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Although behavioral economics has demonstrated that there are many situations
where rational choice is a poor empirical model, it has so far failed to provide quanti-
tative models of economic problems such as price formation. We make a step in this
direction by developing empirical models that capture behavioral regularities in trad-
ing order placement and cancellation using data from the London Stock Exchange.
For order placement we show that the probability of placing an order at a given price
is well approximated by a Student distribution with less than two degrees of freedom,
centered on the best quoted price. This result is surprising because it implies that
trading order placement is symmetric, independent of the bid-ask spread, and the
same for buying and selling. We also develop a crude but simple cancellation model
that depends on the position of an order relative to the best price and the imbalance
between buying and selling orders in the limit order book. These results are com-
bined to construct a stochastic representative agent model, in which the orders and
cancellations are described in terms of conditional probability distributions. This
model is used to simulate price formation and the results are compared to real data
from the London Stock Exchange. Without adjusting any parameters based on price
data, the model produces good predictions for the magnitude and functional form
of the distribution of returns and the bid-ask spread.
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I. INTRODUCTION

In the last two decades the field of behavioral finance has presented an increasingly large
number of examples where equilibrium rational choice models are a poor description of real
economic behavior1 (Hirschleifer 2001, Barberis and Thaler 2003, Camerer 2003, Thaler
2005). While this evidence may be compelling, so far behavioral finance has largely been
a negative science. It illustrates problems with the mainstream paradigm, but it fails to
provide a positive alternative with quantitative predictive power2. There are many efforts
underway to build a better foundation for economics based on psychological evidence, but
this imposes a difficult hurdle for building quantitative theories. The human brain is a
complex and subtle instrument, and the distance from psychology to prices is large.

In this study we take advantage of the fact that electronic markets provide a superb
laboratory for studying patterns in human behavior. Market participants make decisions in
an extremely complex environment, but in the end these decisions are reduced to the simple
actions of placing and canceling trading orders. The data that we study here contains
hundreds of millions of records of both trading orders and prices, allowing us to reconstruct
the state of the market at any instant in time.

Our goal here is to capture behavioral regularities in order placement and cancellation,
and to exploit these regularities to achieve a better understanding of price formation. The
practical component of this goal is to understand statistical properties of prices, such as
the distribution of price returns and the bid-ask spread. Serious interest in the distribution
of prices began with Mandelbrot’s (1963) study of cotton prices, in which he showed that
logarithmic price returns are far from normal, and suggested that they might be drawn from
a Levy distribution. There have been many studies since then, most of which indicate that
the cumulative distribution of logarithmic price changes has tails that asymptotically scale
for large |r| as a power law of the form |r|−α, where r(t) = log p(t)−p(t−τ) is the logarithmic
return at time t on time scale τ and p is the price (Fama 1965, Officer 1972, Akgiray, Booth
and Loistl 1989, Koedijk, Schafgans and de Vries 1990, Loretan 1994, Mantegna and Stanley
1995, Longin 1996, Lux 1996, Muller, Dacorogna and Pictet 1998, Plerou et al. 1999, Rachev
and Mittnik 2000, Goldstein, Morris and Yen 2004). The exponent α, which takes on typical
values in the range 2 < α < 4, is called the tail exponent. It is important because it
characterizes the risk of extreme price movements and corresponds to the threshold above
which the moments of the distribution become infinite. Having a good characterization of
price returns has important practical consequences for risk control and option pricing.

From a theoretical point of view, the heavy tails of price returns excite interest among

1 This may be partly because of other strong assumptions that typically accompany such models, such as
complete markets. Until we have predictive models that drop these assumptions, however, we will not
know whether more realistic assumptions in rational choice models are sufficient to solve these problems.

2 There are several examples of models that make qualitative predictions, such as in the popular book by
Schleifer (2000).
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physicists because they suggest nonequilibrium behavior. A fundamental result in statistical
mechanics is that, except for unusual situations such as phase transitions, equilibrium dis-
tributions are either exponential or normal distributions3. The fact that price returns have
tails that are heavier than this suggests that markets are not at equilibrium. Although the
notion of equilibrium as it is used in physics is very different from that in economics, the
two have enough in common to make this at least an intriguing possibility. Many models
have been proposed that attempt to explain the heavy tails of price returns (Arthur et al.
1997, Bak, Pacuski and Shubik 1997, Brock and Hommes 1999, Lux and Marchesi 1999,
Chang, Stauffer and Pandey 2002, LeBaron 2003, Giardina and Bouchaud 2003, Gabaix et
al. 2003, Challet, Marsili and Zhang 2005). These models have a wide range in the specificity
of their predictions, from those that simply demonstrate heavy tails to those that make a
more quantitative prediction, for example about the tail exponent α. However, none of these
models produce quantitative predictions of the magnitude and functional form of the full
return distribution.

The bid-ask spread s is another important market property. It can be defined as s(t) =
πa(t) − πb(t), where πa(t) is the logarithm of the best selling price offered at time t and
πb(t) is the logarithm of the best buying price. The spread is important as a benchmark for
transaction costs. A small market order to buy will execute at the best selling price, and an
order to sell will execute at the best buying price, so someone who first buys and then sells
in close succession will pay the spread s(t). There is a substantial empirical and theoretical
literature on the spread (a small sample of examples are Demsetz 1968, Stoll 1978, Glosten
1988, Glosten 1992, Easley and O’Hara 1992, Foucault, Kadan and Kandel 2001, Sandas
2001), but all this work has a focus that is substantially different from ours here.

The model we develop here is a statistical description of the placement and cancellation
of trading orders under a continuous double auction, which can be used to understand the
statistical properties of price returns and spreads. This model follows in the footsteps of a
long list of other models that have tried to describe order placement as a statistical process
(Mendelson 1982, Cohen et al. 1985, Domowitz and Wang 1994, Bollerslev, Domowitz and
Wang 1997, Bak et al. 1997, Eliezer and Kogan 1998, Tang 1999, Maslov 2000, Slanina 2001,
Challet and Stinchcombe 2001, Daniels et al. 2003, Chiarella and Iori, 2002, Bouchaud,
Mezard and Potters 2002, Smith et al. 2003). For a more detailed narrative of the history
of this line of work, see Smith et al. (2003). We build on the model of Daniels et al.
(2003), which assumes that limit orders, market orders, and cancellations can be described
as independent Poisson processes, in which buying and selling have the same parameters.
Because it assumes that order placement is random except for a few constraints, it can be
regarded as a zero intelligence model of agent behavior. Although highly unrealistic in many
respects, the zero intelligence model does a reasonable job of capturing the dynamic feedback
and interaction between order placement on one hand and price formation on the other. It
predicts scaling laws for the volatility of returns and for the spread, which can be regarded
as equations of state relating the properties of order flows to those of prices. Farmer, Patelli
and Zovko (2005) tested these predictions against real data from the London Stock Exchange
and showed that, even though the model does not predict the absolute magnitude of these

3 For example, at equilibrium the distribution of energies is exponentially distributed and the distribution of
particle velocities is normally distributed. This is violated only at phase transactions, e.g. at the transition
between a liquid and a gas.
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effects, it does a good job of capturing how average volatility and spread vary with changes
in order flow.

Despite these successes the zero intelligence model is inadequate in many respects. Be-
cause of the unrealistic assumptions that order placement and cancellation are uniform along
the price axis, to make comparisons with real data it is necessary to introduce an arbitrary
interval over which order flow and cancellation densities are measured, and to assume that
they vanish outside this interval. This assumption introduces arbitrariness into the scale
predictions. In addition it produces price returns with non-white autocorrelations and a
thin-tailed distribution, which do not match the data.

The model here has the same basic elements as the zero intelligence model, but each
element is modified based on empirical analysis. In the course of doing this we uncover
regularities in order placement and cancellation that are interesting for their own sake. The
strategic motivation behind that patterns that we observe is in many cases not obvious –
it is not clear whether they are driven by rational equilibrium or irrational behavior. We
do not attempt to address this question here. Instead we work in the other direction and
construct a model of price formation. The resulting model makes good predictions about
the magnitude and the functional form of the distribution of returns and spreads. The
predictions are particularly good in the body of the distributions and not quite as good in
the tails. The model predicts a power law for the tails, though with tail exponents that are
slightly larger than those of the real data. We believe this is due to inadequacies in our
cancellation model, which at this stage is still crude.

The paper is organized as follows: Section II discusses the market structure and the data
set. In Section III we study the distribution of order placement conditioned on the spread
and in Section IV we discuss our approach to modeling the long-memory order signs (whether
orders are to buy or to sell). In Section V we develop a model for order cancellation, and
in Section VI we develop a simulation based on the models of order flow that allows us to
make predictions about returns and spreads. Finally in the last section we summarize and
discuss the implications and future directions of this work.

II. THE MARKET AND THE DATA

This study is based on data from the on-book market in the London Stock exchange.
These data contain all order placements and cancellations, making it possible to reconstruct
the limit order book at any point in time. In 1997 57% of the transactions in the LSE
occurred in the on-book market and by 2002 this rose to 62%. The remaining portion of
the trading takes place in the off-book market, where trades are arranged bilaterally by
telephone. Off-book trades are published, but only after they have been arranged and have
effectively already taken place. Because the on-book market is public and the off-book
market is not, it is generally believed that the on-book market plays the dominant role in
price formation. We will not use any information from the off-book market here. For a more
extensive discussion of the LSE market structure, together with some comparative analysis
of the two markets, see Lillo, Mike and Farmer (2005).

The LSE on-book market is purely electronic. There are no designated market makers
(though there is no restriction on simultaneously placing orders to buy and to sell at the
same time). Timestamps are accurate to the second and sequencing is more accurate than
that, though not always perfect. Because we have a complete record we know whether orders
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are to buy or to sell, and we also know all transactions in both markets.
We study data for three stocks, Astrazeneca (AZN), Lloyds (LLOY) and BHP Billiton

(BLT). The data we analyze are for the period from May 2000 - December 2002. Counting an
event as either an order placement or an order cancellation, there are 4.2 million events for
AZN, 652 thousand of which are transactions; 3.4 million for LLOY, 723 thousand of which
are transactions, and 1.7 million events for BLT, 297 thousand of which are transactions.

During the trading day the LSE is a continuous double auction. Trading begins with an
opening auction and ends with a closing auction. To keep things simple we remove these,
and also remove the first hour and last half hour of trading data, i.e. we consider only data
from 9:00 am to 4:00 pm. We do this because near the auctions there are transient behaviors,
such as the number of orders in the book building up and winding down, caused by the fact
that many traders close out their books and the end of the day. (Even so, this does not seem
to be a large effect and does not make a great difference in our results). We paste together
data from different days by freezing time outside of 9:00 - 4:00 on trading days. In our data
analyses we are careful not to include any price movements that span the daily boundaries.
This allows us to treat the data as if it were one continuously running market.

There are several different types of possible trading orders in the LSE. The details are
not important here. We will simply call any order with a limit price attached a limit order,
and any order that generates an unconditional execution a market order. For convenience
we will define an effective market order as any trading order that generates an immediate
transaction, and an effective limit order as any order that does not. The limit order book
refers to the queue that holds limit orders waiting to be executed. The priority for executing
limit orders depends both on their price and on the time when they are placed, in the obvious
way.

III. ORDER PLACEMENT

Even a brief glance at the data makes it clear that the probability for order placement
depends on the distance from the current best prices. This was studied in the Paris Stock
Exchange by Bouchaud, Mezard and Potters (2002) and in the London Stock Exchange by
Zovko and Farmer (2002). Both groups studied only orders placed inside the limit order
book. They found that the probability for order placement drops off asymptotically as a
power law of the form x−α. The value of α varies from stock to stock, but is roughly α ≈ 0.8
in the Paris Stock Exchange and α ≈ 1.5 in the London Stock Exchange. This means that in
Paris the mean of the distribution does not exist and in London the second moment does not
exist. The small values of α are surprising because they imply a non-vanishing probability
for order placement extremely far from the current best prices, where it would seem that the
probability of ever making a transaction is exceedingly low. Such orders are often replaced
when they expire, which taken together with the fact that they their distribution lies on a
continuous scaling curve with orders that are close to the best prices suggests that they are
intentional.

Here we add to this earlier work by studying the probability of order placement inside the
spread and the frequency of transactions conditional on the spread. We will say that a new
order is placed inside the book if its logarithmic limit price π places it within the existing
orders, i.e. so that for a buy order π < πb and for a sell order π > πa. We will say it is
inside the spread if its limit price is between the best price to buy and the best price to sell,
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i.e. πb < π < πa. Similarly, if it is a buy order it generates a transaction for π ≥ πa and if
it is a sell order for π ≤ πb. To simplify nomenclature, when we are speaking of buy orders,
we will refer to πb as the same best price and πa as the opposite best price, and vice versa
when we are speaking of sell orders. We will define x as the logarithmic distance from the
same best price, with x = π − πb for buy orders and x = πa − π for sell orders. Thus by
definition x = 0 for the same best price, x > 0 for aggressive orders placed outside the limit
order book, and x < 0 for less aggressive orders placed inside the limit order book.

In deciding where to place an order, a trader needs to make a strategic trade off between
certainty of execution on one hand and price improvement on the other. One would naturally
expect that for strategic reasons the limit prices of orders placed inside the book should have
a qualitatively different distribution than those placed inside the spread. To see why we say
this consider a buy order. If the trader is patient she will choose π < πb. In this case
the order will sit inside the limit book and will not be executed until all buy orders with
price greater than π have been removed. The proper strategic trade off between certainty of
execution and price improvement depends on the position of all the other orders – to gain
more price improvement means more other orders have to be executed, which lowers the
probability of execution. In the limit where π � πb and there are many orders in the queue
the execution probability and price improvement vary in a quasi-continuous manner with π.

The situation is different for an impatient trader. Such a trader will choose π > πb. If
she is very impatient and is willing to pay a high price she will choose π ≥ πa, which will
result in an immediate transaction. If she is of intermediate patience, she will place her order
inside the spread. In this case the obvious strategy is to place the order one price tick above
πb, as this is the best possible price with higher priority than any existing orders. It would
seem foolish to place an order anywhere else inside the spread4, as this gives a higher price
with no improvement in priority of execution. One would therefore naively expect to find
that order placement of buy orders inside the spread is highly concentrated one tick above
the current best price. This suggests that as one moves away from the same best price, how
new trading orders are placed inside the spread should be different from how they are placed
inside the book. The resulting distribution should be asymmetric around πb.

To model order placement we seek a good functional form for p(x|s), the probability
density for x conditioned on the spread. This is complicated by the fact that for an order
that generates an immediate transaction the relative price x is not meaningful. Such an
order can either be placed as a limit order with x > s or as a market order, which has an
effective price x = ∞. In Farmer et al. (2004) we showed that for the LSE it is very rare
for a market order to penetrate deeper than the opposite best price. This restriction can be
achieved either through the choice of limit price or by the choice of order size. Thus two
orders with very different limit prices may be equivalent from a functional point of view. We
resolve this ambiguity by lumping all orders with x > s together and characterizing them by
Pθ, the probability that a trading order causes an immediate transaction5. We thus restrict
our attention to the probability p(x|s) only for orders with x < s and the probability Pθ for
orders that generate transactions (which can be thought of as all orders with x ≥ s). We

4 This reasoning neglects the consequences of time priority; as we will discuss later, when time priority is
taken into account other values may be reasonable.

5 If only part of an order causes an immediate transaction we will treat it as two orders, one of which causes
a transaction and one of which doesn’t.
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expect Pθ to depend on the spread.
After considerable exploratory analysis we have been led to make a simple hypothesis

about order placement. Our hypothesis is that

p(x|s) = p(x),−∞ < x < s, (1)

Pθ(s) =

∫ ∞

s

p(x)dx, (2)

where p(x) is a probability density function that is symmetric about x = 0 and that is well
approximated by a Student distribution. Equation (1) describes the prices where limit orders
are placed, and equation (2) describes the probability of a transaction. If the relative price x
drawn from p(x) satisfies −∞ < x < s then it is an effective limit order at price π = πb + x,
and if x ≥ s it is an effective market order. Note that the symmetry of the hypothesized
functional form contradicts the strategic reasoning given earlier.

The first hypothesis implies that p(x, s) = p(x)p(s) on −∞ < x < s, i.e. that x and s are
independent in this range. We must be careful, however, since the range depends on s, so
p(x|s) is not fully independent of s. This makes it useful to rewrite this hypothesis in a form
that makes the dependence on s more explicit. As a convenient conceptual device, we can
treat any effective market order to buy as if it were a limit order with a limit price π = π0,
where π0 is any price that is high enough to guarantee a transaction (i.e. π0 is effectively
∞). We can then rewrite p(x|s) without any restrictions on the range in the form

p(x|s) = Pθ(s)δ(x− π0) + H(x− s)p(x), (3)

where H(x) satisfies H(x) = 1 for x < 0 and H(x) = 0 for x > 0, and δ(x) is the Dirac delta
function, which satisfies δ(x) = 0 for x 6= 0 and

∫
δ(x)dx = 1 for any range of integration

that includes 0.
We can test our hypothesis by assuming it true and then testing whether this is consistent

with the data. To do this we can get better statistical convergence by aggregating a semi-
infinite range of values of the spread by studying p(x|s > s1), where s1 is a threshold
that can be varied to test for dependence on the spread. This conditional density contains
information about both the right and left tail of the distribution. Since s can be arbitrarily
large, p(x|s > s1) contains limit orders with arbitrarily large values of x . However, the
sample distribution will contain a different number of points on the left and right sides due
to the fact that for x > s1 the probability of x depends on the distribution of the spread.
p(x|s > s1) can be written

p(x|s > s1) =

∫∞
s1

p(x|s)p(s)ds∫∞
s1

p(s)ds
.

From equation 3 this becomes

p(x|s > s1) =
δ(x− π0)

∫∞
s1

Pθ(s)p(s)ds + p(x)
∫∞

s1
H(x− s)p(s)ds∫∞

s1
p(s)ds

. (4)

There are three ranges of x that must be treated separately.
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• x < 0 corresponds to limit orders placed inside the book. In this range p(x|s > s1) =
p(x). This can be explicitly verified by doing the integral over H(x− s) in equation 3
over s.

• 0 < x < s1 corresponds to limit orders placed inside the spread, in which case p(x|s >
s1) is given by equation 6 below.

• s1 ≤ x corresponds to trading orders that generate immediate transactions, with a
probability given by equation 2.

We now compute a simple expression for p(x|s > s1) for the second bullet above, i.e. the
range where s1 < x < π0. By making a change of variables the Heaviside function can be
removed and the domain of integration adjusted to include only the non-zero range of the
integrand. This gives

p(x|s > s1) = p(x)

∫∞
x

p(s)ds∫∞
s1

p(s)ds
. (5)

This gives an easy way to test our hypothesis. Letting N(x > z) be the number of limit
orders that satisfy the condition x > z, equation 5 gives an expression for estimating p(x)
for x > s1 as

p(x) = p(x|s > s1)

∫∞
s1

p(s)ds∫∞
x

p(s)ds
≈ N(s > s1)

N(s > x)
. (6)

Using these results we can reconstruct p(x) for −∞ < x < ∞ with any spread condition
s1, by using equation 6 for x > s1 and p(x|s > s1) otherwise. This is done for two different
values of s1 in Figure 1. The fact that the data collapse onto the same curve even though we
use two very different spread conditions confirms that p(x|s) ≈ p(x). This result is surprising
for three reasons:

• p(x|s) is independent of the spread. This is surprising because one would naively
expect the strategic considerations of order placement to depend on the spread.

• The distributions for buying and selling are the same.

• The distribution is symmetric. This is most surprising of all, since for reasons that
we outlined in the introduction to this section, the strategic considerations for placing
orders inside the spread seem quite different than those for placing an order inside the
book.

We can test equation 2 using the fit to the Student distribution from Figure 1. In Figure 2
we plot the fraction of orders that result in transactions as a function of the spread. This
gives an excellent fit to the data. The probability that an order generates a transaction
approaches 1/2 in the limit as the spread goes to zero, and approaches zero in the limit as
the spread becomes large.

To test whether this form is exact or is only an approximation, we used the Kolmogorov-
Smirnov (KS) test. In order to test the conjecture for different values of the spread, we
divided the data set into bins based on the value of the spread, in the ranges shown in
Table I. We then drew values from the Student distribution to match the number of points
in each bin, and applied a two-sided KS test. The statistics of the test for each bin and
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FIG. 1: Reconstruction of the probability density function p(x) describing limit order prices as a
function of x, the limit price relative to the same best price. The reconstruction is done both for
buy orders (green upward pointing triangles) and sell orders (red downward pointing triangles), and
for two different values of the spread, s1 = 0, which uses all the data, and s1 = 0.0025, which uses
roughly the 10% of the data with the largest spread. The fitted blue curve is a Student distribution
with 1.3 degrees of freedom. This shows the order placement is roughly symmetric, independent of
the spread, and the same for buy and sell orders.

s in units of E[s] 0 - 0.5 0.5 - 1 1 - 1.5 1.5 - 2 2 -3 3 - 5 5 - 10 10 - 20
KS value 0.39 0.89 1.12 0.97 1.2 1.07 1.32 1.15
p value 0.72 0.2 0.08 0.15 0.05 0.1 0.03 0.07

TABLE I: Results of applying the Kolmogorov-Smirnov test to the data shown in Figure 1. The
first row contains the range of spreads for each bin in units of the sample mean E[s], the second
row contains the values for the test, and the third row contains the corresponding p values.

the corresponding p values are given in Table I. In one case out of eight we get a rejection
at the 95% confidence level, and in four cases out of eight we get rejections at the 90%
confidence level, suggesting that there are small deviations from the Student distribution
hypothesis. However, these rejections are all weak, and it is important to keep in mind
that the KS test requires the data to be IID. A close examination of the data makes it
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FIG. 2: The transaction probability Pθ as a function of the spread. The curve is based on the fit
to a student distribution for p(x) in Figure 1 and equation 2. This demonstrates that the fraction
of orders that result in transactions approaches 1/2 in the limit as the spread goes to zero and
approaches zero in the limit as the spread becomes large.

clear that this is not true. Zovko and Farmer (2002) studied negative values of x, and
found that they have a strong positive autocorrelation in the tail; we also observe that |x|
has significant autocorrelations. Considering this the results of the KS test are surprisingly
good. In any case it is clear that the Student distribution is a very good approximation of
the true distribution.

This raises the question of whether p(x) can correspond to an economic equilibrium. As
we have already suggested, the obvious strategy for placing an order inside the spread is
to choose a price one tick better than the current same best price. But perhaps this is
naive once one considers a finite tick size and the price priority that comes from placing an
order first. When the spread is wide it is likely that other limit orders will arrive soon and
cause the impatient trader to move her order again. When she places a new order she may
forced to a price that is already occupied and thus get lower priority. In this case she would
have been better off to quote a more aggressive price to begin with. Under appropriate
assumptions such a line of reasoning might result in an economic equilibrium. Because the
strategic considerations inside and outside the book are so different, however, it is hard to
believe that such an equilibrium distribution would be symmetric around the best price.
This suggests that this result may only be explainable on behavioral grounds. At this stage
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it is unclear whether we should consult an equilibrium theorist or a psychologist6

IV. LONG-MEMORY AND ORDER SIGNS

To model order placement it is necessary to decide whether each new order is to buy
or to sell. We arbitrarily designate +1 for buy and −1 for sell. Given that returns are
essentially uncorrelated in time, it might seem natural to simply assume that order signs
are IID. However, this is not a good approximation for the two markets where this has
been studied7. Instead, the signs of orders follow a long-memory process (Bouchaud et al.
2004, Lillo and Farmer 2004). Roughly speaking, this means that the autocorrelation of
order signs C(τ) is not integrable, and decays as τ−γ for large τ , 0 < γ < 1. Here τ is the
time lag between the placement of two orders measured either as the intervening number
of transactions or in terms of clock time while the market is open. The coefficients of the
sample autocorrelation remain positive at statistically significant levels for lags of 10, 000
transactions, corresponding to time intervals of several weeks. This is surprising because it
implies a high degree of predictability in order signs – by observing the sign of an order that
has just been placed, it is possible to make a statistically significant prediction about the
sign of an order that will be placed two weeks later. In order to compensate for this and keep
price changes uncorrelated, the market must respond by adjusting other properties, such as
liquidity, in order to compensate (Lillo and Farmer 2004). As Bouchaud et al. (2004, 2004)
have pointed out this also implies adjustments in subsequent order placement. We find that
the long-memory properties of order signs is very important for price formation.

We have offered a model to explain the long-memory of order flow based on strategic order
splitting (Lillo, Mike, and Farmer 2005). When an agent wishes to trade a large amount, she
does not do so by placing a large trading order, but rather by splitting it into smaller pieces
and executing each piece incrementally according to the available liquidity in the market. We
make a model in which we assume hidden orders have an asymptotic power law distribution
in their size V of the form P (V > v) ∼ v−β, with β > 0, as observed by Gopikrishnan et
al. 2000). Our model assumes that hidden orders enter according to an IID process, and
that they are executed in constant increments at a fixed rate. We show that the signs of
the executed orders are a long-memory process whose autocorrelation function has exponent
γ = β − 1. This prediction is borne out empirically by comparisons of off-book and on-book
data (Lillo, Mike and Farmer, 2005).

The customary way to discuss long-memory is in terms of the Hurst exponent, which is
related to the exponent of the autocorrelation function as H = 1− γ/2. For a long-memory
process the Hurst exponent is in the range 1/2 < H < 1. For a diffusion process with
long-memory increments the variance over a period t scales as t2H , and statistical averages
converge as t(H−1). This creates problems for statistical testing, as discussed in Section VI.

6 Another alternative is that we should consult an expert in non-equilibrium statistical mechanics. The
Student distribution occurs as a standard solution in nonequilibrium statistical mechanics. An alternate
explanation might be an equilibrium that is constrained by inattention, e.g. because of time lags between
price perception and order placement. Note, though, that in the LSE order placement is essentially
instantaneous and time stamps are accurate to within the second.

7 These studies were for the Paris and London stock markets.



12

For simulating price formation as we will do in Section VI we have used our model
described above, and we have also used a fractional gaussian random process (Beran, 1994)
(in the latter case we take the signs of the resulting random numbers). Because the algorithm
for the fractional gaussian algorithm is standard and easy to implement, for purposes of
reproducibility we use it for the results presented here. The studies cited above examined
the signs of market orders only, but in our model we use a long-memory process to model
the signs of market orders and limit orders. This is justified by studies that we have done
of the signs of limit orders, which we find exhibit long-memory that is essentially equivalent
to that of market orders.

V. ORDER CANCELLATION

Cancellation of trading orders plays an important role in price formation. It causes
changes in the midprice when the last order at the best price is removed, and can also have
important indirect effects even when it occurs inside the limit order book. It affects the
distribution of orders in the limit order book, which can later affect price responses to new
market orders. Thus it plays an important role in determining liquidity.

The model that we develop for cancellation in this section is crude and should be regarded
as preliminary. Our reason for presenting our results at this time is that we want to illustrate
that the order placement from the previous section plays an important role in price formation.
Although the analysis leading up to the cancellation model developed here is quick and dirty,
it is justified in the end by the fact that it produces fairly good results. The resulting model
is simple and provides a basis for improvement.

The zero intelligence model used the crude assumption that cancellation is a Poisson
process. Let τ be the lifetime of an order measured from when it is placed to when it is
cancelled, where time is measured in terms of number of trading orders that are placed (either
market orders or limit orders). Under the Poisson assumption the distribution of lifetimes
is an exponential distribution of the form P (τ) = λ(1 − λ)τ−1, where λ is the rate of the
Poisson process. This can also be written λ = 1/E[τ ], where E[τ ] is the expected lifetime.
For AZN, for example, λ ≈ 0.040. A comparison of the exponential to the true distribution,
as done in Figure 3, makes it clear that the Poisson process is a poor assumption. The tail
of the empirical density function behaves like a power law8 of the form τ−(γ+1), with γ = 1.1.
This is a good approximation over roughly two orders of magnitude. The fact that the tail
is a power law implies that the most long-lived orders last an order of magnitude longer
than they would under the Poisson hypothesis. Similar results are observed for BLT with
γ ≈ 1.55 and LLOY with γ ≈ 1.19.

It is clear that the Poisson process needs to be modified and by a process whose lifetime
distribution has a heavy tail. There are several effects that can cause this. For example,
if λ(τ) is a decreasing function, the longer an order exists without being cancelled, the less
likely it is to be cancelled. Alternatively, even if λ(τ) is constant in time, if it depends on
the order i this can generate heavy tails in the lifetime distribution of the whole population.
We find three different effects that influence the lifetimes of orders, and also influence other

8 We find that this exponent is not very stable – when we subsample the data its value varies somewhat in
different periods.
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FIG. 3: The empirical probability density of the lifetime τ of cancelled orders for the stock As-
trazeneca (black). τ is the number of trading orders placed between the time given order is placed
and the time it is cancelled. This is compared to an exponential distribution with λ = 0.03 (red).
A power law τ−(1+γ) with γ = 1.1 is shown for comparison. Note that to avoid end of day effects
we exclude orders that are are not cancelled between 9:00 am and 4:00 pm on trading days (but
we do include orders that are placed on one day and cancelled on another day).

properties of the order book that are important for price formation. These three factors are
position in the order book relative to the best price, imbalance of buy and sell orders in the
book, and the total number of orders. We now explore each of these effects in turn.

A. Position in the order book

Strategic considerations dictate that position in the order book should be important in
determining the cancellation rate. Someone who places an order with a positive value of x
is likely to have a very different expected execution time than someone who places an order
with a negative value of x. If an order is placed at the best price then this implies that
the trader is impatient and more likely to cancel the order quickly if it is not executed. In
contrast, no one would place an order deep inside the book unless they are prepared to wait
a long time for execution. Dependence on cancellation times with these basic characteristics
was observed in the Paris Stock Market by Potters and Bouchaud (2003).
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To study this effect we will measure the cancellation rate as a function of the distance to
the opposite best price. Letting ti be the time when the order was placed, the distance from
the opposite best at time t−ti > 0 is ∆i(t−ti) = π−πb(t) for sell orders and ∆i(t) = πa(t)−π
for buy orders. ∆(0) is thus the distance to the opposite best when the order is placed, and
∆(t) = 0 if and when the order is executed. We compute the sample correlation ρ(∆(0), τ),
and find that ρ ≈ 0.23 for AZN, ρ ≈ 0.14 for BLT, and ρ ≈ 0.18 for LLOY, confirming the
positive association between distance to the opposite best and cancellation time.

Strategic considerations also suggest that cancellation should depend on ∆(t) as well as
∆(0). If ∆(t) � ∆(0) then this means that the opposite best price is now much further
away than when the order was originally placed, making execution unlikely and making it
more likely that the order will be cancelled. Similarly, if ∆(t) � ∆(0) the opposite best
price is quite close, execution is very likely and hence cancellation should be less likely.
This is confirmed by fact that for buy cancellations we observe positive correlations with the
opposite best price movements in the range of 20−25%, and for sell orders we observe negative
correlations of the same size. In the interest of keeping the model as simple as possible we
define a variable that encompasses both the dependence on ∆(0) and the dependence on
∆(t), defined as their ratio

yi(t) =
∆i(t)

∆i(0)
.

By definition when order i is placed yi = 1 and if and when it is executed, yi = 0. A change
in yi(t) indicates a movement in the opposite price in units whose scale is determined by
where order i was originally placed.

To measure the conditional probability of cancellation we use Bayes’ rule. The probability
of cancellation conditioned on yi can be written

P (C|yi) =
P (yi|C)

P (yi)
P (C), (7)

where C is a variable that is true when a cancellation occurs and false otherwise. The
conditional probability P (yi|C) can be computed by simply making a histogram of the values
of yi when cancellations occur. Figure 4 shows an empirical estimate of the conditional
probability of cancellation for AZN computed in this way. Although there are substantial
oscillations9, as predicted by strategic considerations the cancellation probability tends to
increase with yi. As yi goes to zero the cancellation probability also goes to zero, and it
increases to a constant value of roughly 3% per unit time as yi gets large (we are measuring
time in units of the number of trading orders that are placed). To approximate this behavior
for modeling purposes we empirically fit a function of the form K1(1− exp(−x)). For AZN
minimizing least squares gives K1 ≈ 0.012.

The question remains whether the ratio ∆i(t)/∆i(0) fully captures the cancellation rate,
or whether the numerator and denominator have separate effects that are not well modeled
by the ratio. To test this we divided the data into four different bins according to ∆i(0) and
repeated the measurement of Figure 4 for each of them separately. We do not get a perfect
collapse of the data onto a single curve. Nonetheless, each of the four curves has a similar
shape, and they are close enough that in the interest of keeping the model simple we have
decided not to model these effects separately.

9 We believe these oscillations are caused by round number effects in order placement and cancellation.
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FIG. 4: The probability of cancellation P (C|yi) for AZN conditioned on yi(t) = ∆i(t)/∆i(0). The
variable yi measures the distance from order i to the opposite best price relative to its value when
the order was originally placed. The solid curve is the empirical fit K1(1− e−x), with K1 ≈ 0.012.

B. Order book imbalance

The imbalance in the order book is another factor that has a significant effect on order
cancellation. We define an indicator of order imbalance for buy orders as nimb = nbuy/(nbuy +
nsell) = and for sell orders as nimb = nsell/(nbuy + nsell), where nbuy is the number of buy
orders in the limit order book and nsell is the number of sell orders. In Figure 5 we show
an empirical estimate of the conditional distribution P (C|nimb), defined as the probability
of cancellation per order. P (C|nimb) is less than 1% when nimb = 0.1 and about 4% when
nimb = 0.95, increasing by more than a factor of four. This says that it is more likely for
an order to be cancelled when it is the dominant order type on the book, e.g. if the book
has many more buy orders than sell orders, the probability that a given buy order will be
cancelled increases (and the probability for a given sell order to be cancelled decreases).
Since the functional form appears to be a bit complicated, as a crude approximation we fit
a linear function of the form P (C|nimb) = K2(nimb + B). Minimizing least squares gives
K2 ≈ 0.098 and b ≈ 0.20 for AZN.

C. Number of orders in the order book

Another variable that we find has an important effect on cancellation is ntot, the total
number of orders in the order book. Using a procedure similar to those for the other two
variables, in Figure 6 we plot the cancellation probability as a function of ntot. Surprisingly,
we see that the probability of cancellation decreases as ntot increases, approximately propor-
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FIG. 5: The probability of cancellation per order, P (C|nimb) for the stock AZN. This is conditioned
on the order imbalance nimb. The dashed curve is a least squares fit to a linear function, K2(nimb +
B), with K2 ≈ 0.098 and B ≈ 0.20.

tional to 1/ntot. A least squares fit of log P (C|ntot) vs. b−a log ntot gives a slope a = 0.92±0.6
(using one standard deviation error bars). The coefficient a is sufficiently close to one that
we simply make the approximation in our model that P (C|ntot) ∼ 1/ntot. We plot a line of
slope −1 in the figure to make the validity of this approximation clear.

This is very surprising, as it indicates that the total cancellation rate is essentially inde-
pendent of the number of orders in the order book. It raises the question of how the order
book can be stable: If the total cancellation rate does not increase as the number of orders
in the book increases, what prevents the number of orders in the book from blowing up?
As we discussion in Section VI, we find that the order book dynamics are stable, even with
this term. We believe that this is achieved by the order placement dynamics illustrated in
Figure 2. As ntot increases, the spread tends to decrease, which stimulates the submission of
more market orders, which decreases ntot.
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FIG. 6: The probability of cancellation per order, P (C|ntot), for the stock AZN, conditioned on
the total number of orders in the order book, ntot on a log-log plot. The dashed line is the function
K3/ntot, shown for reference, where K3 = 72.2.

D. Combined cancellation model

We assume that the effects of nimb, yi, and ntot are independent, i.e. the conditional
probability of cancellation per order is of the form

P (C|yi, nimb, ntot) =
P (yi|C)P (nimb|C)P (ntot|C)

P (yi)P (nimb)P (ntot)
P (C) = A(1− exp−yi)(nimb + B)/ntot, (8)

where for AZN A ≈ 0.45 and B ≈ 0.20.
To test this model we simulate cancellations and compare to the real data. Using the

real data, after the placement of each new order we measure yi, nimb, and ntot and simulate
cancellation according to the probability given by equation 8. We compare the distribution
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FIG. 7: A comparison of the distribution of lifetimes of simulated cancellations (blue squares) to
those of true cancellations (black circles).

of lifetimes from the simulation to those of the true distribution in Figure 7. The simulated
lifetime distribution is not perfect, but it is much closer to the true distribution than the
Poisson model (compare to Figure 3). It reproduces the power law tail, though with γ ≈
0.9, in comparison to the true distribution, which has γ ≈ 1.1. For small values of τ the
model underestimates the lifetime probability and for large values of τ it overestimates the
probability. As an additional test of the model we plotted the average number of simulated
cancellations against the actual number of cancellation for blocks of 50 events, where an
event is a limit order, market order, or cancellation. As we would hope the result is close to
the identity. Since the resulting plot is uninteresting we do not show it here.

VI. PRICE FORMATION

The models of order placement and order cancellation that we have developed here can
be used to simulate price formation. We make three additional simplifying assumptions.

• All limit orders have constant size. This is justified by our earlier study of the on-book
market of the London Stock Exchange in (Farmer 2004 et al.). There we showed that
orders that remove more than the depth at the opposite best quote are rare. Thus
from the point of view of price formation we can neglect large orders that penetrate
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more than one price level in the limit order book, and simply assume that a transaction
either removes all shares at the best quote or does nothing. We define Π as the fraction
of time a transaction removes the best quote.

• Tick size. Tick size can have an important effect on prices. For the purposes of this
study we assume a constant logarithmic tick size of 3× 10−4.

• Order placement time. The basic unit of time for the simulation and for the corre-
sponding statistical analysis of the real data is an order placement (whether a market
order or a limit order). This assumption is justified by a recent study showing that
fluctuations in transaction frequency play only a minor role in determining clustered
volatility and the distribution of returns (Gillemot, Farmer, and Lillo, 2005).

The simulation of the model proceeds as follows. Each time step corresponds to the
generation of a trading order. The order sign10 is generated using a fractional gaussian
process11 as described in Section IV with Hurst exponent Hs. We then generate a trading
order with that sign by drawing a relative limit price x from a Student distribution with
scale σ and tail exponent α(x), based on the model developed in Section III. If x < s we
place a limit order at price x relative to the opposite best, and otherwise we place a market
order. If the result is a market order then we remove all the orders at the opposite price
with probability Π; otherwise the order has no effect. We then determine which orders are
cancelled by examining each order in the limit order book and generating random numbers
with probability given by equation 8 (which has parameters A and B. Note that more than
one order can be cancelled in a given timestep. The only exception is if this would result
in either side of the limit order book becoming too empty. To prevent this from happening
we impose an additional condition on order cancellation, and require that after cancellation
there be at least two orders remaining on the corresponding side of the book. As a summary,
in Table II we give the measured values of the seven parameters of the model for the three
stocks in our data set.

stock ticker H C α(x) σ × 10−3 Π A B
AZN 0.77 0.15 1.31 2.4 0.45 0.45 0.20
BLT 0.80 0.18 1.55 2.0 0.40 0.51 0.21

LLOY 0.81 0.13 1.25 2.6 0.43 0.47 0.22

TABLE II: The measured parameters of our model for the three stocks in our data set. H is the
Hurst exponent of the order sign series, C is the prefactor of the sign autocorrelation function,
α(x) and σ are the tail exponent and the scale parameter of the order placement distribution,
and Π is the market order penetration rate. The probability of cancellation for a given order is
P (C|yi, nimb, ntot) = A(1− e−yi)(nimb + B)/ntot.

10 Note that we are generating order signs exogenously. This is justified, for example, under the assumption
made in the model of Lillo, Mike, and Farmer (2005) that hidden order arrival is exogenous to price
formation.

11 In contrast to the more realistic model of order flow described in Section IV, the fractional gaussian
processes does not allow us to control the prefactor of the correlation function, but rather generates a
constant prefactor C ≈ 0.15. We find that this is close enough to the true values in Table II that this does
not make a difference.
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The parameters of the simulation for a given stock are based on the parameters in Table II.
The simulation generates a series of events that we compare to the real data in the same
period where the parameters are measured. The particular sequence of events generated in
this manner depends on the random number seed used in the simulation, and will obviously
not match the actual data in detail. We instead test the model by comparing its statistical
properties to those of the real data.

In Figure 8 we compare the predictions of the model to the empirical distribution of
returns and spreads for the stock AZN. The returns are logarithmic midprice changes between
transactions, i.e. r(ti) = log p(ti)−p(ti−ti−1), where ti is the time when a transaction occurs
and p(ti) is the midprice p(ti) = 1/2(πa(ti) + πb(ti)) immediately after the transaction. The
distribution for the spread is built by recording the best bid and ask prices immediately
before transactions12. The agreement is extremely good, both in terms of magnitude and
functional form.

We want to stress that these predictions are made without any adjustment of parameters
based on prices. All the parameters of the model are based on the order flow process alone
– there are no adjustable parameters to match the scale of the returns or the spreads. In
Table III we compare summary statistics for the real data to those of the simulation for
the three stocks in our sample. We do this for the mean, the standard deviation, and the
tail exponent of the spread and the transaction to transaction returns for each stock. The

stock ticker E(|r|)× 10−4 E(s)× 10−4 σ(|r|)× 10−4 σ(s)× 10−4 α(|r|) α(s)
AZN 5.4 ± 1.2 13.9 ± 0.6 7.2 ± 2.1 12.1 ± 0.7 2.4 ± 0.2 3.3 ± 0.3
AZN predicted 5.1 ± 0.1 14.3 ± 0.2 7.2 ± 0.3 13.2 ± 0.2 2.1 ± 0.4 3.0 ± 0.3

BLT 10 ± 0.9 24.1 ± 0.9 17.7 ± 1.6 27.1 ± 1.2 1.9 ± 0.2 2.8 ± 0.3
BLT predicted 9.4 ± 0.1 22.7 ± 0.1 16.6 ± 0.4 26.4 ± 0.3 2.2 ± 0.4 2.7 ± 0.3

LLOY 7.6 ± 1.3 17.1 ± 0.9 8.9 ± 0.6 13.8 ± 0.5 2.4 ± 0.4 3.5 ± 0.2
LLOY predicted 7.4 ± 0.1 16.8 ± 0.1 9.2 ± 0.1 12.9 ± 0.3 2.2 ± 0.3 3.2 ± 0.2

TABLE III: Comparing the model with real data for three stocks in our sample. E(x) = sample
mean of x, σ(x) = standard deviation of x, and α(x) = tail exponent of x. These statistics are
based on the absolute logarithmic returns |r| between transactions and the spread s sampled as
described in the text. Error bars are one standard deviation, computed using the variance plot
method.

agreement is quite good across the board. Out of 3 × 6 = 18 possible cases, in all but two
cases the one standard deviation error of the prediction is within the one standard deviation
error of the real value. The error in the prediction is in every case less than 10%, and in
most cases less than 5%.

The reason the error bars in Table III seem large is because both the absolute returns
and the spreads are long-memory processes. Long-memory has been reported in volatility
by many authors (Breidt, Crato and de Lima 1993, Harvey 1993, Ding, Granger and Engle
1993, Bollerslev and Mikkelsen, Baillie 1996, 1996, Willinger, Taqqu, and Teverovsky, 1999,

12 The time when the spread is recorded makes a significant difference in the distribution. The spread tends
to narrow after receipt of limit orders and tends to widen after market orders or cancellations.
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FIG. 8: A comparison of the distribution of absolute returns |r| (upper) and spreads s (lower)
predicted by the model to those of the real data for the stock Astrazeneca. The error bars for the
model were computed by running the model for 20 times the number of events in the data set and
taking the standard deviation over the 20 resulting distributions. The solid curve is based on a
single run of the model of length equal to the data set.
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Gillemot, Farmer and Lillo 2005). We confirm this here, getting H = 0.78 for AZN, H = 0.74
for BLT, and H = 0.78 for LLOY. As far as we know we are the first to report long-memory
in spreads; sampling before transactions, we find H = 0.81 for AZN, H = 0.86 for BLT,
and H = 0.79 for LLOY13. While we have not performed significance tests (there is no good
test that we know of), given the large size of our data set and the fact that these are so
large in every case, we are confident that these numbers are all greater than H = 0.5 by a
statistically significant amount, and these are long-memory processes.

For long-memory processes the statistical error scales as N (H−1), where N is the number of
data points and H is the Hurst exponent. Standard methods for estimating errors fail when
applied to long-memory processes, and the only applicable method that we are aware of is
the variance plot method (Beran 1994). The data set of length N is divided into m disjoint
regions of length L = int(N/m), where int(x) is the integer part of x, and any remaining
data are discarded. The statistic of interest (the mean E, the standard deviation σ or the
tail exponent α) is computed for each region based on the L data points in that region. The
resulting m values are used to compute the standard deviation Σ(m) of the statistic across
the m regions. This is done for a variety of different values of m. Then log Σ(m) is regressed
against log m assuming the linear relation log Σ(m) = (1 − H) log m + b, where b is a free
parameter. We use values of H computed using the DFA method based on polynomials of
degree one (Deng et al. 1994). The result is extrapolated to m = 1 to compute the error
corresponding to the p value for one standard deviation.

We have not yet had the opportunity to fully explore the properties of this model. A
fuller investigation would test the model on data from many different stocks and on more
properties of the price series. The model has several defects that we know of. In particular,
the autocorrelation function of returns drops to zero slower than the real data (it takes on
values of the order of 1% for about 50 time steps). Another difference concerns clustered
volatility. While the model displays some clustered volatility, it is weaker and less persistent
than that of the real data. For example, for AZN the Hurst exponent of volatility of the
model is H = 0.64, in contrast to H = 0.78 for the real data. Another feature of this model
that we do not like is that the ad hoc requirement that we preserve at least two orders in
each side of the limit order book makes a noticeable difference in the statistical properties
of the simulation, indicating that our existing cancellation model has not fully captured the
order book dynamics.

Despite these caveats, the model does an extremely good job of describing the distribution
of both returns and spreads. The prediction of the tail behavior for both returns and spread
is accurate to within statistical error. Perhaps even more important, unlike previous models,
the prediction is for the entire distribution, and not just for the tail exponent. Although we
cannot make a firm statement based on only three cases, the predicted tail exponent tracks
the variations in the real tail exponents of the three stocks we study here quite well. Though
not yet fully convincing, this suggests that the tail exponents are not universal, but rather
vary from stock to stock14. Our model may thus be useful for understanding the factors that
cause variations in the behavior of extreme risk between stocks.

13 Note that both the tails and the autocorrelations of the spread depend strongly on sampling, due to the
interaction between transactions and the spread.

14 Note also that all three values of α(|r|) are more than two standard deviations below the value of 3 that
is predicted by Gabaix et al. (2003).
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FIG. 9: A comparison of the distribution of absolute returns |r| for the model using a long-memory
sign generation process (red squares) and an IID sign generation process (green diamonds). All
other parameters are held fixed.

Although we have not had a chance to make an exhaustive study of the behavior of the
model under variation of its parameters, certain features are clear. For example, the long-
memory in the order signs is an important driver of the heavy tails of both the return and
the spread distributions. To demonstrate this, in Figure 9 we turn off the long-memory of
order signs and replace it with IID process with a 50% chance of generating a buy order
and a 50% chance of generating a sell order. Although still not normally distributed, the
tails of the return distribution are clearly much thinner. The tail exponents of returns α(|r|)
and spreads α(s) also depend on other properties of the model, such as the tail exponent
for limit order placement α(x) and parameters of the cancellation process, as well as the
Hurst exponent H of the order sign process. The return distribution is not just a simple
reflection of the order placement process, but involves an interaction between all the parts
of the model that we do not yet fully understand.

VII. CONCLUSIONS

The results that we have presented here are useful for several reasons. On a practical
level they give insight into the factors that generate financial risk. They suggest that market
microstructure is important. The distribution of returns in the model is determined by the
interaction of order placement and cancellation. According to our model the heavy tails
in price returns are driven by the long-memory of order signs, but they are also influenced
by order placement and cancellation processes that also have heavy tails. This prediction is
quite different from previous models that say that they are due to large transactions (Gabaix



24

et al, 2003), or that they are caused in a more generic way by nonlinear market dynamics, as
discussed in the introduction. Resolving this question is interesting for market design because
it suggests that by altering properties of the order placement and cancellation process (e.g.
by providing incentives to change behavior) it may be possible to alter the properties of
financial risk.

These results are also interesting at the broader level of methodology. It has become
traditional in economics to require that all theories begin by modeling preferences. A typical
example is selfish utility maximization under rational choice. At the other end are economet-
ric models, which fit functional forms to data using purely ad hoc assumptions. Our model
is somewhere in between. We make an econometric model for order placement and use this
as the foundation to make predictions about price formation. The model of order placement
gives insight into decision making, but does not make any fundamental assumptions about
the motivations that drive it. This can be regarded as a divide and conquer strategy: Rather
than trying to start from first principles and work forward, we search for regularities in the
middle. From here one can either work forward to prices or work backward to try to dis-
cover what preferences and strategic considerations might generate these regularities. We
have chosen to take the much easier path of working forward because it leads to accurate
quantitative predictions via a tractable research program.

The path backward is also very interesting, but much less straightforward. We cannot
claim to understand the behavior we have documented here until we understand its mo-
tivation. Nonetheless, by looking at order placement rather than directly at prices we are
able to capture intermediate behavioral regularities that provide important clues about their
origins, providing a useful benchmark for any attempt to make more fundamental models
that address preferences and choice. Is it possible to explain these regularities in terms of
rational choice? Or do they represent an example of irrational behavior, that can only be
explained in terms of human psychology?

Finally our results are interesting because of the accuracy of their predictions. Based
on properties of order flow, we are able to predict both the magnitude and the functional
form of the return distribution to a high degree of accuracy. The predictions of this model
have the kind of accuracy that one expects in physics. The research program is in the spirit
of typical models in physics, which connect a set of empirical assumptions at one level to
empirical phenomena at another level, but typically do not attempt to derive results from
first principles.
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