%.

The original model forecast, shown as a black asterisk, has a aggregate error of 0.6% and
a sectoral error of 13.5%. It is useful to compare this to its counterpart in the retrospective
analysis, which uses the S5 scenario in combination with the IHS3 production function. This
forecast performs better at the sectoral level, but worse at the aggregate level (the error is
2.5%). Using an IHS2 production function with the S5 shock scenario seems to provide the best
combination of sectoral and aggregate errors.

To put these results in perspective, it is worth comparing to the other out-of-sample forecasts
that were made around the same time. We do not know their sectoral errors but we can compare
the aggregate errors. The Bank of England forecast, for example, predicted a downturn of about
30%, which corresponds to an aggregate error of about -8%, comparable to the scenarios with S6

supply shocks and with Leontief production function and supply shocks S1 to S4. Conversely,
the average forecast by institutions and financial firms for the UK economy in Q2 2020 was -
16.6%, which is 5.5% less than what was observed in reality. This forecast is in line with supply
shock scenarios S3 to S4, as well as with S5 combined with a linear production function.

Therefore, it seems that the more accurate predictions of our model are obtained by combin-
ing shock scenario S5 – as in our original prediction – with one of the IHS production functions.
Why does this scenario, which was not designed to capture specific features of the UK econ-
omy, work so well? The evidence suggests that this is because there were many voluntary firm
shutdowns, such as for the car manufacturing industry in the UK. The S5 shock scenario does a
better job of identifying industries that we not mandated to shut down, but did so in practice,
and seems to better capture the behavioral response to the pandemic than a literal reading of
UK regulations.

4.3 Analysis of the selected scenario

Given that it minimizes a combination of aggregate and sectoral error, and given that it is close
to the original scenario used for our out-of-sample predictions, we focus on the scenario that
combines S5 and the IHS2 production function to illustrate the outcomes of our model in more
detail. We start by showing the dynamics produced by the model, and then we evaluate how
well the selected scenario explains some aspects of the economic e↵ects of Covid-19 on the UK
economy that we did not consider so far.

Figure 2 shows model results for the selected scenario for production (gross output); results
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Figure 2: Economic production for the chosen scenario as a function of time. We plot production (gross
output) as a function of time for each of the 55 industries. Aggregate production is a thick black line and each
sector is colored. Agricultural and industrial sectors are colored red; trade, transport, and restaurants are colored
green; service sectors are colored blue. All sectoral productions are normalized to their pre-lockdown levels, and
each line size is proportional to the steady-state gross output of the corresponding sector. For comparison, we
also plot empirical gross output as normalized with respect to March 2020.

for other important variables, such as profits, consumption and labor compensation (net of
government benefits) are similar. When the lockdown starts, there is a sudden drop in economic
activity, shown by a sharp decrease in production. Some other industries further decrease
production over time as they run out of critical inputs.18 Throughout the simulation, service
sectors tend to perform better than manufacturing, trade, transport and accommodation sectors.
The main reason for that is most service sectors face both lower supply and demand shocks, as
a high share of workers can e↵ectively work from home, and business and professional services
depend less on consumption demand.

In the UK, there was not a clear-cut lifting of the lockdown but, under scenario S5, we
take May 13th as a conventional date in which lockdown measures are lifted (see Figure 8 in
Appendix A for shock dynamics). By the end of June, the economy is still far from recovering.
In part, this is due to the fact that the aggregate level of consumption does not return to pre-
lockdown levels, due to a reduction in expectations of permanent income associated with beliefs
in an L-shaped recovery (Section 2.2.1), and due to the fact that we do not remove shocks to
investment and exports (see Section 3).

We now turn to evaluating how well the selected scenario describes the economic e↵ects
of Covid-19 on the UK economy. In terms of gross output, one can see in Table 2 that the

18The reduction in production due to input bottlenecks is somewhat limited in this scenario as compared to
the outliers in Figure 3. With supply shocks S5 or S6 and a Leontief production function, the economy collapses
by 50% due to the strong input bottlenecks created in a substantially labor-constrained economy in which all
inputs are critical for production.
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Variable (compared to Q4-2019) Data Model
Gross output April -27.4% -25.3%
Gross output May -25.2% -26.9%
Gross output June -17.8% -16.8%
Value added Q2 -21.5% -22.1%
Private consumption Q2 -25.3% -21.3%
Investment Q2 -26.3% -29.7%
Government consumption Q2 -17.5% -14.2%
Inventories Q2 -2.2% -0.5%
Exports Q2 -23.3% -27.8%
Imports Q2 -30.6% -23.9%
Wages and Salaries Q2 -1.1% -4.3%
Profits Q2 -26.7% -22.3%

Table 2: Comparison between data and predictions of the selected scenario for the main aggregate variables.
All percentage changes refer to the last quarter of 2019, which we take to represent the pre-pandemic economic
situation.

model slightly underestimates the recession in April and slightly overestimates it in May, while
it correctly estimates a strong recovery in June.19 Additionally, aggregate value added in the
second quarter of 2020 is very close to the data.

Our model, however, considers other macroeconomic variables than gross output and value
added, so we also compare these other variables to data (Table 2). From national accounts, we
collect data on private and government consumption, investment, change in inventories, exports
and imports (expenditure approach to GDP); wages and salaries and profits (income approach
to GDP). Looking at the expenditure approach to GDP, some variables have a worse reduction
in the model, such as investment and exports, while other variables have a worse reduction in
the data, such as private and government consumption, inventories and imports.20 However,
the model predicts the relative reductions fairly well, as we find a stronger collapse in private
consumption and investment than in government consumption or inventories, as in the data.
Finally, considering the income approach to GDP, we overestimate the reduction in wages and
salaries and underestimate the reduction in profits.21 Nonetheless, we correctly predict that
the absolute reduction in wages and salaries is much smaller than in profits (due to government
subsidies).

Turning to the performance of our model at the disaggregate level of industries, Figure 3
shows gross output as predicted by the model and in the data. Here, gross output is averaged
over the values it takes in March, April and June, both in the model and in the data, and
compared to the value it had in Q4 2019. To interpret this figure, note that for all points
on the left of the identity line, model predictions are lower than in the data, i.e. the model
is pessimistic. Conversely, on the right of the identity line model predictions are higher than
in the data, i.e. the model is optimistic. Note that model predictions and empirical data are
correlated, although not perfectly: the Pearson correlation coe�cient weighted by industry size
is 0.75. The majority of sectors decreased production up to 60% of initial levels, both in the
model and in the data, but a few sectors were forced to decrease production much more.

19We aggregate empirical output from sectoral indexes using our steady-state output shares as weights.
20If one considers Exports-Imports as a component, the model predicts a current account deficit, while in

reality there was a current account surplus. We should however note that we do not model international trade,
we treat exports as exogenous and imports like locally produced goods and services.

21Note that these categories are not jointly exhaustive, as the ONS also considers mixed income and taxes less
subsidies, which are di�cult to compare to variables in our model.
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Figure 3: Comparison between model predictions and empirical data. We plot predicted production
(gross output) for each of 53 industries against the actual values from the ONS data, averaged across April, May
and June. Values are relative to pre-lockdown levels and dot size is proportional to the steady-state gross output
of the corresponding sector. Agricultural and industrial sectors are colored red; trade, transport, and restaurants
are colored green; service sectors are colored blue. Dots above the identity line means that the predicted recession
is less severe than in the data, while the reverse is true for dots below the identity line.

While the predictions are generally very good, there are also some dramatic failures. We
conjecture that this is due to idiosyncratic features of these industries that we could not take
into account without overly complicating our model. For example, one sector for which the
predictions of our model are completely o↵ is C29 - Manufacturing of vehicles. Almost all car
manufacturing plants were completely closed in the UK in April and May, and so production was
essentially zero (7% of the pre-pandemic level in April and 14% in May). While they reopened
in June, production in Q2 is slightly above 20% of the pre-pandemic level. However, our model
predicts a level of production around 63% of the pre-pandemic level. It is di�cult to account
for the complete shutdown of car manufacturing plants in our model, as our selected scenario
for supply shocks does not require manufacturing plants to completely close during lockdown.
We think that this discrepancy between model predictions and data can be explained by two
factors. First, car manufacturing is highly integrated internationally, and, in a period where
most developed countries were implementing lockdown measures, international supply chains
were highly disrupted. For simplicity, however, in our model we did not model input bottlenecks
due to lack of imported goods. Second, it is possible that firms producing non-essential goods
voluntarily decided to stop production to protect the health of their workers, even if they were
not forced to do so. Another example for which the predictions of our model are o↵ is H51 -
Air transport. Production in the data is 3% of pre-lockdown levels, while our model predicts
around 50%. In the model, most activity of the air transport industry during lockdown is due
to business travel, which is a non-critical input to many industries that we do not exogenously
shut down (recall that industries aim at using non-critical inputs if they are available).
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Figure 4: Comparison between model predictions and empirical data. We plot predicted production
(gross output) vs. observed values from ONS data. Production is relative to pre-lockdown levels and dot size is
proportional to the steady-state gross output of the corresponding sector. Yellow is April and red is June. Black
lines connect the same industry from April to June. Only a few industries are highlighted (see main text).

In some other cases, however, our model gave accurate predictions, even when the answer was
far from obvious. Compare, for instance, industries M74 M75 (Other Science) and O84 (Public
Administration). Both received a very weak supply shock (3% for Other Science and 1.1% for
Public Administration, see Table 5 in Appendix A), and no private consumption demand shocks.
Yet, Public Administration had almost no reduction in production, while Other Science reduced
its production to about 75% of its pre-pandemic level. The ONS report in May (see footnote
7) quotes reduced intermediate demand as the reason why Other Science reduced its activity.
Conversely, Public Administration’s output is almost exclusively sold to the government, which
did not reduce its consumption. Because of its ability to take into account supply chain e↵ects
and the resulting reductions in intermediate demand, our model is able to endogenously capture
the di↵erence between these two sectors, even though their shocks are small in both cases.

Figure 4 shows the ability of the model to predict sectoral dynamics. It is similar to Figure
3 but shows output in both April and June. The dots that represent the same industry in
April and June are connected by a black line. We focus on a few industries that we discuss
in this section, making all other points light grey (Figure 14 in Appendix E.2 shows labels
for all industries). To interpret changes from April to June, note that a line close to vertical
implies that a given industry had a much stronger recovery in the data than in the model, while
a horizontal line implies the opposite. A line parallel to the identity line indicates that the
recovery was as strong in the data as in the model. Almost all sectors experience a substantial
recovery from April to June, both in the model and in the data.
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An example in which our model correctly predicts dynamic supply chain e↵ects is the recov-
ery experienced by C23 (Manufacture of other non-metallic mineral products) as a consequence
of the recovery by F (Construction). According to ONS reports, increased activity in construc-
tion in June is explained by the lifting of the lockdown and by adaptation to social distancing
guidelines by construction firms. At the same, industry C23 recovers due to the production
of cement, lime, plaster, etc to satisfy intermediate demand by construction (construction is
by far the main customer of C23, buying almost 50% of its output). This pattern is faithfully
reproduced by the endogenous dynamics in our model.

5 Propagation of supply and demand shocks

In the standard Cobb-Douglas Equilibrium IO model, productivity shocks propagate down-
stream and demand shocks propagate upstream (Carvalho & Tahbaz-Salehi 2019). Thus, the
elasticity of aggregate output to a shock to one sector depends on the type of shock, and on the
position of an industry in the input-output network. What can we say about these questions in
our model? Are there properties of an industry that could be computed ex-ante to know how
systemic it is? Is this di↵erent for supply and demand shocks?

To answer these questions, we run the model with a single shock – either supply or demand
– to a single industry. All the other industries do not experience any shocks but have initial
productive capacities and face initial levels of final demand. We then let the economy evolve
under this specific setting for one month22. We repeat this procedure for every industry, every
production function specification and di↵erent shock magnitudes. We then investigate if the
decline in total output can be explained by simple measures such as shock magnitude, output
multipliers or upstreamness levels which we formally define below. We first explain the supply
and demand shock based scenarios in somewhat more detail.

Supply shock scenarios. When considering supply shocks only, we completely switch o↵
any adverse demand e↵ects, i.e. ✏

D
i,t = 0 (which implies ✓i,t = ✓i,0 and ✏̃

D
t = 0), ⇠t = 1 and

f
d
i,t = f

d
i,0 for all i and t. We also set all supply shocks equal to zero ✏Si,t = 0, except for a single

industry j which experiences a supply shock from the set ✏Sj,t 2 {0.1, 0.2, ..., 1}. We then loop
over every possible j. We do this for each of the di↵erent production function assumptions.

Demand shock scenarios. In our demand shock scenarios there are no supply shocks
(✏Si,t = 0 8 i, t) and similarly there is no demand shocks for all but one industry j (✏Di,t = 0,

f
d
i,t = f

d
i,0 8i 6= j, 8t). For the single industry j we again let shocks vary between 10 and 100%;

✏
D
j,t 2 {0.1, 0.2, ..., 1}. For simplicity we assume uniform shocks across all final demand categories

of the given industry, resulting in f
d
j,t = (1� ✏

D
j,t)f

d
j,0. To keep things as simple as possible, we

further assume that there is no fear of unemployment ⇠t = 1 and that final consumers do not
switch to alternative products at all (�s = 1). Under these assumptions the values for ✓i,t = ✓i,t

and ✏̃Dt are then computed as outlined in Section 3.2.

Figure 5 shows the simulation results broken down into the various shock magnitudes (ver-
tical axis) and production function categories (horizontal axis). The coloring and the value of a
tile represent the average aggregate output (as a fraction of initial output), where the average is
taken over all N runs. Results obtained from the demand shock scenarios, Figure 5(b), do not

22We also did the analysis with model simulations up to two months after the initial shock is applied. Since
results are similar for the two cases, we only report results for the one month simulations.
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di↵er across alternative production function specifications and thus we only show one representa-
tive case. The reason for this is that demand shocks to an industry are passed on proportionally
to all of its suppliers as shown in Eq. (2), regardless of the underlying production mechanisms.
This is in stark contrast to the supply shock scenarios, Figure 5(a), where economic impacts
depend strongly on the choice of production function. While the economic impact of supply
constraints is limited in the linear production model and depends fairly smoothly on the shock
magnitude, this is not the case in the Leontief model. Here the economy experiences a major
truncation if single industries are shut down. The results lie in-between these two extremes
when production functions di↵erentiate between critical and non-critical inputs (IHS 1-3).

Except for the linear production function simulations, we observe for several severe supply
shock scenarios fairly wide distributions of economic impacts. Thus, not only the shock size
matters but also which industries are a↵ected by these shocks. For example, applying an 80%
supply shock shock to industry Repair-Installation (C33) under the IHS2 assumption, collapses
the economy by about 50%, although the industry accounts for less than half a percent of
the overall economy. On the other hand, applying the same shock to the comparatively large
industry Other Services (R S, 3% of the economy) leads to a mere 6% reduction of aggregate
output.
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Figure 5: Aggregate gross output as percentage of pre-shock levels after shocking single industries.

A column depicts di↵erent production functions and rows distinguish the supply (a) and demand (b) shock
magnitude which an industry is exposed to. Results in (b) are only shown for one production function, since
they are identical across alternative specifications. The values in the tiles and their coloring denote aggregate
output levels as percentage of pre-shock levels one month after the shock hits a given industry. This values are
computed as averages from N runs, always shocking only a single industry.

For a policymaker it is important to know what properties of an industry drive the am-
plification of shocks, as this could inform both the design of lockdown measures as well as
reopening policies. To explore this more systematically, we regress output levels against po-
tential explanatory factors such as upstreamness, output multipliers and industry sizes. An
industry’s upstreamness in a production network is its average distance to the final consumer
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(Antràs et al. 2012) and also known as Total Forward Linkages (Miller & Temurshoev 2017).
High upstreamness implies that the output of this industry requires several subsequent produc-
tion steps before it is purchased by final consumers. Thus, relaxing shocks on industries with
high upstreamness could potentially stimulate further economic activity. Since upstreamness
boils down to the row sums of the Gosh inverse (Miller & Temurshoev 2017), we obtain the
N -dimensional upstreamness vector as u = (I�B)�11, where a matrix element Bij = Zij,0/xi,0

represents “allocation coe�cients”. Upstreamness ranges from 1.004 (Household activities) to
2.742 (Warehousing) in our sample of UK industries.

Output multipliers, or alternatively Total Backward Linkages, are a core metric in many
economic studies. In input-output analysis multipliers quantify the impact of a change in final
demand in a given sector on the entire economy. Multipliers are related to various network
centrality concepts and have been shown to be strongly predictive of long-term growth (Mc-
Nerney et al. 2018). Since shocking an industry with a high multiplier should lead to larger
decreases in intermediate demand, it is plausible that high-multiplier industries tend to amplify
shocks more. The output multiplier is computed as the column sum of the Leontief inverse,
i.e. m = (I � A

>)�11. Multipliers range from 1 (Household activities) to 2.379 (Forestry) in
our sample. Upstreamness and multipliers are di↵erent, but are fairly highly correlated, with a
Pearson correlation of 0.45.

We then regress log aggregate output one month after the initial shock hits the economy,
log(

P
k xk,30), against the shocked industry’s log upstreamness and multiplier levels. Naturally,

we would expect a larger decline if supply shocks hit an overall large industry and similarly for
demand shocks and the size of final consumption. Thus we also control for total industry size
measured in log gross output, log(xi,0), and industry-specific total demand, log(cdi,0 + f

d
i,0), in

our regressions23. We then run the regression for every given shock magnitude and production
function separately.

Tables 3 summarizes the regression results for the supply shock scenarios. For supply shocks
we find that upstreamness is a very good predictor of adverse economic impacts if the economy
builds upon Leontief production mechanisms. If industries use linear production technologies,
on the other hand, it is rather the size of the industry than its upstreamness level that explains
reductions in aggregate output. When using the intermediate assumption of an IHS2 production
function, both upstreamness levels and industry size significantly a↵ect aggregate impacts,
although the overall model fit (R2) drops substantially.

Note that supply shocks are to a large extent a policy variable as they are directly coupled to
non-pharmaceutical interventions such as industry-specific shutdowns. Our results indicate that
upstreamness levels of industries are an important aspect for designing lockdown scenarios. In
case of limited production flexibilities, upstreamness might be even a better indicator of industry
closure related aggregate impacts than the actual size of the industry.

Regression results for the demand shock experiments are shown in Table 4. The first four
columns show the results from univariate regressions where we include only one of the potential
covariates: upstreamness, multipliers, final consumption and gross output. Somewhat surpris-
ingly, output multipliers, a key metric for quantifying aggregate impacts resulting from demand
side perturbations in simpler input-output models, do not exhibit any predictive power in our
case. Upstreamness, on the other hand, is positively associated with aggregate output values,
indicating that demand shocks to upstream industries have less adverse impacts on the economy
than downstream industries. Better model fits, however, are obtained when regressing aggregate
output against indicators of industry size gross output or final consumption.

23We do not include gross output and final demand values together as regressors to avoid multicolinearity.
Industry gross output and final consumption are highly correlated; cor{log(xi,0), log(ci,0 + fi,0)} = 0.89 (p-value
< 10�16).
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Interestingly, combining final consumption values with the network-based metrics in a multi-
variate regression (column five) does not improve explanatory power at all. On the other hand,
upstreamness and output size explain complementary parts of aggregate impacts (columns six),
resulting in a better model fit than any regression using final consumption values. Thus, in-
dustries’ upstreamness and output sizes do not only play a role for the propagation of supply
shocks but are also key determinants for demand shock amplification.

Overall, we find that static measures are indicative of our model results but only explain
them partially, even in this simplified case where we studied either demand or supply to only
one industry at time. In reality, supply and demand shocks are mixed and multiple industries
a↵ected at the same time to varying degrees. In that case the propagation of pandemic shocks
will be more complex. Nevertheless, our results indicate that upstream industries play an
important role in the amplification of exogenous shocks.
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Dependent variable: log(
P

i
xi,30)

Shock size: 40% 40% 40% 80% 80% 80%
Production: Leontief IHS2 Linear Leontief IHS2 Linear

log(ui,0) �0.233⇤⇤⇤ �0.114⇤⇤⇤ 0.008 �0.440⇤⇤⇤ �0.383⇤⇤⇤ 0.016
(0.018) (0.019) (0.003) (0.023) (0.071) (0.007)

log(mi,0) 0.067 0.065 �0.013 0.037 0.306 �0.025
(0.038) (0.041) (0.007) (0.049) (0.150) (0.014)

log(xi,0) �0.006 �0.019⇤⇤⇤ �0.008⇤⇤⇤ �0.011 �0.079⇤⇤⇤ �0.016⇤⇤⇤

(0.004) (0.004) (0.001) (0.005) (0.016) (0.001)

Constant 15.512⇤⇤⇤ 15.673⇤⇤⇤ 15.560⇤⇤⇤ 15.224⇤⇤⇤ 16.175⇤⇤⇤ 15.641⇤⇤⇤

(0.050) (0.053) (0.009) (0.065) (0.197) (0.018)

Observations 55 55 55 55 55 55
Adjusted R2 0.776 0.456 0.722 0.890 0.448 0.719

Note: ⇤p<0.01; ⇤⇤p<0.001; ⇤⇤⇤p<0.0001

Table 3: Regression results for supply shock experiments.

Dependent variable: log(
P

i
xi,30)

(1) (2) (3) (4) (5) (6)

log(ui,0) 0.040⇤⇤ 0.012 0.036⇤⇤⇤

(0.010) (0.010) (0.008)

log(mi,0) 0.021 �0.024 �0.030
(0.024) (0.019) (0.018)

log(ci,0 + fi,0) �0.012⇤⇤⇤ �0.011⇤⇤⇤

(0.002) (0.002)

log(xi,0) �0.014⇤⇤⇤ �0.013⇤⇤⇤

(0.002) (0.002)

Constant 15.443⇤⇤⇤ 15.453⇤⇤⇤ 15.588⇤⇤⇤ 15.618⇤⇤⇤ 15.586⇤⇤⇤ 15.599⇤⇤⇤

(0.006) (0.013) (0.016) (0.023) (0.025) (0.023)

Observations 55 55 55 55 55 55
Adjusted R2 0.217 �0.004 0.522 0.452 0.522 0.580

Note: ⇤p<0.01; ⇤⇤p<0.001; ⇤⇤⇤p<0.0001

Table 4: Regression results for demand shock experiments. As representative case we show regression
results for the scenario of 60% shocks to final consumption, because results are similar for alternative shock sizes.
Note that economic impacts are identical across alternative production functions.
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6 Discussion

In this paper we have investigated how locking down and re-opening the UK economy as a
policy response to the Covid-19 pandemic a↵ects economic performance. We introduced a novel
economic model specifically designed to address the unique features of the current pandemic.
The model is industry-specific, incorporating the production network and inventory dynamics.
We use survey results by industry experts to model how critical di↵erent inputs are in the
production of a specific industry.

We found in simulation experiments where we studied simpler shock scenarios and a simpli-
fied model setup that an industry’s upstreamness is predictive of shock amplification. However,
the relationship is noisy and strongly depends on the underlying production mechanism in case
of downstream propagation of supply shocks. These results underline the necessity of more so-
phisticated macroeconomic models for quantifying the economic impacts resulting from national
lockdowns and subsequent re-opening.

Real time GDP predictions for the UK economy made in an early version of this paper
turned out to be very accurate (Pichler et al. 2020). But was this because we did things right,
or because we just got lucky? Our analysis here shows that it was a mixture of the two. By
investigating both alternative shocks scenarios, alternative production functions and studying
the sensitivity to parameters and initial conditions we are able to see how the quality of the
predictions depends on these factors. We find that the shock scenarios are the most important
determinant, but the production function can also be very important, and some of the other
parameters can a↵ect the results as well.

To make a real time forecast we had to act quickly. There were no data available about
which industry classifications were considered essential in the UK and the few data available
on UK jobs that could be performed form home was based on US O*NET data24. In the
interest of time, we estimated the UK supply shocks using predicted US supply shocks del Rio-
Chanona et al. (2020). These supply shocks were based on a list of essential industries that
was considerably less permissive (i.e., less industries were considered essential) than the UK
guidelines. This turned out to be lucky: respecting social distancing guidelines caused many
industries in the UK to close even though they were not formally and explicitly required to
do so. With hindsight, this was fortuitous – if we had had a list of essential British industries
our supply shocks would have been too weak, or we would have had to model social distancing
constraints by industry, which is di�cult. Even if it missed some of the details, the supply
shocks estimated by del Rio-Chanona et al. (2020) provided a reasonable approximation to the
truth.

The choice of production function also matters a great deal. Our results suggest that the
Leontief production function, which is widely used for understanding the response to disasters,
is a poor choice. This is for an intuitive reason: Some inputs are not critical, and an industry
can operate reasonably well without them, at least for a few months. Our results here show
that production functions that incorporate this fact can do well. This could be further devel-
oped by calibrating CES production functions to correctly incorporate when substitutions are
appropriate. The IHS Markit survey that was performed should eventually be performed with
larger samples and tested in detail (but that is beyond the scope of this paper). At the other
extreme, our results also suggest that the linear production function is a poor choice. It comes
close to the correct aggregate error only with the strongest shock scenario and never performs
well at the sectoral level.

Our results indicate that dynamic models of the type that we developed here can do a good

24https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/art
icles/whichjobscanbedonefromhome/2020-07-21
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job of forecasting disruptions in the economy. We want to emphasize that, while there is wide
variation in the results under di↵erent scenarios, this variation could be dramatically reduced by
collecting better data. A clear example is the choice of inventory levels. In our original model
we had no data for inventory levels of UK industries, so we used data for the US. Replacing this
by UK data made a substantial improvement in our results. Similarly, the economic data we
had available was from 2019, and the IO data was from 2014 – better real time measurements
about the response of industries to the pandemic would likely have improved our predictions.
A more extensive study of the importance of di↵erent inputs to production could have reduced
ambiguity about the choice of production function.

At the highest level, our model illustrates the value of its key features. These are: modeling
at the sectoral level, allowing both supply and demand shocks to operate simultaneously, using
a realistic production function that properly captures nonlinearities without exaggerating them,
and using a dynamic model that incorporates inventory e↵ects. With better data and better
measurement of parameters, our results demonstrate that a model of this type can give useful
insight into the economics of a disaster such as the Covid-19 pandemic.
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Appendix

A First-order supply and demand shocks

A.1 Supply shocks

Due to the Covid-19 pandemic, industries experience supply-side reductions due to the closure
of non-essential industries, workers not being able to perform their activities at home, and di�-
culties adapting to social distancing measures. Many industries also face substantial reductions
in demand. del Rio-Chanona et al. (2020) provide quantitative predictions of these first-order
supply and demand shocks for the U.S. economy. To calculate supply-side predictions, del
Rio-Chanona et al. (2020) constructed a Remote Labor Index, which measures the ability of
di↵erent occupations to work from home, and scored industries according to their essentialness
based on the Italian government regulations.

We follow a similar approach. We score industries essentialness based on the UK government
regulations and use occupational data to estimate the fraction of workers that could work
remotely and the di�culties sectors faced in adapting to social distancing measures for on-site
work. Several of our estimates are based on indexes and scores available for industries in the
NAICS 4-digit classification system. An essential step in our methodology is to map these
estimates into the WIOD industry classification system. We explain our mapping methodology
below.

NAICS to WIOD mapping We build a crosswalk from the NAICS 4-digit industry classi-
fication to the classification system used in WIOD, which is a mix of ISIC 2-digit and 1-digit
codes. We make this crosswalk using the NAICS to ISIC 2-digit crosswalk from the European
Commission and then aggregating the 2-digit codes presented as 1-digit in the WIOD clas-
sification system. We then do an employment-weighted aggregation of the index or score in
consideration from the 277 industries at the NAICS 4-digit classification level to the 55 indus-
tries in the WIOD classification. Some of the 4-digit NAICS industries map into more than one
WIOD industry classification. When this happens, we assume employment is split uniformly
among the WIOD industries the NAICS industry maps into.

Remote Labor Index and Physical Proximity Index To estimate the fraction of workers
that could work remotely, we use the Remote Labor Index from del Rio-Chanona et al. (2020).
To understand the di�culties di↵erent sectors face in adapting to the social distancing measures,
we compute an industry-specific Physical Proximity Index. Other works have also used the
Physical Proximity of occupations to understand the economic consequences of the lockdown
(Mongey et al. 2020, Koren & Pető 2020). We map the Physical Proximity Work Context25

of occupations provided by O*NET into industries, using the same methodology that del Rio-
Chanona et al. (2020) used to map the Remote Labor Index into industries. That is, we use BLS
data that indicate the occupational composition of each industry and take the employment-
weighted average of the occupation’s work context employed in each industry at the NAICS
4-digit classification system. Under the assumption that the distribution of occupations across
industries and that the percentage of essential workers within an industry is the same for the
US and the UK, we can map the Remote Labor Index by del Rio-Chanona et al. (2020) and the
Physical Proximity Index into the UK economy following the mapping methodology explained in
the previous paragraph. The WIOD industry sector ’T’ (”Activities of households as employers;
undi↵erentiated goods- and services-producing activities of households for own use”) does only

25https://www.onetonline.org/find/descriptor/result/4.C.2.a.3
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Figure 6: Remote Labor Index of industries. Remote labor index of the WIOD industry classification. See
Table 5 for code-industry name.

maps into one NAICS code for which we do not have RLI or PPI. Since We consider sector ’T’
to be similar to the ’R S’ sector (”Other service activities”) we use the RLI and PPI from ’R S’
sector in the ’T’ sector. In Figures 6 and 7 we show the Remote Labor Index and the Physical
Proximity Index of the WIOD sectors.

Essential score To determine the essential score of industries in scenarios S1 to S4 we follow
the UK government guidelines. We break down WIOD sectors, which are aggregates of 2-digit
NACE codes, into finer 3- and 4-digit industries. The advantage of having smaller subsectors is
that we can associate shutdown orders to the subsectors and then compute an average essential
score for the aggregate WIOD sector. In the following, we provide some details on how we
calculate essential scores while referring the reader to the online repository to check all our
assumptions.

• Essential score of G45 (Wholesale and retail trade and repair of motor vehicles and mo-
torcycles). The only shops in this sector that were mandated to close were car showrooms
(see footnote 6 for a link to o�cial legislation). Lacking a disambiguation between retail
and wholesale trade of motor vehicles, we assign a 0.5 essential score to subsector 4511,
which comprises 72% of the turnover of G45, and an essential score of 1 to all other
subsectors. The average essential score for G45 turns out to be 64%.

• Essential score of G47 (Retail trade, except of motor vehicles and motorcycles). All “non-
essential” shops were mandated to close, except food and alcohol retailers, pharmacies and
chemists, newsagents, homeware stores, petrol stations, bicycle shops and a few others.
We assigned an essential score that could be either 0 or 1 to all 37 4-digit NACE subsectors
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Figure 7: Physical Proximity Index of industries. Physical Proximity Index of the WIOD industry classi-
fication. See Table 5 for code-industry name.

that compose G47. Weighing essential scores by turnover results in an average essential
score of 71%.

• Essential score of I (Accommodation and food service activities). Almost all economic
activities in this sector were mandated to close, except hotels for essential workers (e.g.
those working in transportation) and workplace canteens where there is no practical al-
ternative for sta↵ at that workplace to obtain food. Assigning a 10% essential score to
the main hotels subsector (551) and a 50% essential score to subsector 5629, including
workplace canteens, results in an overall 5% essential score for sector I.

• Essential score of R S (Recreational and other services). Almost all activities in this sector
were mandated to close, except those related to repair, washing and funerals. Considering
all 34 subsectors yields an essential score of 7%.

Real Estate. This sector includes imputed rents, which account for 69% of the monetary
value of the sector,26. Because we think applying a supply shock to imputed rent does not make
sense, we compute that the supply shock derived from the RLI and Essential Score (which is
around 50%) only a↵ects 31% of the sector, leading to a 15% final supply shock to Real Estate
(due to an error, our original work used a value of 4.7%).If we had used the correct real estate
shock we would have predicted a 22.1% reduction, exactly like in the data. In the main text,
we still describe our prediction as having been a 21.5% contraction, as explicitly stated in our

26https://www.ons.gov.uk/economy/grossvalueaddedgva/datasets/nominalandrealregionalgrossvaluea
ddedbalancedbyindustry, Table 1B.
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original paper. Note that these di↵erences are within the range of expected data revisions27

In scenario S5, we mapped the supply shocks estimated by del Rio-Chanona et al. (2020)
at the NAICS level into the WIOD classification system as explained previously. The WIOD
industry sector ’T’ (”Activities of households as employers; undi↵erentiated goods- and services-
producing activities of households for own use”) does only maps into one NAICS code for which
we do not have a supply shock. Since this sector is likely to be essential, we assume a zero
supply shock.

The supply shocks at the NAICS level depend on the list of industries’ essential score at the
NAICS 4-digit level provided by del Rio-Chanona et al. (2020). It is important to note that,
although the list of industries’ essential score provided by del Rio-Chanona et al. (2020) is based
on the Italian list of essential industries, these lists are based on di↵erent industry classification
systems (NAICS and NACE, respectively) and do not have a one-to-one correspondence. To
derive the essential score of industries at the NAICS level del Rio-Chanona et al. (2020) followed
three steps. (i) the authors considered a 6-digit NAICS industry essential if the industry had
correspondence with at least one essential NACE industry. (ii) del Rio-Chanona et al. (2020)
aggregated the 6-digit NAICS essential lists into the 4-digit level taking into account the fraction
of NAICS 6-digit subcategories that were considered essential. (iii) the authors revised each
4-digit NAICS industry’s essential score to check for implausible classifications and reclassified
ten industries whose original essential score seemed implausible. Step (i) likely resulted in a
larger fraction of industries at the NAICS level to be classified as essential than in the NACE
level. This, in turn, results in supply shocks S5 that are milder than they would have been if
the essential score was mapped directly from NACE to WIOD and the supply shocks calculated
at the WIOD level.

For scenario S6 we used the list of essential industries compiled by Fana et al. (2020) for
Italy, Germany, and Spain. We make one list by taking the mean over the three countries of
the essential score of each industry. This list is at the ISIC 2-digit level, which we aggregate to
WIOD classification weighting each sector by its gross output in the UK.

Table 5 gives an overview of first-order supply shocks and Figure 8 show the supply scenarios
over time.

A.2 Demand shocks

For calibrating consumption demand shocks, we use the same data as del Rio-Chanona et al.
(2020) which are based on the Congressional Budget O�ce (2006) estimates. These estimates
are available only at the more aggregate 2-digit NAICS level and map into WIOD ISIC categories
without complications. To give a more detailed estimate of consumption demand shocks, we
also link manufacturing sectors to the closure of certain non-essential shops as follows.

• Consumption demand shock to C13-C15 (Manufacture of textiles, wearing apparel, leather
and other related products). Four subsectors (4751, 4771, 4772, 4782) selling goods pro-
duced by this manufacturing sector were mandated to close, while one subsector was
permitted to remain open as it sells homeware goods (4753). Lacking more detailed in-
formation about the share of C13-C15 products that these subsectors sell, we simply give
equal shares to all subsectors, leading to an 80% consumption demand shock to C13-C15.

• Consumption demand shock to C20 (Manufacture of chemicals and chemical products).
Three subsectors (4752, 4773, 4774) selling homeware and medical goods were considered
essential, while subsector 4775, selling cosmetic and toilet articles, was mandated to close.

27see for instance https://www.ons.gov.uk/economy/grossdomesticproductgdp/datasets/revisionstrian
glesforukgdpabmi for ONS GDP quarterly national accounts revisions, which are of the order of 1 pp.)
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Figure 8: Comparison of supply shock scenarios over time. Each panel shows industry specific supply
shocks ✏Si,t for a given scenario. The coloring of the lines is based on the same code as in Figure 2.

Using the same assumptions as above, we get a 25% consumption demand shock for this
sector.

The same procedure leads to consumption demand shocks for all other manufacturing subsectors.
Table 6 shows the demand shock for each sector and 9 illustrates the demand shock scenarios

over time.
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Figure 9: Industry-specific demand shocks over time. The upper left panel shows the change in preferences
✓i,t. The bottom left panel shows shock magnitudes to investment and export. The upper right panel shows
demand shocks due to fear of unemployment ⇠t. The bottom right panel is the aggregate demand shock ✏̃t taking
the savings rate of 50% into account. The coloring of the lines for industry-specific results follows the same code
as in Figure 2.
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ISIC Sector x S1 S2 S3 S4 S5 S6
A01 Agriculture 0.8 0.0 4.1 16.3 28.6 0.0 0.0
A02 Forestry 0.0 0.0 3.2 12.7 22.2 85.0 85.0
A03 Fishing 0.1 0.0 5.3 21.4 37.4 0.0 0.0
B Mining 1.3 0.0 5.2 20.9 36.6 35.3 18.4
C10.C12 Manuf. Food-Beverages 2.8 0.0 6.2 25.0 43.7 0.6 0.0
C13.C15 Manuf. Textiles 0.4 0.0 5.1 20.4 35.7 37.1 64.5
C16 Manuf. Wood 0.2 0.0 5.2 20.8 36.4 61.1 68.9
C17 Manuf. Paper 0.4 0.0 4.9 19.7 34.5 7.5 27.6
C18 Media print 0.3 0.0 4.2 16.7 29.2 6.0 0.0
C19 Manuf. Coke-Petroleum 0.9 0.0 4.7 18.8 32.9 18.3 2.1
C20 Manuf. Chemical 1.1 0.0 4.5 18.1 31.6 2.6 26.6
C21 Manuf. Pharmaceutical 0.7 0.0 4.2 16.8 29.4 1.1 0.0
C22 Manuf. Rubber-Plastics 0.7 0.0 5.3 21.1 36.9 28.3 51.0
C23 Manuf. Minerals 0.5 0.0 4.8 19.2 33.6 50.3 63.1
C24 Manuf. Metals-basic 0.6 0.0 5.4 21.6 37.8 57.7 72.6
C25 Manuf. Metals-fabricated 1.1 0.0 4.8 19.1 33.4 54.8 66.3
C26 Manuf. Electronic 0.8 0.0 2.8 11.4 19.9 38.5 41.6
C27 Manuf. Electric 0.4 0.0 4.6 18.3 32.1 33.3 58.9
C28 Manuf. Machinery 1.1 0.0 4.4 17.6 30.8 49.7 56.9
C29 Manuf. Vehicles 1.6 0.0 5.1 20.5 35.8 22.6 69.7
C30 Manuf. Transport-other 1.0 0.0 4.2 17.0 29.7 48.8 59.7
C31 C32 Manuf. Furniture 0.6 0.0 4.8 19.2 33.5 36.6 60.5
C33 Repair-Installation 0.4 0.0 4.9 19.7 34.5 3.3 51.8
D35 Electricity-Gas 3.2 0.0 4.5 17.9 31.3 0.0 1.9
E36 Water 0.2 0.0 4.8 19.4 33.9 0.0 0.0
E37.E39 Sewage 0.8 0.0 4.8 19.3 33.8 0.0 0.0
F Construction 7.9 0.0 6.1 24.2 42.4 35.6 66.3
G45 Vehicle trade 1.7 19.7 22.4 30.8 39.1 31.6 19.7
G46 Wholesale 3.5 0.0 3.6 14.4 25.3 23.6 21.1
G47 Retail 4.7 14.6 17.8 27.3 36.8 30.5 25.2
H49 Land transport 2.0 0.0 5.3 21.2 37.1 11.1 0.0
H50 Water transport 0.6 0.0 5.7 22.8 39.9 12.4 0.0
H51 Air transport 0.6 0.0 7.1 28.5 49.9 0.1 8.1
H52 Warehousing 1.4 0.0 5.3 21.0 36.8 0.5 0.0
H53 Postal 0.7 0.0 5.1 20.5 35.9 0.0 0.0
I Accommodation-Food 2.9 61.4 61.7 62.7 63.6 60.8 63.2
J58 Publishing 0.6 0.0 2.0 7.9 13.8 14.4 2.5
J59 J60 Video-Sound-Broadcasting 0.9 0.0 3.4 13.5 23.7 32.8 5.0
J61 Telecommunications 1.6 0.0 3.3 13.1 22.9 0.9 0.0
J62 J63 IT 2.3 0.0 1.8 7.4 12.9 0.2 12.6
K64 Finance 4.3 0.0 1.9 7.6 13.3 0.0 0.0
K65 Insurance 3.2 0.0 1.9 7.5 13.2 0.0 0.0
K66 Auxil. Finance-Insurance 1.1 0.0 1.9 7.6 13.2 0.0 0.0
L68 Real estate 7.8 0.0 3.9 15.6 27.3 4.8 51.3
M69 M70 Legal 2.8 0.0 2.2 8.9 15.5 2.0 18.9
M71 Architecture-Engineering 1.7 0.0 3.0 12.2 21.3 0.0 30.6
M72 R&D 0.5 0.0 2.6 10.3 17.9 0.0 27.4
M73 Advertising 0.6 0.0 2.9 11.8 20.6 22.5 39.7
M74 M75 Other Science 0.7 0.0 2.8 11.1 19.4 3.0 22.0
N Private Administration 4.4 0.0 5.1 20.5 36.0 34.9 51.3
O84 Public Administration 4.8 0.0 4.4 17.4 30.5 1.1 0.0
P85 Education 4.2 0.0 4.0 16.2 28.3 0.0 15.3
Q Health 7.0 0.0 6.3 25.3 44.2 0.1 0.0
R S Other Service 3.2 56.9 57.3 58.4 59.5 34.5 57.7
T Household activities 0.2 0.0 5.0 20.0 35.0 0.0 51.0

Table 5: Industry-specific supply shock details. Column x denotes relative shares of gross output. Supply
shocks ✏Si for di↵erent scenarios are shown in the columns S1 to S6. All values are in %.
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ISIC Sector c ✏D
i

f f shock
A01 Agriculture 0.9 10.0 0.3 13.8
A02 Forestry 0.0 10.0 0.0 11.9
A03 Fishing 0.0 10.0 0.1 14.8
B Mining 0.1 10.0 1.5 15.3
C10.C12 Manuf. Food-Beverages 2.4 10.0 1.4 15.0
C13.C15 Manuf. Textiles 0.1 80.0 0.5 13.4
C16 Manuf. Wood 0.1 10.0 0.1 11.2
C17 Manuf. Paper 0.1 10.0 0.2 14.1
C18 Media print 0.1 66.0 0.1 9.4
C19 Manuf. Coke-Petroleum 1.4 10.0 0.7 14.8
C20 Manuf. Chemical 0.3 25.0 1.7 14.7
C21 Manuf. Pharmaceutical 0.3 10.0 1.2 14.9
C22 Manuf. Rubber-Plastics 0.1 10.0 0.6 14.0
C23 Manuf. Minerals 0.1 10.0 0.2 13.0
C24 Manuf. Metals-basic 0.0 10.0 1.7 15.0
C25 Manuf. Metals-fabricated 0.1 10.0 0.8 14.4
C26 Manuf. Electronic 0.2 100.0 1.5 14.9
C27 Manuf. Electric 0.1 10.0 0.8 14.9
C28 Manuf. Machinery 0.2 10.0 2.2 15.0
C29 Manuf. Vehicles 1.2 100.0 2.8 14.8
C30 Manuf. Transport-other 0.1 10.0 2.6 15.1
C31 C32 Manuf. Furniture 0.2 40.0 0.8 14.7
C33 Repair-Installation 0.0 10.0 0.0 11.8
D35 Electricity-Gas 3.4 0.0 0.1 14.8
E36 Water 0.5 0.0 0.0 14.8
E37.E39 Sewage 0.5 0.0 1.1 7.6
F Construction 0.3 10.0 12.1 15.2
G45 Vehicle trade 1.9 10.0 0.6 15.0
G46 Wholesale 3.1 10.0 4.5 15.0
G47 Retail 15.5 10.0 0.6 14.1
H49 Land transport 2.5 67.0 0.2 14.9
H50 Water transport 0.6 67.0 0.7 15.0
H51 Air transport 1.2 67.0 0.5 15.0
H52 Warehousing 0.1 67.0 0.4 15.0
H53 Postal 0.1 0.0 0.1 14.8
I Accommodation-Food 7.9 80.0 0.8 15.0
J58 Publishing 0.5 0.0 0.6 14.7
J59 J60 Video-Sound-Broadcasting 1.0 0.0 1.2 9.9
J61 Telecommunications 1.8 0.0 0.8 15.0
J62 J63 IT 0.2 0.0 2.7 13.6
K64 Finance 3.0 0.0 3.1 14.9
K65 Insurance 6.0 0.0 1.6 14.9
K66 Auxil. Finance-Insurance 0.1 0.0 2.1 15.0
L68 Real estate 23.8 0.0 1.0 15.0
M69 M70 Legal 0.1 0.0 1.4 14.4
M71 Architecture-Engineering 0.1 0.0 1.4 15.1
M72 R&D 0.0 0.0 1.1 14.9
M73 Advertising 0.0 0.0 0.3 14.0
M74 M75 Other Science 0.4 0.0 1.0 14.6
N Private Administration 1.0 0.0 2.8 14.1
O84 Public Administration 0.5 0.0 12.5 0.7
P85 Education 4.7 0.0 6.4 1.8
Q Health 3.7 0.0 14.8 0.2
R S Other Service 6.7 5.0 1.3 8.5
T Household activities 0.7 0.0 0.0 14.8

Table 6: Industry-specific demand shock details. Column c denotes relative shares of final consumer
consumption (which here aggregates column C1 and C2 in the WIOD) and ✏Di represents final consumption
shocks. Columns f and f shock are relative shares of other final demand and the shocks applied to other final
demand, respectively. All values are in %.
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B Inventory data and calibration

In the previous version of our work (Pichler et al. 2020), we used U.S. data from the BEA
to calibrate the inventory target parameters nj in Eq. (2). Here, we use more detailed UK
data from the Annual Business Survey (ABS) . The ABS is the main structural business survey
conducted by the ONS28. It is sampled from all non-farm, non-financial private businesses in
the UK (about two-thirds of the UK economy); data are available up to the 4-digit NACE level,
but for our purposes 2-digit NACE industries are su�cient. The survey asks for information
on a number of variables, including turnover and inventory stocks (at the beginning and end
of each year). Data are available from 2008 to 2018. They show a general increase in turnover
and inventory stocks (consistent with growth of the UK economy in the same period), with
moderate year-on-year fluctuations.

To proxy inventory levels available in February 2020, we proceed as follows, for each industry:
(i) we take the simple average between beginning- and end-of year inventory stock levels; (ii)
we calculate the ratio between this average and yearly turnover, and multiply this number by
365, because we consider a daily timescale: this inventory-to-turnover ratio is our proxy of nj

(as can be seen in Figure 10, the inventory/sales ratios are remarkably constant over time,
suggesting that inventory stocks at the beginning of the Covid-19 pandemic could reliably be
estimated from past data); (iii) we consider a weighted average between inventory-to-turnover
ratios across all years between 2008 and 2018, giving higher weight to more recent years;29 (iv)
we aggregate 2-digit NACE industries to WIOD sectors (for example, we aggregate C10, C11
and C12 to C10 C12); (v) we fill in the missing sectors (K64, K65, K66, O84, T) by imputing
the average inventory-to-turnover ratio across all service sectors.

The final inventory to sales ratios nj are shown in Figure 11. As can be seen, inventories
are much larger relative to sales in production, construction and trade, while they are generally
lower in services, although there is considerable heterogeneity across sectors.

28https://www.ons.gov.uk/businessindustryandtrade/business/businessservices/methodologies/annu
albusinesssurveyabs

29More specifically, we consider exponential weights, such that weights from a given year X are proportional
to 0.95(2018�X). Some years are missing due to confidentiality problems, and data for some sectors have clear
problems in some years. We deal with missing values by giving zero weights to years with missing values and
renormalizing weights over the available years.
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Figure 10: Inventory/sales ratios over time.
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Figure 11: Inventory/sales ratios for all WIOD industries.
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C Critical vs. non-critical inputs

A survey was designed to address the question when production can continue during a lockdown.
For each industry, IHS Markit analysts were asked to rate every input of a given industry. The
exact formulation of the question was as follows: “For each industry in WIOD, please rate
whether each of its inputs are essential. We will present you with an industry X and ask you to
rate each input Y. The key question is: Can production continue in industry X if input Y is not
available for two months?” Analysts could rate each input according to the following allowed
answers:

• 0 – This input is not essential

• 1 – This input is essential

• 0.5 – This input is important but not essential

• NA – I have no idea

To avoid confusion with the unrelated definition of essential industries which we used to calibrate
first-order supply shocks, we refer to inputs as critical and non-critical instead of essential and
non-essential.

Analysts were provided with the share of each input in the expenses of the industry. It was
also made explicit that the ratings assume no inventories such that a rating captures the e↵ect
on production if the input is not available.

Every industry was rated by one analyst, except for industries Mining and Quarrying (B)
and Manufacture of Basic Metals (C24) which were rated by three analysts. In case there are
several ratings we took the average of the ratings and rounded it to 1 if the average was at least
2/3 and 0 if the average was at most 1/3. Average input ratings lying between these boundaries
are assigned the value 0.5.

The ratings for each industry and input are depicted in Figure 12. A column denotes an
industry and the corresponding rows its inputs. Blue colors indicate critical, red important,
but not critical and white non-critical inputs. Note that under the assumption of a Leontief
production function every element would be considered to be critical, yielding a completely
blue-colored matrix. The results shown here indicate that the majority of elements are non-
critical inputs (2,338 ratings with score = 0), whereas only 477 industry-inputs are rates as
critical. 365 inputs are rated as important, although not critical (score = 0.5) and NA was
assigned eleven times.

The left panel of Figure 13 shows for each industry how often it was rated as critical input
to other industries (x-axis) and how many critical inputs this industry relies on in its own
production (y-axis). Electricity and Gas (D35) are rated most frequently as critical inputs in
the production of other industries (score=1 for almost 60% of industries). Also frequently rated
as critical are Land Transport (H49) and Telecommunications (J61). On the other hand, many
manufacturing industries (ISIC codes starting with C) stand out as relying on a large number
of critical inputs. For example, around 27% of inputs to Manufacture of Coke and Refined
Petroleum Products (C19) as well as to Manufacture of Chemicals (C20) are rated as critical.

The center panel of Figure 13 shows the equivalent plot for 0.5 ratings (important, but not
critical inputs). Financial Services (K64) are most frequently rated as important inputs which
do not necessarily stop the production of an industry if not available. Conversely, the industry
relying on many important, but not binding inputs is Wholesale and Retail Trade (G46) of which
almost half of its inputs got rated with a score = 0.5. This makes sense given that this industry
heavily relies on all these inputs, but lacking one of these does not halt economic production.
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Figure 13: (Left panel) The figure shows how often an industry is rated as a critical input to other industries
(x-axis) against the share of critical inputs this industry is using. The center and right panel are the same as
the left panel, except for using half-critical and non-critical scores, respectively. In each plot the identity line is
shown. Point sizes are proportional to gross output.
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This case also illustrates that a Leontief production function could vastly overestimate input
bottlenecks as Wholesale and Retail Trade would most likely still be able to realize output even
if a several inputs were not available.

In the right panel of Figure 13 we show the same scatter plot but for non-critical inputs.
25 industries are rated to be non-critical inputs to other industries in 80% of all cases, with
Household Activities (T) and Manufacture of Furniture (C31-32) being rated as non-critical
in at least 96%. Industries like Other Services (R-S), Other Professional, Scientific and Tech-
nical Activities (M74-75) and Administrative Activities (N) rely on mostly non-critical inputs
(>90%).

A detailed breakdown of the input- and industry-specific ratings are given in Table 7.
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Input-based rankings Industry-based rankings
ISIC Sector (abbreviated) 1 0.5 0 NA 1 0.5 0 NA n
A01 Agriculture 4 2 49 0 9 9 37 0 1
A02 Foresty 2 3 50 0 7 9 39 0 1
A03 Fishing 2 1 52 0 8 5 42 0 1
B Mining 7 1 47 0 9 2 44 0 3

C10-C12 Manuf. Food-Beverages 5 6 44 0 14 5 36 0 1
C13-C15 Manuf. Textiles 2 5 48 0 6 2 47 0 1

C16 Manuf. Wood 3 3 49 0 8 3 44 0 1
C17 Manuf. Paper 5 10 40 0 14 11 30 0 1
C18 Media print 3 6 46 0 6 3 46 0 1
C19 Manuf. Coke-Petroleum 18 4 33 0 15 6 33 2 1
C20 Manuf. Chemical 21 10 24 0 15 6 34 0 1
C21 Manuf. Pharmaceutical 2 2 51 0 9 17 25 7 1
C22 Manuf. Rubber-Plastics 11 7 37 0 14 5 36 0 1
C23 Manuf. Minerals 8 2 44 2 7 1 47 0 1
C24 Manuf. Metals-basic 8 2 45 0 12 7 36 0 3
C25 Manuf. Metals-fabricated 12 4 39 0 5 3 47 0 1
C26 Manuf. Electronic 10 7 38 0 14 10 31 0 1
C27 Manuf. Electric 7 6 42 0 13 9 33 0 1
C28 Manuf. Machinery 10 12 32 2 5 1 49 0 1
C29 Manuf. Vehicles 4 5 46 0 14 10 31 0 1
C30 Manuf. Transport-other 2 6 47 0 12 10 33 0 1

C31 C32 Manuf. Furniture 1 1 53 0 8 4 43 0 1
C33 Repair-Installation 17 9 29 0 8 2 45 0 1
D35 Electricity-Gas 31 3 21 0 10 5 40 0 1
E36 Water 19 3 33 0 4 5 46 0 1

E37-E39 Sewage 18 3 34 0 6 8 41 0 1
F Construction 5 3 47 0 14 9 32 0 1

G45 Vehicle trade 2 5 48 0 9 7 39 0 1
G46 Wholesale 19 3 33 0 4 25 26 0 1
G47 Retail 2 3 50 0 6 10 39 0 1
H49 Land transport 28 3 24 0 11 2 42 0 1
H50 Water transport 9 8 38 0 8 5 42 0 1
H51 Air transport 5 7 43 0 10 6 39 0 1
H52 Warehousing 12 9 34 0 9 7 39 0 1
H53 Postal 6 7 41 2 3 5 47 0 1
I Accommodation-Food 5 3 47 0 7 6 42 0 1

J58 Publishing 1 2 52 0 10 14 31 0 1
J59 J60 Video-Sound-Broadcasting 2 2 51 0 9 5 37 7 1

J61 Telecommunications 26 11 18 0 7 5 42 2 1
J62 J63 IT 16 13 26 0 7 6 42 0 1
K64 Finance 10 19 26 0 6 3 46 0 1
K65 Insurance 6 12 36 2 6 3 46 0 1
K66 Auxil. Finance-Insurance 5 7 41 4 6 4 45 0 1
L68 Real estate 1 3 51 0 7 5 43 0 1

M69 M70 Legal 12 15 28 0 5 3 46 2 1
M71 Architecture-Engineering 6 10 39 0 4 2 49 0 1
M72 R&D 1 2 52 0 4 3 48 0 1
M73 Advertising 1 7 47 0 5 2 48 0 1

M74 M75 Other Science 1 8 46 0 4 1 50 0 1
N Private Administration 16 16 23 0 3 2 50 0 1

O84 Public Administration 6 3 45 2 5 2 48 0 1
P85 Education 1 4 50 0 6 8 41 0 1
Q Health 1 6 48 0 7 7 41 0 1

R S Other Service 1 1 50 5 4 0 51 0 1
T Household activities 0 0 54 2 0 0 55 0 0

Table 7: Summary table of critical input ratings by IHS Markit analysts. Columns below Input-based rankings
show how often an industry has been rated as critical (score=1), half-critical (score=0.5) or non-critical (score=0)
input for other industries, or how often the input was rates as NA. Columns under Industry-based rankings give
how often an input has been rated as with 1, 0.5, 0 or NA for any given industry. Column n indicates the number
of analysts who have rated the inputs of any given industry. Industry T uses no inputs and is therefore not rated.
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D Model production function and CES

Here we show that the production functions used in the main text are highly related to nested
CES production functions. Specifically, we consider a CES production function with three nests
of the form (we suppress time indices for convenience)

x
inp
i =

⇣
a
C
i (z

C
i )

� + a
IMP
i (zIMP

i )� + (aNC
i )1��(zNC

i )�
⌘ 1
�

, (28)

where � is the substitution parameter. Variables a
C
i =

P
j2CAji, a

IMP
i =

P
j2IMPAji and

a
NC
i =

P
j2NCAji are the input shares (technical coe�cients) for critical, important and non-

critical inputs, respectively. To be consistent with the specifications of the main text, we do not
consider labor inputs here and only focus on x

inp
i . Alternatively, we could include labor inputs

in the set of critical inputs and derive the full production function in an analogous manner. zCi ,
z
IMP
i and z

NC
i are CES aggregates of critical, important and non-critical inputs for which we

have
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If we assume that every input is critical (i.e. the set of important and non-critical inputs
is empty: a

IMP
i = a

NC
i = 0), and by taking the limits �, ⌫ ! �1 we recover the Leontief

production function

x
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j

⇢
Sji
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�
. (32)

If we assume that there is no critical or important inputs at all (aCi = a
IMP
i = 0), taking the

limits � ! �1 and ⇣ ! 1 yields the linear production

x
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P
j Sji

aNC
i

. (33)

The IHS1 and IHS3 production functions treat important inputs either as critical or non-
critical, i.e. the set of critical inputs is again empty (aIMP

i = 0). We can approximate these
functions again by taking the limits �, ⌫ ! �1 and ⇣ ! 1 which yields
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�
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Note that the di↵erence between the two production functions lies in the di↵erent definition of
critical and non-critical inputs. The functional form in Eq. (34) applies to both cases equiva-
lently.

The IHS2 production function where the set of important inputs is non-empty can be simi-
larly approximated. In addition to the limits above, we also take the limit  ! �1 to obtain
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Eqs. (34) and (35) are not exactly identical to the IHS production functions used in the main
text (Eqs. (8) – (10)), but very similar. The only di↵erence is that in the IHS functions non-
critical inputs do not play a role for production at all, whereas here they enter the equations as a
linear term. However, simulations show that this di↵erence is practically irrelevant. Simulating
the model with the CES-derived functions instead of the IHS production functions yield exactly
the same results, indicating that the linear term representing non-critical inputs is never a
binding constraint.

E Details on validation

In this appendix we provide further details about validation (Section 4 in the main paper). In
Appendix E.1 we describe the data sources that we used for validation, and we explain how
we made empirical data comparable to simulated data. In Appendix E.2 we give more details
about the selected scenario (Section 4.3 in the main paper).

E.1 Validation data

• Index of agriculture (release: 12/08/2020): https://www.ons.gov.uk/generator?for

mat=xls&uri=/economy/grossdomesticproductgdp/timeseries/ecy3/mgdp/previou

s/v26

• Index of production (release: 12/08/2020): https://www.ons.gov.uk/file?uri=/econ
omy/economicoutputandproductivity/output/datasets/indexofproduction/curren

t/previous/v59/diop.xlsx

• Index of construction (release: 12/08/2020): https://www.ons.gov.uk/file?uri=/bu

sinessindustryandtrade/constructionindustry/datasets/outputintheconstructi

onindustry/current/previous/v67/bulletindataset2.xlsx

• Index of services (release: 12/08/2020): https://www.ons.gov.uk/file?uri=/econom

y/economicoutputandproductivity/output/datasets/indexofservices/current/pr

evious/v61/ios1.xlsx

All ONS indexes are monthly seasonally-adjusted chained volume measures, based such that
the index averaged over all months in 2016 is 100. Although these indexes are used to proxy
value added in UK national accounts, they are actually gross output measures, as determining
input use is too burdersome for monthly indexes.

There is not a perfect correspondence between industry aggregates as considered by ONS
and in WIOD. For example, the ONS only releases data for the agricultural sector as a whole,
without distinguishing between crop and animal production (A01), fishing and aquaculture
(A02) and forestry (A03). In this case, when comparing simulated and empirical data we
aggregate data from the simulations, using initial output shares as weights. More commonly,
there is a finer disaggregation in ONS data than in WIOD. For example, ONS provides separate
information on food manufacturing (C10) and on beverage and tobacco manufacturing (C11,
C12), while these three sectors are aggregated into just one sector (C10 C12) in WIOD. In this
case, we aggregate empirical data using the weights provided in the indexes of production and
services. These weights correspond to output shares in 2016, the base year for all time series.

Finally, after performing aggregation we rebase all time series so that output in February
2020 takes value 100.
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E.2 Description of the selected scenario

Figure 14 shows the recovery path of all industries, both in the model and in the data. Inter-
pretation is the same as in Figure 4 in the main text. For readability, industries are grouped
into six broad categories.
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Figure 14: Comparison between model predictions and empirical data. We plot production (gross
output) for each of 53 industries, both as predicted by our model and as obtained from the ONS’ indexes. Each
panel refers to a di↵erent group of industries. Di↵erent colors refer to production in April and June 2020. Black
lines connect the same industry across these three months. All sectoral productions are normalized to their
pre-lockdown levels, and each point size is proportional to the steady-state gross output of the corresponding
sector.

F Sensitivity analysis

To gain a better understanding of the model behavior, we conduct a series of sensitivity analyses
by showing aggregate output time series under alternative parametrizations. In particular, we
vary exogenous shock inputs, the production function specification and the parameters ⌧ , �H ,
�F and �s.

Supply shocks. Figure 15(a) shows model dynamics of total output for the di↵erent supply
shock scenarios considered. It becomes clear that alternative specifications of supply shocks
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can influence model results enormously. Supply shocks derived directly from the UK lockdown
policy (S1�S4) yield a similar recovery pattern but nevertheless entail markedly di↵erent levels
of overall impacts. When initializing the model with the shock estimates from del Rio-Chanona
et al. (2020) (S5) and Fana et al. (2020) (S6), we obtain very di↵erent dynamics.

Demand shocks. We find that our model is less sensitive with respect to changing final
demand shocks within plausible ranges. Here, we compare the baseline model results with
alternative specifications of consumption and “other final demand” (investment, export) shocks.
Instead of modifying the Congressional Budget O�ce (2006) consumption shocks as discussed
in Section 3.2, we now also use their raw estimates. We further consider shocks of 10% to
investment and exports which is milder than the 15% shocks considered in the main text.
Figure 15(a) indicates that di↵erences are less pronounced between the alternative demand
shocks compared to the supply shock scenarios, particularly during the early phase of the
lockdown. Di↵erences of several percentage points only emerge after an extended recovery
period.
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Figure 15: Sensitivity analysis with respect to supply and demand shocks. Shocks are applied at day
one. Except for supply shocks (a) and demand shocks (b), the model is initialized as in the baseline run of the
main text. Legend (b): Raw and Main indicate the estimates from Congressional Budget O�ce (2006) and its
adapted version used in the main text, respectively. 15% and 10% refer to the two investment/export shock
scenarios.

Production function. In Figure 16(a) and (b) we show simulation results for alternative
production function specifications, when using the baseline S4 and the more severe S5 supply
shock scenarios, respectively. Regardless of the supply shock scenarios considered, Leontief
production yields substantially more pessimistic predictions than the other production functions.
For the milder baseline supply shock scenarios, aggregate predictions are fairly similar across
the other production functions, although we observe some di↵erences after an extended period
of simulation. Di↵erences between the linear and IHS production functions are larger when
considering the more severe shock scenario in Figure 16(b).
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Figure 16: Sensitivity analysis with respect to production functions. Shocks are applied at day one. (a)
is based on the S4 and (b) on the S5 supply shock scenario. Otherwise, the model is initialized as in the baseline
run of the main text.

In Figure 17 we explore model simulations with respect to di↵erent parametrizations of the
inventory adjustment parameter ⌧ (left column), hiring/firing parameters �H and �F (center left
column), change in savings rate parameter �s (center right column) and consumption adjust-
ment speed ⇢ (right column) under alternative production function-supply shock combinations
(panel rows).

Inventory adjustment time ⌧ . We find that the inventory adjustment time becomes a key
parameter under Leontief production and much less so under the alternative IHS3 specifica-
tion. The shorter the inventory adjustment time (smaller ⌧), the more shocks are mitigated.
Contrary to inventory adjustment ⌧ , model results do not change much with respect to alter-
native specifications of �H when going from Leontief production to the IHS3 function. Here,
di↵erences in model outcomes are rather due to shock severity. Model predictions are almost
identical for all choices of �H under mild S1 shocks but di↵er somewhat for more substantial
S4 shocks. In the S4 scenarios we observe that recovery is quickest for larger values of �H (sti↵
labor markets), since firms would lose less productive capacity in the immediate aftermath of
the shocks. However, this would come at the expense of reduced profits for firms which are able
to more e↵ectively reduce labor costs for smaller values of �H .

Change in saving rate �s. We find only very little variation with respect to the whole
range of �s, regardless of the underlying production function and supply shock scenario. As
expected, we find the largest adverse economic impacts in case of �s = 1, i.e. when consumers
save all the extra money which they would have spent if there was no lockdown, and the mildest
impacts if �s = 0.

Consumption adjustment speed ⇢. Similarly, the model is not very sensitive with respect
to consumption adjustment speed ⇢. The smaller ⇢, the quicker households adjust consumption
with respect to (permanent) income shocks. Note that parameter ⇢ is based on daily time scales.
Economic impacts tend to be less adverse when consumers aim to keep original consumption
levels upright (large ⇢) and more adverse if income shocks are more relevant for consumption
(small ⇢). Overall, the e↵ects are small, in particular for the S1 shock scenarios.
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Figure 17: Results of sensitivity analysis for parameters ⌧ , �H , �s and ⇢. All plots show normalized
gross output on the y-axis and days after the shocks are applied on the x-axis. Panel rows di↵er with respect to
the combination of production function and supply shock scenario. Panel columns di↵er with respect to ⌧ (left),
�H (center left), �s (center right) and ⇢ (right) as indicated in the legend below each column. Except for the
four parameters, production function and supply shock scenario, the model is initialized as in the baseline run of
the main text. In all simulations we used �F = 2�H .
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G Notation

Symbol Name
N Number of industries
t Time index
tstart lockdown Start date of lockdown (March 23)
tend lockdown End date of lockdown (May 13)
xi,t Total output of industry i
xcap
i,t

Industry production capacity based on available labor

xinp
i,t

Industry production capacity based on available inputs
di,t Total demand for industry i
Zij,t Intermediate consumption of good i by industry j
Oij,t Intermediate orders (demand from industry j to industry i)
ci,t Household consumption of good i
cd
i,t

Demand of household consumption of good i
fi,t Non-household final demand of good i
fd

i,t
Demand non-household final demand of good i

li,t Labor compensation to workers of industry i
l̃t Total labor compensation
l̃p
t

Expectations for permanent labor income
l̃⇤
t

Total labor compensation plus social benefits
c̃t Total household consumption
c̃d
t

Aggregate consumption demand
nj Number of days of targeted inventory for industry j
Ai,j Payments to i per unit produced of j (technical coe�cients)
Sij,t Stock of material i held in j’s inventory
⌧ Speed of inventory adjustment
✓i,t Share of goods from industry i in consumption demand
✓̄i,t Share of goods from industry i in consumption demand (unnormalized)
⇢ Speed of adjustment of aggregate consumption
m Share of labor income used to consume final domestic goods
⇠t Fraction of pre-pandemic labor income that households expect to retain in the long-run
✏t Consumption exogenous shock
✏̃D
i

Relative changes in demand for goods of industry i during lockdown
✏̃i,t Relative changes in demand for goods of industry i
✏̃t Aggregate consumption shock
�li,t Desired change of labor supply of industry i
lmax
i,t

Maximum labor supply for industry i
�H, �F Speed of upward/downward labor adjustment (hiring/firing)
�s Change in saving rate
⌫ Consumption shock term representing beliefs in L-shaped recovery
b Share of labor income compensated as social benefit
RLIi Remote Labor Index of industry i
ESSi Essential score of industry i
PPIi Physical Proximity Index of industry i
◆ Scaling factor for PPIi
Vi Set of critical inputs for industry i
Ui Set of important inputs for industry i

Table 8: Notation summary.
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